JP4919975B2 - Gas turbine equipment - Google Patents

Gas turbine equipment Download PDF

Info

Publication number
JP4919975B2
JP4919975B2 JP2008003809A JP2008003809A JP4919975B2 JP 4919975 B2 JP4919975 B2 JP 4919975B2 JP 2008003809 A JP2008003809 A JP 2008003809A JP 2008003809 A JP2008003809 A JP 2008003809A JP 4919975 B2 JP4919975 B2 JP 4919975B2
Authority
JP
Japan
Prior art keywords
compressor
air
water
temperature
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008003809A
Other languages
Japanese (ja)
Other versions
JP2008291829A (en
Inventor
久人 田川
重雄 幡宮
秀文 荒木
信也 圓島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008003809A priority Critical patent/JP4919975B2/en
Publication of JP2008291829A publication Critical patent/JP2008291829A/en
Application granted granted Critical
Publication of JP4919975B2 publication Critical patent/JP4919975B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、圧縮機の吸気中に水を噴霧するガスタービン設備に関する。   The present invention relates to a gas turbine facility that sprays water during intake of a compressor.

圧縮機吸気に水噴霧して、吸気温度を外気温より低下させ、さらに高湿分空気とすることにより、ガスタービンの出力と熱効率を向上するガスタービンシステムとして、例えば
WO98/48159に記載の技術がある。
As a gas turbine system that improves the output and thermal efficiency of a gas turbine by spraying water on the compressor intake air, lowering the intake air temperature from the outside air temperature, and further increasing the humidity of the air, for example, a technique described in WO 98/48159 There is.

なお、ガスタービンでは、高温の燃焼排ガスによる材料劣化を防止するため、タービンを冷却する必要がある。この冷却空気としては、通常、圧縮機で圧縮された空気を一部抽気した圧縮空気をタービン冷却に使用しており、これは圧縮機の吸気に水噴霧するシステムにおいても同様の方法をとっている。   In the gas turbine, it is necessary to cool the turbine in order to prevent material deterioration due to high-temperature combustion exhaust gas. As this cooling air, usually compressed air obtained by partially extracting air compressed by a compressor is used for turbine cooling, and this is also applied to a system in which water is sprayed on the intake air of the compressor. Yes.

国際公開WO98/48159号International Publication WO 98/48159

ここで、圧縮機の吸気に水噴霧するガスタービンシステムでは、冬期のように外気温度が低下して凍結のため噴霧水量が制限される場合には、圧縮機に供給される空気の湿分が低下するため、圧縮機で圧縮された空気温度は通常運転時よりも上昇してしまう。数MW規模のシステムでは、圧縮機の圧縮比がさほど大きくないため、水噴霧したときと比較して水噴霧しないときの圧縮後の空気温度上昇は、外気温度低下と相殺する程度であり、タービン冷却のために圧縮機から抽気する空気温度は、タービン冷却上、特に問題となっていなかった。   Here, in a gas turbine system that sprays water on the intake air of a compressor, when the outside air temperature decreases and the amount of spray water is limited due to freezing as in winter, the humidity of the air supplied to the compressor is reduced. Therefore, the temperature of the air compressed by the compressor rises more than during normal operation. In a system of several MW scale, since the compression ratio of the compressor is not so large, an increase in air temperature after compression when water is not sprayed as compared with when water is sprayed is only to cancel out a decrease in outside air temperature. The temperature of the air extracted from the compressor for cooling has not been a problem in terms of turbine cooling.

しかし、数10MW程度のシステムになると、圧縮機の圧縮比が大きくなるため、圧縮機吸気に水噴霧しない場合の圧縮後の空気温度は、冷却設計で想定した温度よりも、例えば100℃程度高くなり、圧縮機から抽気した冷却空気では、十分なタービン冷却が困難になる。   However, since the compression ratio of the compressor becomes large in a system of about several tens of MW, the air temperature after compression when water is not sprayed on the compressor intake air is, for example, about 100 ° C. higher than the temperature assumed in the cooling design. Thus, sufficient cooling of the turbine becomes difficult with the cooling air extracted from the compressor.

本発明の目的は、圧縮機の吸気に水噴霧するガスタービンにおいて、外気温度の低下により噴霧水量を制限された場合でも、タービン冷却空気の温度上昇を抑制することができるガスタービン設備を提供することにある。   An object of the present invention is to provide a gas turbine facility capable of suppressing an increase in the temperature of turbine cooling air even when the amount of spray water is limited due to a decrease in outside air temperature in a gas turbine that sprays water on the intake air of a compressor. There is.

上記目的を達成するために、本発明のガスタービン設備は、空気を圧縮する圧縮機と、該圧縮機から吐出した空気と燃料とを燃焼させる燃焼器と、該燃焼器の燃焼ガスによって駆動されるタービンと、前記圧縮機の上流側に設置され、前記圧縮機に供給される空気に水を噴霧する噴霧装置と、前記圧縮機から抽気した圧縮空気を前記タービンに供給する抽気経路とを備えたガスタービン設備において、前記抽気経路で抽気された圧縮空気に水を噴霧する水噴霧器を設けたことを特徴とする。   In order to achieve the above object, a gas turbine facility of the present invention is driven by a compressor that compresses air, a combustor that combusts air and fuel discharged from the compressor, and a combustion gas of the combustor. A turbine installed on the upstream side of the compressor and spraying water onto the air supplied to the compressor, and a bleed passage for supplying compressed air extracted from the compressor to the turbine. In the gas turbine equipment, a water sprayer for spraying water onto the compressed air extracted in the extraction path is provided.

本発明によれば、圧縮機の吸気に水噴霧するガスタービンにおいて、外気温度の低下により噴霧水量を制限した場合でも、タービン冷却空気の温度上昇を抑制することができるガスタービン設備を提供することができる。   According to the present invention, in a gas turbine that sprays water on the intake air of a compressor, a gas turbine facility that can suppress an increase in temperature of turbine cooling air even when the amount of spray water is limited due to a decrease in outside air temperature is provided. Can do.

以下、本発明の実施形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態を示すガスタービン設備のシステム系統図である。   FIG. 1 is a system diagram of a gas turbine facility showing an embodiment of the present invention.

本実施例のガスタービン設備は、空気を圧縮して吐出する圧縮機1と、圧縮機1で圧縮して得た圧縮空気と燃料を燃焼して燃焼ガスを生成する燃焼器4と、燃焼器4で生成された前記燃焼ガスにより駆動されるガスタービン2と、このガスタービン2によって駆動される発電機3と、圧縮機1で圧縮された空気を冷却する空気冷却器5と、空気冷却器5で冷却された圧縮空気に水を加湿する増湿器6と、ガスタービン2から排出された排気ガスの熱を利用して圧縮機1から燃焼器4へ供給される前記圧縮空気を加熱する再生器7と、再生器7を経た排ガスと熱交換させて増湿器6で加湿する給水を加熱する給水加熱器8と、圧縮機1の吸気に水を噴霧する水噴霧器9(噴霧装置)を備えている。圧縮機1の吐出または途中段で抽気された圧縮空気は、抽気ライン11によってガスタービンへ送られ、タービン翼やタービンケーシングを冷却してタービン主流ガスと合流する。また、抽気ライン11には水噴霧器10が設けられ、噴霧水供給ライン12により供給される水を、抽気された圧縮空気に噴霧してガスタービン冷却空気の温度を低下させる。   The gas turbine equipment of the present embodiment includes a compressor 1 that compresses and discharges air, a combustor 4 that combusts compressed air and fuel obtained by compression with the compressor 1 to generate combustion gas, and a combustor. 4, a gas turbine 2 driven by the combustion gas generated in 4, a generator 3 driven by the gas turbine 2, an air cooler 5 for cooling the air compressed by the compressor 1, and an air cooler The humidifier 6 that humidifies water to the compressed air cooled in 5 and the compressed air supplied from the compressor 1 to the combustor 4 are heated using the heat of the exhaust gas discharged from the gas turbine 2. A regenerator 7, a feed water heater 8 that heats the feed water that is heat-exchanged with the exhaust gas that has passed through the regenerator 7, and humidifies the humidifier 6, and a water sprayer 9 that sprays water on the intake air of the compressor 1 (spraying device) It has. Compressed air discharged from the compressor 1 or extracted at an intermediate stage is sent to a gas turbine through an extraction line 11 to cool turbine blades and a turbine casing and merge with turbine mainstream gas. Moreover, the water sprayer 10 is provided in the extraction line 11, and water supplied from the spray water supply line 12 is sprayed on the extracted compressed air to lower the temperature of the gas turbine cooling air.

以上のように構成された本実施形態では、圧縮機から抽気されたタービン冷却空気に水噴霧する設備を設けたことに特徴がある。   The present embodiment configured as described above is characterized in that a facility for spraying water on the turbine cooling air extracted from the compressor is provided.

図2は、外気温度が低く、圧縮機吸気への噴霧水量が制限される場合に、タービン冷却空気温度が上昇する問題を図示したもので、圧縮機吸気への噴霧水量に対する圧縮機入口空気温度と抽気された空気温度の変化を模式的に示している。   FIG. 2 illustrates the problem that the turbine cooling air temperature rises when the outside air temperature is low and the amount of spray water to the compressor intake is restricted. The compressor inlet air temperature with respect to the amount of spray water to the compressor intake The change of the temperature of the extracted air is schematically shown.

通常運転時には、圧縮機吸気へ水噴霧することにより圧縮機入口空気温度は低下し、これにより圧縮機から抽気した空気温度も低下する。圧縮機吸気への噴霧水量が十分であれば、抽気温度はタービン冷却に必要な冷却空気設計温度Td以下にすることができる。しかし、外気温度が低く、圧縮機入口空気温度が凍結を生じる制限温度Toまで低下する場合には、噴霧水量が制限される。このような場合には、圧縮機からの抽気温度を冷却空気設計温度Tdまで下げることができず、十分なタービン冷却が困難になる。   During normal operation, the air temperature at the compressor inlet is lowered by spraying water on the compressor intake air, thereby lowering the air temperature extracted from the compressor. If the amount of water sprayed to the compressor intake air is sufficient, the extraction temperature can be made equal to or lower than the cooling air design temperature Td necessary for turbine cooling. However, when the outside air temperature is low and the compressor inlet air temperature falls to the limit temperature To that causes freezing, the amount of spray water is limited. In such a case, the extraction temperature from the compressor cannot be lowered to the cooling air design temperature Td, and sufficient turbine cooling becomes difficult.

次に、図1のシステム系統図と図3の制御ブロック図とを用いて、本発明のシステムの制御方法を説明する。   Next, the system control method of the present invention will be described with reference to the system diagram of FIG. 1 and the control block diagram of FIG.

圧縮機1の吸気温度と吸気流量は温度測定器21と流量測定器31で測定され、制御装置51に温度測定信号T21と流量測定信号V31が送られる。これらの信号に基づいて、制御装置51は圧縮機入口空気温度が制限温度Toまで低下しないような最大噴霧水量を計算し(Wmax=f1(T21,V31,To))、流量調節弁41に制御信号S41を送って弁開度を調節することにより水噴霧器9での噴霧水量を制御する。また、水噴霧器9で水噴霧された圧縮機入口空気温度は温度測定器22で測定され、測定信号T22が制御装置51に送られる。制御装置51は圧縮機入口空気温度T22と制限温度Toとを比較し、圧縮機入口空気温度T22が制限温度Toより低い場合には、流量調節弁41へ制御信号S41を送って弁開度を調節し、水噴霧器9での噴霧水量を減らす(W=W−ΔW)。以上の制御方法により、圧縮機吸気中の水分が凍結することによる圧縮機効率低下や翼信頼性低下を防止することができる。   The intake air temperature and the intake air flow rate of the compressor 1 are measured by the temperature measurement device 21 and the flow measurement device 31, and the temperature measurement signal T 21 and the flow measurement signal V 31 are sent to the control device 51. Based on these signals, the control device 51 calculates the maximum spray water amount so that the compressor inlet air temperature does not decrease to the limit temperature To (Wmax = f1 (T21, V31, To)) and controls the flow rate adjustment valve 41. The amount of water sprayed in the water sprayer 9 is controlled by sending a signal S41 and adjusting the valve opening. The compressor inlet air temperature sprayed with water by the water sprayer 9 is measured by the temperature measuring device 22, and a measurement signal T <b> 22 is sent to the control device 51. The control device 51 compares the compressor inlet air temperature T22 with the limit temperature To. If the compressor inlet air temperature T22 is lower than the limit temperature To, the control device 51 sends a control signal S41 to the flow control valve 41 to change the valve opening degree. Adjust and reduce the amount of water sprayed in the water sprayer 9 (W = W−ΔW). With the above control method, it is possible to prevent a decrease in compressor efficiency and blade reliability due to freezing of moisture in the compressor intake air.

一方、タービン冷却のために圧縮機から抽気された空気温度と流量は温度測定器23と流量測定器33で測定され、制御装置51に温度測定信号T23と流量測定信号V33が送られる。これらの信号に基づいて、制御装置51は抽気への噴霧水量を計算し、流量調節弁42に制御信号S42を送って弁開度を調節することにより水噴霧器10での噴霧水量を制御する(Wc=f2(T23,V33))。さらに制御装置51は抽気温度T23と冷却空気設計温度Tdを比較し、抽気温度T23が設計温度Tdより高い場合には流量調節弁42に制御信号S42を送って弁開度を調節することにより噴霧水量を増加させ(Wc=Wc+ΔWc)、抽気温度T23が設計温度Td以下になるようにフィードバック制御をする。   On the other hand, the air temperature and the flow rate extracted from the compressor for cooling the turbine are measured by the temperature measuring device 23 and the flow rate measuring device 33, and the temperature measurement signal T 23 and the flow rate measurement signal V 33 are sent to the control device 51. Based on these signals, the control device 51 calculates the amount of water sprayed to the bleed air, and sends the control signal S42 to the flow rate adjustment valve 42 to adjust the valve opening to control the amount of water sprayed in the water sprayer 10 ( Wc = f2 (T23, V33)). Further, the control device 51 compares the extraction temperature T23 with the cooling air design temperature Td, and if the extraction temperature T23 is higher than the design temperature Td, the control device 51 sends a control signal S42 to the flow rate adjustment valve 42 to adjust the valve opening degree. The amount of water is increased (Wc = Wc + ΔWc), and feedback control is performed so that the extraction temperature T23 becomes equal to or lower than the design temperature Td.

以上の制御方法により、外気温度が低くて圧縮機吸気への噴霧水量が制限される場合でも、タービン冷却のために圧縮機から抽気した空気温度を設計温度以下に制御して、ガスタービン設備を運転することができる。   With the above control method, even when the outside air temperature is low and the amount of water sprayed into the compressor intake air is limited, the temperature of the air extracted from the compressor for turbine cooling is controlled below the design temperature, and the gas turbine equipment is You can drive.

図4は、本発明の他の実施形態を示すガスタービン設備である。本実施形態では、空気冷却器5から増湿器6に供給される圧縮空気の一部を分岐させて、この圧縮空気を圧縮機の抽気ライン11に供給する空気供給ライン13を設けたことに特徴がある。   FIG. 4 is a gas turbine facility showing another embodiment of the present invention. In the present embodiment, a part of the compressed air supplied from the air cooler 5 to the humidifier 6 is branched and an air supply line 13 for supplying this compressed air to the bleed line 11 of the compressor is provided. There are features.

図4のシステム系統図と図5の制御ブロック図とを用いて、本発明のシステムの制御方法を説明する。   The system control method of the present invention will be described with reference to the system diagram of FIG. 4 and the control block diagram of FIG.

圧縮機の吸気温度と吸気流量は温度測定器21と流量測定器31で測定され、制御装置52に温度測定信号T21と流量測定信号V31が送られる。これらの信号に基づいて、制御装置52は圧縮機入口空気温度が制限温度Toまで低下しないような最大噴霧水量を計算し(Wmax=f1(T21,V31,To))、流量調節弁41に制御信号S41を送って弁開度を調節することにより水噴霧器9での噴霧水量を制御する。圧縮機入口空気温度は温度測定器22で測定され、測定信号T22が制御装置52に送られる。制御装置52は圧縮機入口空気温度T22と制限温度Toとを比較し、圧縮機入口空気温度T22が制限温度Toより低い場合には、流量調節弁41へ制御信号S41を送って弁開度を調節し、水噴霧器9での噴霧水量を減らす(W=W−ΔW)。以上の制御方法により、圧縮機吸気中の水分が凍結することによる圧縮機効率低下や翼信頼性低下を防止することができる。   The intake air temperature and the intake air flow rate of the compressor are measured by the temperature measuring device 21 and the flow measuring device 31, and the temperature measuring signal T 21 and the flow measuring signal V 31 are sent to the control device 52. Based on these signals, the control device 52 calculates the maximum spray water amount so that the compressor inlet air temperature does not decrease to the limit temperature To (Wmax = f1 (T21, V31, To)) and controls the flow rate adjustment valve 41. The amount of water sprayed in the water sprayer 9 is controlled by sending a signal S41 and adjusting the valve opening. The compressor inlet air temperature is measured by the temperature measuring device 22, and a measurement signal T 22 is sent to the control device 52. The control device 52 compares the compressor inlet air temperature T22 with the limit temperature To. If the compressor inlet air temperature T22 is lower than the limit temperature To, the control device 52 sends a control signal S41 to the flow control valve 41 to change the valve opening degree. Adjust and reduce the amount of water sprayed in the water sprayer 9 (W = W−ΔW). With the above control method, it is possible to prevent a decrease in compressor efficiency and blade reliability due to freezing of moisture in the compressor intake air.

一方、タービン冷却のために圧縮機から抽気された空気温度と流量は温度測定器23と流量測定器33で測定され、制御装置52に温度測定信号T23と流量測定信号V33が送られる。さらに、空気冷却器5で冷却された空気の一部を分岐させた冷却空気温度は温度測定器24で測定され、測定信号T24が制御装置52に送られる。これらの信号に基づいて、制御装置52は抽気ライン11への冷却空気供給量Vbと圧縮機からの抽気流量Vcを計算し(Vb=f3(T23,V33,T24)、Vc=(T23,V33,T24))、流量調節弁43と44にそれぞれ制御信号S43とS44を送って弁開度を調節することにより、冷却空気供給量と抽気流量を制御する。   On the other hand, the air temperature and flow rate extracted from the compressor for cooling the turbine are measured by the temperature measuring device 23 and the flow rate measuring device 33, and the temperature measurement signal T 23 and the flow rate measurement signal V 33 are sent to the control device 52. Further, the cooling air temperature obtained by branching a part of the air cooled by the air cooler 5 is measured by the temperature measuring device 24, and a measurement signal T 24 is sent to the control device 52. Based on these signals, the control device 52 calculates the cooling air supply amount Vb to the extraction line 11 and the extraction flow rate Vc from the compressor (Vb = f3 (T23, V33, T24), and Vc = (T23, V33). , T24)), control signals S43 and S44 are sent to the flow rate adjusting valves 43 and 44, respectively, to adjust the valve opening, thereby controlling the cooling air supply amount and the extraction flow rate.

制御装置52は抽気温度T23と冷却空気設計温度Tdを比較し、抽気温度T23が設計温度Tdより高い場合には、流量調節弁43と44に制御信号S43とS44を送って弁開度を調節することにより冷却空気供給量Vcの割合を増加させ(Vc=Vc+ΔVc)、抽気温度T23が設計温度Td以下になるようにフィードバック制御をする。タービン冷却に使用する空気量が増加するとガスタービンの熱効率が低下するため、空気冷却器5からの冷却空気供給量Vcと圧縮機1からの抽気流量Vbの合計はなるべく少なくすることが好ましい。したがって、流量調節弁43と44を使って、タービン冷却に使用する空気量を最小限に抑えるように制御装置52で制御する。例えば、冷却空気供給量Vcを増加させた場合には、抽気流量Vbを減少させる制御(Vb=Vb−ΔVb)を行う。   The control device 52 compares the extraction temperature T23 and the cooling air design temperature Td. If the extraction temperature T23 is higher than the design temperature Td, the control device 52 sends control signals S43 and S44 to the flow rate adjustment valves 43 and 44 to adjust the valve opening degree. As a result, the ratio of the cooling air supply amount Vc is increased (Vc = Vc + ΔVc), and feedback control is performed so that the extraction temperature T23 becomes equal to or lower than the design temperature Td. When the amount of air used for turbine cooling increases, the thermal efficiency of the gas turbine decreases. Therefore, the sum of the cooling air supply amount Vc from the air cooler 5 and the extraction flow rate Vb from the compressor 1 is preferably as small as possible. Therefore, the control device 52 controls the flow control valves 43 and 44 so as to minimize the amount of air used for turbine cooling. For example, when the cooling air supply amount Vc is increased, control (Vb = Vb−ΔVb) for decreasing the extraction flow rate Vb is performed.

以上の制御方法により、外気温度が低くて圧縮機吸気への噴霧水量が制限される場合でも、タービン冷却に使用する空気温度を設計温度以下に制御し、また使用空気流量を最小限としてガスタービン設備を運転することができる。   With the above control method, even when the outside air temperature is low and the amount of water sprayed into the compressor intake air is limited, the air temperature used for cooling the turbine is controlled below the design temperature, and the flow rate of the air used is minimized. The equipment can be operated.

図6は、本発明の他の実施形態を示すガスタービン設備である。本実施形態では、圧縮機からの抽気の一部を圧縮機の吸気へ戻す空気供給ライン14を設けたことに特徴がある。   FIG. 6 is a gas turbine facility showing another embodiment of the present invention. The present embodiment is characterized in that an air supply line 14 for returning a part of the bleed air from the compressor to the intake air of the compressor is provided.

図6のシステム系統図と図7の制御ブロック図とを用いて、本発明のシステムの制御方法を説明する。   The system control method of the present invention will be described with reference to the system diagram of FIG. 6 and the control block diagram of FIG.

圧縮機1の吸気温度と吸気流量は温度測定器21と流量測定器31で測定され、制御装置53に温度測定信号T21と流量測定信号V31が送られる。これらの信号に基づいて、制御装置53は圧縮機入口空気温度が制限温度Toまで低下しないような最大噴霧水量を計算し(Wmax=f1(T21,V31,To))、流量調節弁41に制御信号S41を送って弁開度を調節することにより水噴霧器9での噴霧水量を制御する。圧縮機入口空気温度は温度測定器22で測定され、測定信号T22が制御装置53に送られる。制御装置53は圧縮機入口空気温度T22と制限温度Toとを比較し、圧縮機入口空気温度T22が制限温度Toより低い場合には、流量調節弁41へ制御信号S41を送って弁開度を調節し、水噴霧器9での噴霧水量を減らす(W=W−ΔW)。以上の制御方法により、圧縮機吸気中の水分が凍結することによる圧縮機効率低下や翼信頼性低下を防止することができる。   The intake air temperature and the intake air flow rate of the compressor 1 are measured by the temperature measuring device 21 and the flow measuring device 31, and the temperature measurement signal T 21 and the flow measurement signal V 31 are sent to the control device 53. Based on these signals, the control device 53 calculates the maximum spray water amount so that the compressor inlet air temperature does not decrease to the limit temperature To (Wmax = f1 (T21, V31, To)) and controls the flow rate adjustment valve 41. The amount of water sprayed in the water sprayer 9 is controlled by sending a signal S41 and adjusting the valve opening. The compressor inlet air temperature is measured by the temperature measuring device 22, and a measurement signal T 22 is sent to the control device 53. The control device 53 compares the compressor inlet air temperature T22 with the limit temperature To. If the compressor inlet air temperature T22 is lower than the limit temperature To, the controller 53 sends a control signal S41 to the flow control valve 41 to change the valve opening degree. Adjust and reduce the amount of water sprayed in the water sprayer 9 (W = W−ΔW). With the above control method, it is possible to prevent a decrease in compressor efficiency and blade reliability due to freezing of moisture in the compressor intake air.

続いて、タービン冷却のために圧縮機1から抽気された空気温度と流量は温度測定器23と流量測定器33で測定され、制御装置53に温度測定信号T23と流量測定信号V33が送られる。制御装置53は抽気温度T23と冷却空気設計温度Tdを比較し、抽気温度T23が設計温度Tdより高い場合には、流量調節弁44と45に制御信号S44とS45を送って弁開度を調節することにより、圧縮機抽気の一部を吸気ライン15へ供給して吸気加熱する。なお、流量調節弁44と45の開度を同時に調節するのは、タービン冷却空気量を一定に保つためである。   Subsequently, the temperature and flow rate of air extracted from the compressor 1 for cooling the turbine are measured by the temperature measuring device 23 and the flow rate measuring device 33, and a temperature measurement signal T 23 and a flow rate measurement signal V 33 are sent to the control device 53. The control device 53 compares the extraction temperature T23 and the cooling air design temperature Td. If the extraction temperature T23 is higher than the design temperature Td, the control device 53 sends control signals S44 and S45 to the flow rate adjustment valves 44 and 45 to adjust the valve opening degree. As a result, a part of the compressor bleed air is supplied to the intake line 15 to heat the intake air. The reason why the opening amounts of the flow rate adjusting valves 44 and 45 are adjusted simultaneously is to keep the amount of turbine cooling air constant.

この後、最初に説明した吸気噴霧水量の制御手順へ戻り、温度上昇した吸気への噴霧水量を増加させて湿分を増やし、最終的にタービン冷却に使用する圧縮機からの抽気温度が設計値以下となるようにフィードバック制御する。   After this, the procedure returns to the control procedure for the intake spray water amount described above, increasing the amount of spray water to the intake air whose temperature has increased, increasing the moisture, and finally the extraction temperature from the compressor used for turbine cooling is the design value. Feedback control is performed so as to be as follows.

以上の制御方法により、外気温度が低くて圧縮機吸気への噴霧水量が制限される場合でも、タービン冷却に使用する空気温度を設計温度以下に制御して、ガスタービン設備を運転することができる。また、外気温度に関わらず圧縮機吸気温度を最適制御できるという利点がある。さらに、通常、圧縮機吸気への水噴霧ができないような寒冷地においても空気への水噴霧が可能であり、ガスタービンの出力と効率を向上した運転ができ、設備稼働率を向上することができる。   By the above control method, even when the outside air temperature is low and the amount of spray water to the compressor intake air is limited, the air temperature used for turbine cooling can be controlled below the design temperature and the gas turbine equipment can be operated. . Further, there is an advantage that the compressor intake temperature can be optimally controlled regardless of the outside air temperature. In addition, it is possible to spray water on air even in cold regions where water cannot normally be sprayed on the compressor intake, which can improve the output and efficiency of the gas turbine, and improve the equipment operating rate. it can.

圧縮機の吸気中に水噴霧するガスタービン設備において、噴霧水が凍結する外気温度においてもガスタービン設備を安全に運転することができる。   In a gas turbine facility that sprays water during intake of a compressor, the gas turbine facility can be operated safely even at an outside air temperature at which the spray water freezes.

本発明によるガスタービン設備の系統図である。It is a systematic diagram of the gas turbine installation by this invention. 吸気噴霧水量に対する圧縮機入口空気温度と抽気温度の変化の模式図である。It is a schematic diagram of the change of compressor inlet air temperature and extraction temperature with respect to the amount of intake spray water. 本発明によるガスタービン設備の制御ブロック図である。It is a control block diagram of the gas turbine equipment by this invention. 本発明によるガスタービン設備の系統図である。It is a systematic diagram of the gas turbine installation by this invention. 本発明によるガスタービン設備の制御ブロック図である。It is a control block diagram of the gas turbine equipment by this invention. 本発明によるガスタービン設備の系統図である。It is a systematic diagram of the gas turbine installation by this invention. 本発明によるガスタービン設備の制御ブロック図である。It is a control block diagram of the gas turbine equipment by this invention.

符号の説明Explanation of symbols

1 圧縮機
2 ガスタービン
3 発電機
4 燃焼器
5 空気冷却器
6 増湿器
7 再生器
8 給水加熱器
9,10 水噴霧器
11 抽気ライン
12 噴霧水供給ライン
13,14 空気供給ライン
15 吸気ライン
21,22,23,24 温度測定器
31,33 流量測定器
41,42,43,44,45 流量調節弁
51,52,53 制御装置
DESCRIPTION OF SYMBOLS 1 Compressor 2 Gas turbine 3 Generator 4 Combustor 5 Air cooler 6 Humidifier 7 Regenerator 8 Feed water heater 9, 10 Water sprayer 11 Extraction line 12 Spray water supply line 13, 14 Air supply line 15 Intake line 21 , 22, 23, 24 Temperature measuring device 31, 33 Flow rate measuring device 41, 42, 43, 44, 45 Flow control valve 51, 52, 53 Control device

Claims (4)

空気を圧縮する圧縮機と、
該圧縮機から吐出した空気と燃料とを燃焼させる燃焼器と、
該燃焼器の燃焼ガスによって駆動されるタービンと、
前記圧縮機の上流側に設置され、前記圧縮機に供給される空気に水を噴霧する噴霧装置と、
前記圧縮機から抽気した圧縮空気を前記タービンに供給する抽気経路とを備えたガスタービン設備において、
前記抽気経路で抽気された圧縮空気に水を噴霧する水噴霧器を設け
前記圧縮機の吸気温度を測定する吸気温度測定器と、前記圧縮機から抽気した空気温度を測定する抽気温度測定器と、前記吸気温度測定器と抽気温度測定器の測定値により前記圧縮機の吸気に対する噴霧水量と前記圧縮機から抽気された空気への噴霧水量を調節する制御装置を備えたことを特徴とするガスタービン設備。
A compressor for compressing air;
A combustor that combusts air and fuel discharged from the compressor;
A turbine driven by the combustion gas of the combustor;
A spraying device installed on the upstream side of the compressor and spraying water on the air supplied to the compressor;
In a gas turbine facility comprising an extraction passage for supplying compressed air extracted from the compressor to the turbine,
A water sprayer for spraying water on the compressed air extracted in the extraction path ;
An intake air temperature measuring device for measuring the intake air temperature of the compressor, an extraction temperature measuring device for measuring the temperature of the air extracted from the compressor, and the measured values of the compressor according to the measured values of the intake air temperature measuring device and the extraction temperature measuring device. A gas turbine equipment comprising a control device for adjusting an amount of spray water for intake air and an amount of spray water for air extracted from the compressor .
空気を圧縮する圧縮機と、
該圧縮機から吐出した空気と燃料とを燃焼させる燃焼器と、
該燃焼器の燃焼ガスによって駆動されるタービンと、
前記圧縮機の上流側に設置され、前記圧縮機に供給される空気に水を噴霧する噴霧装置と、
前記圧縮機から吐出された圧縮空気を加湿する増湿器と、
該増湿器で加湿された圧縮空気を前記タービンの排ガスにより加熱する再生器と、
前記圧縮機から抽気した圧縮空気を前記タービンに供給する抽気経路とを備えたガスタービン設備において、
前記抽気経路で抽気された圧縮空気に水を噴霧する水噴霧器を設け
前記圧縮機の吸気温度を測定する吸気温度測定器と、前記圧縮機から抽気した空気温度を測定する抽気温度測定器と、前記吸気温度測定器と抽気温度測定器の測定値により前記圧縮機の吸気に対する噴霧水量と前記圧縮機から抽気された空気への噴霧水量を調節する制御装置を備えたことを特徴とするガスタービン設備。
A compressor for compressing air;
A combustor that combusts air and fuel discharged from the compressor;
A turbine driven by the combustion gas of the combustor;
A spraying device installed on the upstream side of the compressor and spraying water on the air supplied to the compressor;
A humidifier for humidifying the compressed air discharged from the compressor;
A regenerator for heating the compressed air humidified by the humidifier by the exhaust gas of the turbine;
In a gas turbine facility comprising an extraction passage for supplying compressed air extracted from the compressor to the turbine,
A water sprayer for spraying water on the compressed air extracted in the extraction path ;
An intake air temperature measuring device for measuring the intake air temperature of the compressor, an extraction temperature measuring device for measuring the temperature of the air extracted from the compressor, and the measured values of the compressor according to the measured values of the intake air temperature measuring device and the extraction temperature measuring device. A gas turbine equipment comprising a control device for adjusting an amount of spray water for intake air and an amount of spray water for air extracted from the compressor .
請求項に記載のガスタービン設備において、
前記制御装置は、前記噴霧装置により噴霧される噴霧水が凍結する条件を満足する場合には前記噴霧装置による水噴霧量を低減させ、この水噴霧量の低減により上昇する抽気空気の温度を低下させる水量に前記水噴霧器を制御することを特徴とするガスタービン設備。
In the gas turbine equipment according to claim 1 ,
The control device reduces the water spray amount by the spray device when the spray water sprayed by the spray device satisfies the condition for freezing, and lowers the temperature of the extracted air that rises by reducing the water spray amount. A gas turbine facility, wherein the water sprayer is controlled to an amount of water to be generated.
空気を圧縮する圧縮機と、該圧縮機から吐出した空気と燃料とを燃焼させる燃焼器と、該燃焼器の燃焼ガスによって駆動されるタービンと、前記圧縮機の上流側に設置され、前記圧縮機に供給される空気に水を噴霧する噴霧装置と、前記圧縮機から抽気した圧縮空気を前記タービンに供給する抽気経路と、前記抽気経路で抽気された圧縮空気に水を噴霧する水噴霧器を備え、前記抽気経路で抽気された抽気温度が前記タービンの冷却に必要な冷却空気設計温度より高い場合に、前記水噴霧器の噴霧水量を増加させることを特徴とするガスタービン設備の制御方法。   A compressor that compresses air; a combustor that combusts air and fuel discharged from the compressor; a turbine that is driven by combustion gas of the combustor; and the compressor that is installed upstream of the compressor. A spraying device for spraying water onto the air supplied to the machine, an extraction path for supplying compressed air extracted from the compressor to the turbine, and a water sprayer for spraying water on the compressed air extracted in the extraction path A method for controlling gas turbine equipment, comprising: increasing a spray water amount of the water sprayer when a temperature of the air extracted in the air extraction path is higher than a design temperature of cooling air necessary for cooling the turbine.
JP2008003809A 2007-04-27 2008-01-11 Gas turbine equipment Expired - Fee Related JP4919975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008003809A JP4919975B2 (en) 2007-04-27 2008-01-11 Gas turbine equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007117920 2007-04-27
JP2007117920 2007-04-27
JP2008003809A JP4919975B2 (en) 2007-04-27 2008-01-11 Gas turbine equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011238158A Division JP5256335B2 (en) 2007-04-27 2011-10-31 Gas turbine equipment

Publications (2)

Publication Number Publication Date
JP2008291829A JP2008291829A (en) 2008-12-04
JP4919975B2 true JP4919975B2 (en) 2012-04-18

Family

ID=40166789

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008003809A Expired - Fee Related JP4919975B2 (en) 2007-04-27 2008-01-11 Gas turbine equipment
JP2011238158A Expired - Fee Related JP5256335B2 (en) 2007-04-27 2011-10-31 Gas turbine equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011238158A Expired - Fee Related JP5256335B2 (en) 2007-04-27 2011-10-31 Gas turbine equipment

Country Status (1)

Country Link
JP (2) JP4919975B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8707709B2 (en) 2009-03-31 2014-04-29 General Electric Company Systems and methods for controlling compressor extraction cooling
US8267639B2 (en) * 2009-03-31 2012-09-18 General Electric Company Systems and methods for providing compressor extraction cooling
JP5787857B2 (en) * 2012-09-27 2015-09-30 三菱日立パワーシステムズ株式会社 Control method for gas turbine cooling system, control device for executing the method, and gas turbine equipment equipped with the control device
US10272475B2 (en) * 2012-11-07 2019-04-30 General, Electric Company Offline compressor wash systems and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257006A (en) * 1998-03-17 1999-09-21 Hitachi Ltd Power generation system
JP2005105907A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Gas turbine facility and its control method
JP4483505B2 (en) * 2004-09-30 2010-06-16 株式会社日立製作所 GAS TURBINE EQUIPMENT AND ITS CONTROL DEVICE, GAS TURBINE EQUIPMENT CONTROL METHOD AND TURBINE COOLING COOLING METHOD
JP4691950B2 (en) * 2004-10-14 2011-06-01 株式会社日立製作所 Gas turbine and refrigerant supply method thereof

Also Published As

Publication number Publication date
JP5256335B2 (en) 2013-08-07
JP2008291829A (en) 2008-12-04
JP2012021534A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US7353655B2 (en) Method and apparatus for achieving power augmentation in gas turbine using wet compression
JP4571273B2 (en) How to operate an industrial gas turbine for optimum performance.
EP1898066B1 (en) High humidity gas turbine system with humidifier bypass
US7353656B2 (en) Method and apparatus for achieving power augmentation in gas turbines using wet compression
JP2007170384A (en) Method for controlling turbine wheelspace temperature
CA2682865A1 (en) A system and method for changing the efficiency of a combustion turbine
JP5256335B2 (en) Gas turbine equipment
US20100146978A1 (en) Gas Turbine Base Load Control by Chilling Modulation
JP2585324B2 (en) Gas turbine control method and apparatus
JP4841497B2 (en) Co-generation power generation facility using single-shaft combined cycle power generation facility and operation method thereof
WO2019138709A1 (en) Fuel supply system, gas turbine, electricity generation plant, control method, and program
JP2013057278A (en) Gas turbine
JP4684968B2 (en) High humidity gas turbine plant and control method thereof
WO2022070960A1 (en) Combined cycle plant, method for starting up same, and start-up control program for executing said method
US6705073B2 (en) Gas turbine plant and process for limiting a critical process value
JP5897180B2 (en) gas turbine
JP6999858B2 (en) How to operate gas turbine equipment with gaseous fuel
JP2005105907A (en) Gas turbine facility and its control method
JP2005127203A (en) Control device for gas turbine facilities
JP4898597B2 (en) Gas turbine equipment and operation method of gas turbine equipment
JPH0835435A (en) Fuel heating gas turbine plant
JP4550677B2 (en) High humidity gas turbine equipment and operation method thereof
JP2003065069A (en) Control device for gas turbine equipment
JP2000045791A (en) Gas turbine intake controller
JPH09291833A (en) Gas turbine air compressor recirculation flow controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R151 Written notification of patent or utility model registration

Ref document number: 4919975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees