JP4922908B2 - Moisture content measuring apparatus and moisture content measuring method - Google Patents

Moisture content measuring apparatus and moisture content measuring method Download PDF

Info

Publication number
JP4922908B2
JP4922908B2 JP2007322203A JP2007322203A JP4922908B2 JP 4922908 B2 JP4922908 B2 JP 4922908B2 JP 2007322203 A JP2007322203 A JP 2007322203A JP 2007322203 A JP2007322203 A JP 2007322203A JP 4922908 B2 JP4922908 B2 JP 4922908B2
Authority
JP
Japan
Prior art keywords
sample
moisture content
time
drying
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007322203A
Other languages
Japanese (ja)
Other versions
JP2009145174A (en
Inventor
俊司 松本
亮浩 郷六
圭輔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007322203A priority Critical patent/JP4922908B2/en
Publication of JP2009145174A publication Critical patent/JP2009145174A/en
Application granted granted Critical
Publication of JP4922908B2 publication Critical patent/JP4922908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、粉粒体試料に付着している水分量を、試料の乾燥前後の重量に基づいて測定する装置に関し、例えば粉粒体の造粒、乾燥、焼成等の処理を行う粉粒体を取り扱う各種プラントにおいて、粉粒体試料をサンプリングしてその水分量の測定を行うのに用いて好適な技術である。   The present invention relates to an apparatus for measuring the amount of water adhering to a granular sample based on the weight of the sample before and after drying, for example, a granular material that performs processing such as granulation, drying, and firing of the granular material This is a technique suitable for use in sampling various granular samples and measuring the amount of water in various plants that handle the above.

例えば鉄鋼業の製鉄所における焼結工場、コークス工場及び原料ヤード等で、粉粒体試料の水分量や水分率を測定する方法として、従来、試料を加熱して乾燥させ、その乾燥前後の試料重量の変化から水分率を算出する方法(絶乾式水分計)、粉粒体試料に波長の異なる電磁波を照射し、その反射率の違いによって水分率を求める方法(赤外線3波水分計)、及び粉粒体試料に中性子線を照射し、その減衰率から水分率を測定する方法(中性子水分計)等が知られている。   For example, as a method for measuring the moisture content and moisture content of powder samples at sintering factories, coke factories, and raw material yards in steel industry, conventionally, the sample is heated and dried, and the sample before and after the drying. A method of calculating a moisture content from a change in weight (an absolutely dry moisture meter), a method of irradiating a powder sample with electromagnetic waves having different wavelengths, and determining a moisture content by the difference in reflectance (infrared three-wave moisture meter), and A method (neutron moisture meter) or the like for irradiating a powder sample with neutron rays and measuring the moisture content from the attenuation rate is known.

このうち試料の乾燥前後の重量から水分率を算出する方法としては、作業者が試料を採取して乾燥前後の試料重量を天秤等によって手作業で測定する方法のほか、試料のサンプリングを含めて乾燥処理並びに乾燥前後の重量測定を自動的に行なうようにした装置も、以下のようにいくつか提案されている。   Among these methods, the moisture content is calculated from the weight of the sample before and after drying, in addition to the method in which the operator collects the sample and manually measures the sample weight before and after drying using a balance etc. Several devices that automatically perform drying processing and weight measurement before and after drying have been proposed as follows.

特許文献1に開示された自動含水量測定装置では、回転テーブルを回転させつつ、その平坦表面上に粉粒体試料を直接落下させることにより、粉粒体試料を回転テーブル上に円環状に分散させて測定する。当該回転テーブルの上方には、円筒状に分散された試料に対向して複数個の赤外線電球等の加熱乾燥手段を設け、回転テーブルの下方にはその回転駆動機構及び計重器を設けて、この回転テーブルを回転駆動機構もしくは計重器のいずれかにのみ連結させる機構を備えている。そして、試料のサンプリング時並びに乾燥時には回転テーブルを回転させ、乾燥前後の重量測定時においてのみ回転テーブルを停止させた状態で計重器に連結して、回転テーブルおよびその上の試料の重量を測定するようにしている。測定終了後には、回転テーブルを高速で回転させつつ、その上面に掻き取り板を接触させることにより、回転テーブル上の試料をテーブル上から落下ないしは飛散させ、次の試料のサンプリング動作に移行するようにしている。   In the automatic moisture content measuring device disclosed in Patent Document 1, the powder sample is dispersed in an annular shape on the rotary table by directly dropping the powder sample on the flat surface while rotating the rotary table. And measure. Above the turntable is provided with a plurality of heating and drying means such as a plurality of infrared light bulbs facing the sample dispersed in a cylindrical shape, and below the turntable is provided with a rotation drive mechanism and a weigher, A mechanism for connecting the rotary table only to either the rotary drive mechanism or the weigher is provided. The rotating table is rotated during sample sampling and drying, and connected to the weigher with the rotating table stopped only during weight measurement before and after drying, and the weight of the rotating table and the sample thereon is measured. Like to do. After the measurement is completed, the sample on the rotary table is dropped or scattered from the table by rotating the rotary table at high speed and bringing the scraper plate into contact with the upper surface of the rotary table, so that the sampling operation of the next sample is started. I have to.

特許文献2に開示された自動水分測定装置では、試料採取・計量装置と水分測定装置とをコンベア装置によって連結するとともに、試料粉粒体を収容する乾燥皿(試料皿)を多数個用意して、試料採取・計量装置において各乾燥皿内に順次試料粉粒体を採取してそれぞれの初期重量を測定した後、これらをコンベア装置で水分測定装置に搬送する。水分測定装置は、多数の乾燥皿を収容可能な回転ゴンドラ式の乾燥機構、計量機構、試料回収機構、乾燥皿の清掃機構と回収機構およびロボット機構によって構成される。コンベア装置により搬送されてきた各乾燥皿をロボット機構によって順次乾燥機構内に挿入する。次に、当該ロボット機構により乾燥処理後の試料を乾燥皿ごと計量機構に搬送して計量した後、その乾燥皿をロボット機構で試料回収機構のホッパ上方に移送して反転させることで試料を乾燥皿外に投棄し、空になった乾燥皿を清掃機構のブラシにより清掃した後にその乾燥皿の重量を計量機構で計量することで風袋重量を記憶する。その後、その乾燥皿を回収機構上に移載する。この乾燥皿の回収機構は、多数の乾燥皿を貯蔵するためのもので、前記した試料採取・計量装置への乾燥皿の移送は人為的に行うようになっている。   In the automatic moisture measuring device disclosed in Patent Document 2, a sample collecting / metering device and a moisture measuring device are connected by a conveyor device, and a large number of drying dishes (sample dishes) containing sample powder particles are prepared. Then, after the sample powder particles are sequentially collected in each drying dish in the sample collecting / metering device and the initial weights thereof are measured, these are conveyed to the moisture measuring device by the conveyor device. The moisture measuring device includes a rotating gondola-type drying mechanism that can accommodate a large number of drying dishes, a weighing mechanism, a sample recovery mechanism, a drying dish cleaning mechanism, a recovery mechanism, and a robot mechanism. Each drying pan conveyed by the conveyor device is sequentially inserted into the drying mechanism by the robot mechanism. Next, the dried sample is transported to the weighing mechanism together with the drying pan by the robot mechanism and weighed. The tare weight is memorized by dumping outside the dish and cleaning the empty drying dish with the brush of the cleaning mechanism and then weighing the weight of the drying dish with the measuring mechanism. Thereafter, the drying dish is transferred onto the collection mechanism. The drying tray recovery mechanism is for storing a large number of drying dishes, and the drying dishes are transferred to the sample collection / weighing apparatus manually.

また、特許文献3に開示された水分測定装置では、傾動自在の試料皿を支承して、水平面に沿った回動並びに上下動が与えられる旋回アームを備え、その旋回アームの回動による試料皿の円軌跡上には、その試料皿内の試料表面を平坦化するためのスクレーパを含む試料投入部と、試料皿内の試料重量をその試料皿ごと測定する計重部と、乾燥加熱させる乾燥部、および試料皿を傾斜させることにより試料を排出する試料排出部が個別に配置され、その旋回アームの回動並びに上下動を制御する制御部が備えられており、小型で単純な機構で水分測定が可能となっている。当該水分測定装置における測定処理フローの概略を図6に示す。   In addition, the moisture measuring device disclosed in Patent Document 3 includes a swivel arm that supports a tiltable sample pan and can be rotated and moved up and down along a horizontal plane. On the circular trajectory, a sample loading unit including a scraper for flattening the surface of the sample in the sample plate, a weighing unit for measuring the sample weight in the sample plate together with the sample plate, and drying for drying and heating. And a sample discharge unit that discharges the sample by inclining the sample pan, and a control unit that controls the rotation and vertical movement of the swivel arm is provided. Measurement is possible. An outline of a measurement processing flow in the moisture measuring apparatus is shown in FIG.

特開昭54−24695号公報JP 54-24695 A 実開昭59−149046号公報Japanese Utility Model Publication No.59-149046 特開平8−219970号公報Japanese Unexamined Patent Publication No. 8-219970

上記した粉粒体試料水分の各測定方法のうち、波長の異なる電磁波の反射率の相違から水分率を求める方法(赤外線三波長水分計)は、測定すべき粉粒体の粒子径や色彩の影響を受けるという致命的な欠点を有している。   Among the methods for measuring the moisture content of the granular material sample described above, the method for obtaining the moisture content from the difference in the reflectance of electromagnetic waves having different wavelengths (infrared three-wavelength moisture meter) determines the particle diameter and color of the granular material to be measured. It has a fatal drawback of being affected.

また、粉粒体試料に照射した中性子線の減衰率から水分率を測定する方法(中性子水分計)では、粉粒体中の結晶水分まで測定してしまうので、付着水分を測定する方法としては適していない。   In addition, the method of measuring moisture content from the decay rate of the neutron beam irradiated to the granular material sample (neutron moisture meter) measures even the crystalline moisture in the granular material. Not suitable.

一方、粉粒体試料の加熱乾燥前後の重量変化から水分率を求める方法(絶乾式水分計)は、以上の方法に比して原始的ではあるものの、試料の種類や粒子径、あるいは測定雰囲気の状態に係わらず、正確で信頼性の高い付着水分の測定が可能である。しかし、この方法においては、試料のサンプリングから天びん等を用いた重量測定等を作業者が手動で行う場合、刻々と粉粒体の種類、粒度、水分、色彩が変化し、複数種類の粉粒体が混在し、かつ、複数の粉粒体の配合割合が時々刻々と変化する場合には、試料のサンプリングから天びん等を用いた重量測定等の測定作業をその都度作業者が行う必要があって工数が大きくなる。また、24時間連続して操業するプラントでは、常にこのような作業を続ける必要が生じる。しかも、1回の測定ごとに、試料サンプリング、初期重量の測定、乾燥処理、乾燥後重量測定、という一連の作業を行うことから、水分率の算出に1〜2時間を要することになり、時々刻々と変化する水分率の管理には適さないという問題があった。   On the other hand, the method of obtaining the moisture content from the weight change before and after heating and drying of the granular sample (absolute moisture meter) is primitive compared to the above method, but the sample type, particle size, or measurement atmosphere Regardless of the state, it is possible to accurately and reliably measure the moisture content. However, in this method, when the operator manually performs weight measurement using a balance or the like from sampling of the sample, the type, particle size, moisture, and color of the powder particles change every moment, and multiple types of powder particles When the body is mixed and the blending ratio of multiple powders changes from moment to moment, it is necessary for the operator to perform measurement work such as sampling and weight measurement using a balance etc. The man-hour increases. Further, in a plant that operates continuously for 24 hours, it is necessary to always continue such work. Moreover, since a series of operations such as sample sampling, initial weight measurement, drying process, and post-dry weight measurement is performed for each measurement, it takes 1-2 hours to calculate the moisture content. There was a problem that it was not suitable for management of the moisture content which changes every moment.

このような問題は、試料乾燥前後の重量変化から水分率を求める方法を自動化した装置である、前記の特許文献1〜3に記載の技術によってある程度は解消されるが、いずれの自動化方法も、原理上試料をサンプリングし乾燥する過程は必須であり、水分率算出までの測定時間は短縮されても、せいぜい30分程度が限度である。又、粉粒体の種類、状態によって乾燥に要する時間や好ましい条件が異なることが多い。このように粉粒体の種類、状態の変動に対してより柔軟に条件を設定し、且つ即応性が要求される用途には、自動化した装置を適用しにくいという問題があった。   Such a problem is solved to some extent by the technique described in Patent Documents 1 to 3, which is an apparatus that automates the method for obtaining the moisture content from the weight change before and after drying the sample. In principle, the process of sampling and drying the sample is indispensable, and even if the measurement time to calculate the moisture content is shortened, it is limited to about 30 minutes at most. In addition, the time required for drying and preferable conditions often vary depending on the type and state of the granular material. As described above, there is a problem that it is difficult to apply an automated apparatus to a use in which conditions are set more flexibly with respect to changes in the type and state of the powder and a quick response is required.

以上の従来の粉粒体を試料し、当該試料の加熱乾燥前後の重量変化から水分率を求める方式の水分測定装置の問題点に鑑みて、本発明は、粉粒体の種類、状態、及び配合割合の変動にも柔軟に対応でき、しかも従来よりも短い測定時間で、且つ高精度に試料の水分率を測定できる水分測定装置及び方法を提供することを目的とする。   In view of the problems of the moisture measuring device of the above-described conventional powder and sample, and determining the moisture content from the weight change before and after heating and drying of the sample, the present invention provides the type, state, and It is an object of the present invention to provide a moisture measuring apparatus and method that can flexibly cope with fluctuations in the blending ratio, and can measure the moisture content of a sample with a shorter measurement time and with higher accuracy.

本発明の要旨とするところは、以下に記載する如くである。   The gist of the present invention is as described below.

本発明の水分量測定装置は、水分を含んだ粉粒体を試料として、該試料を乾燥させながら試料の質量値の時間推移を測定して、前記試料が含む水分量又は水分率を測定する水分量測定装置であって、前記試料を乾燥させるために加熱する試料加熱部と、前記試料を秤量して連続的又は断続的に質量値を出力する試料秤量部と、前記試料、前記試料加熱部及び前記試料秤量部を収納する筐体と、前記連続的又は断続的に出力された一連且つ所定の期間の有限個の質量値に基づいて、前記試料が含んでいた水分量又は水分率を算出する秤量データ処理部とを具備し、該秤量データ処理部は、前記一連且つ所定の期間の有限個の質量値を用いて、前記試料が完全に乾燥するまでの質量値の減少の時間推移、又は質量値の時間変化量の時間推移を所定の予測演算で予測して、測定前に試料が含んでいた水分量又は水分率を推定して算出し、前記質量値は所定の時間間隔で秤量され、前記秤量データ処理部が行う所定の予測演算は、一連且つ所定の期間の有限個の質量値から、相前後した時刻それぞれの質量値の差分演算で時間変化量の時間推移から該時間変化量の最大値を算出し、該最大値に基づき、予め複数の試料について求めた水分率と時間変化量の最大値との関係を表す、水分率を予測するための第1の予測式から一次予測水分率W1を算出し、前記一連且つ所定の期間の有限個の質量値から試料の乾燥前の質量値と各時刻での質量値との差から、乾燥により減少した水分の水分率の時間推移を算出し、該算出された水分率の時間推移及び前記一次予測水分率W1に基づいて、数式(1)を用いて前記一次予測水分率W1を仮の水分率として数式(1)のWfの値を所定の範囲で設定してW(t)を算出し、前記算出された水分率の時間推移と比較して水分率Wfを導出する演算であることを特徴とする。

Figure 0004922908
ただし、
t:時刻
W(t):時刻tの水分率
T1、T2、T3:予め複数の試料についての水分率Wの時間変化の測定値に基づいて、回帰計算を用いて決定されたフィッティング係数 The moisture content measuring apparatus of the present invention uses a powdery particle containing moisture as a sample, measures the time transition of the mass value of the sample while drying the sample, and measures the moisture content or moisture content contained in the sample. A moisture content measuring apparatus, a sample heating unit for heating the sample to dry, a sample weighing unit for weighing the sample and outputting a mass value continuously or intermittently, the sample, and the sample heating The amount of moisture or water content contained in the sample based on a series and a finite number of mass values for a predetermined period of time that are output continuously or intermittently. A weighing data processing unit to calculate, the weighing data processing unit using the finite number of mass values of the series and a predetermined period, the time transition of the decrease in mass value until the sample is completely dried , Or the time transition of the time change of mass Predicted by prediction calculation, is calculated by estimating the amount of moisture or water content contained a sample prior to measurement, the mass values are weighed at predetermined time intervals, predetermined prediction calculation in which the weighing data processing unit performs Calculates the maximum value of the time change amount from the time transition of the time change amount by calculating the difference of the respective mass values at successive times from a finite number of mass values in a predetermined period of time, and based on the maximum value The primary predicted moisture content W1 is calculated from a first prediction formula for predicting the moisture content, which represents the relationship between the moisture content obtained in advance for a plurality of samples and the maximum value of the amount of time change, and the series and predetermined From the difference between the mass value before drying of the sample and the mass value at each time from the finite number of mass values in the period, the time transition of the moisture content of the moisture decreased by drying is calculated, and the calculated moisture content time Based on the transition and the primary predicted moisture content W1, the formula ( ) To calculate the W (t) by setting the Wf value of the formula (1) within a predetermined range using the primary predicted moisture content W1 as a temporary moisture content, and the time transition of the calculated moisture content and comparison wherein the calculation der Rukoto to derive the moisture content Wf by.
Figure 0004922908
However,
t: Time
W (t): Moisture content at time t
T1, T2, T3: fitting coefficients determined in advance using regression calculation based on measured values of the change in moisture content W over time for a plurality of samples

本発明の水分量測定方法は、水分を含んだ粉粒体を試料として、該試料を試料加熱部で加熱して乾燥させながら試料の質量値の時間推移を測定して、試料が含む水分量又は水分率を測定する水分量測定方法であって、前記試料を加熱・乾燥する前に試料の質量を秤量して乾燥前質量値を得る乾燥前秤量手順と、前記試料を乾燥させるために加熱する試料乾燥工程と、前記試料乾燥工程で乾燥しながら、試料を秤量して連続的又は断続的に質量値を出力する繰り返し秤量手順と、前記連続的又は断続的に出力された一連且つ所定の期間の有限個の質量値に基づいて、試料が含んでいた水分量又は水分率を算出する水分率予測演算手順とを具備し、該水分率予測演算手順は、前記一連且つ所定の期間の有限個の質量値を用いて、試料が完全に乾燥するまでの質量値の減少の時間推移、又は質量値の時間変化量の時間推移を所定の予測演算で予測して、測定前に試料が含んでいた水分量又は水分率を推定して算出し、前記質量値は所定の時間間隔で秤量され、前記水分率予測演算手順で行う所定の予測演算は、一連且つ所定の期間の有限個の質量値から、相前後した時刻それぞれの質量値の差分演算で時間変化量の時間推移から該時間変化量の最大値を算出し、該最大値に基づき、予め複数の試料について求めた水分率と時間変化量の最大値との関係を表す、水分率を予測するための第1の予測式から一次予測水分率W1を算出し、一連且つ所定の期間の有限個の質量値から試料の乾燥前の質量値と各時刻での質量値との差から、乾燥により減少した水分の水分率の時間推移を算出し、該算出された水分率の時間推移及び前記一次予測水分率W1に基づいて、数式(1)を用いて前記一次予測水分率W1を仮の水分率として数式(1)のWfの値を所定の範囲で設定してW(t)を算出し、前記算出された水分率の時間推移と比較して水分率Wfを導出する演算であることを特徴とする。

Figure 0004922908
ただし、
t:時刻
W(t):時刻tの水分率
T1、T2、T3:予め複数の試料についての水分率Wの時間変化の測定値に基づいて、回帰計算を用いて決定されたフィッティング係数 The moisture content measurement method of the present invention uses a powdery particle containing moisture as a sample, measures the time transition of the mass value of the sample while heating and drying the sample in a sample heating unit, and the amount of moisture contained in the sample. Alternatively, a moisture content measuring method for measuring a moisture content, wherein a weighing procedure before drying to obtain a mass value before drying by weighing the sample before heating and drying the sample, and heating to dry the sample. A sample drying step, a repeated weighing procedure for weighing a sample and outputting a mass value continuously or intermittently while drying in the sample drying step, and a series and predetermined output of the continuous or intermittent output A moisture content prediction calculation procedure for calculating a moisture content or a moisture content contained in a sample based on a finite number of mass values for a period, and the moisture content prediction calculation procedure is limited to the series and a predetermined period of time. Using a mass value, the sample is completely dry Time course of reduction of the mass values to that, or the time variation of the time course of weight values predicted by a predetermined prediction computation, calculated by estimating the amount of moisture or water content contained a sample prior to measurement The mass values are weighed at predetermined time intervals, and the predetermined prediction calculation performed in the moisture content prediction calculation procedure is a difference between mass values at successive times from a finite number of mass values in a series and a predetermined period. Calculate the maximum value of the time change amount from the time transition of the time change amount by calculation, and represent the relationship between the moisture rate obtained for a plurality of samples in advance and the maximum value of the time change amount based on the maximum value The primary predicted moisture content W1 is calculated from the first prediction formula for predicting the value, and the difference between the mass value before drying the sample and the mass value at each time from a finite number of mass values in a predetermined period. , Calculate the time transition of the moisture content of the moisture decreased by drying, Based on the time transition of the moisture content and the primary predicted moisture content W1, the primary predicted moisture content W1 is set as a temporary moisture content using the formula (1), and the value of Wf in the formula (1) is a predetermined range. in sets to calculate the W (t), and wherein the calculation der Rukoto to derive the moisture content Wf compared to time course of the calculated moisture content.
Figure 0004922908
However,
t: Time
W (t): Moisture content at time t
T1, T2, T3: fitting coefficients determined in advance using regression calculation based on measured values of the change in moisture content W over time for a plurality of samples

本発明の水分量測定装置及び水分量測定法によれば、ある有限期間の試料の秤量値である質量値に基づき、当該質量値の時間推移を推定して、乾燥前の試料が含んでいた水分量又は水分率を推定するようにしたので、粉粒体の種類、状態、及び配合割合の変動にも柔軟に対応でき、しかも従来よりも短い測定時間で、且つ高精度に試料の水分率を測定できる。その結果、従来技術と比べて、水分率測定精度をほとんど低下させることがなく、水分率測定結果を得るまでの時間を、例えば1/2から1/3に短縮することが可能となる。これにより、これまで不可能であった焼結配合原料水分率などの測定に適用可能となり、焼結操業の歩留まり向上、安定操業に大きく寄与できる。   According to the moisture content measuring apparatus and the moisture content measuring method of the present invention, the time transition of the mass value is estimated based on the mass value that is the weighed value of the sample for a certain finite period, and the sample before drying is included. Since the moisture content or moisture content is estimated, it is possible to flexibly cope with fluctuations in the type, state, and blending ratio of powder particles, and with a shorter measurement time and higher accuracy than the conventional method. Can be measured. As a result, compared with the prior art, the moisture content measurement accuracy is hardly lowered, and the time required to obtain the moisture content measurement result can be shortened from 1/2 to 1/3, for example. As a result, it can be applied to the measurement of the moisture content of the sintered blending raw material, which has been impossible until now, and can greatly contribute to the improvement of the yield of the sintering operation and the stable operation.

本発明の水分量測定装置及び測定方法の実施の形態を、鉄鋼業の上工程である焼結プロセスにおける水分測定を例にして、以下、図を参照して詳細に説明する。当該焼結プロセスでは、粉状になった鉄鉱石の粉鉱石、少量の石灰粉及びコークス粉を混ぜて焼結配合原料を作り、当該焼結配合原料を一定の大きさに焼き固めて鉱石の塊成物が造られる。焼結プロセスにおいては焼結する前の焼結配合原料が含む水分の量である水分率(又は水分量)が焼結プロセスに大きく影響するので、予め焼結配合原料の水分率を測定する必要がある。   Embodiments of the moisture content measuring apparatus and measurement method of the present invention will be described below in detail with reference to the drawings, taking moisture measurement in a sintering process as an upper process of the steel industry as an example. In the sintering process, a powdered iron ore powder ore, a small amount of lime powder and coke powder are mixed to make a sintered blended raw material, and the sintered blended raw material is baked and hardened to a certain size. Agglomerates are made. In the sintering process, the moisture content (or moisture content), which is the amount of moisture contained in the sintering compound material before sintering, greatly affects the sintering process, so it is necessary to measure the moisture content of the sintering compound material in advance. There is.

本実施の形態において、試料は、焼結プロセスの原料である焼結配合原料である。本実施の形態の水分量測定装置の構成の概略を図1に示す。図1で、中央にある四角の箱内の上側部分は、試料を乾燥させるための空間である乾燥室10であり、下側部分は試料の質量を測定する秤量室11である。秤量室11には、試料8の出し入れをするための出入り口を設置する(図示せず)。   In the present embodiment, the sample is a sintered blending raw material that is a raw material of the sintering process. FIG. 1 shows an outline of the configuration of the moisture content measuring apparatus according to the present embodiment. In FIG. 1, the upper part in the square box at the center is a drying chamber 10 which is a space for drying a sample, and the lower part is a weighing chamber 11 for measuring the mass of the sample. The weighing chamber 11 is provided with an entrance for taking in and out the sample 8 (not shown).

乾燥室10には、室内の温度を測定する温度測定部1、試料を乾燥させるために加熱する試料加熱部4が装備されている。試料8は試料皿7に載せられて乾燥・秤量される。試料加熱部4に電力を供給する加熱用電源3、及び加熱用電源3を制御して試料加熱部4による加熱を制御するための加熱用コントローラ2は、室外に置いてある。試料加熱部4は例えば赤外線ヒーター、ハロゲンランプ等の放射光を利用する加熱装置で構成するとよい。本実施の形態では、乾燥室10の室温(すなわち雰囲気温度)を一定にするように、加熱用コントローラ2で加熱用電源3から試料加熱部4へ供給する電力を制御する。   The drying chamber 10 is equipped with a temperature measuring unit 1 that measures the temperature in the room and a sample heating unit 4 that heats the sample to dry it. The sample 8 is placed on the sample pan 7 and dried and weighed. A heating power source 3 for supplying power to the sample heating unit 4 and a heating controller 2 for controlling the heating by the sample heating unit 4 by controlling the heating power source 3 are placed outside the room. The sample heating unit 4 may be constituted by a heating device using radiated light such as an infrared heater or a halogen lamp. In the present embodiment, the power supplied from the heating power source 3 to the sample heating unit 4 is controlled by the heating controller 2 so that the room temperature (that is, the ambient temperature) of the drying chamber 10 is constant.

なお、温度測定部1は、雰囲気温度を測定する方法以外に、試料加熱部4からの放射光を受ける受光部を具備し、当該受光部の温度を測定する方法を用いても良い。また、その他の加熱制御法としては、試料加熱部4へ供給する電力を一定になるように制御しても良い。このときには温度測定部1は省略してもよい。   In addition to the method for measuring the ambient temperature, the temperature measuring unit 1 may include a light receiving unit that receives the radiated light from the sample heating unit 4 and a method for measuring the temperature of the light receiving unit. As another heating control method, the power supplied to the sample heating unit 4 may be controlled to be constant. At this time, the temperature measuring unit 1 may be omitted.

又、乾燥室10へ例えば乾燥空気や窒素ガス等の不活性ガスの乾燥用気体を供給することにより、試料8の乾燥を速くすることができる。この場合、上記の試料加熱部4は、当該乾燥用気体を加熱するように配設しても良い。   Further, by supplying a drying gas such as dry air or nitrogen gas to the drying chamber 10, the sample 8 can be dried quickly. In this case, the sample heating unit 4 may be arranged to heat the drying gas.

秤量室11には、試料8を収納する試料皿7、試料8の質量を測定するために試料皿7を上に搭載する円筒形状の試料載台6、及び試料を収納した試料皿7を秤量する試料秤量部5が配設されている。試料載台6は、試料8の加熱乾燥に伴い高温になるので、耐熱性に優れたアルミナ等のセラミックや石英ガラス(SiO)で構成してもよい。又、試料秤量部5は、測定する試料の量や必要な測定精度により、市販の高精度なmgオーダー又はμgオーダーの測定精度を有する電子天秤を用いて構成するとよい。試料載台6の上部は、乾燥室10と秤量室11との間に設けた穴12を貫通して乾燥室10側に突き出ている。本実施の形態では、試料載台6の上に、試料8を手動で積載した試料皿7を載せている。 The weighing chamber 11 weighs a sample tray 7 for storing the sample 8, a cylindrical sample stage 6 on which the sample tray 7 is mounted in order to measure the mass of the sample 8, and a sample tray 7 for storing the sample. A sample weighing unit 5 is disposed. Since the sample stage 6 becomes a high temperature as the sample 8 is heated and dried, the sample stage 6 may be made of ceramic such as alumina or quartz glass (SiO 2 ) having excellent heat resistance. Further, the sample weighing unit 5 may be configured using a commercially available electronic balance having a measurement accuracy of high accuracy mg order or μg order depending on the amount of sample to be measured and required measurement accuracy. The upper part of the sample stage 6 protrudes toward the drying chamber 10 through a hole 12 provided between the drying chamber 10 and the weighing chamber 11. In the present embodiment, a sample tray 7 on which a sample 8 is manually loaded is placed on the sample mount 6.

又、前記した特許文献1〜3に記載されているような自動化した装置で、測定に先立ち試料8を試料皿7に供給し、測定が終了してから試料皿7から試料8を除去しても良いことは当然である。例えば、焼結工場の焼結サージホッパーに焼結配合原料を投入する搬送コンベアの落ち口から、焼結配合原料をサンプリングし、サンプリングした試料を図1に示す装置の試料皿7に自動で投入する自動サンプリング装置を水分量測定装置に併設又は水分量測定装置内に設置するとよい(図示せず)。   In addition, with an automated apparatus as described in Patent Documents 1 to 3, the sample 8 is supplied to the sample pan 7 prior to measurement, and the sample 8 is removed from the sample pan 7 after the measurement is completed. Of course it is good. For example, the sintered compounding material is sampled from the entrance of the conveyor for supplying the sintered compounding material to the sintering surge hopper in the sintering factory, and the sampled sample is automatically loaded into the sample pan 7 of the apparatus shown in FIG. The automatic sampling device to be installed may be installed in the moisture content measuring device or installed in the moisture content measuring device (not shown).

試料8を加熱して乾燥させながら、試料秤量部5で時間連続的に測定した試料皿7の秤量値は、秤量室11の外に設置された秤量データ処理部9に、時々刻々入力される。この際、試料秤量部5がデジタル信号を出力するときには秤量データ処理部9はデジタルI/O部を具備し、デジタル信号に代えてアナログ信号を出力するときにはA/D変換部を具備する(図示せず)。加熱用コントローラ2や秤量データ処理部9は、上記のデジタルI/O部又はA/D変換部、キーボードやマウスの入力部、HDDやDVDからなるデータ記憶部、及びディスプレーからなるパーソナル・コンピュータで構成することができる。又、この秤量データ処理部9に、焼結工場内を管理するプロセスコンピュータとネットワーク経由で接続するためのネットワークボードを具備させて、試料8の情報や水分量測定値を送受信するようにしても良い。   While the sample 8 is heated and dried, the measured value of the sample pan 7 measured continuously by the sample weighing unit 5 is input to the weighing data processing unit 9 installed outside the weighing chamber 11 every moment. . At this time, when the sample weighing unit 5 outputs a digital signal, the weighing data processing unit 9 includes a digital I / O unit, and when outputting an analog signal instead of the digital signal, includes an A / D conversion unit (see FIG. Not shown). The heating controller 2 and the weighing data processing unit 9 are the above-mentioned digital I / O unit or A / D conversion unit, keyboard and mouse input unit, data storage unit composed of HDD and DVD, and a personal computer composed of a display. Can be configured. Further, the weighing data processing unit 9 is provided with a network board for connecting via a network to a process computer that manages the inside of the sintering plant, so that information on the sample 8 and measured moisture content can be transmitted and received. good.

なお、試料皿7の質量値を予め測定しておき、試料秤量部5では、試料8を積載した試料皿7の秤量値から当該質量値を減算して補正した、試料8の質量値を出力するようにするとよい。図2は、秤量データ処理部9で収集したそのときの試料質量値mの時間変化の様子を模式的に表したものである。図2(a)、(b)共に横軸は時間t(乾燥開始時刻を便宜上t=0とする)を表し、(a)の縦軸は試料質量値mであり、(b)の縦軸は、予め設定した所定の時間Δt当りの試料質量値mの時間変化量(以下では時間変化量と記す)Δmを表している。時間変化量Δmは、数式(2)で計算する。

Figure 0004922908
ここで、m(t)は時刻tの試料質量値であり、時間t(nは自然数)は所定の測定時間の間隔の値Δt(例えば10sec)をとる。当該時間の間隔Δtは試料8が十分乾燥するのに要する時間、及び試料8の乾燥速度から見て十分短い時間であれば良い。ただし、時間の間隔Δtが大きすぎると、以下で計算する水分率の測定精度が悪くなる。 The mass value of the sample pan 7 is measured in advance, and the sample weighing unit 5 outputs the mass value of the sample 8 corrected by subtracting the mass value from the weighed value of the sample pan 7 on which the sample 8 is loaded. It is good to do. FIG. 2 schematically shows how the sample mass value m collected by the weighing data processing unit 9 changes with time. 2A and 2B, the horizontal axis represents time t (the drying start time is set to t = 0 for convenience), the vertical axis in (a) is the sample mass value m, and the vertical axis in (b). Represents a time change amount (hereinafter referred to as a time change amount) Δm of the sample mass value m per predetermined time Δt set in advance. The time change amount Δm is calculated by Expression (2).
Figure 0004922908
Here, m (t n) is the sample mass value at time t n, the time t n (n is a natural number) has a value interval of a predetermined measuring time Delta] t (e.g., 10 sec). The time interval Δt may be a time required for the sample 8 to be sufficiently dried and a sufficiently short time as viewed from the drying speed of the sample 8. However, if the time interval Δt is too large, the measurement accuracy of the moisture content calculated below deteriorates.

図2(a)の試料質量値は、乾燥前質量値m0から時間経過につれて減少していき、試料8に付着した水分が完全に蒸発した段階で乾燥後質量値m∞となるとする。このとき、乾燥前の試料8が含んでいた水分量について、その水分率W(質量%)は数式(3)で得られる。

Figure 0004922908
The sample mass value in FIG. 2 (a) decreases from the pre-drying mass value m0 as time elapses, and reaches the post-drying mass value m∞ at the stage where the water adhering to the sample 8 has completely evaporated. At this time, the moisture content W (mass%) of the moisture content contained in the sample 8 before drying is obtained by Equation (3).
Figure 0004922908

一方、図2(b)に示すように、所定の時間Δt当りの時間変化量Δmは、試料の乾燥が進むにつれて徐々に増加していき、時刻tpで最大値(以下Δmpと表記)に達し、その後減少していき最終的には0となる山型の形状となる。   On the other hand, as shown in FIG. 2B, the amount of time change Δm per predetermined time Δt gradually increases as the drying of the sample proceeds and reaches a maximum value (hereinafter referred to as Δmp) at time tp. After that, it decreases and eventually becomes a mountain shape that becomes zero.

次に、秤量データ処理部9で行う、秤量して得られた試料質量値mから乾燥前の試料8が含んでいた水分量及び水分率を導出する処理の説明を行う。   Next, a description will be given of processing performed by the weighing data processing unit 9 for deriving the moisture content and moisture content contained in the sample 8 before drying from the sample mass value m obtained by weighing.

本願発明者らは、鉄鋼業の焼結プロセスにおける試料である焼結配合原料について、当該焼結配合原料を構成する原料の種類、状態、及び原料の配合割合が異なった多数の試料を用いて、試料を乾燥させるときの雰囲気温度や雰囲気等の乾燥条件を実質的に一定に保つようにして、試料質量値mの時間推移と時間変化量Δmの時間推移のパターンを詳細に検討した。もちろん、乾燥前質量値m0、乾燥後質量値m∞、時間変化量の最大値Δmp及びその時刻tp、はそれぞれ試料によって異なる値を示すのはいうまでもない。これらの試料サンプルから得られた実績データを詳細に解析した結果に基づき、以下で説明する試料に付着する水分量を高精度且つ短時間に評価する方法を想到した。   The inventors of the present application use a large number of samples with different types, states, and mixing ratios of raw materials constituting the sintered mixed raw materials for the sintered mixed raw materials that are samples in the sintering process of the steel industry. The pattern of the time transition of the sample mass value m and the time variation Δm was examined in detail so that the drying conditions such as the atmospheric temperature and the atmosphere when the sample was dried were kept substantially constant. Of course, it goes without saying that the mass value m0 before drying, the mass value m∞ after drying, the maximum value Δmp of time variation and the time tp thereof show different values depending on the sample. Based on the results of detailed analysis of the actual data obtained from these sample samples, a method for evaluating the amount of water adhering to the sample described below with high accuracy and in a short time was devised.

すなわち、試料を乾燥させるときの温度や雰囲気等の乾燥条件を実質的に一定に保ちつつ、試料乾燥途上の時々刻々と変化する試料質量値を、試料秤量部5で連続的又は予め設定した時間間隔Δt(例えば10sec)で測定する。次に、当該試料質量値を用いて、試料質量値や所定の時間Δt当りの試料質量変化量Δm(時間変化量)を用いて、試料質量や時間変化量の将来の値を、下記で詳細に説明するように所定の予測演算手順により推定する。当該予測演算の結果を用いて、試料に付着する水分率Wを精度良く予測する。   That is, the sample mass value that changes from moment to moment during the sample drying process is continuously or preset by the sample weighing unit 5 while keeping the drying conditions such as temperature and atmosphere when drying the sample substantially constant. Measurement is performed at an interval Δt (for example, 10 sec). Next, using the sample mass value, the sample mass value and the sample mass change amount Δm (time change amount) per predetermined time Δt are used, and future values of the sample mass and time change amount are described in detail below. As will be described below, the estimation is performed by a predetermined prediction calculation procedure. Using the result of the prediction calculation, the moisture content W adhering to the sample is accurately predicted.

このように予測演算を用いて試料の水分率Wを推定することにより、水分率Wの測定精度を従来の方法と比べて低下させることなく、又、従来技術の試料の乾燥前後の質量に基づいて水分率を測定する方式の測定時間に比べて、測定時間を例えば1/2から1/3に短縮することが可能となった。   By estimating the moisture content W of the sample using the prediction calculation in this way, the measurement accuracy of the moisture content W is not reduced as compared with the conventional method, and based on the mass of the sample of the prior art before and after drying. Thus, the measurement time can be reduced from 1/2 to 1/3, for example, compared to the measurement time of the method of measuring the moisture content.

本実施の形態の水分量測定装置の測定手順の一例の概略を図3に示す。   FIG. 3 shows an outline of an example of a measurement procedure of the moisture content measuring apparatus according to the present embodiment.

S100:試料サンプリング手順
自動サンプリング装置を用いて、焼結配合原料を搬送する搬送コンベアに設けた落ち口から、焼結配合原料を予め設定した体積又は質量程度の量だけサンプリングする。そして、サンプリングした試料8を試料皿7に自動投入する。なお、上記では試料ごとに試料皿7に試料を投入したが、別途試料皿7に試料を積載しておいて、試料皿ごと秤量室11に入れ替えるようにしても良い。
S100: Sample sampling procedure Using an automatic sampling device, the sintered compounding material is sampled by an amount of about a preset volume or mass from an outlet provided in a conveyor for conveying the sintered compounding material. Then, the sampled sample 8 is automatically put into the sample pan 7. In the above description, the sample is put into the sample tray 7 for each sample. However, it is also possible to load the sample separately on the sample tray 7 and replace the sample pan with the weighing chamber 11.

S101:乾燥前秤量手順
試料秤量部5で、投入された試料8を秤量し、試料8の乾燥前質量値m0として秤量データ処理部9へ出力し、秤量データ処理部9は乾燥前質量値m0を記憶する。なお、ここでは、試料秤量部5は試料皿7の質量を秤量値から減算して試料8の乾燥前質量値m0を出力する機能を有する例を示した。
S101: Weighing procedure before drying The sample weighing unit 5 weighs the input sample 8, and outputs it to the weighing data processing unit 9 as the mass value m0 of the sample 8 before drying. The weighing data processing unit 9 outputs the mass value m0 before drying. Remember. Here, an example in which the sample weighing unit 5 has a function of subtracting the mass of the sample pan 7 from the weighed value and outputting the pre-drying mass value m0 of the sample 8 is shown.

S102:試料乾燥工程の開始
加熱用コントローラ2で加熱用電源3をONにし、試料加熱部4による試料8の加熱を開始して、試料8を乾燥する試料乾燥工程を開始する。
S102: Start of Sample Drying Step The heating power source 3 is turned on by the heating controller 2, the sample heating unit 4 starts heating the sample 8, and the sample drying step for drying the sample 8 is started.

S103:繰り返し秤量手順
試料の乾燥を継続しながら、試料秤量部5は、例えば10秒の一定の周期毎に試料8を秤量して質量値mを出力し、秤量データ処理部9は、質量値mを、秤量順番号又は測定時刻と結びつけて記憶する。これを予測演算開始タイミングtmaxに到達するまで繰り返す。なお、秤量自体は時間的に連続的でも断続的でもどちらでも良い。また、秤量に際しての時間管理は秤量データ処理部9で行うようにしても良い。予測演算開始タイミングtmaxは、予め例えば10分というように固定した値に設定しておいても良く、又、連続して測定した2つの質量値すなわちm(tn+1)とm(t)の差分(すなわち|m(tn+1)−m(t)|)が、予め設定した十分小さい値よりも初めて小さくなる時間として設定しても良い。又、当該差分を規格化して|m(tn+1)−m(t)|/m(t)を用いて予測演算開始タイミングtmaxを判断するようにしても良い。このようにして、完全に乾燥するまでよりも十分短い所定の期間の有限個の一連の質量値を得る。なお、上記の試料秤量部5による秤量作業は、秤量データ処理部9により制御すると良い。なお、上記においては、一定周期で秤量したが、大体一定の時間間隔で繰り返し秤量して、秤量時刻とそのときの秤量値とを結びつけて秤量データ処理部9に記憶させても良い。
S103: Repeated weighing procedure While continuing to dry the sample, the sample weighing unit 5 weighs the sample 8 and outputs the mass value m, for example, every 10 seconds, and the weighing data processing unit 9 m is stored in association with the weighing sequence number or measurement time. This is repeated until the prediction calculation start timing tmax is reached. Note that the weighing itself may be either continuous in time or intermittent. The time management for weighing may be performed by the weighing data processing unit 9. The prediction calculation start timing tmax may be set to a fixed value such as 10 minutes in advance, or two mass values measured continuously, that is, m (t n + 1 ) and m (t n ). May be set as a time when the difference (ie, | m (t n + 1 ) −m (t n ) |) becomes smaller than a sufficiently small value set in advance. Alternatively, the prediction calculation start timing t max may be determined using the difference being normalized and | m (t n + 1 ) −m (t n ) | / m (t n ). In this way, a finite series of mass values is obtained for a predetermined period that is sufficiently shorter than until it is completely dry. The weighing operation by the sample weighing unit 5 is preferably controlled by the weighing data processing unit 9. In the above description, the weighing is performed at a constant cycle. However, the weighing data processing unit 9 may store the weighing time and the weighing value at that time by repeatedly weighing at a substantially constant time interval.

S104:水分率予測演算手順
乾燥開始からの時間が予測演算開始タイミングtmaxに到達したら、これまで記憶した質量値m(t)(ここでnは0、1、・・・、max)を用いて、秤量データ処理部9において、下記で詳細に説明する予測演算を実施し、試料8の水分率Wを算出する。
S104: When the time from moisture ratio prediction algorithm dry start to reach the prediction calculation start timing t max, (here n 0,1, ···, max) mass value m (t n) which stores far the In the weighing data processing unit 9, the prediction calculation described in detail below is performed, and the moisture content W of the sample 8 is calculated.

S105:乾燥終了手順
また一方、予測演算開始タイミングに到達したら秤量データ処理部9の時間管理の下に、試料秤量部5による試料8の秤量を終了し、加熱用コントローラ2で加熱用電源3をOFFにし、試料加熱部4による試料8の加熱を終了して、自動サンプリング装置を用いて試料皿7上の試料8を排出する。そして、次の試料の秤量の準備作業として、試料皿7を、エアージェット等を用いてクリーニングする。
S105: Drying end procedure On the other hand, when the prediction calculation start timing is reached, the weighing of the sample 8 by the sample weighing unit 5 is terminated under the time management of the weighing data processing unit 9, and the heating power source 3 is turned on by the heating controller 2. The sample heating unit 4 is turned off, heating of the sample 8 by the sample heating unit 4 is finished, and the sample 8 on the sample dish 7 is discharged using an automatic sampling device. Then, as a preparatory work for weighing the next sample, the sample tray 7 is cleaned using an air jet or the like.

次に、秤量データ処理部9で実行する第1の水分率予測演算について詳細に説明する。   Next, the first moisture content prediction calculation executed by the weighing data processing unit 9 will be described in detail.

試料8について測定した質量値m(t)(ここでnは0、1、・・・、max)に基づいて水分量W0を推定し、さらに試料8の水分率を導出する第1の予測方法の原理を説明するための図を図4に示す。横軸は試料の乾燥開始後の時間tを表し、縦軸は試料の時間変化量Δmを表している。なお、ここでは試料の秤量を一定時間間隔とした場合について説明する。試料の乾燥途上において、時間変化量が一旦最大Δmpになった後、時間変化量があらかじめ定めた値(以下ΔMAと表記(ΔMA<Δmp))以下になった時間(以下taと表記)から予め定めた期間(以下TAと表記)における時間変化量の値に基づいて、時間ta+TA以降の時間変化量の推移を予測演算する。 First prediction for estimating the water content W0 based on the mass value m (t n ) measured for the sample 8 (where n is 0, 1,..., Max) and deriving the moisture content of the sample 8 FIG. 4 is a diagram for explaining the principle of the method. The horizontal axis represents the time t after the start of drying of the sample, and the vertical axis represents the time variation Δm of the sample. Here, a case where the sample is weighed at a constant time interval will be described. In the course of drying the sample, after the amount of time change once reaches the maximum Δmp, the time change amount becomes a predetermined value (hereinafter referred to as ΔMA (ΔMA <Δmp)) or less (hereinafter referred to as ta) in advance. Based on the value of the time change amount in a predetermined period (hereinafter referred to as TA), a transition of the time change amount after time ta + TA is predicted and calculated.

この予測演算において、時間変化量の推移を表す予測式の一例として、数式(4)で表される2次式を使用し、予測式の各係数は、試料8について測定した質量値m(t)(ここでnは0、1、・・・、max)に基づいた時間変化量Δmの測定値から最小二乗法を用いて導出する。

Figure 0004922908
ここで、A、B、Cはフィッティング係数である。このように、Δmの予測式を時間tの2次式としたとき、時間tが無限大で発散して零とはならない。そこで、時間tのとり得る最大値tcrsを予め設定しておいて、そのときにΔmの値を零としておく。 In this prediction calculation, a quadratic expression represented by Expression (4) is used as an example of a prediction expression representing a transition of the time change amount, and each coefficient of the prediction expression is a mass value m (t measured for the sample 8 n ) (where n is 0, 1,..., max), and is derived from the measured value of the time variation Δm using the least square method.
Figure 0004922908
Here, A, B, and C are fitting coefficients. Thus, when the prediction formula of Δm is a quadratic expression of time t, time t is infinite and diverges and does not become zero. Therefore, the maximum value tcrs that the time t can take is set in advance, and the value of Δm is set to zero at that time.

また、時間変化量の推移を表す予測式は、数式(5)で表される時間tに指数関数的に依存する式でも良い。各時間tにおける時間変化量Δmの測定値から、回帰計算によってフィッティング係数を求めても良い。

Figure 0004922908
ここで、D、E、txはフィッティング係数である。 Further, the prediction expression representing the transition of the time change amount may be an expression that exponentially depends on the time t represented by Expression (5). The fitting coefficient may be obtained by regression calculation from the measured value of the time variation Δm at each time t.
Figure 0004922908
Here, D, E, and tx are fitting coefficients.

なお、時間変化量の推移を表す予測式としては、上記の数式(4)及び数式(5)の形式の以外でも、時間変化量Δmの時間推移を所望の精度で近似することができる式であればよい。   Note that the prediction formula representing the transition of the time change amount is an expression that can approximate the time transition of the time change amount Δm with a desired accuracy, other than the formulas (4) and (5). I just need it.

次に、試料に含まれていた水分量W0は、乾燥の開始から終了するまでの時間変化量Δmの総和であり、図4のΔmの曲線と時間軸(横軸)で囲まれた部分の面積を求めることにより得られ、数式(6)で表される。

Figure 0004922908
ここで、tmaxは予測区間の終端の時刻であり、数式(4)でΔmを予測するときには上記のtcrs、数式(5)でΔmを予測するときには∞とすると良い。 Next, the amount of water W0 contained in the sample is the sum of the amount of time change Δm from the start to the end of drying, and is the portion surrounded by the Δm curve and the time axis (horizontal axis) in FIG. It is obtained by calculating the area, and is expressed by Equation (6).
Figure 0004922908
Here, tmax is the time at the end of the prediction interval, and is preferably set to tcrs when the Δm is predicted by the formula (4), and ∞ when the Δm is predicted by the formula (5).

さらに、乾燥前に試料8が含んでいた水分量W0の比率の推定値、すなわち、水分率推定値Wf1(質量%)は、数式(7)で計算することができる。

Figure 0004922908
Furthermore, the estimated value of the ratio of the water content W0 included in the sample 8 before drying, that is, the estimated water content W f1 (mass%) can be calculated by Equation (7).
Figure 0004922908

秤量して得た試料8の質量値mから試料が含んでいた水分量W0及び水分率推定値Wf1を導出する上記のデータ処理は、秤量データ処理部9をパーソナル・コンピュータで構成するときには、上記の各式を用いて演算する処理を実行するコンピュータ・プログラムを作成して当該パーソナル・コンピュータに実装する。 The data processing for deriving the water content W0 and moisture rate estimated value W f1 from mass values m and contained the sample weighed obtained was Sample 8, when configuring the weighing data processing unit 9 by a personal computer, A computer program that executes processing to be calculated using each of the above equations is created and installed in the personal computer.

上記の第1の予測演算方法を用いて、88個の焼結配合原料の試料について、水分量及び水分率を求めた結果は以下の通りである。試料乾燥前後の質量変化から水分を求める従来方式の平均測定時間が16分(純粋な乾燥時間のみであり、前後の試料サンプリング時間および試料排出時間などは除く)であるのに対し、本実施の形態の水分量測定方法では平均算出時間は11分であり、約32%の時間短縮がはかられた。また、従来方式と本方法の差は、88個の試料すべて0.1%以下であり極めて良好であった。   The results of obtaining the moisture content and moisture content for 88 samples of the sintered blending raw material using the first predictive calculation method are as follows. Whereas the average measurement time of the conventional method for determining moisture from the mass change before and after sample drying is 16 minutes (only pure drying time, excluding sample sampling time and sample discharge time before and after), this implementation In the method for measuring the amount of moisture in the form, the average calculation time was 11 minutes, and the time was reduced by about 32%. In addition, the difference between the conventional method and the present method was very good because all 88 samples were 0.1% or less.

第1の予測方法は、乾燥過程がかなり進行した領域のデータを用い、乾燥条件が安定し、かつ単調減少領域の所定の時間ごとの試料質量変化量のみを用いるため、簡単な予測式で誤差を小さく、且つ短時間に演算することができる特徴がある。しかも、事前の検量線作成などの作業は一切不要であるという利点もある。   Since the first prediction method uses data in a region where the drying process has progressed considerably, the drying conditions are stable, and only the sample mass change amount per predetermined time in the monotonically decreasing region is used, a simple prediction equation can be used for error. Is small and can be calculated in a short time. In addition, there is an advantage that work such as preparation of a calibration curve in advance is unnecessary.

次に、第2の水分率予測演算について詳細に説明する。   Next, the second moisture content prediction calculation will be described in detail.

図5は、試料8について測定した質量値m(t)(ここでnは0、1、・・・、max)に基づいて水分率Wを推定する第2の予測演算方法の原理を説明するための図である。図5(a)の横軸は最大試料質量変化量Δmp(ピーク値)を表し、図5(b)の横軸は時間tを表している。縦軸は図5(a)、(b)共に水分率Wを表している。第2の予測演算方法は、この「所定の時間Δt当りの最大試料重量変化量Δmpが求める水分率と強い相関関係がある」との新たな知見に基づき、この相関関係を水分量の予測演算に利用するものである。 FIG. 5 illustrates the principle of the second predictive calculation method for estimating the moisture content W based on the mass value m (t n ) measured for the sample 8 (where n is 0, 1,..., Max). It is a figure for doing. The horizontal axis of FIG. 5A represents the maximum sample mass change amount Δmp (peak value), and the horizontal axis of FIG. 5B represents time t. The vertical axis represents the moisture content W in both FIGS. The second predictive calculation method is based on this new knowledge that “the maximum sample weight change amount Δmp per predetermined time Δt has a strong correlation with the required water content”. It is used for.

予め多数の焼結配合原料の試料について図5(a)のような検量線を求めておく。この検量線から、水分率Wと時間変化量Δmpとの関係は、このときの水分率Wを一次予測水分率(以下W1と表記)として数式(8)で表されるとする。

Figure 0004922908
測定時には試料8の時間変化量の最大値Δmpを基にして、数式(8)を用いて仮の水分予測値として一次予測水分率W1を求める。 Calibration curves as shown in FIG. 5 (a) are obtained in advance for a large number of samples of sintered blending raw materials. From this calibration curve, it is assumed that the relationship between the moisture content W and the time variation Δmp is expressed by the equation (8), with the moisture content W at this time as the primary predicted moisture content (hereinafter referred to as W1).
Figure 0004922908
At the time of measurement, based on the maximum value Δmp of the time change amount of the sample 8, the primary predicted moisture rate W1 is obtained as a temporary moisture predicted value using the formula (8).

一方、乾燥したときの水分率の時間変化W(t)として、フィッティング係数としてT1、T2、T3を含む数式(1)で表される水分率の時間変化を表す予測式を仮定する。そして、予め多数の焼結配合原料の試料についての水分率Wの時間変化の測定値に基づいて、回帰計算を用いてフィッティング係数(T1、T2、T3)を決定しておく。

Figure 0004922908
ここで、Wfは実質的に十分試料が乾燥して得られた水分率の実測値、又、T1、T2、T3はフィッティング係数である。 On the other hand, as a time change W (t) of the moisture content when dried, a prediction formula representing a time change of the moisture content represented by Formula (1) including T1, T2, and T3 as fitting coefficients is assumed. And based on the measured value of the time change of the moisture content W about the sample of many sintering compounding raw materials, a fitting coefficient (T1, T2, T3) is determined using regression calculation beforehand.
Figure 0004922908
Here, Wf is an actually measured value of the moisture content obtained by substantially fully drying the sample, and T1, T2, and T3 are fitting coefficients.

次に、当該試料8の時間変化量の最大値Δmpを検出した後、乾燥過程において試料8の質量値の時間変化から、乾燥により減少した水分率の時間推移Wmes(t)((m0−m(t))/m0)を所定の時間間隔で継続して算出する。当該水分率の時間推移Wmes(t)に基づき、上記の数式(8)から求めたW1を用い、W1±1.0%の範囲で0.1%刻みで数式(1)のWfの値を設定する。そして、上記の数式(1)のこのWfを代入して得られる21本の曲線とを比較して類似の時間推移をする曲線を選択し、その曲線のWfの値をもって当該試料8の水分率と推定する。すなわち、時間tを増大させたときに、この予測水分率推移曲線が漸近する水分率を、当該試料8の水分率である最終的な水分率とする。 Next, after detecting the maximum value Δmp of the time change amount of the sample 8, the time transition W mes (t) ((m0− m (t)) / m0) is continuously calculated at predetermined time intervals. Based on the time transition W mes (t) of the moisture content, using W1 obtained from the above equation (8), the value of Wf in the equation (1) in the range of W1 ± 1.0% in increments of 0.1%. Set. Then, by comparing the 21 curves obtained by substituting Wf in the above formula (1), a curve having a similar time transition is selected, and the moisture content of the sample 8 is determined by the value of Wf of the curve. Estimated. That is, when the time t is increased, the moisture content at which the predicted moisture content transition curve asymptotically becomes the final moisture content that is the moisture content of the sample 8.

以上の第2の予測演算方法における水分率を導出するためのデータ処理は秤量データ処理部9内のソフトウェアで実現した。焼結配合原料の試料(サンプル数88)から求めた水分率の予測結果は以下の通りである。試料乾燥前後の質量変化から水分を求める従来方式の平均測定時間が16分であるのに対し、平均算出時間は7分であり、約53%の大幅な時間短縮がはかられた。また予測誤差は、86件が0.1%以下と目標を満足したが、2件が0.1%を満足できなかった。   Data processing for deriving the moisture content in the second predictive calculation method described above was realized by software in the weighing data processing unit 9. The prediction results of the moisture content obtained from the sintered blending raw material sample (88 samples) are as follows. The average measurement time of the conventional method for obtaining moisture from the mass change before and after the sample drying was 16 minutes, whereas the average calculation time was 7 minutes, which was a significant time reduction of about 53%. As for the prediction error, 86 cases satisfied the target of 0.1% or less, but 2 cases did not satisfy 0.1%.

この第2の予測演算方式は、乾燥開始直後の質量変化データから予測演算に用いることができるため、抜本的な予測時間の短縮が期待できる。一方、事前の検量線作成が必要であること、作成した検量線の出来具合が精度に大きく影響すること、また、原料の配合が大幅に変わる場合には都度検量線の作成が必要になるので、実施に際しては、多数の試料を用いて十分高精度に水分量を測定して準備することが肝要である。   Since this second prediction calculation method can be used for prediction calculation from mass change data immediately after the start of drying, drastic reduction in prediction time can be expected. On the other hand, it is necessary to create a calibration curve in advance, the accuracy of the created calibration curve greatly affects the accuracy, and it is also necessary to create a calibration curve each time the raw material composition changes significantly. In the implementation, it is important to prepare by measuring the water content with a sufficiently high accuracy using a large number of samples.

なお、上記の数式(1)を用いて予め21本の曲線を設定する方法に代えて、測定値である水分率の時間推移Wmes(t)を用いて、数式(8)から求めた一次予測水分率W1を求める水分率の初期値として回帰計算をしてWfを予測・推定しても良い。この方法は、21本の曲線を用いるよりも計算負荷が大きいが、結果として得られる水分率の検出精度を向上させることが可能である。 In addition, it replaces with the method of setting 21 curves previously using said Numerical formula (1), It replaces with the time transition Wmes (t) of the moisture content which is a measured value, and was calculated | required from Numerical formula (8). Wf may be predicted and estimated by performing regression calculation as an initial value of the moisture content for obtaining the predicted moisture content W1. Although this method has a larger calculation load than using 21 curves, it is possible to improve the accuracy of detection of the moisture content obtained as a result.

以上の2つの予測方式の説明において、試料8を秤量する時間間隔Δtを一定としたが、必ずしも一定である必要はない。時間間隔が変動するときには、時間tに測定した質量値m(t)として秤量データ処理部9に一旦記憶して、各質量値のデータの時間間隔の変動を影響を除去するために、所定の時間Δt当りの試料質量値mの時間変化量Δmとしては、数式(2)で表されるものに代えて、単位時間、例えば1秒、10秒又は1分当たりの変化量に規格化して演算するとよい。   In the description of the above two prediction methods, the time interval Δt for weighing the sample 8 is constant, but it is not necessarily constant. When the time interval fluctuates, the mass data m (t) measured at time t is temporarily stored in the weighing data processing unit 9, and in order to remove the influence of the fluctuation of the time interval of each mass value data, a predetermined value is used. The time change amount Δm of the sample mass value m per time Δt is calculated by normalizing to a change amount per unit time, for example, 1 second, 10 seconds or 1 minute, instead of the one represented by the formula (2). Good.

上記2つの予測方式を秤量データ処理部9内に両方構築し、用途に応じて適宜切り替えて使用してもよく、精度の良い水分率測定値が短時間で得られることから、焼結操業に大きく貢献すると期待できる。   Both of the above two prediction methods are constructed in the weighing data processing unit 9 and may be used by appropriately switching depending on the use, and since accurate moisture content measurement values can be obtained in a short time, It can be expected to contribute greatly.

上記したように、加熱用コントローラ2及び秤量データ処理部9は、それぞれ別々に、又は同一のコンピュータシステムで構成することができる。当該コンピュータシステムは、CPUはもとより、メイン記憶装置、HDD等の外部記憶装置、キーボードやマウス等の入出力装置、及びコンピュータディスプレーで構成すると良い。又、S100〜S105に記載した試料の秤量から水分率を導出する一連の処理を当該コンピュータシステムに実行させるためのコンピュータプログラムを作成し、上記メイン記憶装置にロードして実行させることによって、本発明の水分測定装置及び水分測定方法を具現化しても良い。   As described above, the heating controller 2 and the weighing data processing unit 9 can be configured separately or by the same computer system. The computer system is preferably composed of a CPU, an external storage device such as a HDD, an input / output device such as a keyboard and a mouse, and a computer display. Further, the present invention is made by creating a computer program for causing the computer system to execute a series of processes for deriving the moisture content from the weighing of the sample described in S100 to S105, and loading the computer program into the main storage device for execution. The moisture measuring device and the moisture measuring method may be embodied.

以上では、鉄鋼業の上工程である焼結プロセスにおける焼結配合原料の水分量及び水分率の測定を例として、本発明の水分測定装置及び水分測定方法を詳細に説明したが、本発明の水分測定装置及び水分測定方法は、鉄鋼業のみならず、食品製造、や薬品製造等において粉体及び塊状体の原材料の水分含有量を測定するための水分測定装置及び水分測定方法としても適用可能であることは明らかである。   In the above, the moisture measuring device and the moisture measuring method of the present invention have been described in detail, taking as an example the measurement of the moisture content and moisture content of the sintered blending raw material in the sintering process, which is the upper process of the steel industry. The moisture measuring device and moisture measuring method can be applied not only to the steel industry, but also to a moisture measuring device and moisture measuring method for measuring the moisture content of raw materials of powders and lumps in food manufacturing, chemical manufacturing, etc. Obviously.

本発明は、粉粒体試料に付着している水分量の測定に適用できる。   The present invention can be applied to the measurement of the amount of water adhering to a granular sample.

本発明の水分量測定装置の実施の形態の概略を示す図である。It is a figure which shows the outline of embodiment of the moisture content measuring apparatus of this invention. 試料質量値の時間変化を示す模式図であり、(a)は乾燥中試料質量値の時間推移を示すグラフ、(b)は乾燥中単位時間当りの試料質量値の変化量の時間推移を示すグラフである。It is a schematic diagram which shows the time change of a sample mass value, (a) is a graph which shows the time transition of the sample mass value during drying, (b) shows the time transition of the amount of change of the sample mass value per unit time during drying. It is a graph. 本発明の水分量測定装置の実施の形態における測定手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the measurement procedure in embodiment of the moisture content measuring apparatus of this invention. 本発明にかかる第1の予測方法の説明図である。It is explanatory drawing of the 1st prediction method concerning this invention. 本発明にかかる第2の予測方法の説明図であり、(a)はΔmpと一次予測水分率W1の関係を示すグラフ、(b)は一次予測水分率W1から最終予測水分率Wfの求め方の概要を示すグラフである。It is explanatory drawing of the 2nd prediction method concerning this invention, (a) is a graph which shows the relationship between (DELTA) mp and primary predicted moisture content W1, (b) is how to obtain | require final predicted moisture content Wf from primary predicted moisture content W1. It is a graph which shows the outline | summary. 従来技術の水分を測定する処理のフローチャートである。It is a flowchart of the process which measures the water | moisture content of a prior art.

符号の説明Explanation of symbols

1 温度測定部
2 加熱用コントローラ
3 加熱用電源
4 試料加熱部
5 試料秤量部
6 試料載台
7 試料皿
8 試料
9 秤量データ処理部
10 乾燥室
11 秤量室
DESCRIPTION OF SYMBOLS 1 Temperature measurement part 2 Heating controller 3 Heating power supply 4 Sample heating part 5 Sample weighing part 6 Sample mounting stage 7 Sample pan 8 Sample 9 Weighing data processing part 10 Drying room 11 Weighing room

Claims (2)

水分を含んだ粉粒体を試料として、該試料を乾燥させながら試料の質量値の時間推移を測定して、前記試料が含む水分量又は水分率を測定する水分量測定装置であって、
前記試料を乾燥させるために加熱する試料加熱部と、
前記試料を秤量して連続的又は断続的に質量値を出力する試料秤量部と、
前記試料、前記試料加熱部及び前記試料秤量部を収納する筐体と、
前記連続的又は断続的に出力された一連且つ所定の期間の有限個の質量値に基づいて、前記試料が含んでいた水分量又は水分率を算出する秤量データ処理部と、を具備し、
該秤量データ処理部は、前記一連且つ所定の期間の有限個の質量値を用いて、前記試料が完全に乾燥するまでの質量値の減少の時間推移、又は質量値の時間変化量の時間推移を所定の予測演算で予測して、測定前に試料が含んでいた水分量又は水分率を推定して算出し、
前記質量値は所定の時間間隔で秤量され、
前記秤量データ処理部が行う所定の予測演算は、
一連且つ所定の期間の有限個の質量値から、相前後した時刻それぞれの質量値の差分演算で時間変化量の時間推移から該時間変化量の最大値を算出し、
該最大値に基づき、予め複数の試料について求めた水分率と時間変化量の最大値との関係を表す、水分率を予測するための第1の予測式から一次予測水分率W1を算出し、
前記一連且つ所定の期間の有限個の質量値から試料の乾燥前の質量値と各時刻での質量値との差から、乾燥により減少した水分の水分率の時間推移を算出し、
該算出された水分率の時間推移及び前記一次予測水分率W1に基づいて、数式(1)を用いて前記一次予測水分率W1を仮の水分率として数式(1)のWfの値を所定の範囲で設定してW(t)を算出し、前記算出された水分率の時間推移と比較して水分率Wfを導出する演算である水分量測定装置。
Figure 0004922908
ただし、
t:時刻
W(t):時刻tの水分率
T1、T2、T3:予め複数の試料についての水分率Wの時間変化の測定値に基づいて、回帰計算を用いて決定されたフィッティング係数
A moisture content measuring device that measures the time transition of the mass value of a sample while drying the sample with a powdery granule containing moisture as a sample, and measures the moisture content or moisture content contained in the sample,
A sample heating section for heating the sample to dry;
A sample weighing unit for weighing the sample and outputting a mass value continuously or intermittently;
A housing for housing the sample, the sample heating unit, and the sample weighing unit;
A weighing data processing unit that calculates the moisture content or moisture content contained in the sample based on a finite number of mass values of a series and a predetermined period output continuously or intermittently; and
The weighing data processing unit uses the finite number of mass values in the series and a predetermined period, the time transition of the decrease in the mass value until the sample is completely dried, or the time transition of the time variation of the mass value Is estimated by a predetermined prediction calculation, the moisture amount or moisture content that the sample contained before measurement is estimated and calculated ,
The mass value is weighed at a predetermined time interval,
The predetermined prediction calculation performed by the weighing data processing unit is:
From the series and a finite number of mass values for a predetermined period, the maximum value of the time change amount is calculated from the time change of the time change amount by the difference calculation of the respective mass values at successive times,
Based on the maximum value, the primary predicted moisture content W1 is calculated from the first prediction formula for predicting the moisture content, which represents the relationship between the moisture content obtained for a plurality of samples in advance and the maximum value of the time change amount,
From the difference between the mass value before drying of the sample and the mass value at each time from a finite number of mass values in the series and a predetermined period, the time transition of the moisture content of moisture reduced by drying is calculated,
Based on the time course of the calculated moisture content and the primary predicted moisture content W1, the primary predicted moisture content W1 is set as a temporary moisture content using Equation (1), and the value of Wf in Equation (1) is set to a predetermined value. set the range to calculate the W (t), the calculated moisture content of the time transition and water content measuring device Ru calculation der to derive the moisture content Wf compared.
Figure 0004922908
However,
t: Time
W (t): Moisture content at time t
T1, T2, T3: fitting coefficients determined in advance using regression calculation based on measured values of the change in moisture content W over time for a plurality of samples
水分を含んだ粉粒体を試料として、該試料を試料加熱部で加熱して乾燥させながら前記試料の質量値の時間推移を測定して、前記試料が含む水分量又は水分率を測定する水分量測定方法であって、Moisture that measures the moisture content or moisture content of the sample by measuring the time transition of the mass value of the sample while heating and drying the sample with a sample heating unit using the powdery granule containing moisture as a sample A quantity measuring method,
前記試料を加熱・乾燥する前に前記試料の質量を秤量して乾燥前質量値を得る乾燥前秤量手順と、A pre-drying weighing procedure to obtain a pre-drying mass value by weighing the sample before heating and drying the sample;
前記試料を乾燥させるために加熱する試料乾燥工程と、A sample drying step of heating to dry the sample;
前記試料乾燥工程で乾燥しながら、前記試料を秤量して連続的又は断続的に質量値を出力する繰り返し秤量手順と、While weighing in the sample drying step, the sample is weighed repeatedly and the weighing value is output continuously or intermittently.
前記連続的又は断続的に出力された一連且つ所定の期間の有限個の質量値に基づいて、前記試料が含んでいた水分量又は水分率を算出する水分率予測演算手順とを具備し、A moisture content prediction calculation procedure for calculating a moisture content or a moisture content contained in the sample based on a series and a finite number of mass values of a predetermined period that are output continuously or intermittently;
該水分率予測演算手順は、前記一連且つ所定の期間の有限個の質量値を用いて、前記試料が完全に乾燥するまでの質量値の減少の時間推移、又は質量値の時間変化量の時間推移を所定の予測演算で予測して、測定前に前記試料が含んでいた水分量又は水分率を推定して算出し、The moisture content prediction calculation procedure uses the finite number of mass values in the series and a predetermined period, the time transition of the decrease in mass value until the sample is completely dried, or the time of the time change amount of the mass value Predicting the transition with a predetermined prediction calculation, calculating the moisture content or moisture content that the sample contained before measurement,
前記質量値は所定の時間間隔で秤量され、The mass value is weighed at a predetermined time interval,
前記水分率予測演算手順で行う所定の予測演算は、The predetermined prediction calculation performed in the moisture content prediction calculation procedure is:
一連且つ所定の期間の有限個の質量値から、相前後した時刻それぞれの質量値の差分演算で時間変化量の時間推移から該時間変化量の最大値を算出し、From the series and a finite number of mass values for a predetermined period, the maximum value of the time change amount is calculated from the time change of the time change amount by the difference calculation of the respective mass values at successive times,
該最大値に基づき、予め複数の試料について求めた水分率と時間変化量の最大値との関係を表す、水分率を予測するための第1の予測式から一次予測水分率W1を算出し、Based on the maximum value, the primary predicted moisture content W1 is calculated from the first prediction formula for predicting the moisture content, which represents the relationship between the moisture content obtained for a plurality of samples in advance and the maximum value of the time change amount,
一連且つ所定の期間の有限個の質量値から試料の乾燥前の質量値と各時刻での質量値との差から、乾燥により減少した水分の水分率の時間推移を算出し、From the difference between the mass value before drying of the sample and the mass value at each time from a series of finite mass values for a predetermined period, calculate the time transition of the moisture content of moisture reduced by drying,
該算出された水分率の時間推移及び前記一次予測水分率W1に基づいて、数式(1)を用いて前記一次予測水分率W1を仮の水分率として数式(1)のWfの値を所定の範囲で設定してW(t)を算出し、前記算出された水分率の時間推移と比較して水分率Wfを導出する演算である水分量測定方法。Based on the time transition of the calculated moisture content and the primary predicted moisture content W1, the value of Wf in Equation (1) is set to a predetermined value using the primary predicted moisture content W1 as a temporary moisture content using Equation (1). A water content measurement method which is an operation for calculating W (t) by setting in a range and deriving the water content Wf by comparing with the time transition of the calculated water content.
Figure 0004922908
Figure 0004922908
ただし、However,
t:時刻t: Time
W(t):時刻tの水分率W (t): Moisture content at time t
T1、T2、T3:予め複数の試料についての水分率Wの時間変化の測定値に基づいて、回帰計算を用いて決定されたフィッティング係数T1, T2, T3: fitting coefficients determined in advance using regression calculation based on measured values of the change in moisture content W over time for a plurality of samples
JP2007322203A 2007-12-13 2007-12-13 Moisture content measuring apparatus and moisture content measuring method Active JP4922908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007322203A JP4922908B2 (en) 2007-12-13 2007-12-13 Moisture content measuring apparatus and moisture content measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007322203A JP4922908B2 (en) 2007-12-13 2007-12-13 Moisture content measuring apparatus and moisture content measuring method

Publications (2)

Publication Number Publication Date
JP2009145174A JP2009145174A (en) 2009-07-02
JP4922908B2 true JP4922908B2 (en) 2012-04-25

Family

ID=40915934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322203A Active JP4922908B2 (en) 2007-12-13 2007-12-13 Moisture content measuring apparatus and moisture content measuring method

Country Status (1)

Country Link
JP (1) JP4922908B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065971B2 (en) * 2008-04-08 2012-11-07 新日本製鐵株式会社 Moisture content measuring apparatus and moisture content measuring method
KR101459413B1 (en) 2012-04-13 2014-11-13 대한민국 Estimating Method Of The Case Happening Time
KR101355281B1 (en) 2012-06-27 2014-01-27 문용수 A Method of Measuring the Postmortem Interval Using the Changes in the Water Content of Leaked Blood
JP6755086B2 (en) * 2015-11-12 2020-09-16 日本電信電話株式会社 Corrosion test method and corrosion test equipment
CN107525734B (en) * 2017-09-28 2023-08-29 西南科技大学 System and method for measuring water content and mud content of sand and stone
KR102250889B1 (en) * 2019-12-13 2021-05-12 대한민국 Apparatus for drying forages and measuring moisture content of forages in real time using microwave and method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810185B2 (en) * 1991-05-29 1996-01-31 株式会社ケット科学研究所 Method and apparatus for predicting moisture content in infrared moisture meter
JPH10300658A (en) * 1997-04-28 1998-11-13 Toshiba Corp Medium recording program for measuring diffusion coefficient and liquid content, and equipment incorporating medium
JP4021308B2 (en) * 2002-11-15 2007-12-12 株式会社エー・アンド・デイ Heat drying moisture meter

Also Published As

Publication number Publication date
JP2009145174A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5065971B2 (en) Moisture content measuring apparatus and moisture content measuring method
JP4922908B2 (en) Moisture content measuring apparatus and moisture content measuring method
EP2458388B1 (en) A method of using a stackable crucible
JPH03211424A (en) System for accurately controlling discharge quantity of weight reduction feeder system
CN110697448B (en) Screw material proportioning machine controller based on machine learning
JP6331598B2 (en) Blast furnace raw material powder rate estimation method and blast furnace operation method
JP2010107223A (en) Method and apparatus for measuring moisture content of sintering material
US5043925A (en) Method and apparatus for modeling bunker flow
US7325444B2 (en) Methods and systems for determining moisture transfer characteristics of welding materials
CN109959436B (en) Material weighing control method and device and material weighing system
JP3965965B2 (en) Ash processing method and apparatus
US4680716A (en) Automatic method and apparatus for dosing samples
US20020170343A1 (en) Method and apparatus for on-line moisture analysis of a concentrate
EP0229787B1 (en) Method and device for automatically measuring the content of a soluble component in a pulverulent product
CN113561330A (en) Quantitative batching method and device and stirring station
RU2308651C1 (en) Method of automatic control of roasting of raw material in rotating drum
JPH103317A (en) Method for controlling supply quantity of granular substance
RU2366904C2 (en) Method for continuous batching of loose materials
JP3228119B2 (en) Sintering material permeability measurement device and granulation moisture control method
JP2010091376A (en) Apparatus for measuring moisture content of sintering raw material
JPH08219970A (en) Moisture-measuring apparatus
JP5739193B2 (en) Clinker dust addition control device and clinker dust addition control program
JPS5922510Y2 (en) Automatic test equipment for reduction and powdering of sintered grains
JPS6050435A (en) Automatic moisture meter
JPH01129134A (en) Successive measurement of characteristic of powder particle body and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Ref document number: 4922908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250