JP4918665B2 - Method for producing polysaccharide fine particles - Google Patents

Method for producing polysaccharide fine particles Download PDF

Info

Publication number
JP4918665B2
JP4918665B2 JP2005121103A JP2005121103A JP4918665B2 JP 4918665 B2 JP4918665 B2 JP 4918665B2 JP 2005121103 A JP2005121103 A JP 2005121103A JP 2005121103 A JP2005121103 A JP 2005121103A JP 4918665 B2 JP4918665 B2 JP 4918665B2
Authority
JP
Japan
Prior art keywords
polysaccharide
solution
fine particles
maq
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005121103A
Other languages
Japanese (ja)
Other versions
JP2006298805A (en
Inventor
昭二 永岡
博隆 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto Prefecture
Original Assignee
Kumamoto Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto Prefecture filed Critical Kumamoto Prefecture
Priority to JP2005121103A priority Critical patent/JP4918665B2/en
Publication of JP2006298805A publication Critical patent/JP2006298805A/en
Application granted granted Critical
Publication of JP4918665B2 publication Critical patent/JP4918665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

この発明は、殊に医用材料およびケミカル分野の素材として有用である、例えばキトサン等の多糖類からなる微粒子の製造方法に関するものである。 This invention is particularly useful as a material for medical materials and chemical fields, for example a process for producing a fine particles composed of polysaccharides such as chitosan.

多数の単糖類がグリコシド結合することによって形成されている多糖類は、生体に不可欠な素材であり、また自然界に多量に存在して枯渇することがなく、更には生分解性があるため、廃棄に伴う環境汚染問題の発生もない。例えば多糖類の一例として、化学的安定性が高いキチンを脱アセチル化して得られるキトサンが挙げられる。このキトサンは、キチンが有するアセチル基が、化学的に高い活性を備え、かつプラスに帯電しているアミノ基に置換されている。このためキトサンは、マイナスに帯電した、例えばカルボキシル基等を有する物質と容易に結合する特性を備える。一方カルボキシル基は、各種細菌、ウィルスおよびバクテリアの一部を構成する物質でもある。   Polysaccharides formed by glycosidic bonding of many monosaccharides are indispensable materials for living organisms. They are abundant in nature and do not become depleted, and are biodegradable. There will be no environmental pollution problems. For example, chitosan obtained by deacetylating chitin with high chemical stability is mentioned as an example of polysaccharide. In this chitosan, the acetyl group of chitin is substituted with an amino group that has a high chemical activity and is positively charged. For this reason, chitosan has a property of easily binding to a negatively charged substance having, for example, a carboxyl group. On the other hand, the carboxyl group is also a substance constituting a part of various bacteria, viruses and bacteria.

このためキトサンは、前述の各種細菌、ウィルスおよびバクテリアを、アミノ基−カルボキシル基の結合によって分子内に取り込み、タンパク質化させて無害とし得る効果、すなわち抗アレルギー性や抗菌性等の効果を示す。従って、例えば医療分野では創傷被覆剤や、歯磨き粉等のオーラルケア用途剤(ミュータンス連鎖状球菌に対する抗菌効果や、口腔粘膜の細胞活性効果があり、口中炎症、歯茎浮腫および出血等に有効)等として好適に使用し得る。この他の多糖類についても、前述した高い生体適合性や廃棄容易性といった利点があるため、例えば金属部品に対する洗浄剤用途、シリコンウエハー等に対する化学物理研磨洗浄剤用途、化粧品分野での粉体特性改良剤用途並びに塗料分野での増粘・分散・被膜形成剤用途に対する応用が期待されている。   For this reason, chitosan exhibits effects such as anti-allergic properties and antibacterial properties, in which the above-mentioned various bacteria, viruses and bacteria can be made harmless by incorporating them into a molecule through amino-carboxyl bond. Therefore, for example, in the medical field, oral dressings such as wound dressings and toothpaste (antibacterial effect against mutans streptococci and cell activity effect on oral mucosa, effective for oral inflammation, gum edema and bleeding, etc.) Can be suitably used. Other polysaccharides also have the advantages of high biocompatibility and easy disposal, as described above. For example, cleaning applications for metal parts, chemical physical polishing cleaning agents for silicon wafers, etc., powder characteristics in the cosmetics field. Applications to improver applications and thickening / dispersion / film-former applications in the paint field are expected.

前述した用途、殊に化粧品の分野では、微粒子状の多糖類に対する要望が強い。多糖類として代表的なキトサンを微粒子化する場合、以下の方法でなされている。すなわちキトサンを酸に溶解させて、これに界面活性剤および有機溶媒を加えることで、所謂Water/Oilエマルジョンとし、更に加熱蒸発やアルコール等の貧溶媒の使用による水分除去や、特定溶液混合による凝固によって微粒子化する方法である。しかしこの方法の場合、(1)μmレベルを下回る微粒子の製造は困難であり、また(2)界面活性剤や有機溶媒といった、環境高負荷物質の使用が不回避であるため、環境低負荷が求められる今日の情勢にはそぐわない。   There is a strong demand for particulate polysaccharides in the aforementioned applications, especially in the cosmetics field. When chitosan typical as a polysaccharide is made into fine particles, the following method is used. In other words, chitosan is dissolved in an acid, and a surfactant and an organic solvent are added to form a so-called Water / Oil emulsion. Further, water is removed by heat evaporation, use of a poor solvent such as alcohol, and solidification by mixing with a specific solution. This is a method of making fine particles. However, with this method, (1) it is difficult to produce fine particles below the μm level, and (2) it is inevitable to use substances with high environmental loads such as surfactants and organic solvents. It does not match today's demanded situation.

この他、下記の[特許文献1]〜[特許文献4]にも、キトサン微粒子の製造方法が開示されているが、高価な試薬の使用や、煩雑な操作が必要とされ、安価かつ簡便な製造法とは言い難い。これに対して提案されている。しかしこれらの方法では、高価な試薬の使用や、煩雑な操作が必要とされ、製造コストの問題が解消されていなかった。
特開昭60−215003号公報 特開昭61−040337号公報 特開昭62−062827号公報 特開平1−140961号公報
In addition, the following [Patent Document 1] to [Patent Document 4] also disclose a method for producing chitosan fine particles, which requires the use of expensive reagents and complicated operations, and is inexpensive and simple. It is hard to say that it is a manufacturing method. This has been proposed. However, these methods require the use of expensive reagents and complicated operations, and the problem of manufacturing costs has not been solved.
JP 60-215033 A Japanese Patent Laid-Open No. 61-040337 JP 62-062827 A Japanese Unexamined Patent Publication No. 1-140961

これに対して、下記の[特許文献5]に記載の発明「キトサン微粒子の製造方法」は、安価かつ単純な方法である。しかし、形成される粒子の大きさがμmレベルであり、ナノレベルの粒子径を発現するキトサンの製造は困難であった。
特開昭58−057401号公報
On the other hand, the invention “Method for producing chitosan fine particles” described in [Patent Document 5] below is an inexpensive and simple method. However, it has been difficult to produce chitosan having a particle size of μm level and a nano-level particle size.
JP 58-057401 A

すなわち本発明は、従来の技術に内包する問題に鑑み、これらを好適に解決すべく提案されたものであって、安価かつ簡便に製造可能であり、更にサブミクロン以下の粒径を、任意に制御し得る多糖類微粒子の製造方法を提供することを目的とする。 That is, the present invention has been proposed to solve these problems in view of the problems involved in the conventional technology, and can be manufactured inexpensively and easily. Further, the particle size of submicron or less can be arbitrarily set. and to provide a method for producing a polysaccharide fine particles capable of controlling.

前記課題を克服し、所期の目的を達成するため、請求項に記載の発明は、
多糖類を酸溶媒に投入・溶解させて多糖類溶液とし、
この多糖類溶液100体積部に対して、100体積部以上とした分散媒としての水に該多糖類溶液を滴下し、
前記多糖類溶液と分散媒との混合溶液から、少なくとも過剰な水素イオンを除去することで、該多糖類を会合・析出させることで、
その粒径が2μm以下で、任意に制御された多糖類を製造するようにしたことを要旨とする。
In order to overcome the above problems and achieve the intended purpose, the invention according to claim 1
A polysaccharide solution is prepared by adding and dissolving a polysaccharide in an acid solvent.
With respect to 100 parts by volume of this polysaccharide solution, the polysaccharide solution is dropped into water as a dispersion medium having a volume of 100 parts by volume or more,
By removing and at least excess hydrogen ions from the mixed solution of the polysaccharide solution and the dispersion medium, the polysaccharide is associated and precipitated,
The gist of the invention is to produce an arbitrarily controlled polysaccharide having a particle size of 2 μm or less.

従って、請求項に係る発明によれば、微細な多糖類粒子を安価かつ簡便であり、かつ環境負荷を抑えつつ製造し得る。また容易にその粒径を制御し得る。 Therefore, according to the invention which concerns on Claim 1 , a fine polysaccharide particle can be manufactured cheaply and simply, and suppressing an environmental load. Moreover, the particle size can be easily controlled.

請求項に記載の発明は、請求項記載の発明において、
前記多糖類として、該多糖類をなすピラノース環の構造内にプラス電荷に帯電する官能基を備えるカチオン性多糖類が使用されることを要旨とする。従って、請求項に係る発明によれば、より利用性の高い多糖類微粒子を製造し得る。
The invention according to claim 2 is the invention according to claim 1 ,
The gist is that a cationic polysaccharide having a positively charged functional group in the structure of the pyranose ring constituting the polysaccharide is used as the polysaccharide. Therefore, according to the invention which concerns on Claim 2 , the highly usable polysaccharide microparticles | fine-particles can be manufactured.

請求項に記載の発明は、請求項または記載の発明において、
前記水に対する、前記多糖類溶液の滴下は、0.1ml/秒以下で実施されることを要旨とする。従って、請求項に係る発明によれば、より好適に多糖類の微小化を達成し得る。
The invention according to claim 3 is the invention according to claim 1 or 2 ,
The dripping of the polysaccharide solution with respect to the water is performed at a rate of 0.1 ml / second or less. Therefore, according to the invention which concerns on Claim 3 , the miniaturization of a polysaccharide can be achieved more suitably.

請求項に記載の発明は、請求項の何れか一項に記載の発明において、
前記酸溶媒として塩酸が使用されることを要旨とする。従って、請求項に係る発明によれば、より利用用途が幅広い多糖類微粒子を製造し得る。
The invention according to claim 4 is the invention according to any one of claims 1 to 3 ,
The gist is that hydrochloric acid is used as the acid solvent. Therefore, according to the invention which concerns on Claim 4 , the polysaccharide fine particle which can be used more widely can be manufactured.

請求項に記載の発明は、請求項の何れか一項に記載の発明において、
前記水素イオンの除去と共に、酸溶媒を構成する塩も併せて除去するようにしたことを要旨とする。従って、請求項に係る発明によれば、多糖類微粒子の析出をより好適に実施し得る。
The invention according to claim 5 is the invention according to any one of claims 1 to 4 ,
The gist is that the salt constituting the acid solvent is removed together with the removal of the hydrogen ions. Therefore, according to the invention which concerns on Claim 5 , precipitation of polysaccharide microparticles | fine-particles can be implemented more suitably.

前記課題を克服し、所期の目的を達成するため、請求項に記載の発明は、
多糖類を酸溶媒に投入・溶解させて多糖類溶液とし、
この多糖類溶液100体積部に対して、100体積部以上とした分散媒としての一価または二価以上のアニオンの金属塩水溶液に該多糖類溶液を滴下し、
前記多糖類溶液と分散媒との混合溶液から、少なくとも過剰な水素イオンを除去することで、該多糖類を会合・析出させることで、
その粒径が2μm以下で、任意に制御された多糖類を製造するようにしたことを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, the invention according to claim 6 provides:
A polysaccharide solution is prepared by adding and dissolving a polysaccharide in an acid solvent.
With respect to 100 parts by volume of the polysaccharide solution, the polysaccharide solution is dropped into a metal salt aqueous solution of a monovalent or divalent anion as a dispersion medium having a volume of 100 parts by volume or more,
By removing and at least excess hydrogen ions from the mixed solution of the polysaccharide solution and the dispersion medium, the polysaccharide is associated and precipitated,
The gist of the invention is to produce an arbitrarily controlled polysaccharide having a particle size of 2 μm or less.

従って、請求項に係る発明によれば、微細な多糖類粒子を安価かつ簡便であり、かつ環境負荷を抑えつつ製造し得る。また容易にその粒径を制御し得る。 Therefore, according to the invention which concerns on Claim 6 , it can manufacture fine polysaccharide particle | grains cheaply and simply, and suppressing an environmental load. Moreover, the particle size can be easily controlled.

請求項に記載の発明は、請求項記載の発明において、
前記多糖類として、該多糖類をなすピラノース環の構造内にプラス電荷に帯電する官能基を備えるカチオン性多糖類が使用されることを要旨とする。従って、請求項に係る発明によれば、より利用性の高い多糖類微粒子を製造し得る。
The invention according to claim 7 is the invention according to claim 6 ,
The gist is that a cationic polysaccharide having a positively charged functional group in the structure of the pyranose ring constituting the polysaccharide is used as the polysaccharide. Therefore, according to the invention which concerns on Claim 7 , highly usable polysaccharide microparticles | fine-particles can be manufactured.

請求項に記載の発明は、請求項またはに記載の発明において、
前記金属塩溶液に対する、前記多糖類溶液の滴下は、0.1ml/秒以下で実施されることを要旨とする。従って、請求項に係る発明によれば、より好適に多糖類の微小化を達成し得る。
The invention according to claim 8 is the invention according to claim 6 or 7 ,
The gist is that the dropping of the polysaccharide solution to the metal salt solution is performed at a rate of 0.1 ml / second or less. Therefore, according to the invention which concerns on Claim 8 , miniaturization of a polysaccharide can be achieved more suitably.

請求項に記載の発明は、請求項の何れか一項に記載の発明において、
前記分散媒として、金属ハロゲン化物の水溶液が使用されることを要旨とする。従って、請求項に係る発明によれば、より利用用途が幅広い多糖類微粒子を製造し得る。
The invention according to claim 9 is the invention according to any one of claims 6 to 8 ,
The gist is that an aqueous solution of a metal halide is used as the dispersion medium. Therefore, according to the invention which concerns on Claim 9 , the polysaccharide fine particle which can be used more widely can be manufactured.

請求項10に記載の発明は、請求項の何れか一項に記載の発明において、
前記酸溶媒をなす酸として、乳酸が使用されることを要旨とする。従って、請求項10に係る発明によれば、多糖類微粒子をより好適に製造し得る。
The invention according to claim 10 is the invention according to any one of claims 6 to 9 ,
The gist is that lactic acid is used as the acid constituting the acid solvent. Therefore, according to the invention which concerns on Claim 10 , polysaccharide microparticles | fine-particles can be manufactured more suitably.

請求項11に記載の発明は、請求項10の何れか一項に記載の発明において、
前記水素イオンの除去と共に、酸溶媒を構成する塩および分散媒を構成する塩も併せて除去されることを要旨とする。従って、請求項11に係る発明によれば、多糖類微粒子の析出をより好適に実施し得る。
The invention according to claim 11 is the invention according to any one of claims 6 to 10 ,
The gist is that, together with the removal of the hydrogen ions, the salt constituting the acid solvent and the salt constituting the dispersion medium are also removed. Therefore, according to the invention concerning Claim 11 , precipitation of polysaccharide microparticles | fine-particles can be implemented more suitably.

請求項12に記載の発明は、請求項11の何れか一項に記載の発明において、
前記水素イオン等の除去には、透析膜が使用されることを要旨とする。従って、請求項12に係る発明によれば、多糖類微粒子をより好適に製造し得ると共に、その析出もより好適になし得る。
The invention according to claim 12 is the invention according to any one of claims 1 to 11 ,
The gist is that a dialysis membrane is used to remove the hydrogen ions and the like. Therefore, according to the invention which concerns on Claim 12 , while being able to manufacture a polysaccharide microparticles | fine-particles more suitably, the precipitation can also be made more suitable.

請求項13に記載の発明は、請求項12の何れか一項に記載の発明において、
前記多糖類の酸溶媒への溶解は、加熱によって達成され、かつ多糖類微粒子の析出は冷却によって達成されることを要旨とする。従って、請求項13に係る発明によれば、より多様な多糖類を好適に微細化し得る。
The invention according to claim 13 is the invention according to any one of claims 1 to 12 ,
The gist is that dissolution of the polysaccharide in an acid solvent is achieved by heating, and precipitation of polysaccharide fine particles is achieved by cooling. Therefore, according to the invention which concerns on Claim 13 , more various polysaccharides can be refined | miniaturized suitably.

以上に説明した如く、本発明に係る多糖類微粒子の製造方法によれば、安価かつ単純に、サブミクロンオーダーの微小な多糖類微粒子を、その粒径を制御しつつ製造し得る。 As described above, according to the manufacturing method of the polysaccharide fine particles according to the present invention, inexpensive and simple, microscopic polysaccharide particles submicron can be prepared while controlling the particle diameter.

次に、本発明に係る多糖類微粒子の製造方法と共に、好適な実施例を挙げて、添付図面を参照しながら以下説明する。本願発明者は、キトサンの如き多糖類を、酸溶媒によって溶解(会合が解かれた状態)させて得た多糖類溶液を、所要量以上とされた分散媒に対して、所要の速度以下となるように滴下し、更に該多糖類溶液と分散媒との混合溶液から、該多糖類の溶解を達成し、系内に過剰に存在する水素イオンを除去することで、その粒径が2μm以下で、かつ任意の数値に制御可能とした多糖類微粒子が得られることを見出した。なお本発明において使用される多糖類は、その平均分子量によって会合をなした場合の粒径が、該平均分子量の増加に伴って大きくなると考えられる。そこで本発明においては、その平均分子量が20,000以下程度の多糖類を使用することで好適に実施される。 Next, the manufacturing method of the polysaccharide fine particles according to the present invention, by way of preferred embodiments will be described below with reference to the accompanying drawings. The inventor of the present application has a polysaccharide solution obtained by dissolving a polysaccharide such as chitosan with an acid solvent (in a state in which the association is released) with respect to the dispersion medium having a required amount or more and a required speed or less. In addition, the polysaccharide is dissolved from the mixed solution of the polysaccharide solution and the dispersion medium, and by removing excessive hydrogen ions existing in the system, the particle size is 2 μm or less. In addition, it was found that polysaccharide fine particles that can be controlled to an arbitrary numerical value can be obtained. The polysaccharide used in the present invention is considered to have a particle size that increases as the average molecular weight increases in association with the average molecular weight. Therefore, in the present invention, it is preferably carried out by using a polysaccharide having an average molecular weight of about 20,000 or less.

また多糖類を溶解させる酸溶媒をなす酸および/または分散媒として、例えば塩酸や塩化ナトリウムといった一価の金属ハロゲン化物、例えば金属塩化物等を備える酸および/または水溶液を使用することで、その粒径がナノ(nm)オーダレベルとされた多糖類微粒子が得られることを併せて知見した。なお以下に説明する実施例においては、多糖類としてその有用性が高く、かつ該多糖類をなすピラノース環の構造内にプラス電荷に帯電する官能基を備えるカチオン性多糖類であるキトサンを使用した例を用いて説明する。ここで多糖類としては、前述のカチオン性以外にアニオン性多糖類や、ノニオン性多糖類が存在するが、これらの電荷的性質や、これに関係なく結合し得る物質を多糖類を溶かし得る酸性溶媒由来の塩や、分散媒由来の塩として採用することで、同様の機構による、多糖類の微粒子化は可能である。また本発明において滴下とは、制御された速度によって、徐々に供給することを意味している。   Further, by using an acid and / or an aqueous solution containing a monovalent metal halide such as hydrochloric acid or sodium chloride, for example, a metal chloride, as an acid and / or a dispersion medium that forms an acid solvent for dissolving the polysaccharide, It was also found that polysaccharide fine particles having a particle size of nano (nm) order level can be obtained. In the examples described below, chitosan, which is a cationic polysaccharide having a high usefulness as a polysaccharide and having a positively charged functional group in the structure of the pyranose ring forming the polysaccharide, was used. This will be described using an example. Here, there are anionic polysaccharides and nonionic polysaccharides other than the above-mentioned cationic as polysaccharides. However, these charged properties and the acidity that can dissolve the polysaccharides that can be linked regardless of this are also present. By adopting it as a salt derived from a solvent or a salt derived from a dispersion medium, it is possible to make polysaccharides fine particles by the same mechanism. Moreover, dripping in this invention means supplying gradually by the controlled speed | rate.

多糖類微粒子の製造工程は、図1に示す如く、該多糖類微粒子10の原料となる多糖類と特定の酸溶媒とを混合・溶解させて多糖類溶液を得る溶解工程S1と、多糖類溶液を所定の速度範囲で、所定量以上の分散媒に滴下してsea−island効果(詳細は後述[0042])を発現させ、会合状態となった際に所要粒径の多糖類微粒子を形成するだけの量となるように、会合が解かれた状態の多糖類を区分して粒子化する滴下工程S2と、該多糖類溶液と分散媒との混合溶液から、少なくとも系内に存在し、該多糖類の溶解をなしている過剰な水素イオン(カチオン性多糖類の場合、該カチオン性基に対して過剰となっている水素イオン)を除去して、該滴下工程S2で得るべき多糖類微粒子の粒径に対応して、例えば球状に区分された多糖類を会合状態する析出工程S3とから基本的に構成される。   As shown in FIG. 1, the polysaccharide fine particle manufacturing process includes a dissolving process S1 in which a polysaccharide as a raw material of the polysaccharide fine particle 10 and a specific acid solvent are mixed and dissolved to obtain a polysaccharide solution, and a polysaccharide solution Is dripped into a dispersion medium of a predetermined amount or more within a predetermined speed range to develop a sea-island effect (details will be described later [0042]), and when it becomes an associated state, polysaccharide fine particles having a required particle diameter are formed. From the dropping step S2 in which the polysaccharides in the dissociated state are divided into particles so that the amount of the polysaccharide is dissociated, and a mixed solution of the polysaccharide solution and the dispersion medium, at least in the system, The polysaccharide fine particles to be obtained in the dropping step S2 by removing excess hydrogen ions dissolving the polysaccharide (in the case of cationic polysaccharides, excess hydrogen ions with respect to the cationic group) For example, polysaccharides divided into spheres corresponding to the particle size of This is basically composed of a precipitation step S3 in which a kind is associated.

前記溶解工程S1は、図2に示す如く、前記多糖類Mおよび酸溶媒Aを混合して充分に攪拌することで、該多糖類Mを溶解させて多糖類微粒子10を形成する基となる多糖類溶液MAqとする工程である。この溶解工程S1の実施によって、会合状態にあったキトサン(図2(a)参照)は、該キトサンをなす分子(以下、単に分子と云う)内および分子間の水素結合による会合が解かれた状態、すなわち溶解状態(図2(b)参照)とされる。なお本工程S1については、室温での溶解が困難な場合には、適宜、キトサンが溶解する程度の温度まで加熱すればよい。またキトサンを溶解させた後、不溶解分については濾過等の任意の手段で除去してもよい。なお、図2において破線は、水素結合を表している。   In the dissolving step S1, as shown in FIG. 2, the polysaccharide M and the acid solvent A are mixed and sufficiently stirred to dissolve the polysaccharide M to form a polysaccharide fine particle 10. This is a step of making the sugar solution MAq. By performing this dissolution step S1, chitosan (see FIG. 2 (a)) in an associated state has been dissociated by hydrogen bonds within and between the molecules forming the chitosan (hereinafter simply referred to as molecules). The state, that is, the dissolved state (see FIG. 2B). In addition, about this process S1, when melt | dissolution at room temperature is difficult, what is necessary is just to heat to the temperature which can melt | dissolve chitosan suitably. Further, after the chitosan is dissolved, the insoluble matter may be removed by any means such as filtration. In addition, the broken line in FIG. 2 represents the hydrogen bond.

そして前記多糖類Mとして本実施例ではキトサンを使用しているが、この他、キチン、セルロースおよびプルラン(でんぶん)等の、多数の単糖類がグリコシド結合することによって生じる高分子化合物である一般的な多糖類Mが使用可能であり、従ってこれらの微粒子も製造可能である。ここでキトサンの濃度は殊に限定されないが、通常ハンドリング等の点から0.1〜30重量%程度の範囲とされている。   In the present embodiment, chitosan is used as the polysaccharide M, but in addition to this, it is a high molecular compound produced by glycosidic bonding of a large number of monosaccharides such as chitin, cellulose and pullulan. A typical polysaccharide M can be used, so that these microparticles can also be produced. Here, the concentration of chitosan is not particularly limited, but is usually in the range of about 0.1 to 30% by weight from the viewpoint of handling.

前記酸溶媒Aとしては、酢酸、蟻酸、乳酸、サリチル酸、コハク酸または安息香酸等の水溶性有機酸(多糖類Mがキトサンの場合には、アニン性基を分子内に一個もった有機酸)或いは塩酸または硝酸等の一価アニオンの無機酸が、単独または2種以上組み合わせて適宜使用される。これらの酸は水溶液として使用されるため、例えば乳酸等のようにその性状が固体の場合には、水等の溶媒に溶解させることで使用される。またsea−island効果(後述[0042])をより効率的に発現させるため、その溶液とした際に粘性を発現する乳酸等の使用が好ましい。また前記酸溶媒Aについては、その濃度は殊に限定されない。しかし前述([0038])の如く、混合される多糖類Mの水酸基等に由来する分子内および分子間の水素結合を阻害して、キトサンを溶解させる程度の水素イオンの供給が可能とされる、通常で0.1〜30重量%程度の範囲内とされている。また酸溶媒Aの選択は、多糖類Mの溶解および析出(会合)に大きな影響を与えるが、詳細は後述([0048])する。   Examples of the acid solvent A include water-soluble organic acids such as acetic acid, formic acid, lactic acid, salicylic acid, succinic acid, and benzoic acid (in the case where the polysaccharide M is chitosan, an organic acid having one anionic group in the molecule). Alternatively, inorganic acids of monovalent anions such as hydrochloric acid or nitric acid are used alone or in combination of two or more. Since these acids are used as an aqueous solution, when the property is solid, such as lactic acid, it is used by dissolving in a solvent such as water. Moreover, in order to express the sea-island effect (described later [0042]) more efficiently, it is preferable to use lactic acid or the like that develops viscosity when the solution is used. Further, the concentration of the acid solvent A is not particularly limited. However, as described above ([0038]), it is possible to supply hydrogen ions to the extent that the intramolecular and intermolecular hydrogen bonds derived from the hydroxyl groups and the like of the mixed polysaccharide M are inhibited and chitosan is dissolved. In general, it is within the range of about 0.1 to 30% by weight. The selection of the acid solvent A greatly affects the dissolution and precipitation (association) of the polysaccharide M, which will be described later in detail ([0048]).

前記滴下工程S2は、図3および図4に示す如く、前記多糖類溶液MAqを制御下に分散媒DSに滴下することで、混合溶液としつつsea−island効果を発現させ、これにより該分散媒DS中に会合状態となった際に所要粒径の多糖類微粒子10を形成するだけの量とし得るように、会合が解かれた状態となっている多糖類Mを所要量毎に分散させる工程である。具体的には、分散媒DS内に多糖類溶液MAqを滴下して(図3(a)参照)、これを該分散媒DS内で微小液滴とする滴下段階S21(図3(b)参照)と、多糖類溶液MAqの全量を分散媒DSに滴下して、該分散媒DS内に存在する該多糖類溶液MAqの微小液滴の合一によって、所要の大きさとする合一段階S22とからなる(図4(a)および(b)参照)。   In the dropping step S2, as shown in FIG. 3 and FIG. 4, the polysaccharide solution MAq is dropped onto the dispersion medium DS under control to develop a sea-island effect while making a mixed solution. Dispersing the polysaccharides M in the dissociated state for each required amount so that the amount of the polysaccharide fine particles 10 having the required particle size can be formed when the associated state is reached in the DS. It is. Specifically, the polysaccharide solution MAq is dropped into the dispersion medium DS (see FIG. 3 (a)), and this is a dropping step S21 (see FIG. 3 (b)) to form a fine droplet in the dispersion medium DS. ), And a total amount of the polysaccharide solution MAq added dropwise to the dispersion medium DS, and a coalescence step S22 to obtain a required size by coalescing the microdroplets of the polysaccharide solution MAq present in the dispersion medium DS; (See FIGS. 4A and 4B).

ここでsea−island効果とは、一方が多量成分であり、他方が少量成分である二成分系が存在する場合、多量成分間中に存在する少量成分(図3(a)参照)は、該多量成分が連続相に移行しようとする力を駆動力として、徐々に小さな塊に分かれて小さくなろうとする(図3(b)参照)現象である。従って、充分に多量にある分散媒DSに対して、少量の多糖類溶液MAqを加えれば、該多糖類溶液MAqがこの効果によって、自律的により小さな塊へと変化し続けることになる。そして分散媒DSおよび糖類溶液MAqの夫々の総量の比率や、粘度その他諸物性によって決定される最小の大きさに至ることになる。   Here, the sea-island effect means that when there is a two-component system in which one is a major component and the other is a minor component, the minor component present between the major components (see FIG. 3 (a)) This is a phenomenon in which a force that a large amount of component tends to shift to a continuous phase is used as a driving force to gradually become smaller lumps (see FIG. 3B). Therefore, if a small amount of the polysaccharide solution MAq is added to a sufficiently large amount of the dispersion medium DS, the polysaccharide solution MAq will continue to change autonomously into smaller chunks due to this effect. And it reaches the minimum size determined by the ratio of the total amount of each of the dispersion medium DS and the saccharide solution MAq, the viscosity and other physical properties.

このようなsea−island効果を好適になすために、前記分散媒DSへの多糖類溶液MAqの滴下は、0.1ml/秒以下とされている。この値が0.1ml/秒を超えると、前記多糖類溶液MAqが滴下される分散媒DSの局所部位において、該多糖類溶液MAqが大量に存在する状態となって、sea−island効果の好適に発現しなくなってしまう。そしてこのsea−island効果の発現によって、前記滴下段階S21が進行・完了する。そし前記分散媒DSの量は、前記多糖類溶液MAqの全量の滴下が完了するまで、前述のsea−island効果を継続的に発現させるため、該多糖類溶液MAq100体積部に対して、100体積部以上に設定されている。この数値が100体積部未満であると、前記多糖類溶液MAqの分散媒DS内での存在量が、該多糖類溶液MAqの滴下進行に伴って増大して、該多糖類溶液MAqの好適な微小液滴化が困難となり、多糖類微粒子10における2μm以下の粒径が達成困難となってしまう。なお100体積部以上であり、かつ多糖類溶液MAqの滴下速度が0.1ml/秒以下ではれば、他の酸溶媒Aの種類および使用量や、分散媒DSの種類に拘わらず、最大でも2μm以下の粒径が達成される。またこのような微小な糖類微粒子10は、乾燥等の処理によって容易に凝集してしまうため、その粒子の微小性を生かすために、一般には水分に分散させた状態で使用に供される。   In order to suitably achieve such a sea-island effect, the dropping of the polysaccharide solution MAq to the dispersion medium DS is set to 0.1 ml / second or less. When this value exceeds 0.1 ml / sec, a large amount of the polysaccharide solution MAq is present at a local site of the dispersion medium DS to which the polysaccharide solution MAq is dropped, which is preferable for the sea-island effect. Will not be expressed. The dripping step S21 proceeds and is completed by the expression of the sea-island effect. The amount of the dispersion medium DS is 100 volumes with respect to 100 parts by volume of the polysaccharide solution MAq in order to continuously develop the aforementioned sea-island effect until the dropping of the whole amount of the polysaccharide solution MAq is completed. Set to more than When this numerical value is less than 100 parts by volume, the abundance of the polysaccharide solution MAq in the dispersion medium DS increases as the dropping of the polysaccharide solution MAq proceeds, so that the polysaccharide solution MAq is suitable. It becomes difficult to form fine droplets, and it becomes difficult to achieve a particle size of 2 μm or less in the polysaccharide fine particles 10. In addition, if it is 100 parts by volume or more and the dropping rate of the polysaccharide solution MAq is 0.1 ml / second or less, it is at most regardless of the type and amount of the other acid solvent A and the type of the dispersion medium DS. A particle size of 2 μm or less is achieved. In addition, such fine saccharide fine particles 10 are easily aggregated by a treatment such as drying. Therefore, in order to take advantage of the fineness of the particles, they are generally used in a state of being dispersed in moisture.

前記合一段階S22は、その全量が分散媒DS内に存在している多糖類溶液MAqの微小液滴が、互いに衝突し合って合一することにより、その大きさを増大させる段階である。この段階S22で最終的に到達する前記多糖類溶液MAqの液滴の大きさは、基本的にsea−island効果によって微小化しようとする力と、前記分散媒DS内に存在する量によって変動する衝突回数との平衡によって決定される。これは、前記分散媒DSに対して滴下する多糖類溶液MAqの量と、該多糖類溶液MAqの該分散媒DS内での液滴の大きさとは比例すること、すなわち該分散媒DSに滴下する多糖類溶液MAqの総量によって、得られる多糖類微粒子10の大きさを制御し得ることを意味する。   The coalescence step S22 is a step of increasing the size of the micro-droplets of the polysaccharide solution MAq, all of which are present in the dispersion medium DS, colliding with each other and coalescing. The size of the droplet of the polysaccharide solution MAq finally reached in this step S22 basically varies depending on the force to be miniaturized by the sea-island effect and the amount present in the dispersion medium DS. It is determined by the balance with the number of collisions. This is because the amount of the polysaccharide solution MAq dropped onto the dispersion medium DS is proportional to the size of the droplets in the dispersion medium DS of the polysaccharide solution MAq, that is, dropped onto the dispersion medium DS. This means that the size of the polysaccharide fine particles 10 to be obtained can be controlled by the total amount of the polysaccharide solution MAq.

この滴下工程S2で使用される分散媒DSとしては、(a)水や、(b)一価のアニオンの金属塩水溶液(金属ハロゲン化物の水溶液を含む)または(c)二価以上のアニオンの金属塩水溶液が使用される。そしてこれらは、夫々多糖類溶液MAqへ与える作用が異なるため、以下に分説する。またこの理解に資するため、先にキトサンの溶解および析出(会合)について説明する。キトサンは、基本的に単糖類であるグルコサミンが、グリコシド結合によって連続した高分子であり、最小単位である該グルコサミン中には水酸基とアミノ基とが存在している。そして(1)水酸基のO(δ−)とH(δ+)との分極による水素結合と、(2)プラスに荷電したアミノ基同士の、アニオンを介したイオン結合とによって、分子内および/または分子間の会合状態(度合い)が決定されている。そしてその会合の度合いが一定値以上(大きい)となると、水に対して不溶化して析出し、一定値未満(小さい)となると、水に対して溶解することになる。ここで複数のアミノ基を結合させるためには、少なくとも電荷が−2以上となるアニオン、例えばSO 2−等の二価以上のアニオンの介在が必要となる。 Examples of the dispersion medium DS used in the dropping step S2 include (a) water, (b) a metal salt aqueous solution of a monovalent anion (including an aqueous solution of a metal halide), or (c) a divalent or higher anion. An aqueous metal salt solution is used. Since these have different effects on the polysaccharide solution MAq, they will be described below. In order to contribute to this understanding, the dissolution and precipitation (association) of chitosan will be described first. Chitosan is basically a polymer in which glucosamine, which is a monosaccharide, is continuous by glycosidic bonds, and a hydroxyl group and an amino group are present in the glucosamine, which is the smallest unit. And (1) hydrogen bonds by polarization of O (δ−) and H (δ +) of hydroxyl groups and (2) ionic bonds between positively charged amino groups via anions, and / or The state of association (degree) between molecules has been determined. When the degree of association becomes a certain value or more (large), it becomes insoluble and precipitates in water, and when it becomes less than a certain value (small), it dissolves in water. Here, in order to bond a plurality of amino groups, it is necessary to interpose an anion having at least a charge of −2 or more, for example, a divalent or more anion such as SO 4 2− .

先ず、(a)水を分散媒DSとして使用した場合は、基本的に水素結合を阻害してキトサンの会合度合いを低下させた酸溶媒Aに由来する水素イオンの量が減少するため、該水素結合が回復して、その結果、該会合度合いが大きくなり、キトサンが析出する。(b)の場合、(a)の作用に加えて、前記分散媒DS中で電離することになる一価のアニオンが、水素イオンと結合するため、更にキトサンの会合度合いは大きくなると考えられる。なお一価のアニオンはアミノ基と結合するが、この場合、該アニオンの電荷は−1であるため、1つのアミノ基とだけ結合して、他のアミノ基との結合はなさないため、会合度合いが変動することはない。   First, (a) when water is used as the dispersion medium DS, the amount of hydrogen ions derived from the acid solvent A, which basically inhibits hydrogen bonding and reduces the degree of association of chitosan, decreases. The bond is restored, and as a result, the degree of association increases and chitosan precipitates. In the case of (b), in addition to the action of (a), since the monovalent anion that will be ionized in the dispersion medium DS binds to the hydrogen ion, the degree of association of chitosan is considered to be further increased. The monovalent anion binds to an amino group. In this case, since the anion has a charge of -1, it binds only to one amino group and does not bind to another amino group. Will not fluctuate.

更に(c)の場合、水素イオンに対する作用は(b)と略同じと考えられる。しかしその一方で複数のアミノ基の間に存在し、該アミノ基を介して多価アニオンのコンプレックスが生成される場合があるので、よりキトサンの会合度合いが大きくなり、(b)よりも大きな会合度合いとなると考えられる。従って(a)<(b)<(c)の順で、キトサンの会合度合いは大きくなる。これは前記分散媒DSの選択によっても、多糖類微粒子10の粒径を制御し得ることを意味する。実際に前記分散媒DSとして、(a)水または(b)一価のアニオンの金属塩水溶液を使用した場合には、該分散媒DS中で白濁せず輝いて観察される極めて微細な数十nm前後の多糖類微粒子10が得られることが確認されている。   Furthermore, in the case of (c), the action on hydrogen ions is considered to be substantially the same as (b). However, on the other hand, it exists between a plurality of amino groups, and a complex of a polyvalent anion may be generated via the amino group, so that the degree of association of chitosan becomes larger and the association is larger than (b). It is considered to be a degree. Therefore, the degree of association of chitosan increases in the order of (a) <(b) <(c). This means that the particle diameter of the polysaccharide fine particles 10 can be controlled also by the selection of the dispersion medium DS. In practice, when (a) water or (b) a metal salt aqueous solution of a monovalent anion is used as the dispersion medium DS, several tens of fine particles observed without being clouded in the dispersion medium DS are observed. It has been confirmed that polysaccharide fine particles 10 of around nm are obtained.

また前述の如く、そのアニオンの価数が多糖類微粒子10の粒径に大きな影響を与えるのと同様に、先の溶解工程S1で使用される酸溶媒Aの種類も、多糖類Mの析出に殊に大きな影響を及ぼしている。すなわち酸溶媒Aとして、例えば二価のアニオンであるSO 2−を備える硫酸を使用する場合、多糖類Mを混合しても全く溶解しないと考えられる。これは水素イオンによる水素結合の阻害に由来する会合状態の解除によって発現する溶解量よりも、複数のアミノ基とのコンプクレックス生成に由来して発現する会合量の方が大きいためである。このようにより微細な多糖類微粒子10の製造を考える場合、一価のアニオンの酸や金属塩の使用が好ましい。なお前述の酸におけるアニオンの価数については、その数字だけでなく、酸解離定数(pKa)も重要な指標となる。具体的に、pKaが低い硫酸の如き無機酸の場合は、前述の如く、酸溶媒Aとしての使用に向かない。これに対して、同じ無機酸であっても炭酸またはリン酸や、各種有機酸等のpKaの高い物質は採用可能である。 In addition, as described above, the kind of the acid solvent A used in the previous dissolution step S1 also affects the precipitation of the polysaccharide M, as the valence of the anion greatly affects the particle size of the polysaccharide fine particles 10. It has a particularly big impact. That is, as the acid solvent A, for example, when using a sulfuric acid with SO 4 2-a is a divalent anion, it would not at all dissolve in a mixture of polysaccharide M. This is because the amount of association expressed due to complex formation with a plurality of amino groups is larger than the amount of dissolution expressed by releasing the association state resulting from inhibition of hydrogen bonding by hydrogen ions. When the production of finer polysaccharide particles 10 is considered in this way, it is preferable to use a monovalent anionic acid or metal salt. Regarding the valence of the anion in the aforementioned acid, not only the number but also the acid dissociation constant (pKa) is an important index. Specifically, an inorganic acid such as sulfuric acid having a low pKa is not suitable for use as the acid solvent A as described above. On the other hand, even if it is the same inorganic acid, substances having a high pKa such as carbonic acid or phosphoric acid or various organic acids can be employed.

前記析出工程S3は、混合溶液中に存在し、キトサンの会合を阻害する要因となっている、水素イオン或いは水素イオンおよびアニオン(以下、会合阻害物質と云う)を除去し、該キトサンを会合・析出させる工程である。本析出工程S3は、混合溶液中から会合阻害物質を除去し得る方法であれば、公知の如何なる方法でも採用可能である。しかし混合溶液中から会合阻害物質を除去するまでは、キトサンの会合、すなちわ析出は完全ではないため、その粒径が変動してしまう虞がある。   In the precipitation step S3, hydrogen ions or hydrogen ions and anions (hereinafter referred to as association inhibitors) that are present in the mixed solution and inhibit the association of chitosan are removed. It is the process of making it precipitate. Any known method can be used for this precipitation step S3 as long as it can remove the association inhibitor from the mixed solution. However, until the association-inhibiting substance is removed from the mixed solution, the association of chitosan, that is, precipitation is not complete, and the particle size may vary.

従って、物理的な力を加える、例えば濾過またはデカンテーションや、sea−island効果に影響を及ぼす混合溶液からの水分等、特定成分だけの除去は好ましくない。そのため前記会合阻害物質だけを除去可能な、透析膜等の使用が好適である。また余りにその透析速度が大きな場合には、キトサンの会合に影響を与える各物質の移動させる駆動力となってしまうため、その速度も0.1ml/秒以下であることが好ましい。   Therefore, it is not preferable to apply a physical force, for example, filtration or decantation, or removal of specific components such as moisture from a mixed solution that affects the sea-island effect. Therefore, it is preferable to use a dialysis membrane or the like that can remove only the association inhibitor. Further, if the dialysis rate is too high, it becomes a driving force to move each substance that affects the association of chitosan, so that the rate is preferably 0.1 ml / second or less.

ここまでの説明で分かる通り、本発明に係る多糖類微粒子およびその製造方法では、(1)sea−island効果によって、原料的な観点(多糖類M)から多糖類微粒子10の微粒子化を可能とし、(2)更に多糖類溶液MAqの分散媒DSへの滴下量の調整によって、同じく原料的な観点から多糖類微粒子10の粒径制御を可能とし、(3)最終的に多糖類Mの会合状態を制御することで、方法的な観点から多糖類微粒子10の微粒子化および粒径制御を可能としている。   As can be seen from the above description, in the polysaccharide fine particles and the production method thereof according to the present invention, (1) the polysaccharide fine particles 10 can be made fine from the viewpoint of raw materials (polysaccharide M) by the sea-island effect. (2) Further, by adjusting the dropping amount of the polysaccharide solution MAq to the dispersion medium DS, it is possible to control the particle size of the polysaccharide fine particles 10 from the viewpoint of raw materials, and (3) the polysaccharide M is finally associated. By controlling the state, the polysaccharide fine particles 10 can be made fine and the particle size can be controlled from a method viewpoint.

また本実施例のように、多糖類Mとしてキトサンを採用する場合、その会合度合いを決定する1つの要因であるアミノ基へのアニオンの結合は、該キトサンの高い化学的活性を阻害してしまう。従って、キトサンの使用時(水の介在下([0043]参照))において前記アミノ基からアニオンが解離していることが望まれる。このため前記酸溶媒Aとしては、アニオンが塩化物イオンであると共に、pKaの高い塩酸等を使用することが好ましい。具体的には、アニオンが塩化物イオンである塩酸を酸溶媒Aとして使用したり、アニオンが塩化物イオンまたは臭化物イオンである塩化ナトリウム、塩化マグネシウム,塩化リチウム,臭化リチウム等の金属ハロゲン化物の水溶液を分散媒DSとして使用することが考えられる。   Further, as in this example, when chitosan is employed as the polysaccharide M, the binding of the anion to the amino group, which is one factor that determines the degree of association, inhibits the high chemical activity of the chitosan. . Therefore, it is desirable that the anion is dissociated from the amino group when chitosan is used (in the presence of water (see [0043])). For this reason, as the acid solvent A, it is preferable to use hydrochloric acid or the like whose anion is chloride ion and pKa is high. Specifically, hydrochloric acid whose anion is chloride ion is used as acid solvent A, or metal halide such as sodium chloride, magnesium chloride, lithium chloride, lithium bromide such as chloride ion or bromide ion is used. It is conceivable to use an aqueous solution as the dispersion medium DS.

またこのように塩素等のハロゲン化物を用いる場合、その使用時(水の介在下([0043]参照))においてはアミノ基と塩素との電離生成物であるアンモニウムイオンとハロゲン化物(塩素)イオンとが中和して,電荷的に中性になる。このため、これまで同様の使用において酸性を呈していたキトサン(溶液)に比較して、その使用用途を格段に拡げることが可能となっている。   In addition, when using halides such as chlorine in this way, when used (in the presence of water (see [0043])), ammonium ions and halide (chlorine) ions, which are ionization products of amino groups and chlorine, are used. Neutralizes and becomes neutral in charge. For this reason, compared with chitosan (solution) that has been acidic in the same use so far, it is possible to remarkably expand its usage.

(実験例)
以下に本発明に係る製造方法で得られる多糖類微粒子についての実験例を示す。なお全実験とも、溶解工程S1において、多糖類溶液としては、多糖類としてキトサンを、酸溶媒として乳酸水溶液(濃度1.3重量%)を夫々採用して混合攪拌して得た、濃度1.5重量%のキトサン乳酸水溶液を使用した。また析出工程S3においては、透析膜を使用した塩析法によって過剰な混合溶液中の水素イオンおよび分散媒に係る塩を除去している。
(Experimental example)
The experiment example about the polysaccharide microparticles | fine-particles obtained with the manufacturing method which concerns on this invention below is shown. In all the experiments, in the dissolution step S1, the polysaccharide solution was chitosan as the polysaccharide, and an aqueous lactic acid solution (concentration: 1.3% by weight) as the acid solvent. A 5 wt% aqueous chitosan lactic acid solution was used. Moreover, in precipitation process S3, the salt which concerns on the hydrogen ion and dispersion medium in an excess mixed solution is removed by the salting-out method using a dialysis membrane.

(実験1) 多糖類溶液の分散媒への滴下総量と、得られる多糖類微粒子の粒径との関係について
前記多糖類溶液を使用し、分散媒として濃度14重量%の硫酸ナトリウム水溶液を液温を40℃まで加熱して使用し、150mlの分散媒に対して表1に記載した実施例1〜4に係る総量の該多糖類溶液を、速度0.1ml/秒で滴下した。その後,水溶液を5℃まで急冷すると共に、前述の塩析(速度0.1ml/秒)を実施して多糖類微粒子を得た。そして得られた多糖類微粒子の粒径を、光散乱(DLS)法によって、その分布と共に測定した。
(Experiment 1) Regarding the relationship between the total amount of the polysaccharide solution dripped onto the dispersion medium and the particle size of the resulting polysaccharide fine particles Using the polysaccharide solution, a sodium sulfate aqueous solution having a concentration of 14% by weight as the dispersion medium was used. Was used by heating to 40 ° C., and a total amount of the polysaccharide solution according to Examples 1 to 4 described in Table 1 was added dropwise to 150 ml of the dispersion medium at a rate of 0.1 ml / second. Thereafter, the aqueous solution was rapidly cooled to 5 ° C., and the aforementioned salting out (rate: 0.1 ml / second) was performed to obtain polysaccharide fine particles. And the particle size of the obtained polysaccharide microparticles | fine-particles was measured with the distribution by the light-scattering (DLS) method.

(使用原料)
・キトサン:和光純薬製
・乳酸:和光純薬製
・硫酸ナトリウム:和光純薬製
(使用装置)
・DSL粒度分布測定装置:商品名 ゼータサイザーナノ;JEOL製)
(Raw material)
・ Chitosan: Wako Pure Chemical ・ Lactic acid: Wako Pure Chemical ・ Sodium sulfate: Wako Pure Chemical
(Device used)
・ DSL particle size distribution analyzer: Trade name Zeta Sizer Nano; manufactured by JEOL)

(実験1の結果)
実験1の結果を、図5および表1に示す。この図および表から分かるように、実施例1に係る多糖類微粒子は、浴比すなわち,塩水溶液に対する滴下量の比の減少に伴い,粒径がサブミクロンサイズまで小さくなることと、その滴下総量と粒径とが正の相関関係を有することが確認された。
(Result of Experiment 1)
The results of Experiment 1 are shown in FIG. As can be seen from the figure and the table, the polysaccharide fine particles according to Example 1 have a particle size that is reduced to a submicron size as the bath ratio, that is, the ratio of the dripping amount to the salt aqueous solution decreases, and the total dripping amount. It was confirmed that and the particle size had a positive correlation.

(実験2) 分散媒の種類と、得られる多糖類微粒子の粒径との関係について
前記多糖類溶液を使用し、かつ分散媒として濃度3.125重量%となるように調整した下記([0059])の一価のアニオンの金属塩水溶液または(c)二価以上のアニオンの金属塩水溶液を夫々使用することで得た混合溶液から、実験1に準じた条件下で実施例5〜14に係る多糖類微粒子を作製した。そして得られた多糖類微粒子の状態を、目視によって確認した。また実施例8と、参考として前述の実験1の実施例1とについて、得られた多糖類微粒子の外形等を透過型電子顕微鏡(TEM)により観察した。
(Experiment 2) Regarding the relationship between the type of dispersion medium and the particle size of the obtained polysaccharide fine particles The following polysaccharide solution was used, and the concentration was adjusted to 3.125% by weight as the dispersion medium ([0059 ] From the mixed solution obtained by using the monovalent anion metal salt aqueous solution or (c) the divalent or higher anion metal salt aqueous solution, respectively, to Examples 5 to 14 under the conditions according to Experiment 1 Such polysaccharide fine particles were prepared. And the state of the obtained polysaccharide fine particle was confirmed by visual observation. Further, for Example 8 and Example 1 of Experiment 1 described above for reference, the outer shape and the like of the obtained polysaccharide fine particles were observed with a transmission electron microscope (TEM).

(使用原料)
・実施例5:NaCl(和光純薬製)
・実施例6:NaPH(和光純薬製)
・実施例7:MgCl(和光純薬製)
・実施例8:NaHPO(和光純薬製)
・実施例9:NaSO(和光純薬製)
・実施例10:NaSO(和光純薬製)
・実施例11:KSO(和光純薬製)
・実施例12:MgSO(和光純薬製)
・実施例13:NaHPO(和光純薬製)
・実施例14:NaPO(和光純薬製)
(使用装置)
・透過型電子顕微鏡(TEM):商品名 2000FX;JEOL製)
(Raw material)
Example 5: NaCl (manufactured by Wako Pure Chemical Industries)
Example 6: NaPH 2 O 2 (Wako Pure Chemical Industries)
Example 7: MgCl 2 (manufactured by Wako Pure Chemical Industries)
Example 8: NaH 2 PO 4 (Wako Pure Chemical Industries)
Example 9: Na 2 SO 3 (manufactured by Wako Pure Chemical Industries)
Example 10: Na 2 SO 4 (manufactured by Wako Pure Chemical Industries)
Example 11: K 2 SO 4 (manufactured by Wako Pure Chemical Industries)
Example 12: MgSO 4 (manufactured by Wako Pure Chemical Industries)
Example 13: Na 2 HPO 4 (Wako Pure Chemical Industries)
Example 14: Na 3 PO 3 (manufactured by Wako Pure Chemical Industries)
(Device used)
・ Transmission electron microscope (TEM): trade name 2000FX; manufactured by JEOL)

(実験2の結果)
この実験2の結果、一価アニオン系では,白濁せずに輝く微小な数nmオーダーの多糖類微粒子の生成が観察された。それに対して多価アニオンの系では,白濁現象が観察された。これはキトサンのアミノ基と多価アニオンとのコンプレックスにより,糖鎖間に架橋が生じ、該キトサンの会合が大きくなっていることに起因していると考えられる。ここから分散媒の種類を適宜選択することでも、多糖類微粒子の粒径が制御可能であり、更に非常に微小な粒子の生成が可能であることが確認された。
(Result of Experiment 2)
As a result of Experiment 2, in the monovalent anion system, the production of fine polysaccharide fine particles on the order of several nanometers that shine without being clouded was observed. On the other hand, white turbidity was observed in the polyanion system. This is thought to be due to the fact that cross-linking occurs between sugar chains due to the complex of the amino group of chitosan and the polyvalent anion, and the association of the chitosan is increased. It was confirmed that the particle size of the polysaccharide fine particles can also be controlled by appropriately selecting the type of the dispersion medium from here, and that very fine particles can be generated.

本発明の好適な実施例に係る多糖類微粒子の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the polysaccharide microparticles | fine-particles based on the suitable Example of this invention. 実施例に係る溶解工程S1を示す状態図である。It is a state figure showing dissolution process S1 concerning an example. 実施例に係る滴下工程S2における滴下段階S21(sea−island効果)を示す状態図である。It is a state figure showing dropping stage S21 (sea-island effect) in dropping process S2 concerning an example. 実施例に係る滴下工程S2における合一段階S22を示す状態図である。It is a state figure showing unification stage S22 in dropping process S2 concerning an example. 実験1における実施例1〜4の夫々に係る多糖類微粒子のDLS粒度分布の結果を示すグラフ図である。It is a graph which shows the result of the DLS particle size distribution of the polysaccharide microparticles | fine-particles which concern on each of Examples 1-4 in Experiment 1. FIG. 実験2における実施例8に係る多糖類微粒子のTEM写真である。It is a TEM photograph of polysaccharide fine particles concerning Example 8 in Experiment 2. 実験1における実施例1に係る多糖類微粒子のTEM写真である。4 is a TEM photograph of polysaccharide fine particles according to Example 1 in Experiment 1. FIG.

符号の説明Explanation of symbols

10 多糖類微粒子,A 酸溶媒,M 多糖類.MAq 多糖類溶液,DS 分散媒
10 Polysaccharide fine particles, A acid solvent, M polysaccharide. MAq polysaccharide solution, DS dispersion medium

Claims (13)

多糖類(M)を酸溶媒(A)に投入・溶解させて多糖類溶液(MAq)とし、
この多糖類溶液(MAq)100体積部に対して、100体積部以上とした分散媒(DS)としての水に該多糖類溶液(MAq)を滴下し、
前記多糖類溶液(MAq)と分散媒(DS)との混合溶液から、少なくとも過剰な水素イオンを除去することで、該多糖類(M)を会合・析出させることで、
その粒径が2μm以下で、任意に制御された多糖類を製造するようにした
ことを特徴とする多糖類微粒子の製造方法。
Add polysaccharide (M) to acid solvent (A) and dissolve to make polysaccharide solution (MAq),
With respect to 100 parts by volume of this polysaccharide solution (MAq), the polysaccharide solution (MAq) is dropped into water as a dispersion medium (DS) having a volume of 100 parts by volume or more,
By removing at least excess hydrogen ions from the mixed solution of the polysaccharide solution (MAq) and the dispersion medium (DS), the polysaccharide (M) is associated and precipitated,
A method for producing polysaccharide microparticles, characterized in that an arbitrarily controlled polysaccharide having a particle size of 2 μm or less is produced.
前記多糖類(M)として、該多糖類(M)をなすピラノース環の構造内にプラス電荷に帯電する官能基を備えるカチオン性多糖類が使用される請求項記載の多糖類微粒子の製造方法。 Examples polysaccharide (M), the method of producing a polysaccharide particulate of claim 1 wherein the cationic polysaccharide comprising functional groups that positively charged charge within the structure of the pyranose ring constituting the polysaccharide (M) is used . 前記水に対する、前記多糖類溶液(MAq)の滴下は、0.1ml/秒以下で実施される請求項または記載の多糖類微粒子の製造方法。 The method for producing polysaccharide fine particles according to claim 1 or 2 , wherein the dropping of the polysaccharide solution (MAq) to the water is performed at a rate of 0.1 ml / second or less. 前記酸溶媒(A)として塩酸が使用される請求項1〜3の何れか一項に記載の多糖類微粒子の製造方法。 The method for producing polysaccharide fine particles according to any one of claims 1 to 3 , wherein hydrochloric acid is used as the acid solvent (A). 前記水素イオンの除去と共に、酸溶媒(A)を構成する塩も併せて除去するようにした請求項1〜4の何れか一項に記載の多糖類微粒子の製造方法。 The method for producing polysaccharide fine particles according to any one of claims 1 to 4 , wherein the salt constituting the acid solvent (A) is removed together with the removal of the hydrogen ions. 多糖類(M)を酸溶媒(A)に投入・溶解させて多糖類溶液(MAq)とし、
この多糖類溶液(MAq)100体積部に対して、100体積部以上とした分散媒(DS)としての一価または二価以上のアニオンの金属塩水溶液に該多糖類溶液(MAq)を滴下し、
前記多糖類溶液(MAq)と分散媒(DS)との混合溶液から、少なくとも過剰な水素イオンを除去することで、該多糖類(M)を会合・析出させることで、
その粒径が2μm以下で、任意に制御された多糖類を製造するようにした
ことを特徴とする多糖類微粒子の製造方法。
Add polysaccharide (M) to acid solvent (A) and dissolve to make polysaccharide solution (MAq),
To 100 parts by volume of this polysaccharide solution (MAq), the polysaccharide solution (MAq) is dropped into a metal salt aqueous solution of a monovalent or divalent anion as a dispersion medium (DS) having a volume of 100 parts by volume or more. ,
By removing at least excess hydrogen ions from the mixed solution of the polysaccharide solution (MAq) and the dispersion medium (DS), the polysaccharide (M) is associated and precipitated,
A method for producing polysaccharide microparticles, characterized in that an arbitrarily controlled polysaccharide having a particle size of 2 μm or less is produced.
前記多糖類(M)として、該多糖類(M)をなすピラノース環の構造内にプラス電荷に帯電する官能基を備えるカチオン性多糖類が使用される請求項記載の多糖類微粒子の製造方法。 The method for producing polysaccharide microparticles according to claim 6, wherein a cationic polysaccharide having a positively charged functional group in the structure of a pyranose ring forming the polysaccharide (M) is used as the polysaccharide (M). . 前記金属塩溶液に対する、前記多糖類溶液(MAq)の滴下は、0.1ml/秒以下で実施される請求項または記載の多糖類微粒子の製造方法。 The method for producing polysaccharide fine particles according to claim 6 or 7 , wherein the dropping of the polysaccharide solution (MAq) to the metal salt solution is performed at a rate of 0.1 ml / second or less. 前記分散媒(DS)として、金属ハロゲン化物の水溶液が使用される請求項6〜8の何れか一項に記載の多糖類微粒子の製造方法。 The method for producing polysaccharide fine particles according to any one of claims 6 to 8 , wherein an aqueous solution of a metal halide is used as the dispersion medium (DS). 前記酸溶媒(A)をなす酸として、乳酸が使用される請求項6〜9の何れか一項に記載の多糖類微粒子の製造方法。 The method for producing polysaccharide fine particles according to any one of claims 6 to 9 , wherein lactic acid is used as the acid forming the acid solvent (A). 前記水素イオンの除去と共に、酸溶媒(A)を構成する塩および分散媒(DS)を構成する塩も併せて除去される請求項6〜10の何れか一項に記載の多糖類微粒子の製造方法。 The production of polysaccharide fine particles according to any one of claims 6 to 10 , wherein together with the removal of the hydrogen ions, the salt constituting the acid solvent (A) and the salt constituting the dispersion medium (DS) are also removed. Method. 前記水素イオン等の除去には、透析膜が使用される請求項1〜11の何れか一項に記載の多糖類微粒子の製造方法。 The method for producing polysaccharide fine particles according to any one of claims 1 to 11 , wherein a dialysis membrane is used for removing the hydrogen ions and the like. 前記多糖類(M)の酸溶媒(A)への溶解は、加熱によって達成され、かつ多糖類微粒子(10)の析出は冷却によって達成される請求項1〜12の何れか一項に記載の多糖類微粒子の製造方法。 The dissolution in acid solvent (A) polysaccharide (M) is accomplished by heating, and precipitation of the polysaccharide particles (10) according to any one of claims 1 to 12 is accomplished by cooling A method for producing polysaccharide fine particles.
JP2005121103A 2005-04-19 2005-04-19 Method for producing polysaccharide fine particles Expired - Fee Related JP4918665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121103A JP4918665B2 (en) 2005-04-19 2005-04-19 Method for producing polysaccharide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121103A JP4918665B2 (en) 2005-04-19 2005-04-19 Method for producing polysaccharide fine particles

Publications (2)

Publication Number Publication Date
JP2006298805A JP2006298805A (en) 2006-11-02
JP4918665B2 true JP4918665B2 (en) 2012-04-18

Family

ID=37467301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121103A Expired - Fee Related JP4918665B2 (en) 2005-04-19 2005-04-19 Method for producing polysaccharide fine particles

Country Status (1)

Country Link
JP (1) JP4918665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013073A (en) * 2007-06-29 2009-01-22 Kumamoto Prefecture Fine chitosan particles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002511A (en) * 2002-05-31 2004-01-08 Yoshinobu Fukumori Chitosan nanoparticle and manufacturing method therefor
JP2005068282A (en) * 2003-08-25 2005-03-17 Wakamoto Pharmaceut Co Ltd Method for producing chitosan fine particle

Also Published As

Publication number Publication date
JP2006298805A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
Liang et al. A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method
Cavallaro et al. Modified halloysite nanotubes: nanoarchitectures for enhancing the capture of oils from vapor and liquid phases
Cui et al. Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of fatty acids
El-Rafie et al. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization
CN101595168B (en) Cellulose fine particle, dispersion liquid thereof and dispersion body thereof
Wang et al. Alginate-intervened hydrothermal synthesis of hydroxyapatite nanocrystals with nanopores
BRPI0722100A2 (en) &#34;ADDITIVE PREPARATION METHOD FOR COATINGS DESIGNED TO PROTECT SURFACES AND ADDITIVE FOR COATINGS DESIGNED TO PROTECT SURFACES&#34;
Zhang et al. Effect of cetyltrimethylammonium bromide addition on the emulsions stabilized by montmorillonite
JPH02227433A (en) Preparation of aqueous suspension of carboxymethyl cellulose
CN103788402A (en) Carbon quantum dot/hectorite emulsion stable system and method for preparing paraffin emulsion
Yin et al. Gelation phenomenon during antisolvent crystallization of cefotaxime sodium
DE112017006834T5 (en) polishing composition
Zheng et al. Enhancing pesticide droplet deposition through O/W Pickering Emulsion: Synergistic stabilization by Flower-like ZnO particles and polymer emulsifier
JP4918665B2 (en) Method for producing polysaccharide fine particles
Jabeen et al. Effect of single and binary mixed surfactant impregnation on the adsorption capabilities of chitosan hydrogel beads toward rhodamine B
JP2008148726A (en) Deodorizing and antibacterial composition
JP2010150388A (en) Cellulose composition, and gel composition containing the cellulose composition
JP2008101080A (en) Polysaccharide fine particle and its manufacturing method
US20160374348A1 (en) Polymer-supported antimicrobial composites and methods of using the same
JP2009013073A (en) Fine chitosan particles
Liu et al. Aqueous foam stabilized by plate-like particles in the presence of sodium butyrate
Heidari et al. Surface modification of silica nanoparticles by chitosan for stabilization of water-in-oil Pickering emulsions
JP5219335B2 (en) Stock solution for coating composition
JP7037403B2 (en) Aqueous paint composition
Li et al. Thixotropic properties of aqueous suspensions containing cationic starch and aluminum magnesium hydrotalcite-like compound

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Ref document number: 4918665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees