JP4919421B2 - Process for producing (R) -3-morpholine carboxylic acid - Google Patents
Process for producing (R) -3-morpholine carboxylic acid Download PDFInfo
- Publication number
- JP4919421B2 JP4919421B2 JP2007146535A JP2007146535A JP4919421B2 JP 4919421 B2 JP4919421 B2 JP 4919421B2 JP 2007146535 A JP2007146535 A JP 2007146535A JP 2007146535 A JP2007146535 A JP 2007146535A JP 4919421 B2 JP4919421 B2 JP 4919421B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- carboxylic acid
- acid
- oxalidine
- exchange resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Description
本発明は、L−4−オキサリジンから、医薬品原料及び中間体として有用な高光学純度を有する(R)‐3‐モルフォリンカルボン酸を製造する方法に関する。 The present invention relates to a method for producing (R) -3-morpholine carboxylic acid having high optical purity useful as a pharmaceutical raw material and an intermediate from L-4-oxalidine.
L−4−オキサリジン及び(R)‐3‐モルフォリンカルボン酸は下記の化学式で表すことのできる化合物である。
薬理活性を有する化合物の創製において、3−モルフォリンカルボン酸を分子内に含んだ化合物や、3−モルフォリンカルボン酸を合成中間体または原料として利用した例は多数あり(非特許文献1、特許文献1〜8参照)、したがって、特に光学純度の高い光学活性3−モルフォリンカルボン酸は、合成医薬品の原料として重要な化合物である。 In the creation of a compound having pharmacological activity, there are many examples in which a compound containing 3-morpholine carboxylic acid is used in the molecule or 3-morpholine carboxylic acid is used as a synthetic intermediate or a raw material (Non-patent Document 1, Patent) Therefore, optically active 3-morpholine carboxylic acid having a particularly high optical purity is an important compound as a raw material for synthetic pharmaceuticals.
従来の光学活性(R)‐3‐モルフォリンカルボン酸を製造する方法としては、光学活性アジリジン−2−カルボン酸誘導体を出発物質として、3段階の化学反応(2−クロロエタンの付加、ベンジル基の脱離およびトリエチルアミンを環化剤として使用する環化反応)を経て製造する方法が知られているのみである(非特許文献2、3参照)。 As a conventional method for producing optically active (R) -3-morpholine carboxylic acid, an optically active aziridine-2-carboxylic acid derivative is used as a starting material, and a three-step chemical reaction (addition of 2-chloroethane, benzyl group) There is only known a production method through elimination and a cyclization reaction using triethylamine as a cyclizing agent (see Non-Patent Documents 2 and 3).
その他、光学不活性であるラセミ体3‐モルフォリンカルボン酸の製造方法として、N−アセチルモルフォリンを出発物質にして有機合成でラセミ体の3‐モルフォリンカルボン酸を製造する方法(非特許文献4参照)、2−アセトアミド−2−(β−クロロエトキシメチル)マロン酸エステル又はメチル2−ブロモ−3−(β−クロロエトキシ)−プロピオン酸から有機合成でラセミ体の3‐モルフォリンカルボン酸を製造する方法(非特許文献5参照)が知られている。 In addition, as a method for producing optically inactive racemic 3-morpholine carboxylic acid, a method for producing racemic 3-morpholine carboxylic acid by organic synthesis using N-acetylmorpholine as a starting material (non-patent document) 4), 2-acetamido-2- (β-chloroethoxymethyl) malonic acid ester or methyl 2-bromo-3- (β-chloroethoxy) -propionic acid in an organic synthesis by racemic 3-morpholinecarboxylic acid There is known a method for manufacturing (see Non-Patent Document 5).
また、本発明の類似技術として、(1)L−リジンを出発物質として、亜硝酸ナトリウムによるα位アミノ基のジアゾ化および水酸化バリウムや水酸化ナトリウムを環化剤として用いる環化反応によって光学活性ピペコリン酸を合成する方法(非特許文献6、特許文献9参照)、(2)L−4−オキサリジンを出発物質として、酵素によるα位アミノの酸化および酵素による還元反応を経て(S)−3−モルフォリンカルボン酸を合成する方法(特許文献10参照)が知られている。
非特許文献2及び3に記載されているような光学活性アジリジン−2−カルボン酸誘導体から光学活性(R)‐3‐モルフォリンカルボン酸を合成する方法は、各反応終了時に中間体を反応液から取り出す工程が必要であり、操作が煩雑であることから生産コストが高くなる問題点があり、工業的には適さない方法である。 The method of synthesizing optically active (R) -3-morpholine carboxylic acid from optically active aziridine-2-carboxylic acid derivatives as described in Non-Patent Documents 2 and 3 is a method in which an intermediate is used as a reaction solution at the end of each reaction. This requires a process for taking out the product, and has a problem that the production cost is high because the operation is complicated, which is not suitable industrially.
また、類似技術(1)の非特許文献6には、L−4−オキサリジンを出発物質として、光学活性3−モルフォリンカルボン酸を合成することは記載されていないが、仮に、それらの技術をそのまま応用した場合には下記の問題が生じる。例えば、非特許文献6の類似技術では精製方法の中に、ピペコリン酸をトシル化して精製し、更にトシル基をはずす工程が記載されているが、操作が煩雑となり生産コストが高くなる問題点があることに加え、光学純度自体も低い。 Further, Non-Patent Document 6 of the similar technique (1) does not describe synthesizing optically active 3-morpholine carboxylic acid using L-4-oxalidine as a starting material. When applied as it is, the following problems arise. For example, in the similar technique of Non-Patent Document 6, a process for purifying pipecolic acid by tosylation and further removing the tosyl group is described in the purification method. However, there is a problem that the operation becomes complicated and the production cost increases. In addition to that, the optical purity itself is low.
また、特許文献9の類似技術には、出発物質L−リジンから(S)−ピペコリン酸が生成することが記載されており、キラル中心の絶対配置が保持される点が、本願のキラル中心の絶対配置が反転する点と異なっている。また、特許文献9には、精製方法の具体的な記載もなく、安価に精製を行うことができないという問題点がある。
類似技術(2)の特許文献10は、本発明と同じL−4−オキサリジンを出発物質としているが、酵素法による(S)−3−モルフォリンカルボン酸の製造方法である。
In addition, the similar technique of Patent Document 9 describes that (S) -pipecolic acid is generated from the starting material L-lysine, and the absolute configuration of the chiral center is maintained. The difference is that the absolute configuration is reversed. In addition, Patent Document 9 has a problem that there is no specific description of a purification method and purification cannot be performed at low cost.
Patent Document 10 of the similar technique (2) is a method for producing (S) -3-morpholinecarboxylic acid by an enzymatic method, using the same L-4-oxalidine as that of the present invention as a starting material.
本発明は従来の課題を解決するためになされたもので、高光学純度を有する(R)‐3‐モルフォリンカルボン酸を簡便、安価に製造する方法を提供することを課題とする。 The present invention has been made to solve the conventional problems, and an object of the present invention is to provide a simple and inexpensive method for producing (R) -3-morpholinecarboxylic acid having high optical purity.
本発明者らは、上記の課題を解決すべく鋭意研究を行った。その結果、出発物質としてL−4−オキサリジンを使用し、L−4−オキサリジンをジアゾ化剤でジアゾ化し、単離・精製することなく環化剤で環化させる製造方法を用いることで、非特許文献2及び3に記載されているような反応溶液中から中間体を精製して合成していくという問題点を解決した。 The present inventors have conducted intensive research to solve the above problems. As a result, by using a production method in which L-4-oxalidine is used as a starting material, L-4-oxalidine is diazotized with a diazotizing agent, and cyclized with a cyclizing agent without isolation and purification, The problem of purifying and synthesizing the intermediate from the reaction solution as described in Patent Documents 2 and 3 was solved.
また、精製方法として強酸性陽イオン交換樹脂(H+型)への(R)‐3‐モルフォリンカルボン酸の吸着・脱着、強酸性陽イオン交換樹脂(NH4 +型)及び強酸性陽イオン交換樹脂(Ca2+型)を使用した不純物の除去という簡便な方法を新たに見出した。これによって、精製に関する問題点も解決し、高光学純度の(R)‐3‐モルフォリンカルボン酸の工業的製造方法を完成させた。 Further, as a purification method, adsorption / desorption of (R) -3-morpholine carboxylic acid to strong acid cation exchange resin (H + type), strong acid cation exchange resin (NH 4 + type) and strong acid cation A simple method of removing impurities using an exchange resin (Ca 2+ type) was newly found. As a result, problems relating to purification were solved, and an industrial production method of (R) -3-morpholinecarboxylic acid with high optical purity was completed.
したがって、本発明は、下記のA工程〜C工程、すなわち
(1)L−4−オキサリジンを酸性溶媒下にジアゾ化剤でジアゾ化し、このジアゾニウム塩溶液をアルカリ剤でpH7.0に調製するA工程;
(2)A工程で得た溶液に、L−4−オキサリジンに対して0.5〜1.2モル当量の水酸化ナトリウム、水酸化カリウム又は水酸化バリウムを加えて環化反応を行い、粗(R)‐3‐モルフォリンカルボン酸溶液を生成させるB工程;
(3)B工程で得た粗(R)‐3‐モルフォリンカルボン酸溶液のpHを6.5〜7.0に調製した後、イオン交換樹脂を用いて精製するC工程;
を含むことを特徴とする、高光学純度を有する(R)‐3‐モルフォリンカルボン酸の製造方法に関する。
Therefore, the present invention provides the following Steps A to C: (1) A method in which L-4-oxalidine is diazotized with a diazotizing agent in an acidic solvent, and the diazonium salt solution is adjusted to pH 7.0 with an alkaline agent. Process;
(2) To the solution obtained in step A, 0.5 to 1.2 molar equivalents of sodium hydroxide, potassium hydroxide or barium hydroxide are added to L-4-oxalidine to carry out a cyclization reaction, (B) Step B for producing a 3-morpholinecarboxylic acid solution;
(3) Step C, in which the pH of the crude (R) -3-morpholine carboxylic acid solution obtained in Step B is adjusted to 6.5 to 7.0 and then purified using an ion exchange resin;
The present invention relates to a process for producing (R) -3-morpholine carboxylic acid having high optical purity.
本発明の製造方法は、中間体を反応系から取り出すなどの煩雑な操作を不要とし、同一溶液内で反応操作を行うことを可能とする。また、本発明は、精製に関しても全て水溶媒系で操作できること、(R)‐3‐モルフォリンカルボン酸を誘導体化するなどの工程が不要であるという、工業的に生産可能な方法を提供することができる。従って、本発明の製造方法を実施することにより、効率良く簡便、安価に高光学純度を有する(R)‐3‐モルフォリンカルボン酸を製造することができる。 The production method of the present invention does not require a complicated operation such as taking out the intermediate from the reaction system, and enables the reaction operation to be performed in the same solution. In addition, the present invention provides an industrially producible method in which purification can be performed entirely in an aqueous solvent system and a step such as derivatization of (R) -3-morpholine carboxylic acid is unnecessary. be able to. Therefore, by carrying out the production method of the present invention, (R) -3-morpholine carboxylic acid having high optical purity can be produced efficiently and simply at low cost.
以下に本発明の製造方法について詳細に説明する。
本発明の出発物質であるL−4−オキサリジンは、市販のL−4−オキサリジン一塩酸塩(和光純薬工業社製及びAldrich社製)を購入して使用することができる。また、公知の方法によって微生物による発酵生産物から製造することもできる。一例を挙げると非特許文献7に記載のように、Streptomyces chartreusis又はStreptomyces erythrochromogenesに属する放線菌を培養し、培養液中からL−4−オキサリジンを一塩酸塩として分離・精製することが可能である。また、新たにL−4−オキサリジン生産微生物を自然界から分離して製造に使用してもよい。発酵生産によってL−4−オキサリジンを製造することで、安価に出発物質としてのL−4−オキサリジンを容易に入手することができる。
The production method of the present invention will be described in detail below.
L-4-oxalidine, which is a starting material of the present invention, can be purchased from commercially available L-4-oxalidine monohydrochloride (manufactured by Wako Pure Chemical Industries, Ltd. and Aldrich). Moreover, it can also manufacture from the fermentation product by microorganisms by a well-known method. For example, as described in Non-Patent Document 7, it is possible to cultivate actinomycetes belonging to Streptomyces chartreusis or Streptomyces erythrochromogenes, and to isolate and purify L-4-oxalidine as monohydrochloride from the culture solution. . Moreover, you may isolate | separate newly L-4-oxalidine production microorganisms from the natural world, and may use for manufacture. By producing L-4-oxalidine by fermentation production, L-4-oxalidine as a starting material can be easily obtained at low cost.
L−4−オキサリジンを酸性溶媒下にジアゾ化剤でジアゾ化する本方法のA工程は、次のように行うことができる。
ジアゾ化反応に使用できる溶媒としては、L−4−オキサリジンが溶解してジアゾ化が進行する溶媒であれば特に限定されないが、試薬の溶解性を考慮すると特に好ましいのは水である。
酸性溶媒の酸としては、鉱酸、有機酸などが使用できるが、好ましくは、塩酸、硫酸、臭化水素酸であり、特に好ましいのは、塩酸である。
ジアゾ化するときの塩酸の濃度としては、1〜13規定にするのが好ましい。より好ましくは、6〜12規定の範囲である。
使用するジアゾ化剤は、アミノ基をジアゾ化できる亜硝酸塩試薬が使用でき、例えば、亜硝酸ナトリウムまたは亜硝酸カリウムを挙げることができる。このなかで、好ましくは亜硝酸ナトリウムである。
ジアゾ化剤の添加量は、L−4−オキサリジンに対して、0.5〜5モル当量の間であり、より好ましくは、1〜2モル当量である。
ジアゾ化反応終了後、アルカリ剤を用いて中和する。この際に、pH計などを用いて厳密にpH7.0に中和する必要がある。その範囲外では光学純度が著しく低下するか、収率が低くなるという問題が生じる。使用するアルカリ剤は、水酸化ナトリウム、水酸化カリウムであることが好ましく、より好ましくは水酸化ナトリウムである。
Step A of this method of diazotizing L-4-oxalidine with a diazotizing agent in an acidic solvent can be performed as follows.
The solvent that can be used in the diazotization reaction is not particularly limited as long as L-4-oxalysine is dissolved and diazotization proceeds, but water is particularly preferable in consideration of the solubility of the reagent.
As the acid of the acidic solvent, a mineral acid, an organic acid, or the like can be used, and hydrochloric acid, sulfuric acid, and hydrobromic acid are preferable, and hydrochloric acid is particularly preferable.
The concentration of hydrochloric acid when diazotizing is preferably 1 to 13 N. More preferably, it is the range of 6-12 regulation.
As the diazotizing agent to be used, a nitrite reagent capable of diazotizing an amino group can be used, and examples thereof include sodium nitrite and potassium nitrite. Of these, sodium nitrite is preferred.
The addition amount of the diazotizing agent is between 0.5 and 5 molar equivalents, more preferably 1 to 2 molar equivalents with respect to L-4-oxalidine.
After completion of the diazotization reaction, neutralization is performed using an alkali agent. At this time, it is necessary to strictly neutralize to pH 7.0 using a pH meter or the like. Outside this range, there arises a problem that the optical purity is significantly lowered or the yield is lowered. The alkali agent used is preferably sodium hydroxide or potassium hydroxide, more preferably sodium hydroxide.
A工程で得られた反応溶液から中間体を単離することなく、次のB工程の環化反応を同一溶液内で行うことができる。添加する環化剤としては、塩基性塩が挙げられる。例えば、水酸化ナトリウム、水酸化カリウムまたは水酸化バリウムを挙げることができる。これらのうち、好ましくは水酸化ナトリウムである。 The cyclization reaction of the next B step can be carried out in the same solution without isolating the intermediate from the reaction solution obtained in the A step. Examples of the cyclizing agent to be added include basic salts. For example, sodium hydroxide, potassium hydroxide or barium hydroxide can be mentioned. Of these, sodium hydroxide is preferred.
環化剤の添加量は、L−4−オキサリジンに対して0.5〜1.2モル当量を添加するが、より好ましくは1.0モル当量である。環化剤の添加量が1.2モル当量より多くなると、生成する(R)‐3‐モルフォリンカルボン酸の光学純度が顕著に低下するため、添加量を厳密に管理する必要がある。 The added amount of the cyclizing agent is 0.5 to 1.2 molar equivalents relative to L-4-oxalidine, more preferably 1.0 molar equivalents. If the addition amount of the cyclizing agent is more than 1.2 molar equivalents, the optical purity of the (R) -3-morpholine carboxylic acid to be produced is significantly lowered, so the addition amount must be strictly controlled.
環化剤を添加後に溶液を加熱して反応を促進させる。環化反応温度は25℃以上であれば特に限定されないが、冷却管を付けた反応容器で加熱還流を行うことがより好ましい。反応時間は環化反応が終了するまでであるが、加熱還流条件ではおよそ5〜30分である。 After adding the cyclizing agent, the solution is heated to promote the reaction. The cyclization reaction temperature is not particularly limited as long as it is 25 ° C. or higher, but it is more preferable to perform heating and reflux in a reaction vessel equipped with a cooling pipe. The reaction time is until the completion of the cyclization reaction, but it is about 5 to 30 minutes under heating and reflux conditions.
環化反応終了後、反応液を室温まで冷却してpHを6.5〜7.0に調整する。pHの調整剤はpHを6.5〜7.0に調節できるものであれば特に限定されないが、好ましくはジアゾ化反応に使用した酸と、中和に使用したアルカリ剤と同じ物質であり、より好ましくは塩酸と水酸化ナトリウムである。 After completion of the cyclization reaction, the reaction solution is cooled to room temperature and the pH is adjusted to 6.5 to 7.0. The pH adjuster is not particularly limited as long as the pH can be adjusted to 6.5 to 7.0, but is preferably the same substance as the acid used for the diazotization reaction and the alkali agent used for neutralization, More preferred are hydrochloric acid and sodium hydroxide.
pH調整した反応溶液中の陽イオン性物質をそのまま次のC工程である強酸性陽イオン交換樹脂(H+型)に吸着させてもよいが、樹脂の使用量を少なくするために、反応溶液中の塩類を減少させてからイオン交換樹脂処理を行うのが好ましい。原理的には水に対する塩類と(R)‐3‐モルフォリンカルボン酸の溶解度差を利用した塩類の析出除去である。 The cationic substance in the reaction solution whose pH has been adjusted may be adsorbed as it is to the strongly acidic cation exchange resin (H + type) which is the next C step, but in order to reduce the amount of resin used, the reaction solution It is preferable to carry out the ion exchange resin treatment after reducing the amount of salts therein. The principle is precipitation removal of salts using the difference in solubility between the salt and (R) -3-morpholinecarboxylic acid in water.
塩類を析出させるために反応溶液の濃縮を行うが、濃縮は(R)‐3‐モルフォリンカルボン酸が析出してこない水分量まで行えばよく、好ましくは(R)‐3‐モルフォリンカルボン酸量の1〜5倍量(w/w)である。 The reaction solution is concentrated in order to precipitate salts, but the concentration may be performed up to the amount of water in which (R) -3-morpholinecarboxylic acid does not precipitate, and preferably (R) -3-morpholinecarboxylic acid. 1 to 5 times the amount (w / w).
析出した塩類は一般的な方法よって固液分離することが出来る。例えばろ過や遠心分離などである。 The precipitated salts can be separated into solid and liquid by a general method. For example, filtration and centrifugation.
次に、C工程であるイオン交換樹脂による精製工程を説明する。強酸性陽イオン交換樹脂(H+型)にB工程で得られた反応溶液中の陽イオン性物質を吸着させ、溶出液で(R)‐3‐モルフォリンカルボン酸を含んだ陽イオン性物質を遊離させる。この時、使用する溶出液は樹脂から陽イオン性物質を遊離できる物質であれば特に限定されないが、好ましくはアンモニア水、塩酸水または塩化ナトリウム水溶液であり、より好ましくはアンモニア水である。 Next, the purification process using an ion exchange resin as the C process will be described. A cationic substance containing (R) -3-morpholinecarboxylic acid in the eluate by adsorbing the cationic substance in the reaction solution obtained in Step B onto a strongly acidic cation exchange resin (H + type) To release. At this time, the eluent to be used is not particularly limited as long as it can release a cationic substance from the resin, but is preferably aqueous ammonia, aqueous hydrochloric acid or aqueous sodium chloride, and more preferably aqueous ammonia.
上述の(R)‐3‐モルフォリンカルボン酸を含んだ溶出液を濃縮して、溶液中のアンモニアを除去する。その後、未反応のL−4−オキサリジンをNH4 +型の陽イオン交換樹脂に吸着させて溶液中から除去する。使用するイオン交換樹脂としては、強酸性陽イオン交換樹脂(NH4 +型)または弱酸性陽イオン交換樹脂(NH4 +型)を使用することができるが、強酸性陽イオン交換樹脂(NH4 +型)を使用することが好ましい。 The eluate containing the (R) -3-morpholine carboxylic acid is concentrated to remove ammonia in the solution. Thereafter, unreacted L-4-oxalidine is adsorbed on an NH 4 + type cation exchange resin and removed from the solution. The ion exchange resin used, may be used, strong acid cation exchange resin (NH 4 + type) or weakly acidic cation exchange resin (NH 4 + type), a strongly acidic cation exchange resin (NH 4 + Type) is preferably used.
強酸性陽イオン交換樹脂(NH4 +型)に未反応のL−4−オキサリジンを吸着させて除去した溶液を濃縮し、強酸性陽イオン交換樹脂(Ca2+型)を充填したカラムを用いてクロマトグラフィーを行う。この操作によって、(R)‐3‐モルフォリンカルボン酸の合成時に生成する副生産物(L−4−オキサリジンのα位アミノ酸が水酸化された、2−hydoroxy−3−(β−aminoethoxy)−propionic acidと推察している)と(R)‐3‐モルフォリンカルボン酸を分離することができる。副生産物はCa2+型の強酸性陽イオン交換樹脂に親和性があるため、(R)‐3‐モルフォリンカルボン酸より後に溶出する。そのため、簡単に両物質を相互に分離することができる。 Using a column packed with a strongly acidic cation exchange resin (Ca 2+ type), the solution removed by adsorbing unreacted L-4-oxalidine to the strong acid cation exchange resin (NH 4 + type) was concentrated and packed. Perform chromatography. By this operation, a by-product generated during the synthesis of (R) -3-morpholine carboxylic acid (2-hydroxy-3- (β-aminoethoxy)-, in which the α-amino acid of L-4-oxalidine is hydroxylated) — (R) -3-morpholine carboxylic acid can be separated. The by-product elutes after (R) -3-morpholine carboxylic acid because of its affinity for Ca 2+ type strongly acidic cation exchange resin. Therefore, both substances can be easily separated from each other.
その後、(R)‐3‐モルフォリンカルボン酸を含む画分を集めて活性炭で脱色し、濃縮後にメタノール又はエタノールを添加して結晶を析出させて、(R)‐3‐モルフォリンカルボン酸を回収することができる。
このようにして、高光学純度を有する(R)‐3‐モルフォリンカルボン酸を簡便に製造することができる。
Thereafter, the fraction containing (R) -3-morpholine carboxylic acid is collected, decolorized with activated carbon, and after concentration, methanol or ethanol is added to precipitate crystals, and (R) -3-morpholine carboxylic acid is added. It can be recovered.
In this way, (R) -3-morpholine carboxylic acid having high optical purity can be easily produced.
以上、本発明の実施形態を説明したが、本発明は、他の形態で実施することが可能である。 As mentioned above, although embodiment of this invention was described, this invention can be implemented with another form.
例えば、上述の実施形態では、C工程で陽イオン交換樹脂を使用する実施形態を示したが、本発明は、陰イオン交換樹脂を使用することもできる。さらに、シリカゲルクロマトグラフィーを用いた精製工程も可能である。 For example, in the above-described embodiment, the embodiment in which the cation exchange resin is used in the step C has been shown. However, in the present invention, an anion exchange resin can also be used. Furthermore, a purification process using silica gel chromatography is also possible.
本発明による製造方法の具体例を以下の実施例に示すが、本発明はこれらの実施例等により何ら限定されるものではない。 Although the specific example of the manufacturing method by this invention is shown in the following examples, this invention is not limited at all by these Examples.
本実施例では、3−モルフォリンカルボン酸の定量分析及び光学純度分析を以下の方法で実施した。 In this example, quantitative analysis and optical purity analysis of 3-morpholinecarboxylic acid were performed by the following methods.
定量分析は高速液体クロマトグラフィーを用い内部標準法にて算出した。分析条件は以下のとおりである。
カラム:YMC社製 Hydrosphere C18(内径4.6mm、カラム長25cm)
カラム温度:40℃
検出器:UV検出器
測定波長:254nm
溶媒:アセトニトリル:水(0.025%硫酸銅、0.025%オクタンスルフォン酸ナトリウム)=13:87
流速:1.0ml/min
内部標準物質:L−バリン
溶出時間:3−モルフォリンカルボン酸 5.4(min)
Quantitative analysis was calculated by internal standard method using high performance liquid chromatography. The analysis conditions are as follows.
Column: Hydrosphere C18 manufactured by YMC (inner diameter 4.6 mm, column length 25 cm)
Column temperature: 40 ° C
Detector: UV detector Measurement wavelength: 254 nm
Solvent: Acetonitrile: Water (0.025% copper sulfate, 0.025% sodium octanesulphonate) = 13: 87
Flow rate: 1.0 ml / min
Internal standard substance: L-valine Elution time: 3-morpholinecarboxylic acid 5.4 (min)
光学純度分析法はキラルカラムを用いた高速液体クロマトグラフィーで行った。分析条件は以下のとおりである。
カラム:ダイセル社製 CHIRALPAK WH(内径4.6mm、カラム長25cm)
カラム温度:50℃
検出器:UV検出器
測定波長:254nm
溶媒:0.25mM硫酸銅水溶液
流速:0.5ml/min
溶出時間:(R)−3−モルフォリンカルボン酸 25.4(min)
(S)−3−モルフォリンカルボン酸 30.1(min)
Optical purity analysis was performed by high performance liquid chromatography using a chiral column. The analysis conditions are as follows.
Column: CHIRALPAK WH manufactured by Daicel (inner diameter 4.6 mm, column length 25 cm)
Column temperature: 50 ° C
Detector: UV detector Measurement wavelength: 254 nm
Solvent: 0.25 mM copper sulfate aqueous solution Flow rate: 0.5 ml / min
Elution time: (R) -3-morpholine carboxylic acid 25.4 (min)
(S) -3-Morpholinecarboxylic acid 30.1 (min)
1H‐および13C‐NMRは特に指示がない限り、重水(D2O)の溶液で、日本電子(株)社製の核磁気共鳴装置(モデルJNM−LA300)を使用して測定した。 Unless otherwise indicated, 1 H- and 13 C-NMR were measured with a solution of heavy water (D 2 O) using a nuclear magnetic resonance apparatus (model JNM-LA300) manufactured by JEOL Ltd.
L−4−オキサリジン一塩酸塩5.52gを水30.0mlに溶解し、濃塩酸36.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム2.89gを水18.0mlに溶かした亜硝酸ナトリウム水溶液を1時間かけて滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を加えて反応溶液をpH7.0に中和した。引き続き環化剤として48%(w/w)水酸化ナトリウム水溶液2.45g(L−4−オキサリジンに対して1.0モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は3.16g(反応収率80.6%)であった。
反応溶液を塩化ナトリウムが析出するまでエパポレーターで減圧濃縮し、結晶をろ紙でろ過して溶液と分離した。結晶を少量の冷メタノールで洗浄し、ろ液と洗浄液を混合した。この操作をもう一度行って溶液中から析出してくる塩化ナトリウムを除去した。
ろ液と洗浄液の混合液をエパポレーターで減圧濃縮してメタノールを除去し、蒸留水を加えて100mlになるよう希釈した。この溶液を強酸性陽イオン交換樹脂Duolite C20(H+型)50mlを充填したカラムに通液して、イオン交換樹脂に3−モルフォリンカルボン酸を吸着させた。イオン交換水を150ml通液してカラムを水洗後、2%アンモニア水250mlを通液して3−モルフォリンカルボン酸をイオン交換樹脂から遊離させ、カラムから溶出した。この溶出液を回収し、エパポレーターで減圧濃縮してアンモニアを除去した。
濃縮残渣に蒸留水を加えて150mlになるよう希釈した。この溶液を強酸性陽イオン交換樹脂Duolite C20(NH4 +型)50mlを充填したカラムに通液して、イオン交換樹脂に未反応のL−4−オキサリジンを吸着させた。3−モルフォリンカルボン酸を含んだカラム通過液を回収し、エパポレーターで減圧濃縮した。
濃縮残渣に蒸留水を加えて100mlになるよう希釈した。この溶液を強酸性陽イオン交換樹脂Diaion UBK530(Ca2+型)100mlを充填したカラムに通液して、合成中に生成する副生産物と3−モルフォリンカルボン酸をクロマト分離した。副生産物より先に溶出してくる3−モルフォリンカルボン酸を回収し、エパポレーターで約100mlになるまで減圧濃縮した。その溶液に活性炭(フジ活性炭 花F2)を0.5g添加して撹拌し、一晩静置して溶液の脱色を行った。この溶液をろ紙でろ過して活性炭を除去後、更に孔径0.2μmのフィルターでろ過した。そのろ液をエパポレーターで減圧濃縮し、その濃縮液にエタノールを添加して結晶化させた。この結晶をグラスフィルターでろ過して回収し乾燥させたところ、3−モルフォリンカルボン酸の白色結晶1.94g(回収率61.4%)を得た。
この結晶サンプルのNMR分析を行なったところ、次の1H‐NMR及び13C−NMRケミカルシフト値を得た。
1H−NMR;δ(ppm)3.98(1H, dd, J=2.6, 11.4Hz)、3.77(1H, dt, J=3.6, 13.2Hz)、3.51‐3.68(3H,m)、3.17(1H, dt, J=3.2, 13.2Hz)、3.01(1H,ddd,J=3.6, 9.9, 13.5Hz)
13C−NMR;δ(ppm)171.3、66.8、64.0、57.7、42.9
得られた3‐モルフォリンカルボン酸の絶対配置は(R)型で、(R)‐3‐モルフォリンカルボン酸の光学純度は、99.8%e.e.であった。
L-4-oxalidine monohydrochloride 5.52 g was dissolved in water 30.0 ml, concentrated hydrochloric acid 36.0 g was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous sodium nitrite solution in which 2.89 g of sodium nitrite was dissolved in 18.0 ml of water was added dropwise over 1 hour. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, while maintaining the temperature of the solution at 25 ° C. or lower, a 48% (w / w) aqueous sodium hydroxide solution was added to neutralize the reaction solution to pH 7.0. Subsequently, 2.45 g of a 48% (w / w) aqueous sodium hydroxide solution (1.0 molar equivalent with respect to L-4-oxalidine) was added as a cyclizing agent, and the mixture was reacted for 20 minutes under heating and reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in this reaction solution, the amount of 3-morpholine carboxylic acid produced was 3.16 g (reaction yield 80.6%).
The reaction solution was concentrated under reduced pressure using an evaporator until sodium chloride was precipitated, and the crystals were separated from the solution by filtration through filter paper. The crystal was washed with a small amount of cold methanol, and the filtrate and the washing solution were mixed. This operation was performed once again to remove sodium chloride precipitated from the solution.
The mixed solution of the filtrate and the washing solution was concentrated under reduced pressure using an evaporator to remove methanol, and diluted with distilled water to 100 ml. This solution was passed through a column packed with 50 ml of strongly acidic cation exchange resin Duolite C20 (H + type) to adsorb 3-morpholine carboxylic acid to the ion exchange resin. After 150 ml of ion exchange water was passed through the column, the column was washed with water, and then 250 ml of 2% aqueous ammonia was passed through to release 3-morpholinecarboxylic acid from the ion exchange resin and eluted from the column. The eluate was collected and concentrated under reduced pressure with an evaporator to remove ammonia.
Distilled water was added to the concentrated residue to dilute to 150 ml. This solution was passed through a column packed with 50 ml of strongly acidic cation exchange resin Duolite C20 (NH 4 + type) to adsorb unreacted L-4-oxalidine to the ion exchange resin. The column-passing solution containing 3-morpholine carboxylic acid was collected and concentrated under reduced pressure using an evaporator.
Distilled water was added to the concentrated residue to dilute to 100 ml. This solution was passed through a column packed with 100 ml of strong acid cation exchange resin Diaion UBK530 (Ca 2+ type), and the by-product generated during synthesis and 3-morpholine carboxylic acid were chromatographed. The 3-morpholine carboxylic acid eluted before the by-product was recovered and concentrated under reduced pressure to about 100 ml with an evaporator. 0.5 g of activated carbon (Fuji activated carbon flower F2) was added to the solution, stirred, and allowed to stand overnight to decolorize the solution. This solution was filtered through a filter paper to remove the activated carbon, and then filtered through a filter having a pore size of 0.2 μm. The filtrate was concentrated under reduced pressure with an evaporator, and ethanol was added to the concentrated solution for crystallization. The crystals were collected by filtration through a glass filter and dried to obtain 1.94 g of 3-morpholinecarboxylic acid white crystals (recovery rate 61.4%).
NMR analysis of this crystal sample gave the following 1 H-NMR and 13 C-NMR chemical shift values.
1 H-NMR; δ (ppm) 3.98 (1H, dd, J = 2.6, 11.4 Hz), 3.77 (1H, dt, J = 3.6, 13.2 Hz), 3.51 −3.68 (3H, m), 3.17 (1H, dt, J = 3.2, 13.2 Hz), 3.01 (1H, ddd, J = 3.6, 9.9, 13.5 Hz) )
13 C-NMR; δ (ppm) 171.3, 66.8, 64.0, 57.7, 42.9
The absolute configuration of the obtained 3-morpholine carboxylic acid is of the (R) type, and the optical purity of the (R) -3-morpholine carboxylic acid is 99.8% e.e. e. Met.
L−4−オキサリジン一塩酸塩5.52gを水30.0mlに溶解し、濃塩酸36.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム2.89gを水18.0mlに溶かした水溶液を滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら30%(w/w)水酸化カリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として30%(w/w)水酸化カリウム水溶液5.61g(L−4−オキサリジンに対して1.0モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は2.68g(反応収率68%)であった。
反応液の一部を実施例1に準じて精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は98.3%e.e.であった。
L-4-oxalidine monohydrochloride 5.52 g was dissolved in water 30.0 ml, concentrated hydrochloric acid 36.0 g was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous solution obtained by dissolving 2.89 g of sodium nitrite in 18.0 ml of water was added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 30% (w / w) aqueous potassium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 5.61 g of a 30% (w / w) potassium hydroxide aqueous solution (1.0 molar equivalent with respect to L-4-oxalidine) was added as a cyclizing agent, and the mixture was reacted for 20 minutes under heating and reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in this reaction solution, the amount of 3-morpholine carboxylic acid produced was 2.68 g (reaction yield 68%).
When a part of the reaction solution was purified according to Example 1 and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 98.3% e.e. e. Met.
L−4−オキサリジン一塩酸塩5.52gを水30.0mlに溶解し、濃塩酸36.00gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム2.89gを水18.0mlに溶かした水溶液を滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として水酸化バリウム・8水和物4.65g(L−4−オキサリジンに対して0.5モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は2.1g(反応収率54%)であった。
反応液の一部を精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は97.6%e.e.であった。
5.54 g of L-4-oxalidine monohydrochloride was dissolved in 30.0 ml of water, and 36.00 g of concentrated hydrochloric acid was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous solution obtained by dissolving 2.89 g of sodium nitrite in 18.0 ml of water was added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 48% (w / w) aqueous sodium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 4.65 g of barium hydroxide octahydrate (0.5 molar equivalent based on L-4-oxalidine) was added as a cyclizing agent, and the mixture was reacted for 20 minutes under heating and reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in the reaction solution, the amount of 3-morpholine carboxylic acid produced was 2.1 g (reaction yield 54%).
When a part of the reaction solution was purified and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 97.6% e.e. e. Met.
L−4−オキサリジン一塩酸塩1.84gを水10.0mlに溶解し、濃塩酸12.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム0.83gを水6.0mlに溶かした水溶液を滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として48%(w/w)水酸化ナトリウム水溶液0.41g(L−4−オキサリジンに対して0.5モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、水酸化ナトリウム水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は0.6g(反応収率46%)であった。
反応液の一部を実施例1に準じて精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は98.2%e.e.であった。
1.84 g of L-4-oxalidine monohydrochloride was dissolved in 10.0 ml of water, and 12.0 g of concentrated hydrochloric acid was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous solution obtained by dissolving 0.83 g of sodium nitrite in 6.0 ml of water was added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 48% (w / w) aqueous sodium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 0.41 g of a 48% (w / w) aqueous sodium hydroxide solution (0.5 molar equivalent based on L-4-oxalidine) was added as a cyclizing agent, and the mixture was reacted for 20 minutes under heating and reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous sodium hydroxide solution. As a result of measuring the amount of 3-morpholine carboxylic acid in this reaction solution, the amount of 3-morpholine carboxylic acid produced was 0.6 g (reaction yield 46%).
When a part of the reaction solution was purified according to Example 1 and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 98.2% e.e. e. Met.
L−4−オキサリジン一塩酸塩0.92gを水10.0mlに溶解し、濃塩酸12.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム0.48gを水6.0mlに溶かした水溶液を滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として48%(w/w)水酸化ナトリウム水溶液0.48g(L−4−オキサリジンに対して1.2モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は0.46g(反応収率70%)であった。
反応液の一部を実施例1に準じて精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は97.6%e.e.であった。
L-4-oxalidine monohydrochloride (0.92 g) was dissolved in 10.0 ml of water, 12.0 g of concentrated hydrochloric acid was added, and the mixture was stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous solution in which 0.48 g of sodium nitrite was dissolved in 6.0 ml of water was added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 48% (w / w) aqueous sodium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 0.48 g of a 48% (w / w) aqueous sodium hydroxide solution (1.2 molar equivalents relative to L-4-oxalidine) was added as a cyclizing agent, and the mixture was allowed to react for 20 minutes with heating under reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in this reaction solution, the amount of 3-morpholine carboxylic acid produced was 0.46 g (reaction yield 70%).
When a part of the reaction solution was purified according to Example 1 and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 97.6% e.e. e. Met.
L−4−オキサリジン一塩酸塩3.68gを水10.0mlに溶解し、濃塩酸12.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム1.93gを水6.0mlに溶かして滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として48%(w/w)水酸化ナトリウム水溶液1.92g(L−4−オキサリジンに対して1.2モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は2.04g(反応収率78%)であった。
反応液の一部を実施例1に準じて精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は97.6%e.e.であった。
3.68 g of L-4-oxalidine monohydrochloride was dissolved in 10.0 ml of water, and 12.0 g of concentrated hydrochloric acid was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., 1.93 g of sodium nitrite was dissolved in 6.0 ml of water and added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 48% (w / w) aqueous sodium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 1.92 g of a 48% (w / w) aqueous sodium hydroxide solution (1.2 molar equivalents relative to L-4-oxalidine) was added as a cyclizing agent, and the mixture was reacted for 20 minutes under heating and reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in this reaction solution, the amount of 3-morpholine carboxylic acid produced was 2.04 g (reaction yield 78%).
When a part of the reaction solution was purified according to Example 1 and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 97.6% e.e. e. Met.
比較例1
L−4−オキサリジン一塩酸塩1.84gを水10.0mlに溶解し、濃塩酸12.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム0.83gを水6.0mlに溶かした水溶液を滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として48%(w/w)水酸化ナトリウム水溶液1.23g(L−4−オキサリジンに対して1.5モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は0.93g(反応収率71%)であった。
反応液の一部を実施例1に準じて精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は87.1%e.e.であった。
Comparative Example 1
1.84 g of L-4-oxalidine monohydrochloride was dissolved in 10.0 ml of water, and 12.0 g of concentrated hydrochloric acid was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous solution obtained by dissolving 0.83 g of sodium nitrite in 6.0 ml of water was added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 48% (w / w) aqueous sodium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 1.23 g of a 48% (w / w) aqueous sodium hydroxide solution (1.5 molar equivalents relative to L-4-oxalidine) was added as a cyclizing agent, and the mixture was reacted for 20 minutes under heating and reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in this reaction solution, the amount of 3-morpholine carboxylic acid produced was 0.93 g (reaction yield 71%).
When a part of the reaction solution was purified according to Example 1 and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 87.1% e.e. e. Met.
比較例2
L−4−オキサリジン一塩酸塩1.84gを水10.0mlに溶解し、濃塩酸12.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム0.83gを水6.0mlに溶かした水溶液を滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として48%(w/w)水酸化ナトリウム水溶液1.64g(L−4−オキサリジンに対して2.0モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は0.92g(反応収率70%)であった。
反応液の一部を実施例1に準じて精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は65.9%e.e.であった。
Comparative Example 2
1.84 g of L-4-oxalidine monohydrochloride was dissolved in 10.0 ml of water, and 12.0 g of concentrated hydrochloric acid was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous solution obtained by dissolving 0.83 g of sodium nitrite in 6.0 ml of water was added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 48% (w / w) aqueous sodium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 1.64 g of a 48% (w / w) aqueous sodium hydroxide solution (2.0 molar equivalents relative to L-4-oxalidine) was added as a cyclizing agent, and the mixture was allowed to react for 20 minutes with heating under reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in the reaction solution, the amount of 3-morpholine carboxylic acid produced was 0.92 g (reaction yield 70%).
When a part of the reaction solution was purified according to Example 1 and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 65.9% e.e. e. Met.
比較例3
L−4−オキサリジン一塩酸塩1.84gを水10.0mlに溶解し、濃塩酸12.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム0.69gを水6.0mlに溶かした水溶液を滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として48%(w/w)水酸化ナトリウム水溶液2.05g(L−4−オキサリジンに対して2.5モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は0.66g(反応収率50%)であった。
反応液の一部を実施例1に準じて精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は55.0%e.e.であった。
Comparative Example 3
1.84 g of L-4-oxalidine monohydrochloride was dissolved in 10.0 ml of water, and 12.0 g of concentrated hydrochloric acid was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous solution in which 0.69 g of sodium nitrite was dissolved in 6.0 ml of water was added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 48% (w / w) aqueous sodium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 2.05 g of a 48% (w / w) aqueous sodium hydroxide solution (2.5 molar equivalents relative to L-4-oxalidine) was added as a cyclizing agent, and the mixture was allowed to react for 20 minutes with heating under reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in this reaction solution, the amount of 3-morpholine carboxylic acid produced was 0.66 g (reaction yield 50%).
When a part of the reaction solution was purified according to Example 1 and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 55.0% e.e. e. Met.
比較例4
L−4−オキサリジン一塩酸塩1.84gを水10.0mlに溶解し、濃塩酸12.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム0.69gを水6.0mlに溶かした水溶液を滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として48%(w/w)水酸化ナトリウム水溶液4.20g(L−4−オキサリジンに対して5.1モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は0.65g(反応収率50%)であった。
反応液の一部を実施例1に準じて精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は25.4%e.e.であった。
Comparative Example 4
1.84 g of L-4-oxalidine monohydrochloride was dissolved in 10.0 ml of water, and 12.0 g of concentrated hydrochloric acid was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous solution in which 0.69 g of sodium nitrite was dissolved in 6.0 ml of water was added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 48% (w / w) aqueous sodium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 4.20 g of a 48% (w / w) aqueous sodium hydroxide solution (5.1 molar equivalents relative to L-4-oxalidine) was added as a cyclizing agent, and the mixture was allowed to react for 20 minutes under heating and reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in this reaction solution, the amount of 3-morpholine carboxylic acid produced was 0.65 g (reaction yield 50%).
When a part of the reaction solution was purified according to Example 1 and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 25.4% e.e. e. Met.
比較例5
L−4−オキサリジン一塩酸塩1.84gを水10.0mlに溶解し、濃塩酸12.0gを加え撹拌した。この水溶液の温度を0〜5℃に保ちながら、亜硝酸ナトリウム0.69gを水6.0mlに溶かした水溶液を滴下した。滴下終了後、溶液の温度を15℃以下に保ちながら約4.5時間撹拌した。次に溶液の温度を25℃以下に保ちながら48%(w/w)水酸化ナトリウム水溶液を添加して反応溶液をpH7.0に中和した。引き続き環化剤として48%(w/w)水酸化ナトリウム水溶液9.60g(L−4−オキサリジンに対して11.6モル当量)を加え、加熱還流下にて20分間反応させた。室温まで反応溶液を冷却後、塩酸水溶液でpHを6.9に調整した。この反応溶液中の3−モルフォリンカルボン酸量を測定した結果、3−モルフォリンカルボン酸生成量は0.22g(反応収率17%)であった。
反応液の一部を実施例1に準じて精製して光学純度を測定したところ、(R)‐3‐モルフォリンカルボン酸の光学純度は8.4%e.e.であった。
Comparative Example 5
1.84 g of L-4-oxalidine monohydrochloride was dissolved in 10.0 ml of water, and 12.0 g of concentrated hydrochloric acid was added and stirred. While maintaining the temperature of this aqueous solution at 0 to 5 ° C., an aqueous solution in which 0.69 g of sodium nitrite was dissolved in 6.0 ml of water was added dropwise. After completion of dropping, the solution was stirred for about 4.5 hours while keeping the temperature of the solution at 15 ° C. or lower. Next, a 48% (w / w) aqueous sodium hydroxide solution was added while maintaining the temperature of the solution at 25 ° C. or lower to neutralize the reaction solution to pH 7.0. Subsequently, 9.60 g of a 48% (w / w) aqueous sodium hydroxide solution (11.6 molar equivalents relative to L-4-oxalidine) was added as a cyclizing agent, and the mixture was allowed to react for 20 minutes under heating to reflux. After cooling the reaction solution to room temperature, the pH was adjusted to 6.9 with an aqueous hydrochloric acid solution. As a result of measuring the amount of 3-morpholine carboxylic acid in this reaction solution, the amount of 3-morpholine carboxylic acid produced was 0.22 g (reaction yield 17%).
When a part of the reaction solution was purified according to Example 1 and the optical purity was measured, the optical purity of (R) -3-morpholinecarboxylic acid was 8.4% e.e. e. Met.
表1に実施例と比較例の反応条件とその結果を示す。
表1の結果から明らかなように、添加した環化剤のオキサリジンに対するモル比が1.5以上であると、光学純度が97%e.e.より極端に低下することがわかる。
また、3種類の環化剤によって合成された(R)‐3‐モルフォリンカルボン酸の光学純度は、水酸化ナトリウム、水酸化カリウム及び水酸化バリウムの間で大きな差が認められないこともわかる。
As is clear from the results in Table 1, when the molar ratio of the added cyclizing agent to oxalidine is 1.5 or more, the optical purity is 97% e.e. e. It turns out that it falls more drastically.
It can also be seen that the optical purity of (R) -3-morpholinecarboxylic acid synthesized with three cyclizing agents is not significantly different among sodium hydroxide, potassium hydroxide and barium hydroxide. .
Claims (2)
(1)L−4−オキサリジンを酸性溶媒下にジアゾ化剤でジアゾ化し、このジアゾニウム塩溶液をアルカリ剤でpH7.0に調製するA工程;
(2)A工程で得た溶液に、L−4−オキサリジンに対して0.5〜1.2モル当量の水酸化ナトリウム、水酸化カリウム又は水酸化バリウムを加えて環化反応を行い、粗(R)‐3‐モルフォリンカルボン酸溶液を生成させるB工程;
(3)B工程で得た粗(R)‐3‐モルフォリンカルボン酸溶液のpHを6.5〜7.0に調製した後、イオン交換樹脂を用いて精製するC工程;
を含むことを特徴とする、高光学純度を有する(R)‐3‐モルフォリンカルボン酸の製造方法。 Step A to Step C below, that is, (1) Step A in which L-4-oxalidine is diazotized with a diazotizing agent in an acidic solvent and the diazonium salt solution is adjusted to pH 7.0 with an alkali agent;
(2) To the solution obtained in step A, 0.5 to 1.2 molar equivalents of sodium hydroxide, potassium hydroxide or barium hydroxide are added to L-4-oxalidine to carry out a cyclization reaction, (B) Step B for producing a 3-morpholinecarboxylic acid solution;
(3) Step C, in which the pH of the crude (R) -3-morpholine carboxylic acid solution obtained in Step B is adjusted to 6.5 to 7.0 and then purified using an ion exchange resin;
A process for producing (R) -3-morpholine carboxylic acid having high optical purity, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007146535A JP4919421B2 (en) | 2007-06-01 | 2007-06-01 | Process for producing (R) -3-morpholine carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007146535A JP4919421B2 (en) | 2007-06-01 | 2007-06-01 | Process for producing (R) -3-morpholine carboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008297269A JP2008297269A (en) | 2008-12-11 |
JP4919421B2 true JP4919421B2 (en) | 2012-04-18 |
Family
ID=40171111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007146535A Expired - Fee Related JP4919421B2 (en) | 2007-06-01 | 2007-06-01 | Process for producing (R) -3-morpholine carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4919421B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004051606A (en) * | 2002-07-24 | 2004-02-19 | Toray Ind Inc | Production method of pipecolic acid |
JP4590981B2 (en) * | 2003-08-26 | 2010-12-01 | 三菱化学株式会社 | Method for producing optically active cyclic amino acid |
-
2007
- 2007-06-01 JP JP2007146535A patent/JP4919421B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008297269A (en) | 2008-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02167286A (en) | Salt of clavulanic acid, and production and use | |
KR101557564B1 (en) | Method for purifying l-cysteine | |
CA2124322C (en) | Process for the purification of a 3-cephem-4-carboxylic acid derivative | |
EP2284174B1 (en) | Intermediates for the preparation of benzoxazine derivatives and process for their preparation | |
JP5899204B2 (en) | Process for producing chiral β-aminocarboxamide derivative | |
JP4919421B2 (en) | Process for producing (R) -3-morpholine carboxylic acid | |
CA2573129C (en) | Process for preparing levofloxacin or its hydrate | |
JP2011098975A (en) | Chiral pure n-(trans-4-isopropyl-cyclohexylcarbonyl)-d-phenylalanine and method for producing crystal structure transformation product thereof | |
JP4892821B2 (en) | Epalrestat manufacturing method | |
JPH027951B2 (en) | ||
JP4046708B2 (en) | Method for producing 3-alkenylcephem compound | |
JP3883525B2 (en) | Method for purifying pravastatin sodium | |
CA2575912C (en) | Process for the preparation of optically pure indoline-2-carboxylic acid | |
JP2000351750A (en) | Purification or shikimic acid and shikimic acid derivative | |
CA2293023A1 (en) | Process for producing ucn-01 | |
JP2007284358A (en) | Method for producing optically active piperazine compound | |
JP5397706B2 (en) | Method for producing high purity 1-benzyl-3-aminopyrrolidine | |
WO2014097221A1 (en) | Process for the purification of biapenem | |
JP3463881B2 (en) | Method for isolation and purification of pravastatin or a pharmacologically acceptable salt thereof | |
JP3422791B2 (en) | Method for isolation and purification of pravastatin | |
JPS6287577A (en) | Optically active 3-methylbenzoxazine derivative and production thereof | |
JPH0418050A (en) | Production of (r)-2-hydroxy-4-phenyl-3-butenoic acid | |
JP2003342259A (en) | Method for producing optically active cis-piperidine derivative | |
JP3463875B2 (en) | How to purify pravastatin | |
KR101618874B1 (en) | Process for production of 3-alkenylcephem compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120127 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150210 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |