JP4920232B2 - Concrete production method - Google Patents

Concrete production method Download PDF

Info

Publication number
JP4920232B2
JP4920232B2 JP2005296166A JP2005296166A JP4920232B2 JP 4920232 B2 JP4920232 B2 JP 4920232B2 JP 2005296166 A JP2005296166 A JP 2005296166A JP 2005296166 A JP2005296166 A JP 2005296166A JP 4920232 B2 JP4920232 B2 JP 4920232B2
Authority
JP
Japan
Prior art keywords
concrete
group
derivative
reducing agent
jis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005296166A
Other languages
Japanese (ja)
Other versions
JP2007105899A (en
Inventor
裕嗣 市川
美明 谷所
和久 依田
知周 刑部
啓祐 藤森
良一 芦沢
文敏 桜本
昇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Kajima Corp
Original Assignee
Kao Corp
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Kajima Corp filed Critical Kao Corp
Priority to JP2005296166A priority Critical patent/JP4920232B2/en
Publication of JP2007105899A publication Critical patent/JP2007105899A/en
Application granted granted Critical
Publication of JP4920232B2 publication Critical patent/JP4920232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は流動性が高いコンクリートの製造方法、及びコンクリートの施工方法に関する。   The present invention relates to a method for producing concrete with high fluidity and a method for constructing concrete.

近年、鉄筋コンクリート造の建築現場では、部材断面の制約に伴う過密配筋化や、熟練技術者の不足等の理由からコンクリート構造物の品質確保に懸念が持たれている。コンクリート構造物の施工品質を確保するために、施工現場では流動性や充填性の高いコンクリートが望まれるケースが多い。   In recent years, reinforced concrete construction sites have been concerned about ensuring the quality of concrete structures due to overcrowding due to restrictions on the cross-section of members and lack of skilled engineers. In order to ensure the construction quality of concrete structures, there are many cases where concrete with high fluidity and filling properties is desired at the construction site.

一方、コンクリート構造物の施工では、生コンクリート工場でコンクリートを生産し(いわゆるレディーミクストコンクリート)、ミキサー車で施工現場に輸送し、打設する方法が一般的である。流動性の高いコンクリートをこのように生コンクリート工場で生産して現場に打設する場合、製造後の経時に伴う材料分離や流動性の変化等に対応するため、普通コンクリートよりも物性管理を厳しくする必要が生じる。また、工場では特殊仕様のコンクリートを製造することになるため、工場全体の生産性にも影響する。   On the other hand, in the construction of concrete structures, it is common to produce concrete in a ready-mixed concrete factory (so-called ready-mixed concrete), transport to a construction site with a mixer car, and place it. When concrete with high fluidity is produced in a ready-mixed concrete factory and placed on site, physical property management is more stringent than ordinary concrete in order to cope with material separation and change in fluidity over time after production. Need to do. Also, since the factory manufactures concrete with special specifications, it affects the productivity of the factory as a whole.

しかしながら、レディーミクストコンクリートに流動化剤を添加して、単に流動性を大きくすると、材料分離を起こしてコンクリートとして使用するのが困難となる。特許文献1には、JIS A-5308記載のレディーミクストコンクリート(普通コンクリート)にセメント分散剤と不分離性混和剤とを混合して、コンクリートの調合を変化させることなく、材料分離抵抗性の非常に高い、スランプフロー35cm以上の高流動性コンクリートを製造する方法が開示されている。   However, if a fluidizing agent is added to ready-mixed concrete to simply increase the fluidity, it becomes difficult to separate the material and use it as concrete. In Patent Document 1, a ready-mixed concrete (ordinary concrete) described in JIS A-5308 is mixed with a cement dispersant and a non-separable admixture so that the material separation resistance is extremely high without changing the concrete mix. Discloses a method for producing a high-fluidity concrete having a slump flow of 35 cm or more.

また、特許文献2には特定の多糖誘導体と高性能減水剤とを添加して得られるスランプフロー値が50〜70cmの水硬性組成物が開示されている。
特開平8−52730号公報 特許第3260100号公報
Patent Document 2 discloses a hydraulic composition having a slump flow value of 50 to 70 cm obtained by adding a specific polysaccharide derivative and a high-performance water reducing agent.
JP-A-8-52730 Japanese Patent No. 3260100

普通コンクリートを用いて、施工現場でコンクリートの流動性を高めることが可能となれば、原料コンクリートの仕様変更なく、施工性の向上、品質の確保が達成できるので、多くの現場で採用されると予想される。しかしながら、特許文献1の技術も広く普及するまで至っていないのが現状であり、さらなる性能の向上が望まれている。すなわち、特許文献1の不分離性混和剤として記載されているヒドロキシエチルセルロース等を用いて、流動性が高く材料分離抵抗性の優れるコンクリートを得るためには、ヒドロキシエチルセルロース等を大量に配合する必要がある。しかし、ヒドロキシエチルセルロースを大量に配合するとセメント等の水硬性粉体の水和反応が抑制され、硬化遅延を起こすことがある。また、ブリージング性や流動保持性の点でも性能向上が望まれる。   If it is possible to increase the fluidity of the concrete at the construction site using ordinary concrete, it will be possible to improve the workability and ensure the quality without changing the specifications of the raw concrete, so it will be adopted at many sites is expected. However, the technology of Patent Document 1 has not yet been widely spread, and further improvement in performance is desired. That is, in order to obtain a concrete having high fluidity and excellent material separation resistance by using hydroxyethyl cellulose described as the non-separable admixture of Patent Document 1, it is necessary to add a large amount of hydroxyethyl cellulose and the like. is there. However, when a large amount of hydroxyethyl cellulose is blended, the hydration reaction of hydraulic powder such as cement may be suppressed, and curing delay may occur. Moreover, performance improvement is desired also in terms of breathing properties and fluidity retention.

本発明の課題は、普通コンクリートから、硬化遅延がより少なく、耐ブリージング性及び流動保持性に優れた、流動性に優れるコンクリートの製造方法を提供することである。   An object of the present invention is to provide a method for producing concrete having excellent fluidity from ordinary concrete with less delay in curing, excellent breathing resistance and fluid retention.

本発明は、下記工程(I)及び工程(II)を有するコンクリートの製造方法に関する。
工程(I):水(W)、水硬性粉体(C)、細骨材(S)、粗骨材(G)及び混和剤(P)とを混練し、W/C(重量比)が40〜65%である水硬性組成物(I)を調製する工程
工程(II):水硬性組成物(I)に、多糖類又はそのアルキル化若しくはヒドロキシアルキル化誘導体の一部又は全部の水酸基の水素原子が、炭素数8〜40の炭化水素鎖を有する疎水性置換基(A)、及びスルホン酸基、カルボキシル基、リン酸基、及び硫酸エステル基並びにそれらの塩からなる群から選ばれる1種以上の基を有するイオン性親水性置換基(B)で置換されてなる多糖誘導体(Q)と、減水剤(R)とを添加する工程であって、JIS A 1150に規定するスランプフロー値が35〜70cmである水硬性組成物(II)を調製する工程
The present invention relates to a method for producing concrete having the following steps (I) and (II).
Step (I): Water (W), hydraulic powder (C), fine aggregate (S), coarse aggregate (G) and admixture (P) are kneaded so that W / C (weight ratio) is Step of preparing hydraulic composition (I) that is 40 to 65% Step (II): In hydraulic composition (I), some or all of the hydroxyl groups of the polysaccharide or its alkylated or hydroxyalkylated derivative 1 selected from the group consisting of a hydrophobic substituent (A) having a hydrocarbon chain having 8 to 40 carbon atoms, a sulfonic acid group, a carboxyl group, a phosphoric acid group, a sulfuric acid ester group, and salts thereof Slump flow value defined in JIS A 1150, which is a step of adding a polysaccharide derivative (Q) substituted with an ionic hydrophilic substituent (B) having a group of at least species and a water reducing agent (R). For preparing a hydraulic composition (II) having a diameter of 35 to 70 cm

また、本発明は、上記本発明の製造方法の工程(I)及び工程(II)を行い、工程(II)の後、90分以内に水硬性組成物(II)の打設を開始する、コンクリートの施工方法に関する。   Further, the present invention performs the steps (I) and (II) of the production method of the present invention, and after the step (II), starts placing the hydraulic composition (II) within 90 minutes. It relates to a concrete construction method.

本発明によれば、普通コンクリートから、硬化遅延がより少なく、ブリージング性及び流動保持性に優れた、流動性に優れるコンクリートを製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the concrete which is less hardened | cured delay, excellent in breathing property and fluid retainability, and excellent in fluidity | liquidity can be manufactured from normal concrete.

<工程(I)>
本発明の工程(I)は水(W)、水硬性粉体(C)、細骨材(S)、粗骨材(G)及び混和剤(P)とを混練し、W/C(重量比)が40〜65%である水硬性組成物(I)を調製する工程であり、かかる水硬性組成物(I)としては、JIS A-5308記載の普通セメントが挙げられる。W/Cは、〔水(W)の重量/水硬性粉体(C)の重量〕×100(重量%)により算出される。
<Process (I)>
In the step (I) of the present invention, water (W), hydraulic powder (C), fine aggregate (S), coarse aggregate (G) and admixture (P) are kneaded, and W / C (weight) This is a step of preparing a hydraulic composition (I) having a ratio of 40 to 65%. Examples of the hydraulic composition (I) include ordinary cement described in JIS A-5308. W / C is calculated by [weight of water (W) / weight of hydraulic powder (C)] × 100 (% by weight).

水(W)は、通常に用いるものが使用でき、水道水等が挙げられる。   As the water (W), those usually used can be used, and examples thereof include tap water.

水硬性粉体(C)は、水和反応により硬化する物性を有する粉体のことであり、セメント、石膏などが挙げられる。好ましくはセメントであり、またこれらに高炉スラグ、フライアッシュ、シリカヒューム等が添加されたものでもよい。   The hydraulic powder (C) is a powder having physical properties that hardens by a hydration reaction, and examples thereof include cement and gypsum. Cement is preferable, and blast furnace slag, fly ash, silica fume and the like may be added thereto.

細骨材(S)として、JIS A0203-2302で規定されるものが挙げられる。細骨材としては、川、陸、山、海、石灰砂、珪砂及びこれらの砕砂、高炉スラグ細骨材、フェロニッケルスラグ細骨材、軽量細骨材(人工及び天然)及び再生細骨材等が挙げられる。   Examples of the fine aggregate (S) include those defined in JIS A0203-2302. Fine aggregates include rivers, land, mountains, sea, lime sand, quartz sand and crushed sand, blast furnace slag fine aggregates, ferronickel slag fine aggregates, lightweight fine aggregates (artificial and natural) and recycled fine aggregates. Etc.

粗骨材(G)として、JIS A0203-2303で規定されるものが挙げられる。例えば粗骨材としては、川、陸、山、海、石灰砂利、これらの砕石、高炉スラグ粗骨材、フェロニッケルスラグ粗骨材、軽量粗骨材(人工及び天然)及び再生粗骨材等が挙げられる。   Examples of the coarse aggregate (G) include those defined in JIS A0203-2303. For example, as coarse aggregate, river, land, mountain, sea, lime gravel, crushed stone, blast furnace slag coarse aggregate, ferronickel slag coarse aggregate, lightweight coarse aggregate (artificial and natural), recycled coarse aggregate, etc. Is mentioned.

混和剤(P)は、減水剤が挙げられ、具体的にはリグニンスルホン酸塩及びその誘導体、オキシカルボン酸塩、ポリオール誘導体、及び後述する減水剤(R)等が挙げられる。混和剤(P)は水硬性粉体(C)100重量部に対して、固形分で0.01〜1.0重量部用いることが好ましく、0.05〜0.5重量部がより好ましい。   Examples of the admixture (P) include water reducing agents, and specific examples include lignin sulfonate and derivatives thereof, oxycarboxylates, polyol derivatives, and water reducing agents (R) described later. The admixture (P) is preferably used in an amount of 0.01 to 1.0 part by weight, more preferably 0.05 to 0.5 part by weight, based on 100 parts by weight of the hydraulic powder (C).

工程(I)では、これらの材料を、W/C(重量比)が40〜65%、より好ましくは50〜60%になるように配合し、混練を行い水硬性組成物(I)を調製する。この際の各材料の配合比率は、土木学会コンクリート標準示方書、建築工事標準仕様書に準じて得られた配合やJIS A5308「レディミクストコンクリート」であることが好ましい。   In step (I), these materials are blended so that W / C (weight ratio) is 40 to 65%, more preferably 50 to 60%, and kneaded to prepare hydraulic composition (I). To do. In this case, the blending ratio of each material is preferably a blend obtained in accordance with the Japan Society of Civil Engineers Concrete Standard Specification and Building Construction Standard Specification or JIS A5308 “Ready Mixed Concrete”.

混練は、二軸ミキサー等の混練機を用いることができる。混練方法は、例えば、水硬性粉体(C)、細骨材(S)及び粗骨材(G)を空練り後、水(W)と混和剤(P)を予め混合した混練水を添加し、混練する方法が挙げられる。   For the kneading, a kneader such as a twin screw mixer can be used. For example, after kneading hydraulic powder (C), fine aggregate (S), and coarse aggregate (G), kneading water is added in which water (W) and admixture (P) are mixed in advance. And kneading.

混練により得られる水硬性組成物(I)は、スランプ(JIS A 1101)が8〜18cmであることが好ましく、スランプフロー(JIS A1150)が20〜30cmであることが好ましく、空気量(JIS A 1128)が3.5〜6.0%であることが好ましい。   The hydraulic composition (I) obtained by kneading preferably has a slump (JIS A 1101) of 8 to 18 cm, preferably a slump flow (JIS A1150) of 20 to 30 cm, and has an air volume (JIS A 1128) is preferably 3.5 to 6.0%.

<工程(II)>
工程(II)は、工程(I)で得られた水硬性組成物(I)に、多糖類又はそのアルキル化若しくはヒドロキシアルキル化誘導体の一部又は全部の水酸基の水素原子が、炭素数8〜40の炭化水素鎖を有する疎水性置換基(A)、及びスルホン酸基、カルボキシル基、リン酸基、及び硫酸エステル基並びにそれらの塩からなる群から選ばれる1種以上の基を有するイオン性親水性置換基(B)で置換されてなる多糖誘導体(Q)と、減水剤(R)とを添加する工程であって、JIS A 1150に規定するスランプフロー値が35〜70cmである水硬性組成物(II)を調製する工程である。
<Process (II)>
In the step (II), the hydraulic composition (I) obtained in the step (I) includes a polysaccharide or an alkylated or hydroxyalkylated derivative thereof in which some or all of the hydroxyl atoms have 8 to 8 carbon atoms. Ionicity having a hydrophobic substituent (A) having 40 hydrocarbon chains and one or more groups selected from the group consisting of sulfonic acid groups, carboxyl groups, phosphoric acid groups, sulfuric acid ester groups and salts thereof A hydraulic property in which a polysaccharide derivative (Q) substituted with a hydrophilic substituent (B) and a water reducing agent (R) are added, and the slump flow value specified in JIS A 1150 is 35 to 70 cm. This is a step for preparing the composition (II).

本発明で使用される多糖誘導体(Q)は、多糖類又はそのアルキル化若しくはヒドロキシアルキル化誘導体の一部又は全部の水酸基の水素原子が、疎水性置換基(A)及びイオン性親水性置換基(B)で置換されてなる。疎水性置換基(A)は、炭素数8〜40の炭化水素鎖を有するが、これはより具体的には、炭素数8〜40、好ましくは12〜36、より好ましくは16〜24の直鎖又は分岐鎖のアルキル基を有するアルキルグリセリルエーテル基、又は同様な炭素数の直鎖又は分岐鎖のアルケニル基を有するアルケニルグリセリルエーテル基、又はヒドロキシル基が置換していてもよく、オキシカルボニル基が挿入されていてもよい炭素数8〜40、好ましくは12〜36、より好ましくは16〜24の直鎖又は分岐鎖のアルキル基、アルケニル基又はアシル基などである。製造上の容易性その他の観点から、好ましくはアルキルグリセリルエーテル基、長鎖アルキル基、2−ヒドロキシ長鎖アルキル基であり、特にアルキルグリセリルエーテル基が好ましい。ここでアルキルグリセリルエーテル基とは、アルキルグリセリルエーテルの水酸基を1個除いた残余の部分の構造をいうものである。アルキルグリセリルエーテル基としてより具体的には、2-ヒドロキシ-3-アルコキシプロピル基、2-アルコキシ-1-(ヒドロキシメチル)エチル基、2-ヒドロキシ-3-アルケニルオキシプロピル基、2-アルケニルオキシ-1-(ヒドロキシメチル)エチル基が挙げられる。これらの疎水性置換基(A)は多糖分子に結合しているヒドロキシエチル基やヒドロキシプロピル基の水酸基の水素原子と置換していてもよい。   In the polysaccharide derivative (Q) used in the present invention, a part or all of the hydroxyl groups of the polysaccharide or its alkylated or hydroxyalkylated derivative have a hydrophobic substituent (A) and an ionic hydrophilic substituent. Substituted with (B). The hydrophobic substituent (A) has a hydrocarbon chain having 8 to 40 carbon atoms, more specifically, this is a straight chain having 8 to 40 carbon atoms, preferably 12 to 36 carbon atoms, more preferably 16 to 24 carbon atoms. An alkyl glyceryl ether group having a chain or branched chain alkyl group, or an alkenyl glyceryl ether group having a straight chain or branched chain alkenyl group having the same carbon number, or a hydroxyl group may be substituted; A linear or branched alkyl group, alkenyl group or acyl group having 8 to 40 carbon atoms, preferably 12 to 36 carbon atoms, more preferably 16 to 24 carbon atoms, which may be inserted. From the viewpoint of ease of production and other points, an alkyl glyceryl ether group, a long-chain alkyl group, and a 2-hydroxy long-chain alkyl group are preferable, and an alkyl glyceryl ether group is particularly preferable. Here, the alkyl glyceryl ether group refers to the structure of the remaining portion excluding one hydroxyl group of the alkyl glyceryl ether. More specific examples of the alkyl glyceryl ether group include 2-hydroxy-3-alkoxypropyl group, 2-alkoxy-1- (hydroxymethyl) ethyl group, 2-hydroxy-3-alkenyloxypropyl group, 2-alkenyloxy- A 1- (hydroxymethyl) ethyl group may be mentioned. These hydrophobic substituents (A) may be substituted with a hydroxyl atom of a hydroxyethyl group or a hydroxypropyl group bonded to a polysaccharide molecule.

イオン性親水性置換基(B)は、スルホン酸基、カルボキシル基、リン酸基、及び硫酸エステル基からなる群から選ばれる1種以上の基を有する置換基であり、これらは塩を形成していてもよい。具体的には、ヒドロキシル基が置換していてもよい炭素数1〜5のスルホアルキル基又はその塩、カルボキシアルキル基又はその塩、リン酸アルキル基又はその塩、硫酸エステルアルキル基又はその塩等が挙げられる。好ましくは、ヒドロキシル基が置換していてもよい炭素数1〜5のスルホアルキル基である。より具体的には、2-スルホエチル基、3-スルホプロピル基、3-スルホ-2-ヒドロキシプロピル基、2-スルホ-1-(ヒドロキシメチル)エチル基などが挙げられ、その全てあるいは一部がNa、K等のアルカリ金属、Ca、Mg等のアルカリ土類金属類、アミン類などの有機カチオン基、アンモニウムイオンなどとの塩になっていてもよい。   The ionic hydrophilic substituent (B) is a substituent having one or more groups selected from the group consisting of a sulfonic acid group, a carboxyl group, a phosphoric acid group, and a sulfate group, and these form a salt. It may be. Specifically, a C1-C5 sulfoalkyl group or a salt thereof, which may be substituted by a hydroxyl group, a carboxyalkyl group or a salt thereof, an alkyl phosphate group or a salt thereof, a sulfate ester alkyl group or a salt thereof, etc. Is mentioned. Preferably, it is a C1-C5 sulfoalkyl group which the hydroxyl group may substitute. More specifically, a 2-sulfoethyl group, a 3-sulfopropyl group, a 3-sulfo-2-hydroxypropyl group, a 2-sulfo-1- (hydroxymethyl) ethyl group, and the like can be mentioned. It may be a salt with alkali metals such as Na and K, alkaline earth metals such as Ca and Mg, organic cation groups such as amines, ammonium ions and the like.

本発明に係るこれらの多糖誘導体(Q)は、疎水性置換基(A)とイオン性親水性置換基(B)による置換の度合いにより、混練水への溶解性や増粘性が変化する。即ち、疎水性置換基(A)とイオン性親水性置換基(B)の置換度を好ましい範囲のものとすることにより、混練水への適度な溶解性や増粘性を得ることができ、従って水硬性組成物(I)に対し、優れた分離抵抗性と共に、流動性を与えることができる。こうした観点から、疎水性置換基(A)による置換度は、構成単糖残基1単位あたり0.0001〜1であり、0.0005〜0.01がより好ましい。またイオン性極性置換基(B)による置換度は、構成単糖残基1単位あたり0.001〜2であり、0.01〜1がより好ましい。特に好ましい置換度は、疎水性置換基(A)が0.0007〜0.005であり、イオン性親水性置換基(B)が0.02〜0.15である。
本発明において多糖類としてはセルロース;スターチ;コンニャクマンナン、トロロアオイ粘着物等の根茎多糖類;アラビアガム、トラガカントガム、カラヤガム等の樹液多糖類;ローカストビーンガム、グアーガム、タマリンドガム等の種子多糖類;寒天、カラギーナン、アルギン等の海草多糖類;キチン、キトサンヘパリン、コンドロイチン硫酸等の動物性多糖類;デキストラン、キサンタンガム等の微生物多糖類が挙げられる。また、イオン性基が置換したものとしてカルボキシメチルセルロース、硫酸セルロース、リン酸セルロース、亜リン酸セルロース等のアニオン性基置換体が挙げられる。多糖類のアルキル化もしくはヒドロキシアルキル化誘導体としては、ヒドロキシエチルセルロース、ヒドロキシエチルグアーガム、ヒドロキシエチルスターチ、メチルセルロース、メチルグアーガム、メチルスターチ、エチルセルロース、エチルグアーガム、エチルスターチ、ヒドロキシプロピルセルロース、ヒドロキシプロピルグアーガム、ヒドロキシプロピルスターチ、ヒドロキシエチルメチルセルロース、ヒドロキシエチルメチルグアーガム、ヒドロキシエチルメチルスターチ、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルメチルグアーガム、ヒドロキシプロピルメチルスターチ等が挙げられ、なかでもセルロース、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース等セルロース及びその誘導体が好ましい。また、これらの多糖類のメチル基、エチル基、ヒドロキシエチル基、ヒドロキシプロピル基等の置換基は、単一の置換基で置換されたものでもよいし、複数の置換基で置換されたものでもよく、その構成単糖残基当たりの置換度は0.1〜5、特に0.5〜3が好ましい。また置換基がアルキレンオキシ基の場合には、置換度、即ちその構成単糖残基当たりの付加モル数は、0.1〜10、特に0.5〜5が好ましい。また、これらの多糖類又はその誘導体の重量平均分子量は1万〜1000万であり、特に10万〜500万の範囲のものが好ましい。
These polysaccharide derivatives (Q) according to the present invention vary in solubility and viscosity increase in kneaded water depending on the degree of substitution with the hydrophobic substituent (A) and the ionic hydrophilic substituent (B). That is, by making the substitution degree of the hydrophobic substituent (A) and the ionic hydrophilic substituent (B) within a preferable range, appropriate solubility and thickening in the kneaded water can be obtained, and therefore The hydraulic composition (I) can be given fluidity as well as excellent separation resistance. From this point of view, the degree of substitution with the hydrophobic substituent (A) is 0.0001 to 1 and more preferably 0.0005 to 0.01 per unit of the constituent monosaccharide residue. The degree of substitution with the ionic polar substituent (B) is 0.001-2 per unit of constituent monosaccharide residue, and more preferably 0.01-1. Particularly preferred substitution degrees are 0.0007 to 0.005 for the hydrophobic substituent (A) and 0.02 to 0.15 for the ionic hydrophilic substituent (B).
In the present invention, the polysaccharides are cellulose; starch; rhizome polysaccharides such as konjac mannan and troloioi sticks; sap polysaccharides such as gum arabic, tragacanth and karaya gum; seed polysaccharides such as locust bean gum, guar gum and tamarind gum; agar And seaweed polysaccharides such as carrageenan and algin; animal polysaccharides such as chitin, chitosan heparin and chondroitin sulfate; and microbial polysaccharides such as dextran and xanthan gum. Examples of the substituted ionic group include anionic group-substituted products such as carboxymethylcellulose, cellulose sulfate, cellulose phosphate, and cellulose phosphite. Examples of the alkylated or hydroxyalkylated derivatives of polysaccharides include hydroxyethyl cellulose, hydroxyethyl guar gum, hydroxyethyl starch, methyl cellulose, methyl guar gum, methyl starch, ethyl cellulose, ethyl guar gum, ethyl starch, hydroxypropyl cellulose, hydroxypropyl guar gum, hydroxypropyl Starch, hydroxyethyl methyl cellulose, hydroxyethyl methyl guar gum, hydroxyethyl methyl starch, hydroxypropyl methyl cellulose, hydroxypropyl methyl guar gum, hydroxypropyl methyl starch, etc., among others, cellulose, hydroxyethyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose Cellulose and its derivatives are preferable. Further, the substituents such as methyl group, ethyl group, hydroxyethyl group, hydroxypropyl group and the like of these polysaccharides may be substituted with a single substituent or may be substituted with a plurality of substituents. The substitution degree per constituent monosaccharide residue is preferably 0.1 to 5, particularly 0.5 to 3. When the substituent is an alkyleneoxy group, the degree of substitution, that is, the number of moles added per constituent monosaccharide residue is preferably 0.1 to 10, particularly 0.5 to 5. Further, these polysaccharides or derivatives thereof have a weight average molecular weight of 10,000 to 10,000,000, particularly preferably 100,000 to 5,000,000.

本発明に係る多糖誘導体(Q)は、多糖類又はそのアルキル化若しくはヒドロキシアルキル化誘導体の水酸基の水素原子を部分的に疎水化(疎水性置換基(A)の導入)又は親水化(イオン性親水性置換基(B)の導入)した後、残りの水酸基の一部又は全部の水素をそれぞれ親水化又は疎水化することにより、又は疎水化及び親水化を同時に行うことにより得られる。   In the polysaccharide derivative (Q) according to the present invention, the hydrogen atom of the hydroxyl group of the polysaccharide or its alkylated or hydroxyalkylated derivative is partially hydrophobized (introduction of a hydrophobic substituent (A)) or hydrophilized (ionic). After the introduction of the hydrophilic substituent (B), it is obtained by hydrophilizing or hydrophobizing part or all of the remaining hydroxyl groups, respectively, or by simultaneously hydrophobizing and hydrophilizing.

置換基の導入は、一例として次のようにして行うことができる。すなわち、多糖類又はその誘導体を、アルカリの存在下で、アルキル炭素数が8〜40のアルキル又はアルケニルグリシジルエーテル、炭素数が8〜40の直鎖又は分岐鎖の飽和又は不飽和アルキルのエポキシド、ハライド、ハロヒドリン、アシルハライド、或いは炭素数が8〜40のアシル基を有するエステル又はカルボン酸無水物と反応させることにより疎水性置換基(A)を導入し、更にアルカリの存在下でビニルスルホン酸またはヒドロキシル基が置換していてもよい炭素数1〜5のハロアルカンスルホン酸、ハロカルボン酸、ハロリン酸エステル、ハロ硫酸エステル又はそれらの塩などと反応させることにより行うことができる。   The introduction of substituents can be performed as follows as an example. That is, in the presence of alkali, a polysaccharide or a derivative thereof is an alkyl or alkenyl glycidyl ether having 8 to 40 alkyl carbon atoms, a linear or branched saturated or unsaturated alkyl epoxide having 8 to 40 carbon atoms, Hydrophobic substituent (A) is introduced by reacting with halide, halohydrin, acyl halide, or ester or carboxylic anhydride having an acyl group having 8 to 40 carbon atoms, and vinylsulfonic acid in the presence of alkali. Or it can carry out by making it react with the C1-C5 haloalkanesulfonic acid which the hydroxyl group may substitute, halocarboxylic acid, halophosphoric acid ester, halosulfuric acid ester, or those salts.

工程(II)における多糖誘導体(Q)の添加量は、目的とする増粘の程度に応じ適宜決めればよいが、例えば水硬性組成物(I)で用いた水硬性粉体量(C)100重量部に対して好ましくは0.0001〜3重量部、より好ましくは0.001〜0.5重量部、特に好ましくは0.01〜0.1重量部が適している。   The addition amount of the polysaccharide derivative (Q) in the step (II) may be appropriately determined according to the target degree of thickening. For example, the amount of hydraulic powder (C) 100 used in the hydraulic composition (I) Preferably 0.0001 to 3 parts by weight, more preferably 0.001 to 0.5 parts by weight, particularly preferably 0.01 to 0.1 parts by weight with respect to parts by weight.

工程(II)において用いられる減水剤(R)としては、JIS A 6204に規定される減水率18%以上のコンクリート用化学混和剤が好適に用いられ、具体的には、ナフタレン、メラミン、フェノール、尿素およびアニリンの何れかのメチロール化物およびスルホン化物の群から選ばれる1種又は2種以上の化合物のホルムアルデヒド縮合物が挙げられる。例えば、ナフタレンスルホン酸金属塩ホルムアルデヒド縮合物[例えば花王(株)製マイテイ150]、メラミンスルホン酸金属塩ホルムアルデヒド縮合物[例えば花王(株)製マイテイ150-V2]、フェノールスルホン酸ホルムアルデヒド化合物(特許第1097647号に記載の化合物等)、フェノール・スルファニル酸ホルムアルデヒド共縮合物(特開平1−113419号公報に記載の化合物等)等である。さらにまた他の例として、エチレン系不飽和モノカルボン酸、そのアルキレンオキシド付加物又はその誘導体、並びにエチレン系不飽和ジカルボン酸、そのアルキレンオキシド付加物又はその誘導体からなる群より選ばれる1種又は2種以上を含有する単量体を重合して得られる重合体又は共重合体(特公平2−7901号公報、特開平3−75252号公報、特公平2−8983号公報などに記載の化合物等)が挙げられる。   As the water reducing agent (R) used in the step (II), a concrete chemical admixture having a water reduction rate of 18% or more specified in JIS A 6204 is preferably used. Specifically, naphthalene, melamine, phenol, Examples thereof include formaldehyde condensates of one or more compounds selected from the group of methylolated products and sulfonated products of either urea or aniline. For example, naphthalene sulfonic acid metal salt formaldehyde condensate [for example, Mighty 150 manufactured by Kao Corporation], melamine sulfonic acid metal salt formaldehyde condensate [for example, Mighty 150-V2 manufactured by Kao Corporation], phenol sulfonic acid formaldehyde compound (patent no. 1097647), phenol / sulfanilic acid formaldehyde cocondensates (compounds described in JP-A-1-113419, etc.) and the like. As still another example, one or two selected from the group consisting of an ethylenically unsaturated monocarboxylic acid, an alkylene oxide adduct or derivative thereof, and an ethylenically unsaturated dicarboxylic acid, an alkylene oxide adduct or derivative thereof Polymers or copolymers obtained by polymerizing monomers containing at least species (compounds described in JP-B-2-7901, JP-A-3-75252, JP-B-2-8983, etc.) ).

さらに、本発明において用いられる減水剤(R)としては、下記一般式(1)で表される単量体と、下記一般式(2)及び(3)で表される化合物の中から選ばれる一種以上を含有する単量体とを重合して得られる、オキシアルキレン基を有する水溶性ビニル共重合体が特に好ましく用いられる(例えば花王(株)製マイテイ3000)。こうした高性能減水剤については、例えば特開平7−223852号公報に記載がある。   Furthermore, the water reducing agent (R) used in the present invention is selected from monomers represented by the following general formula (1) and compounds represented by the following general formulas (2) and (3). A water-soluble vinyl copolymer having an oxyalkylene group obtained by polymerizing one or more monomers is particularly preferably used (for example, Mighty 3000 manufactured by Kao Corporation). Such a high-performance water reducing agent is described, for example, in JP-A-7-223852.

Figure 0004920232
Figure 0004920232

[式中、
R1,R2:水素原子又はメチル基
m1:0〜2の数
AO:炭素数2〜3のオキシアルキレン基
n:平均付加モル数であり、2〜300の数
X:水素原子又は炭素数1〜3のアルキル基
を表す。]
[Where:
R 1 and R 2 : hydrogen atom or methyl group
m1: Number from 0 to 2
AO: C2-C3 oxyalkylene group n: Average addition mole number, 2-300 number X: Represents a hydrogen atom or C1-C3 alkyl group. ]

Figure 0004920232
Figure 0004920232

[式中、
R3,R4,R5:水素原子、メチル基又は(CH2)m2COOM2
R6:水素原子又はメチル基
M1,M2,Y:水素原子、アルカリ金属、アルカリ土類金属、アンモニウム、アルキルアンモニウム又は置換アルキルアンモニウム
m2:0〜2の数
を表す。]
[Where:
R 3 , R 4 , R 5 : hydrogen atom, methyl group or (CH 2 ) m2 COOM 2
R 6 : hydrogen atom or methyl group
M 1 , M 2 , Y: hydrogen atom, alkali metal, alkaline earth metal, ammonium, alkylammonium or substituted alkylammonium
m2 represents a number from 0 to 2. ]

上記の好ましい高性能減水剤として用いられる共重合体において、上記一般式(1)で表される単量体としては、メトキシポリエチレングリコール、メトキシポリエチレンポリプロピレングリコール、エトキシポリエチレングリコール、エトキシポリエチレンポリプロピレングリコール、プロポキシポリエチレングリコールおよびプロポキシポリエチレンポリプロピレングリコール等の片末端アルキル封鎖ポリアルキレングリコールとアクリル酸、メタクリル酸又は脂肪酸の脱水素(酸化)反応物とのエステル化物や、アクリル酸、メタクリル酸又は脂肪酸の脱水素(酸化)反応物へのエチレンオキサイド、プロピレンオキサイド付加物が用いられる。またポリアルキレングリコールのモノマーの繰り返し単位としては、エチレンオキサイド単独、プロピレンオキサイド単独、エチレンオキサイドとプロピレンオキサイドのランダム、ブロック、交互付加の何れでも用いることができる。ポリアルキレングリコールのモノマーの繰り返し単位の平均付加モル数が、上記特開平7−223852号公報に記載の場合のように110〜300であると、硬化遅延の短縮、高流動性、高充填性、高分離低減性の面で特に好ましい。   In the copolymer used as the preferred high performance water reducing agent, the monomer represented by the general formula (1) includes methoxy polyethylene glycol, methoxy polyethylene polypropylene glycol, ethoxy polyethylene glycol, ethoxy polyethylene polypropylene glycol, propoxy Deesterification (oxidation) of acrylic acid, methacrylic acid or fatty acid, esterification product of one-end alkyl-blocked polyalkylene glycol such as polyethylene glycol and propoxy polyethylene polypropylene glycol and dehydrogenation (oxidation) reaction product of acrylic acid, methacrylic acid or fatty acid ) An ethylene oxide or propylene oxide adduct is used for the reaction product. As the repeating unit of the polyalkylene glycol monomer, any of ethylene oxide alone, propylene oxide alone, random, block, and alternate addition of ethylene oxide and propylene oxide can be used. When the average added mole number of the repeating unit of the polyalkylene glycol monomer is 110 to 300 as described in JP-A-7-223852, the curing delay is shortened, high fluidity, high filling property, This is particularly preferable in terms of high separation reduction.

上記一般式(2)で表される化合物としては、不飽和モノカルボン酸系単量体として、アクリル酸、メタクリル酸、クロトン酸、又はこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩、置換アミン塩が挙げられる。また、不飽和ジカルボン酸系単量体として、無水マレイン酸、マレイン酸、無水イタコン酸、イタコン酸、無水シトラコン酸、シトラコン酸、フマル酸、又はこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩、置換アミン塩が挙げられる。   As the compound represented by the general formula (2), as an unsaturated monocarboxylic acid monomer, acrylic acid, methacrylic acid, crotonic acid, or an alkali metal salt, alkaline earth metal salt, ammonium salt thereof, Examples thereof include amine salts and substituted amine salts. Further, as unsaturated dicarboxylic acid monomers, maleic anhydride, maleic acid, itaconic anhydride, itaconic acid, citraconic anhydride, citraconic acid, fumaric acid, or alkali metal salts, alkaline earth metal salts, ammonium thereof And salts, amine salts, and substituted amine salts.

また、上記一般式(3)で表される化合物としては、アリルスルホン酸、メタリルスルホン酸、又はこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩、置換アミン塩が挙げられる。   Examples of the compound represented by the general formula (3) include allyl sulfonic acid, methallyl sulfonic acid, or alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, and substituted amine salts thereof. .

工程(II)における減水剤(R)の添加量は、所望とする流動性に応じて適宜決定することができるが、水硬性粉体(C)100重量部に対して、好ましくは0.01〜1重量部、より好ましくは0.05〜0.5重量部である。   The amount of the water reducing agent (R) added in the step (II) can be appropriately determined according to the desired fluidity, but is preferably 0.01 to 1 with respect to 100 parts by weight of the hydraulic powder (C). Part by weight, more preferably 0.05 to 0.5 part by weight.

工程(II)における多糖誘導体(Q)、減水剤(R)の水硬性組成物(I)への添加は、水溶液または粉末のどちらの状態でも可能である。また、予め多糖誘導体(Q)と減水剤(R)混合し、混合物を添加しても良い。さらに多糖誘導体(Q)及び減水剤(R)のそれぞれを、あるいは混合物を、一時に全量添加する方法、あるいは数回に分割して添加する方法のどちらを採用することもできる。   The polysaccharide derivative (Q) and the water reducing agent (R) in the step (II) can be added to the hydraulic composition (I) in either an aqueous solution or a powder state. Further, the polysaccharide derivative (Q) and the water reducing agent (R) may be mixed in advance and the mixture may be added. Furthermore, either the method of adding each of the polysaccharide derivative (Q) and the water reducing agent (R) or the mixture in a whole amount at a time, or the method of adding in several divided portions can be employed.

多糖誘導体(Q)と減水剤(R)とを水硬性組成物(I)に添加後、混練することで水硬性組成物(II)が得られる。混練は、二軸ミキサー、等の混練機、ミキサー車の混練り装置を用いることができる。   The hydraulic composition (II) is obtained by adding the polysaccharide derivative (Q) and the water reducing agent (R) to the hydraulic composition (I) and then kneading. For kneading, a kneader such as a twin-screw mixer or a kneading device for a mixer truck can be used.

水硬性組成物(II)は、JIS A 1150に規定するスランプフロー値が35〜70cmの範囲であり、より好ましくは38〜50cmである。   The hydraulic composition (II) has a slump flow value specified in JIS A 1150 in the range of 35 to 70 cm, more preferably 38 to 50 cm.

また、水硬性組成物(II)は、スランプ(JIS A 1101)が22〜25cmであることが好ましい。また、空気量(JIS A 1128)が3.5〜6%であることが好ましい。また、混練30分後のスランプ(JIS A 1101)が22〜25cmであることが好ましい。28日後の強度(JIS A 1108 )は所定の強度が得られることが好ましい。   Further, the hydraulic composition (II) preferably has a slump (JIS A 1101) of 22 to 25 cm. Further, the air amount (JIS A 1128) is preferably 3.5 to 6%. The slump (JIS A 1101) after 30 minutes of kneading is preferably 22 to 25 cm. The strength after 28 days (JIS A 1108) is preferably a predetermined strength.

本発明の製造方法は、水硬性組成物(I)として生コンクリート工場で生産されたレディーミクストコンクリートを用いて、コンクリート施工現場で工程(II)を行うことが好ましい。レディーミクストコンクリートを用いることで、水硬性組成物(I)として安定した物性のコンクリートが得られる。工程(I)と工程(II)の間にミキサー車等による輸送工程を有しても、輸送中のコンクリート物性管理は普通セメントの条件で行えばよく、特別な管理は不要である。さらに、工程(II)を施工現場で行うことで、輸送中のコンクリート物性変化に対してしても、多糖誘導体(Q)と減水剤(R)の添加量の微調整で対応できる。また、工程(II)の直後にコンクリート打設を開始できるため、流動性の高いコンクリートの流動性保持等の管理が容易になる。流動性保持の観点から、水硬性組成物組成物(II)の打設は、工程(II)の後、90分以内に開始することが好ましい。なお、工程(I)の終了後、直ちに工程(II)を行うことができるが、上記の通り、ミキサー車等による輸送等を考慮すると、適当な間隔(30分間等)をおいた後、施工現場で工程(II)を行うことが好ましい。また、打設の終了は、工程(II)の後、210分以内であることが好ましい。   In the production method of the present invention, it is preferable to perform the step (II) at the concrete construction site using the ready-mixed concrete produced in the ready-mixed concrete factory as the hydraulic composition (I). By using ready-mixed concrete, concrete having stable physical properties can be obtained as the hydraulic composition (I). Even if there is a transportation process using a mixer truck or the like between the process (I) and the process (II), the physical properties of the concrete during transportation may be controlled under the condition of ordinary cement, and no special management is required. Furthermore, by performing the step (II) at the construction site, it is possible to cope with changes in the physical properties of the concrete during transportation by finely adjusting the addition amounts of the polysaccharide derivative (Q) and the water reducing agent (R). Moreover, since the concrete pouring can be started immediately after the step (II), it becomes easy to maintain the fluidity of the highly fluid concrete. From the viewpoint of maintaining fluidity, the placement of the hydraulic composition (II) is preferably started within 90 minutes after the step (II). In addition, although the process (II) can be performed immediately after the completion of the process (I), as described above, after taking an appropriate interval (30 minutes, etc.) in consideration of transportation by a mixer truck, etc. It is preferable to perform step (II) on site. Moreover, it is preferable that the completion | finish of casting is less than 210 minutes after process (II).

実施例1〜2及び比較例1
表1の配合1で、セメント(C)、細骨材(S)及び粗骨材(G)を40リットルの強制2軸ミキサーに投入後、20℃にて10秒間空練りを行った。次いで水道水(W)にコンクリート混和剤を加えた混練水を加え90秒間本練りを行い、水硬性組成物(I)を調製した〔工程(I)〕。なお、コンクリート混和剤はリグニンスルホン酸化合物ポリオール複合体((株)ポゾリス物産製、品名 ポゾリスNo.70)であり、空気量調整剤としてマイテイAE−02を使用して所定の空気量となるように添加した。
Examples 1-2 and Comparative Example 1
In Formula 1 of Table 1, cement (C), fine aggregate (S) and coarse aggregate (G) were charged into a 40 liter forced biaxial mixer and then kneaded at 20 ° C. for 10 seconds. Next, kneading water with concrete admixture added to tap water (W) was added and kneaded for 90 seconds to prepare hydraulic composition (I) [step (I)]. The concrete admixture is a lignin sulfonic acid compound polyol composite (product name: Pozoris No. 70, manufactured by Pozzolith Co., Ltd.), and may have a predetermined air amount using Mighty AE-02 as an air amount adjusting agent. Added to.

得られた水硬性組成物(I)を練り舟に排出し、コンクリートの運搬時間を想定して30分間静置した。その後、傾胴式ミキサーに水硬性組成物(I)を移し、表2の成分を表2の量で添加し60秒間混練し、水硬性組成物(II)を得た〔工程(II)〕。   The obtained hydraulic composition (I) was discharged into a kneading boat and allowed to stand for 30 minutes assuming a concrete transportation time. Thereafter, the hydraulic composition (I) was transferred to a tilted barrel mixer, the components shown in Table 2 were added in the amounts shown in Table 2, and kneaded for 60 seconds to obtain a hydraulic composition (II) [Step (II)]. .

水硬性組成物(I)、(II)について、スランプ値、スランプフロー値、空気量、コンクリート温度を経時的に評価した。また、分離抵抗性としてブリージング量を測定した。各評価は以下に基づき行った。   For the hydraulic compositions (I) and (II), the slump value, slump flow value, air amount, and concrete temperature were evaluated over time. Moreover, the amount of breathing was measured as separation resistance. Each evaluation was performed based on the following.

・スランプ値:JIS A 1101
・スランプフロー値:JIS A 1150
・空気量:JIS A 1128
・コンクリート温度:温度計による視認
・ブリージング量:JIS A 1123
・ Slump value: JIS A 1101
・ Slump flow value: JIS A 1150
・ Air volume: JIS A 1128
・ Concrete temperature: Visible with thermometer ・ Breathing amount: JIS A 1123

Figure 0004920232
Figure 0004920232

表1中の使用材料は以下の通りである。
・水(W):水道水
・セメント(C):普通ポルトランドセメント(太平洋セメント株式会社製普通ポルトランドセメントと住友大阪セメント株式会社製普通ポルトランドセメントの1:1混合物)、密度3.16g/cm3
・細骨材(S):君津産 山砂(密度2.60g/cm3、粗粒率2.63)
・粗骨材(G):鳥形山産 石灰砕石(密度2.70g/cm3、粗粒率7.03、最大寸法20mm)
The materials used in Table 1 are as follows.
-Water (W): Tap water-Cement (C): Ordinary Portland cement (1: 1 mixture of ordinary Portland cement manufactured by Taiheiyo Cement Co., Ltd. and ordinary Portland cement manufactured by Sumitomo Osaka Cement Co., Ltd.), density 3.16 g / cm 3
・ Fine aggregate (S): Kimitsu mountain sand (density 2.60g / cm 3 , coarse grain ratio 2.63)
・ Coarse aggregate (G): Torigatayama lime crushed stone (density 2.70 g / cm 3 , coarse grain ratio 7.03, maximum dimension 20 mm)

Figure 0004920232
Figure 0004920232

表2中の成分は下の通りである。
・コンクリート混和剤:AE減水剤、リグニンスルホン酸化合物ポリオール複合体((株)ポゾリス物産製、品名 ポゾリスNo.70)
・比較減水剤:レオパックS100、ライオン(株)製
・比較増粘剤:レオパックV2000、ライオン(株)製
・減水剤1:マイテイ3000S、花王(株)製
The components in Table 2 are as follows.
・ Concrete admixture: AE water reducing agent, lignin sulfonic acid compound polyol composite (Pozoris Co., Ltd., product name: Pozoris No. 70)
・ Comparative water reducing agent: Leopak S100, manufactured by Lion Corporation ・ Comparison thickener: Leopak V2000, manufactured by Lion Corporation ・ Water reducing agent 1: Mighty 3000S, manufactured by Kao Corporation

・多糖誘導体1:下記合成例により得られたもの
<合成例>
(1)攪拌機、温度計及び冷却管を備えた1000mlのガラス製セパラブル反応容器に、重量平均分子量約80万、ヒドロキシエチル基の置換度1.8のヒドロキシエチルセルロース(HEC-QP4400,ユニオンカーバイド社製)50g、88%イソプロピルアルコール400g及び48%水酸化ナトリウム水溶液3.5gを加えてスラリー液を調製し、窒素雰囲気下室温で30分間攪拌した。これにステアリルグリシジルエーテル4.0gを加え、80℃で7時間反応させて疎水化を行った。疎水化反応終了後、反応液を酢酸で中和し、反応生成物をろ別した。反応生成物を80%アセトン500gで2回、次いでアセトン500gで2回洗浄し、減圧下70℃で1昼夜乾燥し、疎水化されたヒドロキシエチルセルロース誘導体49.4gを得た。
Polysaccharide derivative 1: obtained by the following synthesis example <Synthesis example>
(1) In a 1000 ml glass separable reaction vessel equipped with a stirrer, thermometer and cooling tube, 50 g of hydroxyethyl cellulose having a weight average molecular weight of about 800,000 and a hydroxyethyl group substitution degree of 1.8 (HEC-QP4400, manufactured by Union Carbide) Then, 400 g of 88% isopropyl alcohol and 3.5 g of 48% aqueous sodium hydroxide solution were added to prepare a slurry, which was stirred at room temperature for 30 minutes in a nitrogen atmosphere. To this, 4.0 g of stearyl glycidyl ether was added and reacted at 80 ° C. for 7 hours for hydrophobization. After completion of the hydrophobic reaction, the reaction solution was neutralized with acetic acid, and the reaction product was filtered off. The reaction product was washed twice with 500 g of 80% acetone and then twice with 500 g of acetone, and dried under reduced pressure at 70 ° C. for one day to obtain 49.4 g of a hydrophobized hydroxyethylcellulose derivative.

(2)攪拌機、温度計及び冷却管を備えた500mlのガラス製セパラブル反応容器に、(1)で得られた疎水化ヒドロキシエチルセルロース誘導体10.0g、イソプロピルアルコール80.0g及び48%水酸化ナトリウム水溶液0.33gを仕込んでスラリー液を調製し、窒素気流下室温で30分間攪拌した。反応液に3-クロロ-2-ヒドロキシプロパンスルホン酸ナトリウム6.4g、48%水酸化ナトリウム水溶液2.7g及び水20.0gからなる混合液を加え、50℃で9時間スルホン化を行った。反応終了後、反応液を酢酸で中和し生成物をろ別した。生成物を80%アセトン(水20%)500gで3回、次いでアセトン500gで2回洗浄後、減圧下70℃で1昼夜乾燥し、ステアリルグリセリルエーテル基と3-スルホ-2-ヒドロキシプロピル基で置換されたヒドロキシエチルセルロース誘導体(多糖誘導体1)7.2gを得た。 (2) In a 500 ml glass separable reaction vessel equipped with a stirrer, thermometer and cooling tube, 10.0 g of the hydrophobized hydroxyethylcellulose derivative obtained in (1), 80.0 g of isopropyl alcohol and 0.33 g of 48% sodium hydroxide aqueous solution Was prepared to prepare a slurry, and the mixture was stirred at room temperature for 30 minutes under a nitrogen stream. A mixture of 6.4 g of sodium 3-chloro-2-hydroxypropanesulfonate, 2.7 g of 48% aqueous sodium hydroxide and 20.0 g of water was added to the reaction solution, and sulfonation was performed at 50 ° C. for 9 hours. After completion of the reaction, the reaction solution was neutralized with acetic acid and the product was filtered off. The product was washed three times with 500 g of 80% acetone (20% water) and then twice with 500 g of acetone, and then dried at 70 ° C. for one day under reduced pressure to obtain stearyl glyceryl ether groups and 3-sulfo-2-hydroxypropyl groups. 7.2 g of a substituted hydroxyethylcellulose derivative (polysaccharide derivative 1) was obtained.

得られたヒドロキシエチルセルロース誘導体のステアリルグリセリルエーテル基の置換度は0.008、3-スルホ-2-ヒドロキシプロピル基の置換度は0.15であった。   The degree of substitution of the stearyl glyceryl ether group of the obtained hydroxyethyl cellulose derivative was 0.008, and the degree of substitution of the 3-sulfo-2-hydroxypropyl group was 0.15.

多糖誘導体(Q)の疎水性置換基(A)の置換度は、上記合成の様な置換基(A)に1位にオキソ基を有しない場合(エーテルを形成している場合)には、Zeisel法(D.G.Anderson, Anal. Chem., 43, 894(1971))により定量したが、置換基(A)に1位にオキソ基を有する場合(エステルを形成している場合)には、試料を酸で加水分解し中和した後、ジアゾメタンでエステル化を行ってガスクロマトグラフィーで定量した。また、置換基(B)の置換度はコロイド滴定法により求めた。すなわち濃度既知の増粘剤溶液を調製し、これに攪拌下、重量既知のN/200メチルグリコールキトサン溶液(和光純薬(株)製、コロイド滴定用)を加え、更にトルイジンブルー指示薬溶液(和光純薬(株)製、コロイド滴定用)を数滴加えた。これをN/400ポリビニル硫酸カリウム溶液(和光純薬(株)製、コロイド滴定用)により逆滴定し、滴定量から置換度を算出した。なお「置換度」とは、構成単糖残基当たりの置換基の平均数を示す。   The degree of substitution of the hydrophobic substituent (A) of the polysaccharide derivative (Q) is as follows when the substituent (A) as in the above synthesis does not have an oxo group at the 1-position (when ether is formed): Quantified by the Zeisel method (DGAnderson, Anal. Chem., 43, 894 (1971)), when the substituent (A) has an oxo group at the 1-position (when an ester is formed), After being hydrolyzed with acid and neutralized, it was esterified with diazomethane and quantified by gas chromatography. The degree of substitution of the substituent (B) was determined by colloid titration method. In other words, a thickener solution with a known concentration was prepared, and an N / 200 methyl glycol chitosan solution with a known weight (manufactured by Wako Pure Chemical Industries, Ltd., for colloid titration) was added to the solution while stirring, and a toluidine blue indicator solution (Japanese sum) A few drops of Koyo Pure Chemical Co., Ltd. (for colloid titration) were added. This was back titrated with an N / 400 potassium potassium sulfate solution (manufactured by Wako Pure Chemical Industries, Ltd., for colloid titration), and the degree of substitution was calculated from the titration amount. The “degree of substitution” indicates the average number of substituents per constituent monosaccharide residue.

Figure 0004920232
Figure 0004920232

また、JIS A 1147に従って凝結時間を測定したところ、配合1に対して実施例1では始発が+54分、終結が+59分であり、比較例1では始発が+179分、終結が+201分であり、本発明の製造方法により得られたコンクリートは硬化遅延がより少ないことが確認された。   Moreover, when the setting time was measured in accordance with JIS A 1147, the first time in Example 1 was +54 minutes and the last time was +59 minutes, and in Comparative Example 1, the first time was +179 minutes and the last time was +201 minutes. It was confirmed that the concrete obtained by the production method of the present invention has less curing delay.

Claims (6)

下記工程(I)及び工程(II)を有するコンクリートの製造方法。
工程(I):水(W)、水硬性粉体(C)、細骨材(S)、粗骨材(G)及び混和剤(P)とを混練し、W/C(重量比)が40〜65%、JIS A 1150に規定するスランプフロー値が20〜30cmであるレディーミクストコンクリート(I)を調製する工程
工程(II):コンクリート施工現場で、レディーミクストコンクリート(I)に、多糖類又はそのアルキル化若しくはヒドロキシアルキル化誘導体の一部又は全部の水酸基の水素原子が、炭素数8〜40の炭化水素鎖を有する疎水性置換基(A)、及びスルホン酸基、カルボキシル基、リン酸基、及び硫酸エステル基並びにそれらの塩からなる群から選ばれる1種以上の基を有するイオン性親水性置換基(B)で置換されてなる多糖誘導体(Q)と、減水剤(R)とを添加して、JIS A 1150に規定するスランプフロー値が35〜50cmであるコンクリート(II)を調製する工程
The manufacturing method of the concrete which has the following process (I) and process (II).
Step (I): Water (W), hydraulic powder (C), fine aggregate (S), coarse aggregate (G) and admixture (P) are kneaded so that W / C (weight ratio) is Process for preparing ready-mixed concrete (I) having a slump flow value of 20 to 30 cm as specified in JIS A 1150 at 40 to 65% . Process (II): Ready-mixed concrete (I) with polysaccharides at the concrete construction site. Or a hydrophobic substituent (A) in which part or all of the hydroxyl groups of the alkylated or hydroxyalkylated derivative have a hydrocarbon chain having 8 to 40 carbon atoms, a sulfonic acid group, a carboxyl group, and phosphoric acid A polysaccharide derivative (Q) substituted with an ionic hydrophilic substituent (B) having at least one group selected from the group consisting of a group, a sulfate ester group and a salt thereof; and a water reducing agent (R); And add slan as specified in JIS A 1150 Process flow value to prepare concrete (II) is a. 35 to 50 cm
混和剤(P)がリグニンスルホン酸塩又はその誘導体、からなる減水剤である請求項1記載のコンクリートの製造方法。 The method for producing concrete according to claim 1, wherein the admixture (P) is a water reducing agent comprising lignin sulfonate or a derivative thereof . 工程(II)の後、90分以内にコンクリート(II)の打設を開始する請求項1又は2記載のコンクリートの製造方法。 The method for producing concrete according to claim 1 or 2, wherein the placing of concrete (II) is started within 90 minutes after step (II). さらに、工程(I)と工程(II)の間に、レディーミクストコンクリート(I)をミキサー車で移送する工程を有する請求項1〜いずれか記載のコンクリートの製造方法。 Furthermore, the manufacturing method of concrete in any one of Claims 1-3 which has the process of transferring ready mixed concrete (I) with a mixer truck between process (I) and process (II). 多糖誘導体(Q)と減水剤(R)とを、これらの合計で、水硬性粉体(C)100重量部に対し、0.001〜0.5重量部添加する請求項1〜いずれか記載のコンクリートの製造方法。 A polysaccharide derivative (Q) and water reducing agent (R), in their sum, hydraulic powder (C) 100 parts by weight of either one of claims 1-4 is added 0.001 to 0.5 parts by weight The manufacturing method of the concrete as described. 請求項1〜いずれか記載の製造方法の工程(I)及び工程(II)を行い、工程(II)の後、90分以内にコンクリート(II)の打設を開始する、コンクリートの施工方法。 A concrete construction method, wherein the steps (I) and (II) of the production method according to any one of claims 1 to 5 are performed, and after the step (II), the placement of the concrete (II) is started within 90 minutes. .
JP2005296166A 2005-10-11 2005-10-11 Concrete production method Active JP4920232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005296166A JP4920232B2 (en) 2005-10-11 2005-10-11 Concrete production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005296166A JP4920232B2 (en) 2005-10-11 2005-10-11 Concrete production method

Publications (2)

Publication Number Publication Date
JP2007105899A JP2007105899A (en) 2007-04-26
JP4920232B2 true JP4920232B2 (en) 2012-04-18

Family

ID=38032147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005296166A Active JP4920232B2 (en) 2005-10-11 2005-10-11 Concrete production method

Country Status (1)

Country Link
JP (1) JP4920232B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295722B2 (en) * 2008-11-06 2013-09-18 花王株式会社 Concrete production method
JP2011020322A (en) * 2009-07-15 2011-02-03 Fujita Corp Method for manufacturing non-separate/fluidizing concrete
JP6053461B2 (en) * 2012-11-08 2016-12-27 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Method for producing fluidized concrete
JP6053509B2 (en) * 2012-12-27 2016-12-27 花王株式会社 Admixture for hydraulic composition
JP6872306B2 (en) * 2014-10-31 2021-05-19 株式会社大林組 Ready-mixed concrete manufacturing method and ready-mixed concrete
JP6754608B2 (en) * 2016-04-28 2020-09-16 株式会社大林組 How to make ready-mixed concrete
CA3026799A1 (en) 2016-06-16 2017-12-21 Kao Corporation Rheology modifier
JP2019001688A (en) * 2017-06-16 2019-01-10 株式会社大林組 Additive for hydraulic-setting composition and hydraulic-setting composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272808A (en) * 1990-02-26 1991-12-04 Taisei Corp Cement admixture and/or adding method of admixture, and cement admixture and/or admixture package body
JP2640322B2 (en) * 1993-05-13 1997-08-13 鹿島建設株式会社 Kneading method of underwater non-separable concrete
JPH0852730A (en) * 1994-08-11 1996-02-27 Taisei Corp Manufacture of high fluidity concrete
JP3260100B2 (en) * 1997-06-13 2002-02-25 花王株式会社 Additive for hydraulic composition
JP2005280113A (en) * 2004-03-30 2005-10-13 Sumitomo Osaka Cement Co Ltd Method for manufacturing concrete and method for preventing initial stage cracking by drying from occurring

Also Published As

Publication number Publication date
JP2007105899A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP4920232B2 (en) Concrete production method
JP5130205B2 (en) Polyether-containing copolymer
JP6133355B2 (en) Plasticizer-containing curing accelerator composition
EP1251111B1 (en) Hydraulic composition
WO1995011204A1 (en) Self-leveling water-base composition
EP1511699B1 (en) Additive for hydraulically setting systems, the hydraulically setting mixtures and the use thereof
JP5295723B2 (en) Hydraulic composition
JP5193055B2 (en) Composition for improving processability of hydraulic composition and use thereof
JP2010042987A (en) High-early-strength agent for hydraulic composition
JP5295722B2 (en) Concrete production method
JP6905795B2 (en) Sprayed concrete composition and its manufacturing method
JP2905658B2 (en) Underwater non-separable concrete composition and defoamer for concrete composition
JP7018304B2 (en) Admixture for centrifugal concrete and centrifugal concrete containing it
JP3260100B2 (en) Additive for hydraulic composition
JP6144500B2 (en) Thickener for hydraulic composition
JPH1053448A (en) Cement admixture and cemental composition for molding
JP6777517B2 (en) Spray material and wet spray method
JP6027387B2 (en) Concrete pumping method
JP3202398B2 (en) Admixture for high fluidity concrete
JPH11157898A (en) Additive for hydraulic composition
JP2019001688A (en) Additive for hydraulic-setting composition and hydraulic-setting composition
CN115838443B (en) Sulfonated guar gum ether and preparation method and application thereof
JP7300651B2 (en) Method for manufacturing concrete composition
JP3065482B2 (en) Lightweight concrete composition
JP7303525B2 (en) ADDITIVE FOR HYDRAULIC COMPOSITION, AND HYDRAULIC COMPOSITION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4920232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250