JP4922326B2 - Carbon dioxide absorbent and carbon dioxide recovery method - Google Patents

Carbon dioxide absorbent and carbon dioxide recovery method Download PDF

Info

Publication number
JP4922326B2
JP4922326B2 JP2009038606A JP2009038606A JP4922326B2 JP 4922326 B2 JP4922326 B2 JP 4922326B2 JP 2009038606 A JP2009038606 A JP 2009038606A JP 2009038606 A JP2009038606 A JP 2009038606A JP 4922326 B2 JP4922326 B2 JP 4922326B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
water
soluble polymer
aqueous solution
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009038606A
Other languages
Japanese (ja)
Other versions
JP2010194378A (en
Inventor
裕子 渡戸
武彦 村松
康博 加藤
亜里 近藤
聡 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009038606A priority Critical patent/JP4922326B2/en
Publication of JP2010194378A publication Critical patent/JP2010194378A/en
Application granted granted Critical
Publication of JP4922326B2 publication Critical patent/JP4922326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Description

本発明は、炭酸ガス吸収剤および回収方法に関する。より詳細には、石炭火力発電所等の炭化水素を主成分とする原料や燃料を利用するエネルギープラントや化学プラントから発生する排気ガス、自動車等から発生する排気ガス、原料ガスや燃料ガス中の炭酸ガスを回収するための炭酸ガス吸収剤及び回収方法に関する。   The present invention relates to a carbon dioxide absorbent and a recovery method. More specifically, exhaust gas generated from energy plants and chemical plants using hydrocarbon-based raw materials and fuels such as coal-fired power plants, exhaust gases generated from automobiles, etc. The present invention relates to a carbon dioxide absorbent and a recovery method for recovering carbon dioxide.

昨今の地球温暖化問題への関心および規制強化の背景を受けて、石炭火力発電所からの炭酸ガス排出量の削減は急務となっている。そこで、炭酸ガス排出量の削減方法として発電所の高効率化による排出量の低減と共に、化学吸収剤による炭酸ガスの回収が大きな注目を浴びている。   Reducing carbon dioxide emissions from coal-fired power plants has become an urgent task due to the recent interest in global warming and the background of stricter regulations. Therefore, as a method for reducing the amount of carbon dioxide emissions, the collection of carbon dioxide with chemical absorbents has attracted a great deal of attention as well as the reduction of emissions due to the high efficiency of power plants.

具体的な吸収剤としては、アミンによる吸収が古くから研究されている(例えば、特許文献1)。この場合、例えば、炭酸ガスを含むガスを吸収塔内でアルカノールアミン水溶液と接触させて炭酸ガスを吸収させた後、その炭酸ガス吸収液を加熱して脱離塔で炭酸ガスを脱離回収させる。   As a specific absorbent, absorption by amine has been studied for a long time (for example, Patent Document 1). In this case, for example, the carbon dioxide gas is brought into contact with the alkanolamine aqueous solution in the absorption tower to absorb the carbon dioxide gas, and then the carbon dioxide absorption liquid is heated to desorb and recover the carbon dioxide gas in the desorption tower. .

ここでアルカノールアミンとしては、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、トリエタノールアミン(TEA)、メチルジエタノールアミン(MDEA)、ジイソプロバノールアミン(DIPA)、ジグリコールアミン(DGA)などが知られているが、通常モノエタノールアミンが用いられている。   Here, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), methyldiethanolamine (MDEA), diisopropanolamine (DIPA), diglycolamine (DGA), etc. are known as alkanolamines. However, monoethanolamine is usually used.

しかしながら、例えばMEA等のアルカノールアミンの水溶液を吸収液として用いた場合、単位体積あたりの炭酸ガス吸収容量はすぐれているものの、装置の材質の腐食性が高いため、装置に高価な耐食鋼を用いる必要があったり、吸収液中のアミン濃度をさげる必要があったりした。また、吸収し炭酸ガスを脱離しにくいために、脱離の温度を120℃と高い温度に加熱して脱離、回収する必要がある。   However, for example, when an aqueous solution of alkanolamine such as MEA is used as the absorbing solution, although the carbon dioxide absorption capacity per unit volume is excellent, the corrosiveness of the material of the device is high, so expensive corrosion-resistant steel is used for the device. It was necessary to reduce the amine concentration in the absorbing solution. Further, since it is difficult to absorb and desorb carbon dioxide, it is necessary to desorb and recover by heating the desorption temperature to a high temperature of 120 ° C.

一方、このような高温による加熱処理による脱離には、多大のエネルギーを必要とするため、省エネルギー及び省資源が求められる時代においては適合せず、実用化を阻む大きな要因となっている。   On the other hand, desorption by heat treatment at such a high temperature requires a large amount of energy, so it is not suitable in an era where energy saving and resource saving are required, and is a major factor hindering practical use.

上記問題を解決すべく、アルカノールアミンに対してピペラジンを加えた多種のアミンの混合物を炭酸ガス吸収剤として用いたり(特許文献2)、同様にアルカノールアミンに対して低級アルキルピペラジンを加えた混合物を炭酸ガス吸収剤として用いたりすることが試みられている(特許文献3)。また、ビニルアミンとポリビニルアミンとの架橋重合体を炭酸ガス吸着剤として用いることが試みられている(特許文献4)。   In order to solve the above problems, a mixture of various amines in which piperazine is added to alkanolamine is used as a carbon dioxide absorbent (Patent Document 2), and a mixture in which lower alkyl piperazine is similarly added to alkanolamine is used. Attempts have been made to use it as a carbon dioxide gas absorbent (Patent Document 3). Attempts have also been made to use a crosslinked polymer of vinylamine and polyvinylamine as a carbon dioxide adsorbent (Patent Document 4).

これらの方法によれば、炭酸ガス吸収剤に吸収された炭酸ガスを脱離する際の加熱処理温度を70℃〜90℃程度まで低減することができる。しかしながら、前記加熱処理は、炭酸ガスを吸収した吸収剤の全体に対して実施する必要があり、したがって、加熱処理温度を低減することはできても、前記加熱処理には依然として多大のエネルギーを必要としていた。   According to these methods, the heat treatment temperature when desorbing the carbon dioxide absorbed by the carbon dioxide absorbent can be reduced to about 70 ° C to 90 ° C. However, the heat treatment needs to be performed on the entire absorbent that has absorbed carbon dioxide gas. Therefore, although the heat treatment temperature can be reduced, the heat treatment still requires a large amount of energy. I was trying.

特開平3−151015号JP-A-3-151015 特開2006−240966号JP 2006-240966 A WO99/51326号WO99 / 51326 特開平6−190235号JP-A-6-190235

本発明は、上述した問題に鑑み、吸収した炭酸ガスを放出して回収する際に要するエネルギーを低減することができる炭酸ガス吸収剤及び回収方法を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a carbon dioxide absorbent and a recovery method that can reduce energy required for releasing and recovering absorbed carbon dioxide.

本発明の一態様は、分子量が500から100、000であり、(1)〜(4)式に記載の含窒素化合物を繰り返し単位として有する水溶性高分子化合物のいずれか1つ又はポリビニルピペリジンからなる水溶性高分子化合物を含有する炭酸ガス吸収剤

Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
に関する。
また、本発明の一態様は、分子量が500から100、000であり、(1)〜(4)式に記載の含窒素化合物を繰り返し単位として有する水溶性高分子化合物のいずれか1つ又はポリピペリジンからなる水溶性高分子化合物を含有する炭酸ガス吸収剤
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
と、水とを混合して、水溶性高分子含有水溶液を調整するステップと、前記水溶性高分子含有水溶液に対して炭酸ガスを含有する気体を接触させ、前記炭酸ガスを吸収させるステップと、前記水溶性高分子含有水溶液を、疎水性の第1相と親水性の第2相とに分離するステップと、前記水溶性高分子含有水溶液の、前記第1相から前記炭酸ガスを放出するステップと、を具えることを特徴とする、炭酸ガス回収方法に関する。 One embodiment of the present invention is from any one of water-soluble polymer compounds having a molecular weight of 500 to 100,000 and having a nitrogen-containing compound described in the formulas (1) to (4) as a repeating unit or polyvinylpiperidine. Carbon dioxide absorbent containing a water-soluble polymer compound
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
About.
Another embodiment of the present invention is a water-soluble polymer compound having a molecular weight of 500 to 100,000 and having a nitrogen-containing compound described in the formulas (1) to (4) as a repeating unit. Carbon dioxide gas absorbent containing water-soluble polymer compound comprising piperidine
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Mixing water and adjusting the water-soluble polymer-containing aqueous solution, contacting the water-soluble polymer-containing aqueous solution with a gas containing carbon dioxide gas, and absorbing the carbon dioxide gas; Separating the water-soluble polymer-containing aqueous solution into a hydrophobic first phase and a hydrophilic second phase; and releasing the carbon dioxide gas from the first phase of the water-soluble polymer-containing aqueous solution. And a carbon dioxide recovery method.

本発明によれば、吸収した炭酸ガスを放出して回収する際に要するエネルギーを低減することができる炭酸ガス吸収剤及び回収方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the carbon dioxide absorber and recovery method which can reduce the energy required when discharge | releasing and collect | recovering the absorbed carbon dioxide gas can be provided.

以下に、本発明の内容を詳細に示す。   The contents of the present invention are shown in detail below.

(炭酸ガス吸収剤)
最初に、本態様における炭酸ガス吸収剤について説明する。本態様における炭酸ガス吸収剤は、(1)式で示される含窒素化合物を繰り返し単位として有する水溶性高分子化合物である。R1は高分子の主鎖に相当し、−CsHt− (1≦s≦10、t=2s−1)の条件を満たした炭化水素より構成される。なお、その形態は直鎖状、分岐状のいずれの形態でも構わない。
(Carbon dioxide absorbent)
First, the carbon dioxide absorbent in this embodiment will be described. The carbon dioxide gas absorbent in this embodiment is a water-soluble polymer compound having a nitrogen-containing compound represented by the formula (1) as a repeating unit. R1 corresponds to the main chain of the polymer and is composed of hydrocarbons that satisfy the condition of -CsHt- (1≤s≤10, t = 2s-1). In addition, the form may be either linear or branched.

また、炭素数sを1以上10以下とするのは、一分子辺りのCO吸収効率及び、水溶性の観点からである。同様の理由から、炭素数sは8以下であることが好ましい。 The reason why the carbon number s is 1 or more and 10 or less is from the viewpoint of CO 2 absorption efficiency per molecule and water solubility. For the same reason, the carbon number s is preferably 8 or less.

R1にはアミノ基が結合しており、前記水溶性高分子化合物の側鎖部分に相当する。前記アミノ基は官能基R2を有している。R2は、−H, −CsHtOuNv (1≦s≦5、2s≦t≦2s+2、0≦u≦3、0≦v≦3)で表される官能基である。前記アミノ基は、以下に説明する炭酸ガスの回収方法において、炭酸ガスの吸収に寄与する。   An amino group is bonded to R1, and corresponds to the side chain portion of the water-soluble polymer compound. The amino group has a functional group R2. R2 is a functional group represented by -H, -CsHtOuNv (1≤s≤5, 2s≤t≤2s + 2, 0≤u≤3, 0≤v≤3). The amino group contributes to carbon dioxide absorption in the carbon dioxide recovery method described below.

R2としては、例えば、アルキル基、末端にヒドロキシル基を有する化合物、エーテル結合を有する化合物、アミンなどが挙げられる。   Examples of R2 include an alkyl group, a compound having a hydroxyl group at the terminal, a compound having an ether bond, and an amine.

入手の容易さ等を考慮すると、上記水溶性高分子化合物としては、以下に示すような化合物を例示することができる。

Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
In view of availability and the like, examples of the water-soluble polymer compound include the following compounds.
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326

特に上述した化合物の中でも、化合物8を一例とするポリアリルアミン、化合物20を一例とするポリアリールアミン、化合物23を一例とするポリアルカノールアミン、化合物24を一例とする、ポリビニルアミンの一種であるポリビニルピペリジンが好ましく用いることができる。この場合、上述したように、R1で表される炭化水素による効果と、上記アミノ基による効果とがより効果的に奏されるようになり、以下に説明する炭酸ガスの回収時間を短縮化することができ、回収効率を向上させることができる。   Among the above-mentioned compounds, in particular, polyallylamine having Compound 8 as an example, polyarylamine having Compound 20 as an example, polyalkanolamine having Compound 23 as an example, polyvinyl which is a kind of polyvinylamine having Compound 24 as an example Piperidine can be preferably used. In this case, as described above, the effect of the hydrocarbon represented by R1 and the effect of the amino group are more effectively achieved, and the carbon dioxide recovery time described below is shortened. Recovery efficiency can be improved.

また、上述した水溶性高分子化合物を実際に炭酸ガスの吸収剤として使用する場合は、水溶液とする必要があるが、この場合、前記水溶性高分子化合物の1重量部から80重量部に対して、水を20重量部から99重量部添加させて水溶性高分子含有水溶液とすることが好ましい。この場合、以下に示す炭酸ガスの回収方法において、疎水性の第1相と親水性の第2相とに容易に分離することができるようになる。   In addition, when the above-mentioned water-soluble polymer compound is actually used as an absorbent for carbon dioxide, it is necessary to use an aqueous solution. In this case, the water-soluble polymer compound is used in an amount of 1 to 80 parts by weight. Thus, it is preferable to add 20 to 99 parts by weight of water to obtain an aqueous solution containing a water-soluble polymer. In this case, in the carbon dioxide recovery method described below, it becomes possible to easily separate the hydrophobic first phase and the hydrophilic second phase.

さらに、前記水溶性高分子化合物の分子量が、500から100,000であることが好ましい。前記分子量が500未満であると、以下に示す炭酸ガスの回収方法において、疎水性の第1相と親水性の第2相とに分離できない場合がある。また、前記分子量が100,000を超えると、水に不溶となり、上記水溶性高分子含有水溶液を調整できない場合がある。   Furthermore, it is preferable that the water-soluble polymer compound has a molecular weight of 500 to 100,000. When the molecular weight is less than 500, in the following method for recovering carbon dioxide gas, it may not be possible to separate the hydrophobic first phase and the hydrophilic second phase. Moreover, when the molecular weight exceeds 100,000, the water-insoluble polymer-containing aqueous solution may not be prepared because it becomes insoluble in water.

また、前記水溶性高分子含有水溶液のpHが、7以上14以下であることが好ましい。これによって、前記水溶液における炭酸ガスの吸収量を増大させることができる。なお、かかる条件は、上述したポリアリルアミン、ポリアリールアミン、ポリアルカノールアミン、及びポリビニルアミンの場合は、必然的に満足する。   Moreover, it is preferable that pH of the water-soluble polymer-containing aqueous solution is 7 or more and 14 or less. As a result, the amount of carbon dioxide absorbed in the aqueous solution can be increased. Such conditions are inevitably satisfied in the case of the above-mentioned polyallylamine, polyarylamine, polyalkanolamine, and polyvinylamine.

なお、本態様の炭酸ガス吸収剤には、上記水溶性高分子含有水溶液中に、必要に応じて吸収性能を補足する含窒素化合物、酸化防止剤、pH調整剤等その他化合物を任意の割合で含有させることができる。   In the carbon dioxide gas absorbent of this embodiment, other compounds such as a nitrogen-containing compound, an antioxidant, a pH adjuster and the like supplementing the absorption performance as needed are added to the water-soluble polymer-containing aqueous solution as necessary. It can be included.

(炭酸ガスの回収方法)
次に、本態様の炭酸ガスの回収方法について説明する。
最初に、(1)式に記載の含窒素化合物を繰り返し単位として有する、水溶性高分子化合物を含有する炭酸ガス吸収剤と、水とを混合して、水溶性高分子含有水溶液を調整する。この際、前記水溶性高分子化合物と前記水との混合比は、上述のように、前記水溶性高分子化合物の1重量部から80重量部に対して、水を20重量部から99重量部とすることが好ましい。
(CO2 recovery method)
Next, the carbon dioxide gas recovery method of this embodiment will be described.
First, a water-soluble polymer-containing aqueous solution is prepared by mixing a carbon dioxide absorbent containing a water-soluble polymer compound having the nitrogen-containing compound described in the formula (1) as a repeating unit and water. At this time, the mixing ratio of the water-soluble polymer compound and the water is 20 to 99 parts by weight of water with respect to 1 to 80 parts by weight of the water-soluble polymer compound as described above. It is preferable that

また、前記水溶性高分子化合物の好ましい分子量は、上述したように500から100,000であり、前記水溶性高分子化合物の好ましい例としても、上記同様に、ポリアリルアミン、ポリアリールアミン、ポリビニルアミン、及びポリアルカノールアミンからなる群より選ばれる少なくとも一種である。また、前記ポリビニルアミンにおいては、ポリビニルピペリジンがより好ましい。   Moreover, the preferable molecular weight of the water-soluble polymer compound is 500 to 100,000 as described above. As a preferable example of the water-soluble polymer compound, as described above, polyallylamine, polyarylamine, polyvinylamine are also used. And at least one selected from the group consisting of polyalkanolamines. Moreover, in the said polyvinylamine, polyvinyl piperidine is more preferable.

また、繰り返しになるが、上記水溶性高分子含有水溶液のpHは、7以上14以下であることが好ましい。これによって、前記水溶液における炭酸ガスの吸収量を増大させることができる。なお、かかる条件は、上述したポリアリルアミン、ポリアリールアミン、ポリアルカノールアミン、及びポリビニルアミンの場合は、必然的に満足するが、必要に応じてpH調整剤等を混合させることもできる。   Moreover, although it repeats, it is preferable that pH of the said water-soluble polymer containing aqueous solution is 7 or more and 14 or less. As a result, the amount of carbon dioxide absorbed in the aqueous solution can be increased. Such conditions are inevitably satisfied in the case of the above-described polyallylamine, polyarylamine, polyalkanolamine, and polyvinylamine, but a pH adjuster or the like can be mixed as necessary.

次いで、前記水溶性高分子含有水溶液に対して炭酸ガスを含有する気体を接触させ、前記炭酸ガスを吸収させる。この際、炭酸ガスを含有する前記気体と、前記水溶性高分子含有水溶液とが接触することができればよく、例えば、気泡攪拌槽、気泡塔によるガス分散型吸収装置、スプレー塔、噴霧室、スクラバー、濡れ壁塔、充填塔による液分散型吸収装置等、既存の炭酸ガス吸収設備を用いることができる。炭酸ガスの吸収効率の観点から、充填材を充填した炭酸ガス吸収塔を用いた吸収が好ましい。   Next, a gas containing carbon dioxide gas is brought into contact with the water-soluble polymer-containing aqueous solution to absorb the carbon dioxide gas. At this time, the gas containing carbon dioxide and the water-soluble polymer-containing aqueous solution need only be in contact with each other. For example, a bubble stirring tank, a gas dispersion type absorption device using a bubble tower, a spray tower, a spray chamber, a scrubber Further, existing carbon dioxide absorption equipment such as a liquid dispersion type absorption device using a wet wall tower or a packed tower can be used. From the viewpoint of carbon dioxide absorption efficiency, absorption using a carbon dioxide absorption tower filled with a filler is preferred.

炭酸ガス回収時の反応温度は炭酸ガスを吸収することができればいかなる温度でも構わないが、吸収速度、及び吸収効率の観点から25℃以上、70℃以下であることが好ましい。   The reaction temperature at the time of carbon dioxide recovery may be any temperature as long as it can absorb carbon dioxide, but is preferably 25 ° C. or higher and 70 ° C. or lower from the viewpoint of absorption speed and absorption efficiency.

次いで、上記炭酸ガスを吸収した前記水溶性高分子含有水溶液を、疎水性の第1相と親水性の第2相とに分離する。この相分離は、既存の液・液分離方法を用いることができる。液・液分離法の例としてデカンテーション、遠心分離が挙げられるが、これらに何ら限定されるものではない。   Next, the water-soluble polymer-containing aqueous solution that has absorbed the carbon dioxide gas is separated into a hydrophobic first phase and a hydrophilic second phase. For this phase separation, an existing liquid / liquid separation method can be used. Examples of the liquid / liquid separation method include decantation and centrifugation, but are not limited thereto.

また、相分離は以下に説明するように、前記水溶性高分子含有水溶液からの炭酸ガス放出時の再生エネルギー低減を目的として行うものであるため、完全に分離を行う必要は無く、前記第2相を減溶することができれば良い。相分離を行う際の温度は特に限定はされないが、25℃以上、70℃以下であることが好ましい。   In addition, as will be described below, the phase separation is performed for the purpose of reducing the regeneration energy when carbon dioxide gas is released from the aqueous solution containing the water-soluble polymer. Therefore, it is not necessary to completely separate the second separation. It is sufficient if the phase can be reduced. The temperature at which the phase separation is performed is not particularly limited, but is preferably 25 ° C. or higher and 70 ° C. or lower.

次いで、前記水溶性高分子含有水溶液の、前記第1相から前記炭酸ガスを放出する。前記炭酸ガスの放出方法としては、減圧、加熱、膜分離などが挙げられるが、これらに何ら限定されるものではない。但し、加熱処理による方法によれば、簡易に前記ガス放出を行うことができる。この際の温度は、前記炭酸ガスを放出することができればいかなる温度でも構わないが、40℃以上、150℃以下であることが好ましい。   Next, the carbon dioxide gas is released from the first phase of the aqueous solution containing the water-soluble polymer. Examples of the method for releasing carbon dioxide include pressure reduction, heating, membrane separation, and the like, but are not limited thereto. However, according to the method by heat treatment, the gas can be easily released. The temperature at this time may be any temperature as long as the carbon dioxide gas can be released, but is preferably 40 ° C. or higher and 150 ° C. or lower.

なお、本態様では、吸収した前記炭酸ガスは、前記水溶性高分子含有水溶液の前記第1相中に含まれるようになるので、上述した加熱処理は前記第1相に対してのみ行えば良い。したがって、従来技術で述べたような、炭酸ガスを吸収した吸収剤の全体、すなわち本態様では、前記水溶性高分子含有水溶液の全体に上述した加熱処理を行う必要がない。この結果、従来技術と異なり、前記加熱処理に伴うエネルギー消費を十分に低減することができる。   In this aspect, the absorbed carbon dioxide gas is contained in the first phase of the water-soluble polymer-containing aqueous solution, so that the heat treatment described above only needs to be performed on the first phase. . Therefore, it is not necessary to perform the above-described heat treatment on the entire absorbent that has absorbed carbon dioxide gas as described in the prior art, that is, in the present embodiment, the entire aqueous solution containing the water-soluble polymer. As a result, unlike the prior art, energy consumption accompanying the heat treatment can be sufficiently reduced.

なお、上記第1相が疎水性を示すのは、主として炭酸ガスを吸収したことによる。したがって、上述のようにして炭酸ガスを放出した後は親水性を呈するようになるので、上述した第1相及び第2相は再び混合して、上記水溶性高分子含有水溶液とすることができ、再度炭酸ガス吸収剤として用いることができる。混合時に含窒素化合物、水、もしくはその他化合物を添加し、吸収性能を補うことも可能である。   The first phase exhibits hydrophobicity mainly due to absorption of carbon dioxide gas. Therefore, since the carbon dioxide gas is released as described above, it becomes hydrophilic. Therefore, the first phase and the second phase described above can be mixed again to obtain the water-soluble polymer-containing aqueous solution. Again, it can be used as a carbon dioxide gas absorbent. It is also possible to supplement the absorption performance by adding a nitrogen-containing compound, water, or other compounds during mixing.

以下に実施例を示す。   Examples are shown below.

(実施例1)
化合物8に示すポリアミン(分子量約5000)20重量部を水80重量部に溶解させ、100mlの水溶液とした。水溶液のpHは11であった。得られた水溶液を40℃に加熱し、炭酸ガスを約10%含有するガスを流速1L/minで通気した。約20分で吸収は飽和し、吸収量は約0.28molであった。炭酸ガス吸収後のポリアリルアミン水溶液は2相に分離した。これをデカンテーションによって分離を行い、ポリアリルアミンを含む疎水性相を回収した。回収したポリアリルアミン含有疎水性相を約20分間90℃に加熱した。放出は飽和し、約0.25molの炭酸ガスが回収された。
Example 1
20 parts by weight of polyamine (molecular weight of about 5000) shown in Compound 8 was dissolved in 80 parts by weight of water to make a 100 ml aqueous solution. The pH of the aqueous solution was 11. The obtained aqueous solution was heated to 40 ° C., and a gas containing about 10% of carbon dioxide gas was aerated at a flow rate of 1 L / min. Absorption was saturated in about 20 minutes, and the amount absorbed was about 0.28 mol. The polyallylamine aqueous solution after carbon dioxide absorption was separated into two phases. This was separated by decantation, and the hydrophobic phase containing polyallylamine was recovered. The recovered polyallylamine-containing hydrophobic phase was heated to 90 ° C. for about 20 minutes. The release was saturated and about 0.25 mol of carbon dioxide gas was recovered.

(実施例2)
化合物20に示すポリアリルアミン(分子量約5000)を用いて実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.21molであった。20分間90℃に加熱したところ、放出は飽和し、約0.17molの炭酸ガスが回収された。
(Example 2)
When the same experiment as in Example 1 was performed using polyallylamine (molecular weight: about 5000) shown in Compound 20, the absorption was saturated in about 20 minutes and the absorption was about 0.21 mol. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.17 mol of carbon dioxide was recovered.

(実施例3)
化合物23に示すポリアルカノールアミン(分子量約5000)を用いて実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.14molであった。20分間90℃に加熱したところ、放出は飽和し、約0.11molの炭酸ガスが回収された。
(Example 3)
When a polyalkanolamine (molecular weight: about 5000) shown in Compound 23 was used and the same experiment as in Example 1 was performed, the absorption was saturated in about 20 minutes and the absorption was about 0.14 mol. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.11 mol of carbon dioxide gas was recovered.

(実施例4)
化合物24に示すポリ環状アミン(分子量約5000)を用いて実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.11molであった。20分間90℃に加熱したところ、放出は飽和し、約0.08molの炭酸ガスが回収された。
Example 4
When the same experiment as in Example 1 was performed using the polycyclic amine (molecular weight: about 5000) shown in Compound 24, the absorption was saturated in about 20 minutes and the absorption was about 0.11 mol. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.08 mol of carbon dioxide was recovered.

(実施例5)
化合物20に示すポリアリルアミン(分子量約5000)1重量部に対して、水を99重量部添加し、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.02molであった。20分間90℃に加熱したところ、放出は飽和し、約0.017molの炭酸ガスが回収された。
(Example 5)
When 99 parts by weight of water was added to 1 part by weight of polyallylamine (molecular weight of about 5000) shown in Compound 20 and the same experiment as in Example 1 was performed, the absorption was saturated in about 20 minutes, About 0.02 mol. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.017 mol of carbon dioxide was recovered.

(実施例6)
化合物20に示すポリアリルアミン(分子量約5000)を80重量部に対して水20重量部添加し、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.85molであった。20分間90℃に加熱したところ、放出は飽和し、約0.75molの炭酸ガスが回収された。
(Example 6)
When 20 parts by weight of water was added to 80 parts by weight of polyallylamine shown in Compound 20 (molecular weight: about 5000), the same experiment as in Example 1 was performed. As a result, the absorption was saturated in about 20 minutes, and the absorption amount was about The amount was 0.85 mol. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.75 mol of carbon dioxide gas was recovered.

(実施例7)
化合物20に示すポリアリルアミン(分子量約500)を用いて、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.21molであった。炭酸ガス吸収後、ポリアリルアミン水溶液は2相に分離した。20分間90℃に加熱したところ、放出は飽和し、約0.15molの炭酸ガスが回収された。
(Example 7)
When the same experiment as in Example 1 was performed using polyallylamine (molecular weight: about 500) shown in Compound 20, the absorption was saturated in about 20 minutes and the absorption was about 0.21 mol. After carbon dioxide absorption, the polyallylamine aqueous solution separated into two phases. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.15 mol of carbon dioxide was recovered.

(実施例8)
化合物20に示すポリアリルアミン(分子量約20000)を用いて、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.21molであった。20分間90℃に加熱したところ、放出は飽和し、約0.18molの炭酸ガスが回収された。
(Example 8)
When the same experiment as Example 1 was conducted using polyallylamine (molecular weight about 20000) shown in Compound 20, the absorption was saturated in about 20 minutes and the absorption amount was about 0.21 mol. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.18 mol of carbon dioxide gas was recovered.

(実施例9)
化合物20に示すポリアリルアミン(分子量約100,000)を用いて、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.21molであった。20分間90℃に加熱したところ、放出は飽和し、約0.18molの炭酸ガスが回収された。
Example 9
When the same experiment as in Example 1 was performed using polyallylamine (molecular weight: about 100,000) shown in Compound 20, the absorption was saturated in about 20 minutes and the absorption was about 0.21 mol. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.18 mol of carbon dioxide gas was recovered.

(実施例10)
化合物20に示すポリアリルアミン(分子量約5000)を用いて、溶液のpHが7となるように調整し、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.14molであった。炭酸ガス吸収後、ポリアリルアミン水溶液は2相に分離した。20分間90℃に加熱したところ、放出は飽和し、約0.10molの炭酸ガスが回収された。
(Example 10)
Using polyallylamine (molecular weight of about 5000) shown in Compound 20 and adjusting the pH of the solution to be 7, the same experiment as in Example 1 was conducted. As a result, the absorption was saturated in about 20 minutes. Was about 0.14 mol. After carbon dioxide absorption, the polyallylamine aqueous solution separated into two phases. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.10 mol of carbon dioxide was recovered.

(実施例11)
化合物20に示すポリアリルアミン(分子量約5000)を用いて、溶液のpHが9となるように調整し、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.18molであった。炭酸ガス吸収後、ポリアリルアミン水溶液は2相に分離した。20分間90℃に加熱したところ、放出は飽和し、約0.15molの炭酸ガスが回収された。
(Example 11)
Using polyallylamine (molecular weight of about 5000) shown in Compound 20, the solution was adjusted to have a pH of 9, and the same experiment as in Example 1 was performed. As a result, the absorption was saturated in about 20 minutes. Was about 0.18 mol. After carbon dioxide absorption, the polyallylamine aqueous solution separated into two phases. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.15 mol of carbon dioxide was recovered.

(実施例12)
化合物20に示すポリアリルアミン(分子量約5000)を用いて、溶液のpHが14となるように調整し、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.21molであった。炭酸ガス吸収後、ポリアリルアミン水溶液は2相に分離した。20分間90℃に加熱したところ、放出は飽和し、約0.18molの炭酸ガスが回収された。
(Example 12)
Using polyallylamine (molecular weight of about 5000) shown in Compound 20 and adjusting the pH of the solution to be 14, the same experiment as in Example 1 was conducted. As a result, the absorption was saturated in about 20 minutes. Was about 0.21 mol. After carbon dioxide absorption, the polyallylamine aqueous solution separated into two phases. When heated to 90 ° C. for 20 minutes, the release was saturated and about 0.18 mol of carbon dioxide gas was recovered.

(実施例13)
化合物20に示すポリアリルアミン(分子量約5000)20重量部を水80重量部に溶解させ、10Lの水溶液を調整した。水溶液のpHは11であった。得られた水溶液を用いて、10%炭酸ガスを流量10L/min、40℃の条件で充填材を充填した充填塔を用いて吸収させた。約30分間で21molの炭酸ガスを吸収した。炭酸ガス吸収後のポリアリルアミン水溶液は2相に分離した。これを比重差を利用して分離し、ポリアリルアミンを含む疎水性相を回収した。回収したポリアリルアミン含有疎水性相を約30分間90℃に加熱した。放出は飽和し、約17molの炭酸ガスが回収された。
(Example 13)
20 parts by weight of polyallylamine (molecular weight of about 5000) shown in Compound 20 was dissolved in 80 parts by weight of water to prepare a 10 L aqueous solution. The pH of the aqueous solution was 11. Using the obtained aqueous solution, 10% carbon dioxide gas was absorbed using a packed tower filled with a filler under the conditions of a flow rate of 10 L / min and 40 ° C. In about 30 minutes, 21 mol of carbon dioxide gas was absorbed. The polyallylamine aqueous solution after carbon dioxide absorption was separated into two phases. This was separated using the difference in specific gravity, and the hydrophobic phase containing polyallylamine was recovered. The recovered polyallylamine-containing hydrophobic phase was heated to 90 ° C. for about 30 minutes. The release was saturated and about 17 mol of carbon dioxide was recovered.

(実施例14)
化合物20に示すポリアリルアミン(分子量約5000)20重量部を水80重量部に溶解させ、10Lの水溶液を調整した。水溶液のpHは11であった。得られた水溶液を用いて、10%炭酸ガスを流量10L/min、40℃の条件でスプレー塔を用いて吸収させた。約30分間で21molの炭酸ガスを吸収した。炭酸ガス吸収後のポリアリルアミン水溶液は2相に分離した。これを比重差を利用して分離し、ポリアリルアミンを含む疎水性相を回収した。回収したポリアリルアミン含有疎水性相を約30分間90℃に加熱した。放出は飽和し、約16.5molの炭酸ガスが回収された。
(Example 14)
20 parts by weight of polyallylamine (molecular weight of about 5000) shown in Compound 20 was dissolved in 80 parts by weight of water to prepare a 10 L aqueous solution. The pH of the aqueous solution was 11. Using the obtained aqueous solution, 10% carbon dioxide gas was absorbed using a spray tower under the conditions of a flow rate of 10 L / min and 40 ° C. In about 30 minutes, 21 mol of carbon dioxide gas was absorbed. The polyallylamine aqueous solution after carbon dioxide absorption was separated into two phases. This was separated using the difference in specific gravity, and the hydrophobic phase containing polyallylamine was recovered. The recovered polyallylamine-containing hydrophobic phase was heated to 90 ° C. for about 30 minutes. The release was saturated and about 16.5 mol of carbon dioxide was recovered.

(比較例1)
化合物31に示す3級ポリアルカノールアミン(分子量約5000)を用いて、実施例1と同様の実験を行ったところ、約30分で吸収は飽和し、吸収量は約0.1molであった。しかし、炭酸ガス吸収後も2相分離は観察されなかった。吸収液全量を90℃に加熱し、炭酸ガスの放出を行った。放出の飽和に45分要し、約0.07molの炭酸ガスが回収された。

Figure 0004922326
(Comparative Example 1)
When the same experiment as in Example 1 was performed using a tertiary polyalkanolamine (molecular weight: about 5000) shown in Compound 31, the absorption was saturated in about 30 minutes and the absorption was about 0.1 mol. However, no two-phase separation was observed after carbon dioxide absorption. The total amount of the absorbing solution was heated to 90 ° C. to release carbon dioxide. It took 45 minutes to saturate the release and about 0.07 mol of carbon dioxide was recovered.
Figure 0004922326

(比較例2)
化合物32に示すポリエチレンオキサイド誘導ポリアミン(分子量約5000)を用いて、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.16molであった。しかし、炭酸ガス吸収後も2相分離は観察されなかった。吸収液全量を90℃に加熱し、炭酸ガスの放出を行った。放出の飽和に40分要し、約0.12molの炭酸ガスが回収された。

Figure 0004922326
(Comparative Example 2)
When the same experiment as in Example 1 was performed using the polyethylene oxide-derived polyamine (molecular weight: about 5000) shown in Compound 32, the absorption was saturated in about 20 minutes and the absorption was about 0.16 mol. However, no two-phase separation was observed after carbon dioxide absorption. The total amount of the absorbing solution was heated to 90 ° C. to release carbon dioxide. It took 40 minutes to saturate the release and about 0.12 mol of carbon dioxide was recovered.
Figure 0004922326

(比較例3)
モノエタノールアミン20重量部に対して水80重量部添加し、実施例1と同様の実験を行ったところ、約20分で吸収は飽和し、吸収量は約0.2molであった。しかし、炭酸ガス吸収後も2相分離は観察されなかった。吸収液全量を90℃に加熱し、炭酸ガスの放出を行った。放出の飽和に40分要し、約0.11molの炭酸ガスが回収された。
(Comparative Example 3)
When 80 parts by weight of water was added to 20 parts by weight of monoethanolamine and the same experiment as in Example 1 was performed, the absorption was saturated in about 20 minutes and the absorption amount was about 0.2 mol. However, no two-phase separation was observed after carbon dioxide absorption. The total amount of the absorbing solution was heated to 90 ° C. to release carbon dioxide. It took 40 minutes to saturate the release and about 0.11 mol of carbon dioxide was recovered.

(比較例4)
化合物33に示す、ポリ(N-イソプロピルアクリルアミド)(分子量500000)を用いて実施例1と同様の実験を行った。水溶液のpHは5であった。その結果、炭酸ガスの吸収は観察されなかった。

Figure 0004922326
(Comparative Example 4)
The same experiment as in Example 1 was performed using poly (N-isopropylacrylamide) (molecular weight: 500,000) shown as Compound 33. The pH of the aqueous solution was 5. As a result, carbon dioxide absorption was not observed.
Figure 0004922326

以上、実施例から明らかなように、本発明に従った実施例においては、90℃に加熱して炭酸ガスを放出する際に、20分程度から30分程度の加熱時間で足りるのに対し、本発明と異なる比較例では、90℃に加熱して炭酸ガスを放出する際に40分程度の加熱時間を要することが判明した。したがって、実施例における炭酸ガスの放出に要するエネルギーは比較例における炭酸ガスの放出に要するエネルギーよりも十分に小さいことが分かる。すなわち、炭酸ガスの放出に伴うエネルギー消費を十分に低減できることが分かる。   As can be seen from the examples, in the examples according to the present invention, when the carbon dioxide gas is released by heating to 90 ° C., a heating time of about 20 to 30 minutes is sufficient, In a comparative example different from the present invention, it was found that a heating time of about 40 minutes was required when releasing carbon dioxide gas by heating to 90 ° C. Therefore, it can be seen that the energy required for releasing the carbon dioxide gas in the example is sufficiently smaller than the energy required for releasing the carbon dioxide gas in the comparative example. That is, it turns out that the energy consumption accompanying discharge | release of a carbon dioxide gas can fully be reduced.

また、比較例4に示すような化合物を炭酸ガス吸収剤として使用した場合は、炭酸ガス自体が吸収されないことが判明した。   It was also found that when a compound as shown in Comparative Example 4 was used as a carbon dioxide absorbent, carbon dioxide itself was not absorbed.

以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記態様に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変更や変形が可能である。   As mentioned above, although this invention was demonstrated in detail based on the said specific example, this invention is not limited to the said aspect, All the changes and deformation | transformation are possible unless it deviates from the category of this invention.

Claims (7)

分子量が500から100、000であり、(1)〜(4)式に記載の含窒素化合物を繰り返し単位として有する水溶性高分子化合物のいずれか1つ又はポリビニルピペリジンからなる水溶性高分子化合物を含有する炭酸ガス吸収剤
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
A water-soluble polymer compound having a molecular weight of 500 to 100,000 and comprising any one of water-soluble polymer compounds having a nitrogen-containing compound described in the formulas (1) to (4) as a repeating unit or polyvinylpiperidine; Contains carbon dioxide absorbent
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
前記水溶性高分子化合物の1重量部から80重量部に対して、水を20重量部から99重量部含有し、水溶性高分子含有水溶液であることを特徴とする、請求項1に記載の炭酸ガス吸収剤。  2. The water-soluble polymer-containing aqueous solution according to claim 1, comprising 20 to 99 parts by weight of water with respect to 1 to 80 parts by weight of the water-soluble polymer compound. Carbon dioxide absorbent. 前記水溶性高分子含有水溶液のpHが、7以上14以下であることを特徴とする、請求項に記載の炭酸ガス吸収剤。 The carbon dioxide gas absorbent according to claim 2 , wherein the pH of the aqueous solution containing a water-soluble polymer is 7 or more and 14 or less. 分子量が500から100、000であり、(1)〜(4)式に記載の含窒素化合物を繰り返し単位として有する水溶性高分子化合物のいずれか1つ又はポリビニルピペリジンからなる水溶性高分子化合物を含有する炭酸ガス吸収剤
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
と、水とを混合して、水溶性高分子含有水溶液を調整するステップと、
前記水溶性高分子含有水溶液に対して炭酸ガスを含有する気体を接触させ、前記炭酸ガスを吸収させるステップと、
前記水溶性高分子含有水溶液を、疎水性の第1相と親水性の第2相とに分離するステップと、
前記水溶性高分子含有水溶液の、前記第1相から前記炭酸ガスを放出するステップと、を具えることを特徴とする、炭酸ガス回収方法。
A water-soluble polymer compound having a molecular weight of 500 to 100,000 and comprising any one of water-soluble polymer compounds having a nitrogen-containing compound described in the formulas (1) to (4) as a repeating unit or polyvinylpiperidine; Contains carbon dioxide absorbent
Figure 0004922326
Figure 0004922326
Figure 0004922326
Figure 0004922326
Mixing water and adjusting the water-soluble polymer-containing aqueous solution,
Contacting a gas containing carbon dioxide with the water-soluble polymer-containing aqueous solution to absorb the carbon dioxide;
Separating the water-soluble polymer-containing aqueous solution into a hydrophobic first phase and a hydrophilic second phase;
Releasing the carbon dioxide gas from the first phase of the water-soluble polymer-containing aqueous solution.
前記炭酸ガスの放出は、前記水溶性高分子含有水溶液に対して加熱処理を施すことによって実施することを特徴とする、請求項4に記載の炭酸ガス回収方法。  The carbon dioxide gas recovery method according to claim 4, wherein the carbon dioxide gas is released by subjecting the aqueous solution containing a water-soluble polymer to a heat treatment. 前記水溶性高分子化合物の1重量部から80重量部に対して、前記水を20重量部から99重量部添加して、前記水溶性高分子含有水溶液を調整することを特徴とする、請求項4又は5に記載の炭酸ガス回収方法。 The water-soluble polymer-containing aqueous solution is prepared by adding 20 to 99 parts by weight of the water to 1 to 80 parts by weight of the water-soluble polymer compound. The carbon dioxide recovery method according to 4 or 5 . 前記水溶性高分子含有水溶液のpHが、7以上14以下であることを特徴とする、請求項4〜6のいずれか一に記載の炭酸ガス回収方法。  The carbon dioxide recovery method according to any one of claims 4 to 6, wherein the pH of the water-soluble polymer-containing aqueous solution is 7 or more and 14 or less.
JP2009038606A 2009-02-20 2009-02-20 Carbon dioxide absorbent and carbon dioxide recovery method Expired - Fee Related JP4922326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038606A JP4922326B2 (en) 2009-02-20 2009-02-20 Carbon dioxide absorbent and carbon dioxide recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038606A JP4922326B2 (en) 2009-02-20 2009-02-20 Carbon dioxide absorbent and carbon dioxide recovery method

Publications (2)

Publication Number Publication Date
JP2010194378A JP2010194378A (en) 2010-09-09
JP4922326B2 true JP4922326B2 (en) 2012-04-25

Family

ID=42819683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038606A Expired - Fee Related JP4922326B2 (en) 2009-02-20 2009-02-20 Carbon dioxide absorbent and carbon dioxide recovery method

Country Status (1)

Country Link
JP (1) JP4922326B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2913092A1 (en) * 2014-02-28 2015-09-02 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646892B2 (en) * 2010-07-01 2014-12-24 旭化成株式会社 Carbon dioxide absorbent and method for separating carbon dioxide using the same
JP5700668B2 (en) * 2010-07-01 2015-04-15 旭化成株式会社 Polymer for absorbing carbon dioxide, and method for separating and recovering carbon dioxide using the polymer
JP5652786B2 (en) * 2011-02-23 2015-01-14 日東紡績株式会社 Method for promoting photosynthesis of photosynthetic organisms
JP6460974B2 (en) * 2015-12-22 2019-01-30 株式会社神戸製鋼所 Absorbent, method for producing the same, and method for separating and recovering carbon dioxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227821A (en) * 1985-04-01 1986-10-09 Kawasaki Heavy Ind Ltd Removing method for carbonic acid gas
IT1244686B (en) * 1991-01-24 1994-08-08 Snam Progetti PROCESS FOR THE PUSH REMOVAL OF ACID GASES FROM GASEOUS MIXTURES
JPH1179253A (en) * 1997-09-01 1999-03-23 Mitsui Chem Inc Package and packing material
FR2877858B1 (en) * 2004-11-12 2007-01-12 Inst Francais Du Petrole METHOD FOR DEACIDIFYING A GAS WITH A FRACTIONED REGENERATION ABSORBENT SOLUTION
EP1919610A4 (en) * 2005-08-09 2011-08-10 Exxonmobil Res & Eng Co Polyalkyleneimines and polyalkyleneacrylamide salt for acid gas scrubbing process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2913092A1 (en) * 2014-02-28 2015-09-02 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method

Also Published As

Publication number Publication date
JP2010194378A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
Vega et al. Solvents for carbon dioxide capture
JP5238487B2 (en) Carbon dioxide recovery agent and carbon dioxide recovery method
AU2011296309B2 (en) Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream
JP4865530B2 (en) Mixed absorbent for carbon dioxide separation
KR101157141B1 (en) CO2 absorbent based on alkali carbonate solution promoted by hindered cyclic amines and CO2 removing method using the same
Lin et al. Absorption of carbon dioxide by the absorbent composed of piperazine and 2-amino-2-methyl-1-propanol in PVDF membrane contactor
US20170173518A1 (en) Composite method of trapping carbon dioxide in gas mixture
KR101239380B1 (en) An absorbent for capturing carbon dioxide comprising amino acid having multi amine groups and metal hydrate
JP2013542060A (en) Method of scrubbing CO2 with alkanolamine
JP4922326B2 (en) Carbon dioxide absorbent and carbon dioxide recovery method
JPWO2011121633A1 (en) Acid gas absorbent, acid gas removal device, and acid gas removal method
EP3074488A1 (en) Hybrid solvent formulations for selective h2s removal
US11185814B2 (en) Absorption agent, method of manufacturing same, and method for separation and recovery of acidic compound
CN105745007A (en) Method for removing dust and sulphur oxides from process gases
KR101955752B1 (en) Liquid for absorbing and collecting carbon dioxide in gas, and method for collecting carbon dioxide with use of same
JP5603873B2 (en) Carbon dioxide absorption liquid
KR101038764B1 (en) Appraratus and method for solvent scrubbing co2 capture system
JP2009213974A (en) Aqueous solution and method of absorbing and desorption-recovering effectively carbon dioxides in gas
CN102989295A (en) Absorbent which gathers carbon dioxide in flue gas or synthesis gas
US9713790B2 (en) Compound including oxalate, carbon dioxide absorbent including the same, method of preparing carbon dioxide absorbent and method of removing carbon dioxide
EP3204142A1 (en) Aqueous solution of 2-dimethylamino-2-hydroxymethyl-1, 3-propanediol useful for acid gas removal from gaseous mixtures
CN103239970B (en) A kind of for CO in regeneration fume from catalytic cracking2The composite absorber of trapping
KR20190057586A (en) Acid gas sorbent and acid gas separation method based on ionic liquid
CN101766947B (en) Composite absorber for catching CO2 gas of membrane contactor
CN102051244B (en) High-efficiency purification desulfurizer for high-acid oil and gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees