JP4922713B2 - Method for producing hydrogen - Google Patents

Method for producing hydrogen Download PDF

Info

Publication number
JP4922713B2
JP4922713B2 JP2006258703A JP2006258703A JP4922713B2 JP 4922713 B2 JP4922713 B2 JP 4922713B2 JP 2006258703 A JP2006258703 A JP 2006258703A JP 2006258703 A JP2006258703 A JP 2006258703A JP 4922713 B2 JP4922713 B2 JP 4922713B2
Authority
JP
Japan
Prior art keywords
hydrogen
reaction
temperature
water
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006258703A
Other languages
Japanese (ja)
Other versions
JP2008074685A (en
Inventor
兵治 榎本
放鳴 金
睦 木下
武彦 守谷
央範 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Zosen Corp
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Zosen Corp filed Critical Tohoku Electric Power Co Inc
Priority to JP2006258703A priority Critical patent/JP4922713B2/en
Publication of JP2008074685A publication Critical patent/JP2008074685A/en
Application granted granted Critical
Publication of JP4922713B2 publication Critical patent/JP4922713B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本特許は、高温高圧水中で硫黄または還元性を有する硫黄化合物を水に対する還元剤として水を還元し水素を製造する方法に関するものである。   This patent relates to a method for producing hydrogen by reducing water using sulfur or a sulfur compound having reducibility in high-temperature and high-pressure water as a reducing agent for water.

最近、エネルギー資源として水素が注目をされている。世界の水素生産の約97%は天然ガス(メタン)やナフサなどの化石資源から製造されている。主な水素製造プロセスとしては、水蒸気改質法、部分酸化法、自己熱改質法があるが、天然ガスの水蒸気改質法が全水素生産の50%を占め、最も安価で広く実用化されている。また、水を電気で水素と酸素に分解する電気分解法もある。しかし、必要とされる電気自体のコストが天然ガスより3〜4倍も高いことから、現状では電気分解法で生成される水素は、全体の年間製造量の4%にすぎない。電気分解による水素製造方法は、水を用いて水素を生成する点ではクリーンであるといえるが、生成するために大量の電気を必要とするため、その電気を得るのに大量の化石燃料を使用することになる。現状の限られた用途(アンモニア合成、石油精製、メタノール合成など)だけでなく、燃料電池発電や燃料電池自動車の普及によって見込まれる新たな需要が増大することを考えると、よりクリーンでかつ環境問題に配慮した水素の生成法が望まれる。   Recently, hydrogen has attracted attention as an energy resource. About 97% of the world's hydrogen production is produced from fossil resources such as natural gas (methane) and naphtha. Major hydrogen production processes include steam reforming, partial oxidation, and autothermal reforming, but natural gas steam reforming accounts for 50% of total hydrogen production and is the cheapest and most widely used. ing. There is also an electrolysis method in which water is decomposed into hydrogen and oxygen by electricity. However, since the cost of electricity required is 3 to 4 times higher than that of natural gas, at present, hydrogen produced by electrolysis is only 4% of the total annual production. The hydrogen production method by electrolysis is clean in that it produces hydrogen using water, but it requires a large amount of electricity to produce, so a large amount of fossil fuel is used to obtain that electricity. Will do. Considering not only the current limited applications (ammonia synthesis, petroleum refining, methanol synthesis, etc.) but also the new demand expected due to the spread of fuel cell power generation and fuel cell vehicles, it is cleaner and environmental issues A hydrogen generation method that takes into account the above is desired.

一方、硫黄は天然資源としても多く存在し、現在の産業活動の中で大量の余剰硫黄が生産されている。硫黄は様々な化合物として存在するが、その中でHS などの酸化数[−2]の化学種は還元性が強いので、多くの物質に対し還元剤として働く。HS の還元性を利用すると、高温高圧熱水中で水を還元することによって水素を生成することが可能である。 On the other hand, sulfur also exists as a natural resource, and a large amount of surplus sulfur is produced in the current industrial activities. Sulfur exists as various compounds. Among them, chemical species having an oxidation number [−2] such as HS are highly reducible, and thus act as a reducing agent for many substances. HS - The use of reducing, it is possible to produce hydrogen by reduction of water at high temperature and high pressure hot water.

水熱反応によって、水から水素が生成される機構として以下の反応が知られている。   The following reaction is known as a mechanism for generating hydrogen from water by a hydrothermal reaction.

(a)二級アルコールの酸化
守谷は、超臨界水熱反応においてポリエチレンの分解で生成したプロピレンなどの低級アルカンが水和により2−プロパノールなどの2級アルコールヘと変換され、その2級アルコールが酸化されて2−プロパノンなどのケトンとなるときに水素を放出すると報告している(非特許文献1参照)。
(A) Oxidation of secondary alcohol In Moriya, in the supercritical hydrothermal reaction, a lower alkane such as propylene produced by the decomposition of polyethylene is converted into a secondary alcohol such as 2-propanol by hydration, and the secondary alcohol is converted into It is reported that hydrogen is released when oxidized to a ketone such as 2-propanone (see Non-Patent Document 1).

(b)一酸化炭素のガスシフト反応
下式に示すガスシフト反応は工業的に重要な反応で、発生する一酸化炭素の除去として主に用いられている。
(B) Gas shift reaction of carbon monoxide The gas shift reaction shown in the following formula is an industrially important reaction and is mainly used for removing generated carbon monoxide.

CO+H0→CO+H
この反応はCOを低減し、同時に水素を生成するため、純粋な水素を製造する有効な反応であり古くから検討されている。
CO + H 2 0 → CO 2 + H 2
Since this reaction reduces CO and simultaneously generates hydrogen, it is an effective reaction for producing pure hydrogen and has been studied for a long time.

(c)HSによる供与
田路は、光触媒を用いてNaS 水溶液中で太陽光エネルギーにより溶液中に存在するHS イオンが分解し、水素が発生するとともに多硫化イオン(S 2−)が生成すると報告している(非特許文献2参照)。
(C) HS - by a donor Toji, using photocatalyst Na 2 decomposed HS ¯ ions present in the solution by solar energy in S aqueous solution, polysulfide ions with hydrogen are generated (S n 2-) Has been reported (see Non-Patent Document 2).

従来、硫黄化合物を用いる水素の製造方法として、下記のものが知られている。   Conventionally, the following is known as a method for producing hydrogen using a sulfur compound.

特許文献1「無機硫黄化合物イオン水溶液からの水素の製造方法」には、脱硫プロセスや天然ガス中に含まれ原料として多量に存在する水素化合物、例えば、硫化ナトリウム、亜硫酸ナトリウムなどの水溶液に紫外線を照射して水を還元して水素を製造する方法が記載されている。   Patent Document 1 “Method for producing hydrogen from an aqueous solution of inorganic sulfur compound ions” includes ultraviolet rays applied to an aqueous solution of a hydrogen compound, for example, sodium sulfide or sodium sulfite, which is contained in a large amount as a raw material in a desulfurization process or natural gas. A method for producing hydrogen by reducing water by irradiation is described.

また、特許文献2「高活性光触媒の製造方法及び高活性光触媒を用いて低エネルギーで水素ガスを回収する硫化水素の処理方法」および特許文献3「薄膜状光触媒、その作製方法、およびその薄膜状光触媒を用いた硫化水素の処理方法と水素の製造方法」には、脱硫工程で生成される硫化水素を処理する方法として、硫化亜鉛を光触媒として使用して紫外線照射によって、硫化水素を水素と硫黄に分解して回収、有効利用する方法が記載されている。
守谷武彦;超臨界水によるポリエチレンの分解油化に関する研究;東北大学博士論文(1999) 田路和幸;イオウ資源と太陽光を利用した新しい水素製造システム;資源・素材学会東北支部春季大会講演要旨集(2002) 特開2002−066323号公報 特開2001−294401号公報 特開2003−181297号公報
Patent Document 2 “Method for Producing Highly Active Photocatalyst and Method for Treating Hydrogen Sulfide for Recovering Hydrogen Gas with Low Energy Using Highly Active Photocatalyst” and Patent Document 3 “Thin Film Photocatalyst, Method for Producing the Same, and Film Formed therein In the method of treating hydrogen sulfide and the method of producing hydrogen using a photocatalyst, as a method of treating hydrogen sulfide produced in the desulfurization step, zinc sulfide is used as a photocatalyst and ultraviolet irradiation is performed to convert hydrogen sulfide into hydrogen and sulfur. Describes how to disassemble and recover and use it effectively.
Takehiko Moriya; Study on degradation of polyethylene with supercritical water; Doctoral dissertation (1999), Tohoku University Kazuyuki Taji; New hydrogen production system using sulfur resources and sunlight; Abstracts of the Spring Meeting of the Tohoku Branch of the Society of Resources and Materials (2002) JP 2002-066633 A JP 2001-294401 A JP 2003-181297 A

しかし、これらの特許文献記載の技術は、いずれも、水素の製造エネルギーとして紫外線照射といった光エネルギーを使用しているため、設備費が嵩むという問題があった。   However, all of the techniques described in these patent documents have a problem that equipment costs increase because optical energy such as ultraviolet irradiation is used as energy for producing hydrogen.

本発明は上記の点に鑑みてなされたものであり、水素製造のエネルギーとして熱エネルギーを使用し、250〜350℃といった比較的低温の熱源をエネルギー源として水素を製造する技術を提供するものである。このような熱源としては、例えば工場の排ガスあるいは地熱などが考えられる。   The present invention has been made in view of the above points, and provides a technique for producing hydrogen using heat energy as energy for hydrogen production and using a relatively low temperature heat source such as 250 to 350 ° C. as an energy source. is there. As such a heat source, for example, factory exhaust gas or geothermal heat can be considered.

本発明による水素の製造方法は、硫黄またはNa S、S 2− 、SO 2− である還元性を有する硫黄化合物を含むpH7を超え14以下である水溶液を、反応温度250〜350℃で圧力がその温度の飽和蒸気圧以上の高温高圧条件で保持し、水を還元し水素を生成させる方法である。 In the method for producing hydrogen according to the present invention , an aqueous solution containing a sulfur compound having a reducibility that is sulfur or Na 2 S, S 2 O 3 2− , SO 3 2− and having a pH of more than 7 and 14 or less is used. This is a method in which hydrogen is generated by reducing water and holding at 350 ° C. under high temperature and high pressure conditions that are equal to or higher than the saturated vapor pressure of the temperature.

好ましい硫黄化合物はNaS、S 2− またはSO 2− (酸化数がそれぞれ−2、+2、+4の硫黄化合物)である。 Preferred sulfur compounds are Na 2 S, S 2 O 3 2− or SO 3 2− (sulfur compounds having oxidation numbers of −2, +2, and +4, respectively).

好ましい反応温度は250〜350℃である。また、水の蒸発による硫黄化合物の乾固を防ぐために圧力はその温度の飽和蒸気圧以上とするのがよい。   The preferred reaction temperature is 250-350 ° C. Further, in order to prevent the sulfur compound from being dried due to evaporation of water, the pressure should be equal to or higher than the saturated vapor pressure at that temperature.

水溶液のpHは好ましくは7を超え14以下であり、より好ましくは9〜12である。水溶液中の硫黄酸化物の濃度が高くなったとき、硫黄酸化物に対する還元剤を添加することで、S 2− またはSO 2− をHSに還元し、継続的に水素を発生させることもできる。 The pH of the aqueous solution is preferably more than 7 and 14 or less, more preferably 9-12. When the concentration of sulfur oxide in the aqueous solution becomes high, by adding a reducing agent for sulfur oxide, S 2 O 3 2− or SO 3 2− is reduced to HS , and hydrogen is continuously generated. It can also be made.

原理
水中に例えばNaSを添加して得られた水溶液を高温高圧状態に保持すると、S2−が還元剤として作用して水を還元し水素を発生させることができる。このとき、S2−は酸化されS 2− またはSO 2−およびSO 2−などになる(式(1) (2) (3) (4) 参照)。
Principle When an aqueous solution obtained by adding, for example, Na 2 S to water is maintained at a high temperature and a high pressure, S 2− acts as a reducing agent to reduce water and generate hydrogen. At this time, S 2− is oxidized to S 2 O 3 2− or SO 3 2− and SO 4 2− (see the formulas (1), (2), (3), and (4)).

2−→S+2e …(1)
S+3/2HO→1/2S 2− +3H+2e …(2)
1/2S 2− +3/2HO→SO 2− +3H+2e …(3)
SO 2− +HO→SO 2−+2H+2e …(4)
上記反応で生成した電子は、水を還元して水素を発生する。また、式(5)の反応によって水酸化物イオンが発生する。このため反応後の溶液のpHは高くなる。
S 2− → S + 2e (1)
S + 3 / 2H 2 O → 1 / 2S 2 O 3 2− + 3H + + 2e (2)
1 / 2S 2 O 3 2− + 3 / 2H 2 O → SO 3 2− + 3H + + 2e (3)
SO 3 2− + H 2 O → SO 4 2− + 2H + + 2e (4)
The electrons generated by the above reaction reduce water to generate hydrogen. Further, hydroxide ions are generated by the reaction of the formula (5). For this reason, pH of the solution after reaction becomes high.

2e+2HO→H+2OH …(5)
上記反応を効率的に進行させる条件は、反応温度200℃以上、pH7以上である。反応圧力は、反応温度に対する飽和蒸気圧以上で液相が保持されることが必要である。
2e + 2H 2 O → H 2 + 2OH (5)
Conditions for allowing the reaction to proceed efficiently are a reaction temperature of 200 ° C. or higher and a pH of 7 or higher. The reaction pressure needs to be maintained at a liquid phase higher than the saturated vapor pressure with respect to the reaction temperature.

上記方法によると、HS はS 2−やSO 2− を経て、最終的にSO 2−にまで酸化され消費されてしまう。しかし、S 2−やSO 2−は再びHS に還元することが可能である。S 2−やSO 2− の還元方法の1つとして、アルコールやアルデヒドなどを利用する方法がある。S 2−やSO 2−を含む水溶液にグリセリンやグルコースを添加しこれを高温状態に保つことによって、硫黄酸化物を再びHS にまで還元することができる。一方、グリセリンやグルコース自身は酸化されて、酢酸などの有機酸になる。 According to the above-described method, HS is oxidized and consumed up to SO 4 2− through S 2 O 3 2− and SO 3 2− . However, S 2 O 3 2− and SO 3 2− can be reduced again to HS . As one of the methods for reducing S 2 O 3 2− or SO 3 2− , there is a method using alcohol, aldehyde or the like. By adding glycerin or glucose to an aqueous solution containing S 2 O 3 2− or SO 3 2− and keeping it in a high temperature state, the sulfur oxide can be reduced to HS again. On the other hand, glycerin and glucose itself are oxidized into an organic acid such as acetic acid.

本発明の水素製造方法によれば、300℃程度の比較的低温の熱エネルギーを利用して、水素を製造することができ、エネルギーコスト的に極めて有利である。   According to the hydrogen production method of the present invention, hydrogen can be produced using heat energy at a relatively low temperature of about 300 ° C., which is extremely advantageous in terms of energy cost.

一般に200〜300℃程度の排ガスはエクセルギーが低いため、利用しにくく、工場では排ガスとして廃棄されている。本発明の方法では、このような比較的低温の熱源と硫黄化合物があれば水から水素を作り出すことができる。水素は保存が可能な上、燃料電池などで電気エネルギーに転換できるため利用価値が高い。また、水素は燃焼によっても水ができるだけで、SOxやNOx等の有害物質や温暖化に寄与するといわれているCOガスなどを発生しないため、クリーンなエネルギー資源であるといわれている。 In general, the exhaust gas at about 200 to 300 ° C. has low exergy and is difficult to use, and is discarded as exhaust gas in factories. In the method of the present invention, hydrogen can be produced from water if there is such a relatively low-temperature heat source and a sulfur compound. Hydrogen can be stored and can be converted into electric energy by a fuel cell, etc., so it is highly useful. Further, hydrogen is said to be a clean energy resource because it can only produce water by combustion and does not generate harmful substances such as SOx and NOx and CO 2 gas that is said to contribute to global warming.

つぎに、本発明を具体的に説明するために、本発明の実施例を挙げる。   Next, in order to describe the present invention specifically, examples of the present invention will be given.

実験方法
水から水素を生成させるには強い還元剤が必要である。そこで、硫黄の化合物の中でも還元性の非常に強いS2−を用いた。実験試料には、硫化ナトリウム・9水和物(和光純薬社製、特級試薬)を用いた。これを水に溶解させると、式(6)のように硫化水素と水酸化ナトリウムが生成する。硫化水素は弱酸、水酸化ナトリウムは強塩基であるので、溶液はアルカリ性を示す。
Experimental method Strong reducing agents are required to generate hydrogen from water. Therefore, among the sulfur compounds, S 2− having a very strong reducing property was used. As the experimental sample, sodium sulfide nonahydrate (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used. When this is dissolved in water, hydrogen sulfide and sodium hydroxide are produced as shown in formula (6). Since hydrogen sulfide is a weak acid and sodium hydroxide is a strong base, the solution is alkaline.

NaS+2HO→HS+2NaOH …(6)
また、硫化水素は、水中では式(7)、(8) のように解離して溶解する。式(7)、(8) の反応はそれぞれ平衡反応であって、各化合物の存在比は溶液のpHによって決定される。
Na 2 S + 2H 2 O → H 2 S + 2NaOH (6)
In addition, hydrogen sulfide dissociates and dissolves in water as in formulas (7) and (8). The reactions of formulas (7) and (8) are equilibrium reactions, and the abundance ratio of each compound is determined by the pH of the solution.

S=HS+H …(7)
HS=S2−+H …(8)
pHを調整する場合は、硫酸(和光純薬社製、特級試薬)を所定量加えた。
H 2 S = HS + H + (7)
HS = S 2 + + H + (8)
When adjusting the pH, a predetermined amount of sulfuric acid (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added.

実験装置
実験は小型回分式反応装置を用いて行った。反応容器および実験装置全体図を図1および図2に示す。反応容器(1) は二重壁構造となっており、反応室を形成する内壁(2) は耐蝕性合金であるハステロイC276(ニッケル合金でニッケル、コバルト、モリブデンなどを含む)製であり、外壁(3) はSS400製で誘導損失により発熱し、耐圧強度を確保する。内容積は42mL、最高使用温度、圧力はそれぞれ500℃、50MPaである。反応容器(1) の頂部には高圧バルブ(4) が取り付けられ、反応後の発生ガスが採取できるようになされている。反応容器(1) は、誘導加熱炉(日東高圧社製)(5) 内に設置される。誘導加熱炉(5) は、50Hz・100Vの商用交流電源を用いて反応容器外側を発熱させるもので、反応容器(1) を1分間に約36℃で昇温させる。加熱炉下部にあるモーター(6) に連結したクランクシャフト(7) を介して加熱炉本体(8) が振とうさせられる。振とうの回数は約20回/minとした。図2は、反応容器(1) が鉛直方向に挿入された状態での垂直断面図であるが、実際の実験では、反応容器(1) は初期の状態で水平方向になるように設置し、この状態からボールベアリング(10)を軸に上下約45°の角度で反応容器(1) を振とうした。反応温度は熱電対孔にK熱電対(9) を差し込んで測定し、温度コントローラーにより制御した。(11)はガス取出し口、(12)はガス抜き穴である。
Experimental apparatus Experiments were performed using a small batch reactor. An overall view of the reaction vessel and experimental apparatus is shown in FIGS. The reaction vessel (1) has a double wall structure, and the inner wall (2) that forms the reaction chamber is made of Hastelloy C276 (a nickel alloy containing nickel, cobalt, molybdenum, etc.) that is a corrosion resistant alloy. (3) is made of SS400 and generates heat due to induction loss, ensuring pressure resistance. The internal volume is 42 mL, the maximum use temperature, and the pressure are 500 ° C. and 50 MPa, respectively. A high-pressure valve (4) is attached to the top of the reaction vessel (1) so that the gas generated after the reaction can be collected. The reaction vessel (1) is installed in an induction heating furnace (manufactured by Nitto High Pressure Co., Ltd.) (5). The induction heating furnace (5) heats the outside of the reaction vessel using a commercial AC power supply of 50 Hz and 100 V, and raises the temperature of the reaction vessel (1) at about 36 ° C. per minute. The main body of the heating furnace (8) is shaken through the crankshaft (7) connected to the motor (6) at the lower part of the heating furnace. The number of shaking was about 20 times / min. FIG. 2 is a vertical sectional view with the reaction vessel (1) inserted in the vertical direction, but in an actual experiment, the reaction vessel (1) was installed so as to be horizontal in the initial state. From this state, the reaction vessel (1) was shaken at an angle of about 45 ° up and down around the ball bearing (10). The reaction temperature was measured by inserting a K thermocouple (9) into the thermocouple hole and controlled by a temperature controller. (11) is a gas outlet, and (12) is a gas vent.

実験手順
所定量のNaS・9H0、所定量の蒸留水、および酸を添加する湯合は所定濃度の硫酸を反応容器に入れて容器を密閉した。密閉後、反応容器の頂部に高圧バルブを取り付け、反応容器を誘導加熱炉の内部に設置した。反応容器に熱電対を取り付けた後、振とうおよび昇温を開始した。反応時間は、測定温度が設定温度に達した時点で反応時間0minとし、その時点から経過した時間とした。所定の反応時間経過後、振とうおよび加熱を停止し、反応容器を誘導加熱炉から速やかに取り出し、これを送風機によって室温程度まで強制空冷した。反応容器の温度が室温程度まで下がったら、まずは発生ガスを採取した。ガス採取は水上置換により行ったが、炭酸ガスなどの水中への溶解を極力避けるため、置換水には過飽和食塩水を用いた。メスシリンダーにより回収されたガス量を測定
し、ガス発生量とした。ガス採取後、反応容器の蓋を開け、生成物を回収した。
Experimental Procedure A predetermined amount of Na 2 S · 9H 2 0, a predetermined amount of distilled water, and a hot water to which an acid was added were placed in a reaction vessel with a predetermined concentration of sulfuric acid, and the vessel was sealed. After sealing, a high pressure valve was attached to the top of the reaction vessel, and the reaction vessel was placed inside the induction heating furnace. After attaching a thermocouple to the reaction vessel, shaking and temperature increase were started. The reaction time was defined as the reaction time of 0 min when the measured temperature reached the set temperature, and the time elapsed from that time. After a predetermined reaction time, shaking and heating were stopped, the reaction vessel was quickly removed from the induction heating furnace, and this was forcibly air-cooled to about room temperature with a blower. When the temperature of the reaction vessel dropped to about room temperature, first, the generated gas was collected. Although gas sampling was carried out by substitution on water, supersaturated saline was used as substitution water in order to avoid the dissolution of carbon dioxide or the like in water as much as possible. The amount of gas collected by the graduated cylinder was measured and used as the amount of gas generated. After collecting the gas, the reaction container was opened and the product was recovered.

水素の生成結果
硫黄による高温熱水からの水素発生の確認
まず、反応温度300℃、反応時間60min、水充填率30%、NaS・9H0量1.5gの条件でNaSの作用による水素発生の確認実験を行った。反応後、ガスの発生が確認されたので、発生したガスの分析を行った。その結果、発生したガスは水素ガスであり、窒素ガスや酸素ガス等は検出されなかった。水素の発生量は200.2mLであった。このことから、NaSは還元剤として作用し、300℃の熱水から水素が発生することがわかった。
Confirmation of hydrogen generation from high-temperature hot water by sulfur as a result of generation of hydrogen First, the reaction temperature of 300 ° C., reaction time of 60 min, water filling rate of 30%, Na 2 S · 9H 2 O amount of 1.5 g of Na 2 S Experiments were conducted to confirm the hydrogen generation by the action. Since the generation of gas was confirmed after the reaction, the generated gas was analyzed. As a result, the generated gas was hydrogen gas, and nitrogen gas, oxygen gas and the like were not detected. The amount of hydrogen generated was 200.2 mL. From this, it was found that Na 2 S acts as a reducing agent, and hydrogen is generated from hot water at 300 ° C.

反応後の溶液を、Waters社製キャピラリー電気泳動分析装置(以下、CIAと記す)を用いて分析した結果を図3に示す。分析結果よりHS、S 2−やSO 2−が検出された。よって、式(1)〜式(3)の反応が進行したと考えられる。 FIG. 3 shows the results of analyzing the solution after the reaction using a capillary electrophoresis analyzer (hereinafter referred to as CIA) manufactured by Waters. From the analysis results, HS , S 2 O 3 2− and SO 3 2− were detected. Therefore, it is considered that the reactions of formulas (1) to (3) have progressed.

pHの影響
pHを変化させて実験を行った。反応条件は、反応温度300℃、反応時間60min、水充填率30%、pH4〜13とした。NaSのみを水に溶解させるとpHは13であることから、pHの調整は硫酸を用いて水溶液が所定のpHになるようにした。図4にpHを変化させた場合の水素発生量の結果を示す。
Effect of pH The experiment was conducted by changing the pH. The reaction conditions were a reaction temperature of 300 ° C., a reaction time of 60 min, a water filling rate of 30%, and a pH of 4 to 13. When only Na 2 S was dissolved in water, the pH was 13. Therefore, the pH was adjusted using sulfuric acid so that the aqueous solution had a predetermined pH. FIG. 4 shows the results of hydrogen generation when the pH is changed.

この結果から、pH=4〜7の条件では水素がほとんど発生しなかった。図5にpHを変化させたときのCIA分析結果を示す。表1に反応前後のpHの変化を示す。反応後では溶液のアルカリ性度が増加していた。このことから式(5)の反応が進行したことが分かる。

Figure 0004922713
From this result, hydrogen was hardly generated under the conditions of pH = 4-7. FIG. 5 shows the results of CIA analysis when the pH is changed. Table 1 shows the change in pH before and after the reaction. After the reaction, the alkalinity of the solution increased. This shows that the reaction of formula (5) has progressed.
Figure 0004922713

2−は水中で式(7),(8)のように解離しており、それぞれのイオンの存在比は水溶液のpHによって決定される。各イオンの存在比を図6に示す。pH7〜13の間では硫黄はHSとして存在していることが分かる。したがって、硫黄による水素の発生には硫黄がHSの化合物形態 であるときが適していると考えられる。 S 2− is dissociated in water as in formulas (7) and (8), and the abundance ratio of each ion is determined by the pH of the aqueous solution. The abundance ratio of each ion is shown in FIG. Sulfur Between pH7~13 the HS - seen to exist as a. Therefore, the generation of hydrogen by sulfur sulfur HS - considered is suitable when it is in the compound form.

反応温度の影響
反応時間を60min、初期pHを10に固定して、反応温度を200℃、250℃、280℃、300℃、330℃に変化させて実験を行った。得られた水素発生量を図7に示す。200℃では水素の発生は確認されず、他のガスも発生しなかった。250℃以上では水素が発生し、温度が高くなるにつれて水素発生量も増加していることがわかる。この結果からHSによる水からの水素発生には、250℃以上の温度が必要であることがわかった。
Effect of reaction temperature The reaction time was fixed at 60 minutes, the initial pH was fixed at 10, and the reaction temperature was changed to 200 ° C., 250 ° C., 280 ° C., 300 ° C., and 330 ° C. The obtained hydrogen generation amount is shown in FIG. At 200 ° C., generation of hydrogen was not confirmed, and other gases were not generated. It can be seen that hydrogen is generated at 250 ° C. or higher, and the amount of generated hydrogen increases as the temperature increases. From this result, it was found that a temperature of 250 ° C. or higher is necessary for hydrogen generation from water by HS .

硫黄酸化物の還元
本発明による方法では、NaSを用いて熱水から水素を発生することができるが、N
SはS 2−やSO 2− およびSO 2−に酸化され消費されてしまう。したがって、水素を継続的に発生させるためには、これらの硫黄酸化物イオンをHSに還元する方法の開発が必要である。その方法の1つとして何らかの還元剤を利用し、S 2−やSO 2− をHSに還元する方法がある。アルコールやアルデヒドのような有機物には還元作用がある。そこで、アルデヒドの一種であるグルコースを用いて、硫黄酸化物の還元実験を行った。グルコースは、多くの有機性廃棄物やバイオマスを構成する主要な組成の1つであるため自然界に豊富に存在する。
Reduction of Sulfur Oxides In the process according to the invention, Na 2 S can be used to generate hydrogen from hot water, but N 2 S
a 2 S is oxidized to S 2 O 3 2− , SO 3 2−, and SO 4 2− and consumed. Therefore, in order to continuously generate hydrogen, it is necessary to develop a method for reducing these sulfur oxide ions to HS . As one of the methods, there is a method of reducing S 2 O 3 2− or SO 3 2− to HS using some reducing agent. Organic substances such as alcohols and aldehydes have a reducing action. Then, the reduction | restoration experiment of sulfur oxide was done using glucose which is 1 type of an aldehyde. Glucose is abundant in nature because it is one of the major constituents of many organic wastes and biomass.

実験には、硫化ナトリウム・9水和物1.5gとグルコース0.1gを用いた。水の充填率は30%とした。硫酸によるpH調整は行っていない。反応温度は300℃である。グルコースを添加した場合としない場合の水素発生量の比較を図8に示す。同図からわかるように、グルコースが存在する系の方が水素発生量が多くなった。   In the experiment, 1.5 g of sodium sulfide · 9 hydrate and 0.1 g of glucose were used. The filling rate of water was 30%. The pH is not adjusted with sulfuric acid. The reaction temperature is 300 ° C. FIG. 8 shows a comparison of the amount of hydrogen generated with and without the addition of glucose. As can be seen from the figure, the amount of hydrogen generated was higher in the system in which glucose was present.

グルコースを添加した場合の反応後の溶液のCIA分析結果から得られたS 2−やSO 2− の量を図9に示す。同図から分かるようにHSは最初に減少しているが、反応時間が長くなると増加する傾向が見られた。この結果から、HSがS 2−やSO 2− に酸化した後再びHSに還元されていること分かる。 FIG. 9 shows the amounts of S 2 O 3 2− and SO 3 2− obtained from the CIA analysis results of the solution after the reaction when glucose is added. In HS As can be seen - but is initially reduced, it tends to increase with increasing reaction time was observed. This result, HS - seen that has been reduced to - again HS was oxidized to 2- S 2 O 3 2- and SO 3.

このことがら、HSは酸化を繰り返しいずれその一部は硫酸になってしまうが、一部のS 2−やSO 2− は再びHSに戻るという循環サイクルが形成されていると考えられる。すなわち、グルコースのような還元性のある有機物を添加することによって、継続的に水素を発生させることが可能である。 This matter, HS - is the part one repeated oxidation becomes sulfuric acid, a part of the S 2 O 3 2- and SO 3 2-again HS - is circulated cycle of returning to the form it is conceivable that. That is, hydrogen can be continuously generated by adding a reducing organic substance such as glucose.

反応容器を示す一部切欠正面図である。It is a partially cutaway front view which shows the reaction container. 実験装置全体を示す一部切欠正面図である。It is a partially notched front view which shows the whole experimental apparatus. 水溶液のCIA分析結果を示すグラフである。It is a graph which shows the CIA analysis result of aqueous solution. 水溶液のpHと水素発生量の関係を示すグラフである。It is a graph which shows the relationship between pH of aqueous solution, and the amount of hydrogen generation. 水溶液のpHを変化させたときのCIA分析結果を示すグラフである。It is a graph which shows the CIA analysis result when changing pH of aqueous solution. 水溶液のpHと各硫黄化合物の存在比の関係を示すグラフである。It is a graph which shows the relationship between pH of aqueous solution, and the abundance ratio of each sulfur compound. 水溶液の温度と水素発生量の関係を示すグラフである。It is a graph which shows the relationship between the temperature of aqueous solution, and the amount of hydrogen generation. グルコースの有無と水素発生量の関係を示すグラフである。It is a graph which shows the relationship between the presence or absence of glucose and the amount of hydrogen generation. グルコース添加の場合の硫黄イオン種の変化を示すグラフである。It is a graph which shows the change of the sulfur ion seed | species in the case of glucose addition.

符号の説明Explanation of symbols

(1) 反応容器、(2) 内壁、(3) 外壁、(4) は高圧バルブ、(5) 誘導加熱炉、(6) モーター、(7) クランクシャフト、(8) 加熱炉本体、(9) K熱電対、(10)ボールベアリング、(11)ガス取出し口、(12)ガス抜き穴 (1) Reaction vessel, (2) Inner wall, (3) Outer wall, (4) High pressure valve, (5) Induction heating furnace, (6) Motor, (7) Crankshaft, (8) Heating furnace body, (9 ) K thermocouple, (10) ball bearing, (11) gas outlet, (12) vent hole

Claims (2)

硫黄またはNa S、S 2− 、SO 2− である還元性を有する硫黄化合物を含むpH7を超え14以下である水溶液を、反応温度250〜350℃で圧力がその温度の飽和蒸気圧以上の高温高圧条件で保持し、水を還元し水素を生成させる水素の製造方法。 An aqueous solution containing sulfur or a sulfur compound having reducibility that is Na 2 S, S 2 O 3 2− , SO 3 2− and having a pH of more than 7 and 14 or less is saturated at a reaction temperature of 250 to 350 ° C. and a pressure of that temperature. A method for producing hydrogen in which hydrogen is produced by reducing water and maintaining high-temperature and high-pressure conditions above the vapor pressure . 水溶液中に硫黄酸化物に対する還元剤を添加することで、S 2− またはSO 2− をHSに還元し、継続的に水素を発生させる請求項記載の水素の製造方法。 The method for producing hydrogen according to claim 1 , wherein a reducing agent for sulfur oxide is added to the aqueous solution to reduce S 2 O 3 2− or SO 3 2− to HS to continuously generate hydrogen.
JP2006258703A 2006-09-25 2006-09-25 Method for producing hydrogen Expired - Fee Related JP4922713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258703A JP4922713B2 (en) 2006-09-25 2006-09-25 Method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258703A JP4922713B2 (en) 2006-09-25 2006-09-25 Method for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2008074685A JP2008074685A (en) 2008-04-03
JP4922713B2 true JP4922713B2 (en) 2012-04-25

Family

ID=39347127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258703A Expired - Fee Related JP4922713B2 (en) 2006-09-25 2006-09-25 Method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP4922713B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589501A3 (en) * 1992-08-25 1994-05-18 Ecochem Ag Process for the production of alkali metal hydroxides and elemental sulfur from sulfur-containing alkali-metal salts
JP2787807B2 (en) * 1996-01-11 1998-08-20 勝 中原 Hydrogen supply method
JP2001294401A (en) * 2000-04-13 2001-10-23 Natl Inst Of Advanced Industrial Science & Technology Meti Method for producing hydrogen from inorganic sulfur compound ion aqueous solution

Also Published As

Publication number Publication date
JP2008074685A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
Valluri et al. Opportunities and challenges in CO2 utilization
Thompson et al. Review and analysis of CO2 photoreduction kinetics
Sheng et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode
Chery et al. Overview on CO2 valorization: challenge of molten carbonates
JP4276067B2 (en) Production of hydrogen from hydrocarbons and oxygen-containing hydrocarbons
JP6174703B2 (en) Hydrogen production
Kraia et al. Hydrogen production by H2S decomposition over ceria supported transition metal (Co, Ni, Fe and Cu) catalysts
Kim et al. Recent progress in electrochemical hydrogen sulfide splitting: Strategies for enabling Sulfur-tolerant anodic reactions
AU2019271388B2 (en) Process to convert reduced sulfur species and water into hydrogen and sulfuric acid
Mohammed et al. A systematic review: The role of emerging carbon capture and conversion technologies for energy transition to clean hydrogen
Yang et al. Selective CO2 Electroreduction with enhanced oxygen evolution efficiency in affordable borate-mediated molten electrolyte
Chebbi et al. Photocatalytic conversion of carbon dioxide, methane, and air for green fuels synthesis
Ma et al. Direct Electroreduction of Carbonate to Formate
JP2013234077A (en) Hydrogen production apparatus and hydrogen production method using the same
WO2014178831A1 (en) Systems and methods for reducing corrosion in a reactor system
T-Raissi et al. Hydrogen from solar via light-assisted high-temperature water splitting cycles
JP4922713B2 (en) Method for producing hydrogen
Yao et al. Highly-efficient and autocatalytic reduction of NaHCO3 into formate by in situ hydrogen from water splitting with metal/metal oxide redox cycle
JP4191373B2 (en) Method for producing highly active photocatalyst and method for treating hydrogen sulfide for recovering hydrogen gas with low energy using highly active photocatalyst
Cao et al. Photothermal catalytic hydrolysis of COS with enhanced efficiency over constructed alkali-modified La-Ti catalyst: Adjusting photogenerated electron behavior through metal‐support interactions
Velazquez-Rizo et al. Low-temperature direct electrochemical splitting of H2S
CN115072670B (en) Reaction device for preparing elemental sulfur and hydrogen by decomposing hydrogen sulfide with molten salt
Haklidir et al. Hydrogen production from geothermal sources in Turkey
Radin Effect of Solvents and Temperatures on Photo-reduction of Carbon Dioxide Using Alumina Doped TiO2 Catalysts
Haklıdır et al. Hydrogen Production from Geothermal Sources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees