JP4917206B2 - Sarレーダーシステム - Google Patents

Sarレーダーシステム Download PDF

Info

Publication number
JP4917206B2
JP4917206B2 JP2000589970A JP2000589970A JP4917206B2 JP 4917206 B2 JP4917206 B2 JP 4917206B2 JP 2000589970 A JP2000589970 A JP 2000589970A JP 2000589970 A JP2000589970 A JP 2000589970A JP 4917206 B2 JP4917206 B2 JP 4917206B2
Authority
JP
Japan
Prior art keywords
radar
sub
antenna
sar
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000589970A
Other languages
English (en)
Other versions
JP2002533685A (ja
Inventor
ヘルステン,ハンス
ウランデル,ラルス
Original Assignee
トータルフェルスバレッツ フォルスクニングスインスティテュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トータルフェルスバレッツ フォルスクニングスインスティテュート filed Critical トータルフェルスバレッツ フォルスクニングスインスティテュート
Publication of JP2002533685A publication Critical patent/JP2002533685A/ja
Application granted granted Critical
Publication of JP4917206B2 publication Critical patent/JP4917206B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9017SAR image acquisition techniques with time domain processing of the SAR signals in azimuth

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

【0001】
本発明は、SARレーダーシステムに関するものである。このシステムは、合成開口(synthetic aperture)を備えた低周波数レーダー(SAR)を用いて、運動する物体を検出することを可能にする。重要な応用は、飛行中のプラットフォームから森林植物内に隠された運動する物体を検出することにある。このような状況においては、光、赤外線および超音波の照射線は、かかる検出の実行が不可能となるような程度にまで妨害される。
【0002】
SARは、二次元の高分解能地上マッピングに対する既知の技術である。航空機または人工衛星のようなプラットフォームは、名目上の直線径路に沿って運動し、アンテナによって広い地上領域を照射する。地上からの反射信号が、アンテナによって受信され、直線径路に沿って記録される。信号処理によって、高分解能がこの直線径路に沿って、また、この径路に交差する方向に沿って達成される。このための条件は、アンテナの位置が既知でありまたは波長の一部分の範囲内で計算可能であり、かつ送信され、反射されたレーダー信号の相対振幅および位相が知られるということである。さらに、地上は、航空機が通過するとき、不変に保たれていなければならない。SARによってもたらされ得る最適の幾何学的分解能は、中心周波数および送信信号のバンド幅およびアパーチャ角度によって決定され、地上の領域は、直線径路に沿って、アンテナによってこれらのパラメーターにわたって照射される。
【0003】
SAR技術は、3mm〜15mの波長に対応する約20MHz〜100GHzの非常に広い周波数範囲において適用される。この周波数の選択は、主としてどの地上構造が再現され得るべきかを決定する。なぜなら、後方散乱された反射信号は、とりわけ、そのスケールが波長の大きさであるような構造によって影響を受けるからである。さらに、波長は、種々の地上の層に対する透過能力を決定し、すなわち、波の透過能力は周波数が減少するとともに、増大する。たとえば、植物に関して、減衰は、10MHz以下の周波数に対しては小さいが、1GHz以上の周波数に対しては大きくなる。すなわち、植物を透過する能力は、周波数が増大するとともに次第に減少し、よって、植物中に隠された物体を検出するための現実的な限界は約1GHzである。以下では、この1GHz以下で動作するSARシステムを低周波数システム、1GHz以上で動作するSARシステムを高周波数システムと呼ぶ。
【0004】
スウェーデン特許8406007−8(456,117)および対応するPCT国際出願SE85/00490、およびスウェーデン特許出願9503275−1および対応するPCT国際出願SE96/01164、並びにそれに続く米国特許4,866,446および4,965,582は、低周波数二次元ブロードバンドSARイメージ化処理について記載しており、これらの文献はここに参考文献として組み込まれる。また、ここに参考文献として組み込まれるスウェーデン特許出願9602594−5は、コンピュータトモグラフィーにおける関連する方法を記載している。
【0005】
森林内の静止した物体は、低周波数SAR、すなわち0.3〜15mの範囲の波長によって検出され得る。低周波数は、ほとんど減衰することなく植物の層内を透過し、木々の粗い構造からの弱い後方散乱を引き起こすだけである、という特性を有している。すなわち、静止した自動車のような静止した物体は、また、波長サイズの分解能を与えるSAR技術を低周波数に結合せしめることによって、深い森林内においても検出され得る。このことは、ここ数年来の複数の実験において科学的に実証されてきた。
【0006】
上で述べたように、低周波数SARは、運動する物体を検出することができない。SARの高分解能は、長い時間積分を要する信号を用いるようなイメージ化処理によって生じる。検出のための十分に高い分解能を可能とするため、レーダーは、物体の間隔と同程度の長さの間隔に沿って物体を観測しなければならない。この間隔は、20kmとなり得るものであり、すなわち、典型的な飛行速度に対して、時間の長さは約100秒となる。この時間の間に、物体は、波長の一部分の範囲内で、すなわち、1mの範囲内で静止していなければならない。この事実は、運動するカモフラージュされた物体を、この技術を用いることによって検出することを不可能にしている。実際は、物体の速度は、静止しているものとみなされる物体に対して約0.1m/秒以下でなければならない。
【0007】
よく知られているように、高周波数SAR技術は、狭いローブアンテナのアレイを用いることによって、運動する物体を検出し、再現するように改良され得る。アンテナローブが平行に移動せしめられるようにアンテナを配置することによって、信号処理を用いて、静止した物体から導き出されるレーダー信号に対するすべての影響を本質的に除去することが可能である。このGMTI機能(ground moving target indication)は、本質的に2つの異なる方法実行され得る。
【0008】
最初の方法は、DPCA(displaced phase centre antenna)と呼ばれ、2本の平行に変位させられたアンテナエレメントからの信号から、静止した物体を除去するために用いられる。この方法は、すべての静止した物体からのそれぞれ前側および後側のエレメントにおける信号が、エレメントの間隔と同じ距離運動するプラットフォームに対応する時間間隔が経過した後、繰り返されるという事実を用いる。時間的な遅れの後、静止した物体からの信号は、こうして、引き算によって除去され得る。この方法の欠点は、較正された時間不変なレーダーシステムが必要とされることにある。DPCAに伴うさらに別の問題は、ブラインド速度が発生し、そのためにまた、運動する物体が静止しているように見えるという点にある。この理由は、信号間の位相変化が、2π倍されたときに、消失が生じることにある。実際、これは最大アンテナ間隔に対する要請を含んでおり、そしてそれは、検出可能な最小動径方向速度に影響を及ぼす。
【0009】
第2の方法は、STAP(space-time-adaptive filtering)と呼ばれ、アレイアンテナ中における異なるエレメントに対する時間信号の分散性に基づいている。それぞれ静止した物体および運動する物体に対する分散行列は相違しており、信号を時空にわたって線形結合することによって用いられ、それによって、望まれた信号の望まれない信号に対する比が最大となる。実際、分散行列は、望まれない信号のランダムサンプリングによって計算され、そしてそれは、望まれた信号のモデルと一緒になって適応信号調節時空フィルター(adaptive signal-adjusted space-time filter)を形成する。STAP技術は、DPCA技術と同様、静止した物体の除去という制限を受けない。本質的に、すべての形態の望まれない信号は、もし、分散行列が計算されることができ、かつそれが望まれた信号と異なっているならば、同様の方法で処理され得る。例えば、内包的なまたは内包的でない干渉信号が、同様の方法によって除去され得る。
【0010】
本発明が解決しようとする基本的な問題は、森林植物を貫通する信号を生成し、それと同時に運動する物体の検出を可能とするために、低周波数SAR技術と運動する物体を検出する技術(GMTI)とを如何にして結合させるか、ということにある。この問題は、とりわけ、飛行中のプラットフォームに高周波数の狭いローブレーダーアンテナと同程度の高指向性を有する低周波数の十分大きなレーダーアンテナを設けることによって、GMTI機能を備えた高周波数SARに対する上述のような方法を用いることが現実的に困難なことにある。プラットフォームのようなボード上の制限された物理的空間は、本質的に低周波数レーダーアンテナが、全方向性を有し、低い指向性しか有していない、ということを意味する。指向性の欠如は、GMTI機能を備えた低周波数SARに対する2つの重要な結果をもたらす。そしてそれは、従来の方法が用いられ得ない、ということを意味する。
【0011】
まず、指向性の欠如は、GMTI機能に対する最適の性能を与えるという重要な問題を意味する。実際、後者は、複数のエレメントの方向感度ができるだけ同等となることを要求し、そのため、指向性が低い場合には、これを達成することは困難である。その理由は、アンテナエレメントが、電磁気的にプラットフォームに接続され、それによって方向感度が変化する、ということにある。したがって、方向感度は、プラットフォーム上におけるアンテナエレメントの正確な位置によって変化せしめられ、そして、アンテナエレメントは、上述したGMTI方法を不十分なものとする異なる指向性を有する。このため、本発明によれば、アンテナエレメントがプラットフォームの前側において、並進対称性を有するように設けられる
【0012】
第2に、指向性の欠如は、高い信号感度および幾何学的解像度が、長時間にわたるレーダーデータの最適のコヒーレント信号処理を必要とするということを意味する。信号の積分は、大きなアパーチャ角度にわたって照射された物体に対応する。このアパーチャ角度は、事実上非常に大きく、そのため、GMTI機能を備えた高周波数SARにおいて運動する物体に対して使用される信号処理方法は、適用され得ない。全く同様の理由で、低周波数SARにおける静止した物体の信号処理は、高周波数SARにおいて使用されるものとは異なっている。
【0013】
低周波数のレーダー反射は、関数f(t,r)によって記述され得る。ここで、時間tは(GPSおよび/またはプラットフォームの慣性航法システムから得られた)レーダーアンテナの位置をパラメーター化したものであり、また、rはレーダーアンテナからのレンジを示す。この場合、方位情報はレーダーデータにおいては使用不能であることに留意されなければならない。低周波数レーダーデータにおける静止した物体のレーダー処理は、バックプロジェクション法を用いてf(t,r)を円筒座標系x,ρにおける二次元のSARイメージg(x,ρ)に変換する。ここで、xは径路に沿った方位距離を示し、ρは径路から遠ざかる垂直な距離を示す。もし、地上の地形が知られているならば、位置はその飛行径路に沿った鏡像を除いて明確なものとなる。しかしながら、後者は、アンナテシステムの、弱いが、この場合依然として十分な方向性を用いることによって、識別され得る。こうして、物体の位置は、円筒(レンジシリンダー)および2つの表面の間の交差として得られる。このとき、2つの表面の一方は、円筒軸に垂直な部分面(方位平面)であり、他方は、地上を表している(図1参照)。三次元的な再現は、地上表面のトポグラフィーの知識なしには不可能であることに留意されたい。というのは、レーダーデータにおいては、第3の円筒座標および直線径路に垂直な部分平面における角度に関する情報が存在しないからである。このような再現は、スウェーデン特許出願9702331−1および対応するPCT国際出願SE/98/01147に記載された方法に従って、複数の直線径路または曲線の平行径路を用いることによって与えられ得る。ここに、これら2つの文献が参考文献として組み入れられる。
【0014】
低周波数SARとは対照的に、高周波数レーダーデータは、f(t,r)における時間変分を近似し、狭いアンテナローブに対してのみ適用可能な方法によって処理される。この方法は、時間および/またはフーリエ平面両方において公式化され得る。これらの方法において、特に直線径路からそれるプラットフォームの運動は、角度に依存しないレンジ補正によって近似的に補正される。後者の近似は、狭い角度セクターの範囲内で適用可能であり、したがって、狭いアンテナローブの場合に適用され得る。また、同様の方法が、アンテナローブが制御可能な場合、いわゆるスポットライトSARの場合に適用される。この場合、レンジ補正は、アンテナローブの向きに依存して変化するが、アンテナローブの範囲内では等しく、すなわち、近似的である。高周波数の方法に関する別のよく知られた近似は、f(t,r)の時間または周波数変分の級数展開である。典型的には、級数展開は、二次または三次の項を含むように用いられる。また、これらの近似は、狭い角度セクターを必要とする。
【0015】
低周波数レーダーデータの信号処理のために、バックプロジェクション法は、高周波数の方法に優る幾つかの重要な長所を有している。一方では、運動の一般的な補正が、アルゴリズム内に導入され、同時に、すべての角度およびすべてのイメージ点に対して適用可能である。他方、レーダー生データは、近似を用いることなく、SARイメージに変換される。最後に、計算に際しての目盛りの要求は、フーリエ変換に基づく方法の場合と比較して、劇的に減少する。
【0016】
低周波数SARを用いた森林中の静止した物体の検出は、バックグラウンドから物体を識別するための最適の幾何学的解像度を必要とする。もちろん、これは大きな部分バンド幅を備えたSARをもたらす。最適の解像度を達成することは別として、また、スペックル効果から生じるバックグラウンドの統計的な揺らぎが減じられる。スペックル効果は、解像度が波長(微小な部分的なバンド幅)よりもはるかに大きく、複数の散乱因子を含んでいるような場合に生じる。散乱因子によって後方散乱された波は、互いに干渉し、それによって生じた反射信号は、分解セルに対する観測角度にかなり依存する。通常、分解セルは、多くの独立的な散乱因子を含んでおり、それによって、異なる分解セル間におけるランダムな振幅および位相(いわゆるスペックル)を生じさせる。
【0017】
低周波数SARを用いることによる森林中の運動する物体の検出は、スペックルパターンが、もし同一の測定幾何学が繰り返されるならば、正確に再現され得るという事実に基づいている。アンテナエレメントを並進対称性を有するように設けることによって、バックグラウンドを含むすべての静止した物体は、プラットフォームの速度によって分割されたアンテナエレメントの相互距離に対応する時間遅延を除いて、この要件を満足する。これはスペックルパターンが一様であり、GMTI機能を用いることによって除去され得ることを意味する。したがって、運動する物体を検出するための大きな部分的バンド幅を備えることは必要ではなく、このことは、かなり微小なバンド幅を用いることによって達成され得る。バンド幅に関する要件は、その代わり、物体の測定、すなわち異なる物体の識別およびそれらそれぞれの位置の測定に関する望まれた程度の詳細によって決定される。このとき、アンテナエレメントに対する測定幾何学が、プラットフォームの速度ベクトルがエレメントの接続ラインと平行になる場合にだけ、正確に繰り返される、ということに留意されたい。実際これは、必ずしも実情には沿わない。しかしながら、この方法は、このような逸脱に対しても、依然として正しい結果をもたらす。なぜなら、もしバンド幅が十分であるならば、スペックルパターンはゆっくりと変化するだけだからである。原理的に、これは、アンテナエレメントを並進対称性を有するように設けることは、必ずしも必要ではないが、GMTI機能の最適の性能をもたらすための長所である、ということを意味する。
【0018】
高周波数SARに対し、スペックルパターン、そしてそれによって、GMTI機能の性能は、例えば、風によって引き起こされる葉や枝の微小な動きによって影響を受ける。分解セルの範囲内において、相対的な幾何学、それによって、後方散乱された波の間の干渉が変化する。この事実はまた、低速で運動する物体を検出することに関する問題を含んでいる。なぜなら、この場合、バックグラウンドはまた、GMTI機能によって運動する物体と認識されるからである。
【0019】
運動する物体および静止した物体の両方を検出することができる低周波数SAR技術を発展させることが望ましい。しかしながら、上述の議論によれば、バンド幅に関する要件は、静止した物体に対してもまた、運動する物体に対しても、厳格なものとはならない。運動する物体の検出は、微小なバンド幅を用いて実行され得るので、スキャニング能力は増大し得る。というのは、それは幾何学的解像度に直接比例するからである。他方、運動する物体の完全な測定は、多数のアンテナエレメント、すなわち、多数の信号チャンネルを必要とし、そして、これはスキャニング能力を低下させる。すなわち、問題は、バンド幅およびモード間のアンテナチャンネルに関する要件の適切な適用に関する信号パターンの出現にある。この点に関しては、明細書の最後の項目5以下を参照されたい。
【0020】
上述した点に鑑みれば、もし、SAR技術が改善されることによって、運動する物体が低周波数SARレーダーを用いて検出され、かつ再現され得るようになれば、非常に大きな発展となる。こうして、静止した物体並びに運動する物体は発見され、そして測定される。本発明の目的は、この問題を解決することにあり、この問題は、この明細書に添付の請求の範囲の独立請求項に記載された本発明の特徴によって解決される。本発明の適当な実施例が、残りの請求項に記載される。
【0021】
次に、本発明が、添付図面を参照してより詳細に説明される。
【0022】
本発明の原理は、次の4つのステップからなる、1)バックグラウンドを含む静止した物体のすべての除去、2)運動する物体の検出、3)物体の方位を計算することによる位置および速度の決定、4)認識。静止した物体および運動する物体に関する瞬間的な機能を達成するため、また、第5番目のステップが導入される。
【0023】
この第5番目のステップが以下に説明され、本質的に最適のレーダー機能を達成するために要求される。しかしながら、特定の状況に依存して、ステップ1、3、4または5のうちの1つまたはそれ以上が、除外され得るが、この方法は、依然として満足のいく最終結果をもたらす。例えば、ステップ1は、静止したバックグラウンドが、低いレーダー断面積を有しているような場合、例えば、海上における船舶の検出、または平原上における自動車の検出の場合、除外され得る。ときどき、検出だけがレーダー機能にとって十分な場合があり、このときには、ステップ3および4が除外され得る。
【0024】
本発明の基本的実施例は、多数の物体上を運動するプラットフォームからなるレーダーシステムに関係する。物体の数は、非常に多く、そして物体は、例えば、地上表面の形態で出現し得る。プラットフォームは、1GHz以下のレーダー周波数を用い、少なくとも1本のアンテナを通じて、バックプロジェクションおよびサブアパーチャに基づく合成開口技術(SAR)によって、それらの物体をイメージ化するレーダー装置を支持している。
【0025】
レーダー装置は、送信されたレーダーパルスのそれぞれから受信されたレーダーエコーのレーダー生データを記録する信号処理装置を備えている。
プラットフォームは、レーダー生データを記録する間に実質上一様な直線運動を行うとともに、使用される前記少なくとも1本のアンテナの位置を記録または計算する。
信号処理装置は、レーダー生データをバックプロジェクションすることによって、2つのイメージ座標の関数として二次元のSARイメージを計算する。
【0026】
バックプロジェクションは、合成開口の全長を複数のサブアパーチャに分割し、サブアパーチャ毎に部分積分することによってサブイメージを計算し、さらにサブイメージを加え合わせることによって、二次元のSARイメージを得るようになされる。二次元のSARイメージの計算が、サブアパーチャの長さを次第に増大させ、それに対応してサブイメージを次第に縮小させることによって、バックプロジェクションの解像度のレベルを段階的に上げるとともに、1の解像度のレベルにおける前記サブアパーチャに関する前記レーダー生データを、すぐ下の解像度のレベルにおける前記サブアパーチャに関する前記レーダー生データにのみ基づいて計算する階層的計算スキームにおいて実行される。
二次元のSARイメージの計算が、さらに、物体およびプラットフォーム間の相対速度パラメータを調節することを含み、それによって、特定のイメージ座標を有する物体の各レーダーエコーが、相対速度パラメータの値に対する望ましい信号の望ましくない信号に対する比が最大となるように再現される。
【0028】
少なくともN個のレーダーパルスおよび各レーダーパルスに対する少なくともN個のレンジサンプルから出発して導出され、共通のサンプルスペースに対して予め処理されたN×N個のピクセルからなるイメージに対して、このことが実行され、その結果、合成開口処理は、まず最初、K個のレーダーパルスに基づくサブアパーチャに関して生じ、達成されるべき高い解像度のN/K×N個のピクセルからなる、分解セルにわたる一定のレーダー振幅を伴った低解像度のイメージを与える。
【0029】
その後、低解像度での各分解セルの反射率が、N/K次元ベクトルからなる、という事実が用いられ、各ベクトル要素は、サブアパーチャの反射率となる。なぜなら、複数のアパーチャは、低分解能では、同一の分解セルの反射率値を与え、ベクトル要素は、より高い解像度のイメージを生成するためのグループ内のK個のアパーチャを、最も高い解像度をもつピクセルのN/(K)×N個にわたる一定のレーダー振幅に結合させるためのレーダーデータとして用いられるからである。最後に、このプロセスは、最も高い解像度が達成されるまで繰り返される。
【0030】
プラットフォーム上の少なくとも2本のアンテナからの信号を線形結合することによって、静止した物体が除去され、運動する物体が検出され得る。静止した物体の除去および運動する物体の検出は、階層的計算スキームの解像度の各レベルにおいて適当に実行され得る。
【0031】
プラットフォーム上の少なくとも2本のアンテナからの信号を線形結合することによって、運動する物体の方位を、異なるアンテナによって記録されたSARイメージの間のレンジ差を用いることによって決定することがまた可能である。運動する物体の方位の決定は、一般化された階層的計算スキームの解像度のレベル毎に、適当に実行され得る。
【0032】
少なくとも3本のアンテナが使用される場合には、静止した物体の除去および運動する物体の検出のための少なくとも2本のアンテナと、運動する物体の方位を決定するための少なくとも2本のアンテナを、線形結合することが可能である。少なくとも4本のアンテナが使用される場合には、干渉信号を従来の方法によって除去することが可能である。
【0033】
アンテナは、適当にプラットフォームの前側または後側において、並進対称性を有するように設けられ得る。アンテナシステムの適当な具体的実施例では、アンテナシステムは、ブーム内に連続して配置された5本のブロードバンドレーダーアンテナを備え、そのうちの最も外側の2本のアンテナは、送信エレメントとして使用され、内側の3本のアンテナは、受信エレメントとして使用される。
【0034】
350MHz<X<550MHzとして、一方が200XMHzの周波数レンジをカバーし、他方がX800MHzの周波数レンジをカバーする2本のアンテナシステムを用いることが可能である。
【0035】
本発明の好ましい実施例では、レーダーシステムは、少なくとも2つの周波数ステップに分割されたパルスシーケスを送信する。数種類のタイプの基本SARイメージング処理、運動する物体の検出、方位の決定および干渉の除去のような異なるタイプの測定が、異なる周波数ステップの間に実行され、信号処理装置は、周波数ステップ毎に、ドップラー信号のサンプリングに対するナイキスト判定基準が維持され、かつ測定のタイプ毎に望まれた全バンド幅をカバーすべく、周波数ステップの数を最少にするという、第2の条件の下にアンテナチャンネルの数およびアンテナチャンネル毎のバンド幅の割り当てを最適化する。本発明が、上述の4つのステップに関連付けられた項目の下に、以下においてより詳細に説明される。
【0036】
1)静止した物体の除去(クラッター消去)
全く同一の方向感度を有しているが、プラットフォームの地上に対する速度ベクトルに沿って距離をあけて配置された、2本のアンテナエレメントを備えた低周波数レーダーを考え。さらに、バックグラウンドを含む再現された物体は、静止しているものと仮定しよう。この理想的な状況において、前側のエレメントからの応答は、相対速度vによって分割された距離dで与えられる時間遅延の後、後側のエレメントによって繰り返される。すなわち、
【0037】
【数1】
Figure 0004917206
【0038】
が成立する。
【0039】
図2に示されるように、前側のアンテナエレメントからの信号を時間遅延させ、後側のアンテナエレメントからの信号だけ差し引くことによって、静止した物体のすべての信号が除去される。
【0040】
信号消去の原理は、単純ではあるが、実際に直接適用することはできない。この理由は、2本のアンテナエレメントからの信号は、同一ではなく、幾つかの理由から互いに相違しているからである。まず第1に、大抵の場合、速度ベクトルは、エレメント間の接続ラインからそれており、その結果、スペックルパターンが変化する。さらには、突然の動きとは無関係に、航空機の縦軸は横風に依存する安定条件下において、飛行径路からそれる。第2に、アンテナの方向感度は、実際同一ではなく、異なる周波数および方向に対して、異なる方法で信号をゆがめる。第3に、(アンテナ間隔に相当する)時間遅延は、時刻tに対するサンプル距離を規定するパルス繰り返し時間の積となること保証されていない。
【0041】
これらの理由によって、アンテナ信号の少なくとも部分的なSAR処理は、クラッター消去に先行して実行されなければならない。こうして、幾何学的分解能は、パルス圧縮ブロードバンド再構築およびバックプロジェクションの後に増大し、信号間の相関を増大させる。なぜなら、スペックルパターンは、より安定するからである。加えて、アンテナエレメントの方向感度差が補正され得る
【0042】
反転の後、第1エレメントからのSARイメージg(x,ρ)、および第2エレメントからのSARイメージg(x,ρ)が得られる。ここで、xおよびρは、地上の円筒座標を表し、各エレメントの径路は、〔x(t),y(t),z(t)〕および〔x(t),y(t),z(t)〕=〔x(t)−d,y(t)−d,z(t)−d〕によって与えられ、
【0043】
【数2】
Figure 0004917206
【0044】
すなわち、この場合は、2本のエレメントが、相互の直線径路に沿っておよびこれに交差して、間隔をあけて配置されている場合に相当する。横方向の間隔によって、2本のエレメントは、干渉系の透過物を形成する。後者は、スペックルパターンが、地上から視認される横方向におけるエレメントの角度間隔の部分的なバンド幅に対する比に比例して変換する、という性質を有している。高い一様性を維持するため、次の関係式が満たされなければならない。
【0045】
【数3】
Figure 0004917206
【0046】
これは、例えば、部分的なバンド幅B/fは、約0.01またはそれ以上となるべきであり、それによって、地上の数kmの距離で約1mの横方向のずれを許容しなければならない、ということを意味する。他方、スペックルパターンは、並進運動からそれる縦方向における間隔によって影響を受けない。以下では、部分的なバンド幅が、上述の要件を満たしていることによってスペックルパターンは、静止した物体に対して同一であるものとみなされるものと仮定する
【0047】
また、運動する物体は、SARイメージに対して本質的に同様のやり方で寄与する。すなわち、もしそれらが急激に加速されず、速度ベクトルが時間遅延d/vの間に十分に変換するならば、純粋な並進運動を伴って寄与する。静止した物体と運動する物体との間の差異は、したがって、異なるイメージ間の並進運動においてのみ生じる。これは、SAR反転が、物体の焦点合わせを実行するかしないかにかかわらず、真実である。なぜなら、信号は共に同程度まで影響を及ぼされるからである。
【0048】
上述のようにまた、アンテナエレメントの方向感度差に対する補正が導入されなければならない。それ故、実際、これらの補正は、周波数に対してだけでなく、方向に対しても調節されなければならない。そしてそれは、十分な方向分解能が達成されたとき、SAR反転に部分的に適当に導入される。アンテナ補正は、直線径路からのずれに対する補正と同様のタイプの補正からなり、したがって、同じ原理を用いてSAR反転に導入され得る。
【0049】
これらの補正がなされた後、静止した物体の除去が、
【0050】
【数4】
Figure 0004917206
【0051】
に従った引き算によって実行され得る。
【0052】
信号間の並進運動は、イメージ内におけるピクセル距離の積となる必要はない。十分な高精度を伴ったイメージの補間が、空間平面またはフーリエ平面のいずれかにおいて実行され得る。フーリエ平面において、これは線形位相関数による乗算によって実行され、また、空間平面においては、対応する補間係数、すなわちテーパード・シンク関数を用いて実行される。
【0053】
このパラグラフ中における原理は、低アンテナ指向性を有するレーダーシステムに対するDPCA技術の一般化である。これらの原理は、安定なかつ較正されたSARを必要とし、運動する物体の消去のみを達成する。したがって、STAP技術を低アンテナ指向性を有するレーダーシステムに対して一般化し、よって例えば、無線ジャミング送信のような消去されるべき別のタイプの信号を導入することが可能である。
【0054】
2)運動する物体の検出
一般に、検出性能は、レーダー信号の信号ノイズ比(SNR)に直接依存する。クラッター消去を用いることによって、上述のように、運動する物体のSNRは、消去された静止した物体によって著しく改善される。しかしながら、これは、検出に対して十分ではなく、信号の積分が伴われなければならない。しかしながら、SAR反転に対する既知の方法の直接の適用は、満足のいく方法で焦点を合わせられた運動する物体を生じさせることはない。焦点合わせの精度の低下は、信号ノイズ比を減少させ、よって、検出能力をまた低下させる。焦点合わせのレベルは、アパーチャ角度とともに増大し、そしてそれは、低周波数SARの性能を著しく低下させる。したがって、検出能力は、クラッター消去の後においても、最適なものではない。なぜなら、信号は、多数個の分解セルにわたって広がっているからである。それ故、検出は、運動する物体の考えられ得る種々の運動パターンに対して、SAR反転をシステマティックに適用することによって実行されなければならず、その結果、信号エネルギーは、最大個数の分解セル上に集められ、よって、信号ノイズ比を最大にする。
【0055】
静止した物体のSAR反転の原理は、以下のようにして、運動する物体に対して一般化され得る。まず最初、地上に静止した物体が、存在するような単純化された場合を考え、
【0056】
【数5】
Figure 0004917206
【0057】
円筒座標における位置(x,ρ)をもつ物体は、このとき、レーダー生データf(t,x)においてレンジ方程式
【0058】
【数6】
Figure 0004917206
【0059】
に従って双曲線を伴う。
【0060】
したがって、正確なSAR反転g(x,ρ)は、バックプロジェクション原理に従って、積分変換
【0061】
【数7】
Figure 0004917206
【0062】
を用いてレーダー生データf(t,r)から得られる
【0063】
この変換の後、SARイメージは、幾何学的分解能を改善するためにフィルターをかけられなければならない。さもなければ、分解能は、とりわけ、バックプロジェクション変換、アンテナの周波数および方向感度および他の必要なフィルター機能によって引き起こされた、伝送関数のスペクトル振幅における歪みによって低下する。この場合、それぞれの位置(x,ρ)は、一義的なレンジ方程式を有し、バックプロジェクションは、それぞれSARイメージ中における一点として双曲線のようなものを明確に再現する、ということに留意されなければならない。各点におけるSARイメージの強度は、この位置における物体の確立に関する測度を与える。しかしながら、上述のように複数の地上物体は、地上のトポグラフィーによって同一の位置(x,ρ)を与え得る。
【0064】
正確SAR反転は、直線径路に沿った変化し得る速度に適用するために書き換えられ得る。しかしながら、実際は、直線径路からのずれが処理されなければならず、そしてそれは地上のトポグラフィーに対する補正をもたらす。この場合に対する式(5)の一般化は、
【0065】
【数8】
Figure 0004917206
【0066】
によって与えられる。
【0067】
次に、レーダー生データがまた、移動する物体を含んでいると仮定しよう。バックプロジェクションの後、これらの物体は、一点に焦点を合わせられず、SARイメージにおける不確定性を生じさせる。原則として、運動する物体はまた、もし、
【0068】
【数9】
Figure 0004917206
【0069】
バックプロジェクションを用いることによって焦点を合わせられ得る。
【0070】
異なる地上速度に対するSAR反転を実行することによって、運動する物体は焦点を合わせられる。それにもかかわらず、それらの速度または方位は明確には決定されない。これは、アンテナに対して固定された座標系における相対運動を観測することによって、現実なものとなるということが認識されるだろう。相対速度は、その大きさおよび方向に関して、一定であると仮定しよう。このとき、運動する物体は、
【0071】
【数10】
Figure 0004917206
【0072】
に従って3パラメーターの双曲線を伴う。ここで、ρは、アンテナおよび時刻tにおいて生じる物体の間の最小レンジと同等であり、βは、相対速度である。この場合、同一のレンジ方程式がまた、アンテナのまわりの物体の軌道の剛体回転の後に得られ、そしてそれは、方位の不確定性をもたらすということに留意されなければならない。このような回転の変換は、方位および相対速度を変化させるが、相対速度の絶対値(速度の大きさ)は変化させない。しかしながら、静止座標系においては、物体の速度の絶対値および径路は、共に変化せしめられる。パラメーター(t,ρ,β)の同一の組に対して変化する地上速度および径路を伴った運動を物体の1パラメーターの組が存在する。
【0073】
例えば、直線径路に平行にゆっくりと運動する物体を観測しよう。アンテナに固定された座標系において、物体は、プラットフォームの速度に近い速度で後方に向かって運動する。アンテナに固定された座標系において、同一の速度で運動する別の物体は、直線径路に対して直角方向に運動するが、同一のレンジ方程式に従う。しかしながら、地上に固定された座標系においては、この物体は、高速度でかつ直線径路から45°の角度をなして運動する。これらの2つの物体は、地上に固定された座標系においては、全く異なる運動パターンを有しているが、アンテナに固定された座標系においては、認識され、よって、レーダー生データにおいては、同一であり、よって、関数f(t,r)だけを測定することによっては識別されない。
【0074】
方位の不確定性の詳細並びにそれが如何にして解決され得るかという点について、後で議論するだろう。今のところ、一定の相対速度の場合には、レンジ履歴のそれが異なる地上速度から有する物体の1パラメーターの組に対応しているだけで十分である。このような組は、それぞれ、相互レンジρが、未知の方位を伴って観測されるということによって特徴付けられる。なぜなら、アンテナの指向性は失われ、よって、地上速度は未知だからである。結果として、一定の地上速度および任意の径路を有する各物体に対して、正確に同一のレンジ履歴を与える、与えられた径路を伴った対応する直線運動が存在する。
【0075】
すなわち、任意の地上速度、すなわち地上速度絶対値および径路における運動する物体のSAR焦点合わせは、相対速度βのパラメーターを調節することによってのみ可能である、ということが結論付けられる。これは、全SARイメージが、与えられた地上速度における運動する物体に対して焦点合せされ、そしてそれが、同時に焦点合せされた方位の不確定な物体の完全な集合をもたらすことを意味する。相対速度を変化させることによって、すべての運動する物体が焦点合せされる。3パラメーターSAR処理が、検出の後に続いた後、すなわちSARイメージにおける各ピクセルの微小な周辺領域が分析され、検出基準が満たされているかどうかが調査される。この場合、周囲のノイズに関する信号、例えば、CFAR(constant false alarm ratio)またはそれに類するものを検出するためのすでに知られた原理が使用され得る。
【0076】
クラッター消去は、原理的に処理の間に異なる段階で実行され得る。しかしながら、実際、最小の解像度が方向および周波数感度に対する補償が含まれ得るように要求される。一般に、SAR焦点合わせは、並進不変、すなわち時間tに関してシフト不変になっており、これは2つのイメージ中における物体が、相対速度に比例して分離されることを意味する。こうして、静止した物体は、アンテナエレメント間の距離に対応する時間遅延および引き算の後、除去され得る。しかしながら、運動する物体は、もし、対応する変位が波長の大きさと同程度であり、またはそれ以上であるならば、除去される。もし、相対速度が、十分高く、すなわち幾何学的解像度よりも高いならば、運動する物体は、減算の後、2つの分離した物体を生じさせ得る。それに続く、処理の過程で、この分離は除去されて、信号ノイズ比は最大になる。
【0077】
上述した検出方法を機能させるため、SAR処理は、すべての使用可能なかつ合理的な相対速度に対して実行されなければならない。相対速度に対する分解能Δβは、こうして運動する物体が、全積分時間Tにわたって位相に関して積分されるのに十分に高くなっていなければならない。焦点合わせパラメーターに対する相対的なエラーΔβ/βに関する要件は、時間‐バンド幅積に反比例し、次式
【0078】
【数11】
Figure 0004917206
【0079】
を与える。
【0080】
波長1m、レンジ10km、速度100m/sおよび積分時間5秒を含む量の、典型的な値が与えられるとき、Δβ<1m/sが得られる。使用可能な相対速度は、かなり大きなレンジ、例えば、±30m/sの範囲内で変化し得るので、速度の分類の個数は、非常に大きくなり、3パラメーターSAR焦点合わせは、コンピュータによる計算に適したものとなる。
【0081】
SAR焦点合わせの上述の説明は、アンテナエレメントが、実際は決して実情に沿わないが、直線径路に沿って運動するということを意味している。直線径路からのこのずれは、原理的には、たとえ感度が許容され得る精度での方位の決定に対して不十分であったとしても、方位の不確定性を打ち破るものである。その代わりに、このことは、直線径路からのずれに対する補正が、SAR焦点合わせに導入されなければならない、ということを意味する。このことは、レーダー生データが、上述の相対速度に加えて、異なる径路に対して再焦点合わせをされなければならないことを意味している。方位に関する解像度についての要件は、直線径路のずれに直接比例し、よって、使用されたアパーチャ距離、すなわち積分時間とともに増大する。
【0082】
SAR焦点合わせ方法を完成させるため、すなわちそれをコンピュータを用いて実行可能とするために、階層的計算スキームを導入して、バックプロジェクション積分を部分和に分割すること、すなわちサブアパーチャを連続的に増大させつつサブイメージを連続的に減少させることが必要であるバックプロジェクション積分の部分和への分割は、近似の程度が、このスキームを用いることにより、SARイメージの全体にわたって一定に維持されるという原理に基づいている。すなわち、サブアパーチャにわたる総和は、問題のサブイメージの中心を通るビームに沿って正確な値を有している。このビームの線からずれるサブイメージ内の位置に対して、b/2sinγ(γは中心線からの角度のずれを表し、bはサブアパーチャの長さを表す)の程度のレンジエラーが導入される。このサイズのサブイメージ内の最大レンジエラーは、したがって、rをサブアパーチャおよびサブイメージ間のレンジとして、
【0083】
【数12】
Figure 0004917206
【0084】
となる。この階層的計算スキームの解像度のレベルが1つ上がる毎に、サブアパーチャの長さは、一定倍数ずつ増大し、よって、サブイメージはそれに対応する倍数だけ減少せしめられ、レンジエラーが同一レベルに維持される。
【0085】
部分和およびサブイメージへの分割をすることなく、式(6)を直接適用することによって、与えられたN×N個のイメージに対し、演算回数は、N K(Nは径路に沿ったデータドットを表し、Kは速度分類を表す)回程度となる。他方、階層的計算スキームでは、N K/ε回程度の演算回数が必要となり、ここで、ε(n,N)は
【0086】
【数13】
Figure 0004917206
【0087】
による相対計算利益であり、nはこのスキームにおける解像度のレベルである。例えば、N=4096およびn=6に対して、εは10程度の大きさである。この例において、L=4個のサブアパーチャが、図3に従って、解像度のレベル間で結合される。解像度のレベルが6となったとき、完全なアパーチャ長( =4096)および望まれた解像度が達成される。レベルが1つ上がる毎に、解像度は4×4倍増大する。速度分類の個数は最終的にK個であり、これらは、サブアパーチャの長さと比較して、解像度のレベルが1つ上がる毎に、式(8)に従って二次的に減少する。実際このことは、計算の負担が最後のステップによって完全に軽減されるということを意味している。ここで、すべての速度クラスにわたる演算回数は、N2+1/nK回程度であり、これは直接に、式(10)を与える。
【0088】
このスキームはまた、円筒または方位対称性が破られたとき、直線径路からのずれを取り扱うために公式化され得る。これは、レンジエラーが、物体からの信号が予め仮定されたもの以外のレンジから生じる、という事実によって生じるような場合に対応する。そしてそれは、補償されなければならない。階層的計算スキームにおいて、補正は、各サブアパーチャ総和に対してなされる。これは、3パラメーターSAR焦点合わせにおける直線径路からのずれを補正するが、方位に関する破られた対称性は無視する。これは、原理的にSAR焦点合わせが、4パラメーター化されており、この場合、径路が考慮されなければならない、ということを意味している。階層的計算スキームにおいて、直線径路からのずれは、初期レベルでは非常に小さく、よって、効果的に無視され得る。しかしながら、最後のレベルにおいては、焦点ボケを防止するために、多数の方位分類を導入する必要がある。
【0089】
SAR焦点合わせに対する階層的計算スキームが、次に数学的に説明される。地上の静止した物体および運動する物体の両方を再現するSARを考えよう。解像度のレベルnでのサブアパーチャの計算は、レーダーデータが、
【0090】
【数14】
Figure 0004917206
【0091】
に従って変換されることを意味する。ここで、tは、解像度のレベルnにおけるサブアパーチャmおよび速度分類ρの中心に対する時刻であり、t’は解像度のレベルn−1におけるサブアパーチャに対する時刻であり、総和はC=〔t−Δt/2L,t+Δt/2L〕にわたってとられ、rおよびr’は各サブアパーチャの中心から各サブイメージの中心にいたる直線に沿ったレンジ、すなわち
【0092】
【数15】
Figure 0004917206
【0093】
である。
【0094】
こうして、数値演算の個数は(サブアパーチャの個数)×(サブイメージの個数)×(サブアパーチャ和における時刻位置の個数)×(サブイメージにおけるレンジ点の個数)×(速度レンジの個数)である。解像度の第1のレベルでは、f0,m,p(t,r)=f(t,r)であり、すなわちレーダー生データが設定され、その後、この計算スキームが、特定のサブアパーチャに対するサブイメージの個数が望まれたイメージサイズに等しくなるまで続行される。こうして、計算スキームは、SARイメージが適当な解像度を有するようになったとき、中止される。
【0095】
3)位置および速度の決定
測定原理の第3のステップは、上述の方位不確定性を解決することにある。SAR反転およびクラッター消去の後、物体は最大の信号ノイズ比を伴って検出されるが、その方位は未知のままである。我々は、次に物体を正確に位置決めするための方位およびレンジの両方を決定し、それを静止した物体のSARイメージに対して正確に再現するつもりである。
【0096】
方位は、1つのアパーチャが使用されるときに生じる回転対称性を妨げることによって決定される。もし、2つのアパーチャがクラッター消去を行うために用いられるならば、同一の不確定性が生じる。少なくとも1つ以上のアパーチャが方位の決定に対して必要である。
【0097】
SAR反転およびクラッター消去を結合させることによって、方位に正確な決定に対する有利な信号ノイズ比がもたらされる。例えば、1mの波長および30dBの信号ノイズ比の場合、レンジエラーは、
【0098】
【数16】
Figure 0004917206
【0099】
によって与えられる。
【0100】
アンテナアパーチャの間隔の典型的な値は、2mであり、これは10kmのレンジでの20mのオーダーの位置決めエラーを生じさせる。この不正確性は、原理的に位置決めを制限している。しかしながら、この場合、測定原理は、多段階プロセスからなっていることに留意しなければならない。そしてそれは、最大のエラー源を伴った部分的な段階が、支配的であるということを意味している。こうして、位置決めの性能は、SAR反転およびクラッター消去がどのようにして継続されるのかに直接依存する。
【0101】
次に、図4に示されるような、地上に固定された座標系内で運動する2つの運動物体を考えよう。軌道は、アンテナおよび各物体の間のレンジが、同一のレンジ方程式r(t)によって正確に記述されるように選ばれている。3個のパラメーター(tρβ)、すなわち最小レンジ、最小レンジに対する時刻および相対速度は、同じである。さらに、物体の軌道は相違している。異なる軌道が、方位φまたは径路αに基づいてパラメーター化され得る。異なる地上速度uを伴っているが、アンテナに対する速度βは、同一でない1パラメーター化された多数の軌道が、
【0102】
【数17】
Figure 0004917206
【0103】
によって与えられ、または方位に関して、
【0104】
【数18】
Figure 0004917206
【0105】
として数式化される。
【0106】
ある時刻において、運動する物体の軌道は、SAR反転およびクラッター消去の後、検出された位置からずれる。上述した方法に従って、レンジ差によって方位φを測定することによって、物体の位置および地上速度が時刻tにおいて確実に決定され得る。異なる時刻における検出された位置からのずれは、こうして、
【0107】
【数19】
Figure 0004917206
【0108】
によって与えられる。
【0109】
4)認識
測定原理の第4のおよび最終のステップは、最大の解像度を伴った運動する物体のSARイメージを生成するための先行する3つのステップを用いる。認識に関する公知の方法、例えば、ベイズ特性分類を用いることによって、物体は識別され得る。このステップにおける基本的問題は、真の軌道および物体の姿勢の変化を計算することにある。最大の解像度を与える積分時間は、典型的には、数100秒であるから、これはまた、曲線軌道を取り扱うことができるようになっていなければならない。理論的には、いわゆる可能な曲線軌道を測定し、最適化の基準に基づいて真の1軌道を検出するSAR反転に対する方法を設計することが可能である。しかしながら、数学的および物理的にこのアタック方法は問題を生じさせる。なぜなら、使用可能な軌道に対するサンプルスペースは、積分時間とともに、指数関数的に増大するからである。すなわち、ノイズの制御不能が、増大および計算負荷により問題を解決することは不可能である。
【0110】
その代わり、既に述べた方法を用いて、運動パターンを、部分的に直線状を有し、検出される軌道に分解することに基礎を置くような方法が検討される。すなわち、SAR反転に対する最大積分時間は、物体の運動学的性質によって制限される。地上の自動車に対して、積分時間は典型的に、dm/mの波長では数秒である。
【0111】
すなわち、数秒の長さまでのサブアパーチャが、方位の検出および決定に対して使用され得る。このようなサブフパーチャのそれに対して、軌道は、速度および径路によって計算される。異なるサブアパーチャに対する検出を関連付けることによって、軌道が決定され、十分な解像度を有するSARイメージが生成される。また、方位の計算における精度は、それに続く完全な軌道によって改善される。
【0112】
5)瞬間的バンド幅の分割
SARシステムは、実際バンド幅に関して制限される。これは、優先順位を付けられたレーダー機能に対する利用可能なバンド幅を用いることが最も重要である、ということを意味している。本発明によれば、上述の異なる段階は、バンド幅を変化させること、および異なる個数のアンテナチャンネルを要求する。これは、与えられた状況のそれぞれにおいて、システムを最適化するために用いられ得る。
【0113】
最適化は、周波数ステップの原理を用いることによって、すなわちパルスシーケンスを多数の周波数ステップに分割することによって実行される。各周波数サブバンドにおいて、利用可能な瞬間的なバンド幅は、そのとき、個数が変化するアンテナチャンネルにわたって分割され得る。アンテナチャンネルが増加すればするほど、洗練されたレーダー機能の自由度が増大する。しかし、1チャンネル当りのバンド幅が狭くなればなるほど、与えられたサブバンドをカバーする周波数ステップが増加する。各サブバンドは、ドップラー信号のサンプリングに対するナイキスト判定基準が維持されるという、第2の条件の下に他のサブバンドとは独立に最適化され得る。後者は、ここに参考文献として組み入れられるスウェーデン特許出願9601199−4および対応するPCT国際出願SE97/00543に従って周期的なサンプリングまたは非周期的なサンプリングに基礎を置き得る。
【0114】
基本的なSARモードに対して、ただ1つのアンテナチャンネルが必要であるが、他方、信号積分によるバックグラウンドクラッターを克服するために最大限利用可能な全バンド幅が必要である。1測定を伴ったGMTIモードに対して、少なくとも3つのアンテナチャンネルが必要であるが、バンド幅はより狭いものであってもよい。なぜなら、バックグラウンドクラッターは、チャンネル減算によって消去されるからである。最後に、干渉の消去は、付加的なアンテナチャンネルを必要とするが、バンド幅は干渉が発見されるサブバンドだけに集中され得る。周波数ステップを用いる方法によって、システムは、自然な方法で与えられた作業に対して最適化され得る。
【図面の簡単な説明】
【図1】 直線径路に沿った地上のSAR測定に対する円筒状幾何学を説明する図である。
【図2】 レーダーデータにおける、静止した物体の除去のための原理を示した図である。
【図3】 因数分解されたバックプロジェクションの原理を示した図である。
【図4】 正確に同一のレンジ方程式に従うが、異なる地上速度および径路を備えた2つの運動する物体のSAR測定に対する方位不確定性を示した図である。

Claims (11)

  1. 多数の物体の上を移動し、レーダー装置を支持するプラットフォームを備え、前記レーダー装置は、1GHz以下のレーダー周波数を用い、少なくとも1本のアンテナを通じて、バックプロジェクションおよびサブアパーチャに基づく合成開口技術(SAR)によって前記多数の物体を再現し、
    前記レーダー装置は、送信されたレーダーパルスのそれぞれから受信されたレーダーエコーのレーダー生データを記録する信号処理装置を備え、
    前記プラットフォームは、前記レーダー生データを記録する間に実質上一様な直線運動を行うとともに、使用される前記少なくとも1本のアンテナの位置を記録または計算し、
    前記信号処理装置は、前記レーダー生データをバックプロジェクションすることによって、2つのイメージ座標の関数として二次元のSARイメージを計算し、
    前記バックプロジェクションは、合成開口の全長を複数のサブアパーチャに分割し、前記サブアパーチャ毎に部分積分することによってサブイメージを計算し、さらに前記サブイメージを加え合わせることによって、前記二次元のSARイメージを得るようになされ、
    前記二次元のSARイメージの計算が、前記サブアパーチャの長さを次第に増大させ、それに対応してサブイメージを次第に縮小させることによって、前記バックプロジェクションの解像度のレベルを段階的に上げるとともに、1の解像度のレベルにおける前記サブアパーチャに関する前記レーダー生データを、すぐ下の解像度のレベルにおける前記サブアパーチャに関する前記レーダー生データにのみ基づいて計算する階層的計算スキームにおいて実行されるレーダーシステムにおいて、
    前記二次元のSARイメージの計算が、さらに、前記物体および前記プラットフォーム間の相対速度パラメータを調節することを含み、それによって、特定のイメージ座標を有する物体の各レーダーエコーが、前記相対速度パラメータの値に対する望ましい信号の望ましくない信号に対する比が最大となるように再現されることを特徴とするレーダーシステム。
  2. N×N個のピクセルから構成され、少なくともN個のレーダーパルスおよび各レーダーパルスに対する少なくともN個のレンジサンプルから出発して導出され、共通のサンプル間隔に対して前処理されたイメージに対し、
    最も高い解像度が得られるまで、次の(i)〜(ii)のステップが繰り返されることを特徴とする請求項1に記載のレーダーシステム。
    (i)開口合成処理を、まず、K 個のレーダーパルスに基づくサブアパーチャについて実行し、前記サブアパーチャはそれぞれ分解セルにわたる一定のレーダー振幅を伴う低解像度のイメージを与える。ここで、前記分解セルのそれぞれが、達成されるべき最も高い解像度のN/K ×N個のピクセルから構成されるようにする。
    (ii)低解像度の各分解セルの反射率がN/K 次元ベクトルからなるとともに、各ベクトル要素はサブアパーチャの反射率である、という事実を用い、さらに、レーダーデータとして前記ベクトル要素を用いて、K 個の要素を、より長いサブアパーチャ内に結合することによって、最も高い解像度のN/(K )×N個のピクセルにわたる一定のレーダー振幅を伴う、より高い解像度のイメージを生成する。
  3. 前記プラットフォーム上の少なくとも2本のアンテナからの信号が線形結合され、それによって、静止した物体が除去されるとともに、運動する物体が検出されることを特徴とする請求項1または請求項2に記載のレーダーシステム。
  4. 前記信号処理装置は、前記二次元のSARイメージの計算の間に、静止した物体の除去並びに運動する物体の検出が解像度の各レベルでなされる階層的計算スキームにおいて、レーダー生データをバックプロジェクションすることを特徴とする請求項3に記載のレーダーシステム。
  5. 前記プラットフォーム上の少なくとも3本のアンテナが用いられ、前記少なくとも3本のアンテナのうちの少なくとも2本からの信号が線形結合されることによって、運動する物体の方位が、前記少なくとも3本のアンテナによって記録されたSARイメージ間のレンジ差に基づいて検出されることを特徴とする請求項3または請求項4に記載のレーダーシステム。
  6. 前記プラットフォーム上の少なくとも2本のアンテナからの信号が線形結合されることによって、運動する物体の方位が、異なるアンテナからのSARイメージ間のレンジ差に基づいて決定されることを特徴とする請求項1または請求項2に記載のレーダーシステム。
  7. 前記信号処理装置は、前記二次元のSARイメージの計算の間に、運動する物体の方位が解像度の各レベルで決定される階層的計算スキームにおいて、レーダー生データをバックプロジェクションすることを特徴とする請求項6に記載のレーダーシステム。
  8. 少なくとも2つの周波数ステップに分割されるパルスシーケンスを送信し、異なる周波数ステップの間に、異なるタイプの測定と、運動する物体の検出と、方位の決定と、干渉の消去とが実行され、各周波数ステップに対して、ドップラー信号のサンプリングに対するナイキスト判定基準が維持されるという条件下において、アンテナチャンネル数およびそれに対応するアンテナチャンネル毎のバンド幅の割り当てが最適化され、それによって、周波数ステップの個数が最少化されることを特徴とする請求項3〜請求項7のいずれかに記載のレーダーシステム。
  9. 前記アンテナは、前記プラットフォームの前側または後側において、並進対称性を有するように配置されることを特徴とする請求項1〜請求項8のいずれかに記載のレーダーシステム。
  10. 前記アンテナシステムは、ブーム内に連続的に配置された5本のブロードバンドレーダーアンテナからなり、前記5本のアンテナのうち最も外側の2本のアンテナは送信エレメントとして機能し、内側の3本のアンテナは受信エレメントとして機能することを特徴とする請求項9に記載のレーダーシステム。
  11. 350MHz<X<550MHzとして、一方が周波数レンジ200〜XMHz、他方がX〜800MHzであるような2本のアンテナシステムが用いられることを特徴とする請求項9または請求項10に記載のレーダーシステム。
JP2000589970A 1998-12-18 1999-12-17 Sarレーダーシステム Expired - Fee Related JP4917206B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9804417-5 1998-12-18
SE9804417A SE9804417L (sv) 1998-12-18 1998-12-18 Ett SAR-radarsystem
PCT/SE1999/002424 WO2000037965A1 (en) 1998-12-18 1999-12-17 Sar radar system

Publications (2)

Publication Number Publication Date
JP2002533685A JP2002533685A (ja) 2002-10-08
JP4917206B2 true JP4917206B2 (ja) 2012-04-18

Family

ID=20413744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000589970A Expired - Fee Related JP4917206B2 (ja) 1998-12-18 1999-12-17 Sarレーダーシステム

Country Status (7)

Country Link
US (1) US6441772B1 (ja)
EP (1) EP1141748B1 (ja)
JP (1) JP4917206B2 (ja)
AT (1) ATE290222T1 (ja)
DE (1) DE69924011T2 (ja)
SE (1) SE9804417L (ja)
WO (1) WO2000037965A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019226194A3 (en) * 2017-11-22 2020-01-30 Urthecast Corp. Synthetic aperture radar apparatus and methods
US10955546B2 (en) 2015-11-25 2021-03-23 Urthecast Corp. Synthetic aperture radar imaging apparatus and methods
US11506778B2 (en) 2017-05-23 2022-11-22 Spacealpha Insights Corp. Synthetic aperture radar imaging apparatus and methods

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10038912A1 (de) * 2000-08-09 2002-02-21 Daimler Chrysler Ag Verfahren zur Repositionierung von Bewegtzielen in SAR-Bildern
US6518914B1 (en) * 2000-11-02 2003-02-11 Totalförsvarets Forskningsinstitut Synthetic aperture radar system capable of detecting moving targets
US6646593B1 (en) 2002-01-08 2003-11-11 Science Applications International Corporation Process for mapping multiple-bounce ghosting artifacts from radar imaging data
US7259715B1 (en) 2002-01-08 2007-08-21 Science Applications International Corporation Method for developing and using an image reconstruction algorithm for multipath scattering
US7109911B1 (en) * 2002-04-01 2006-09-19 Cataldo Thomas J Dual synthetic aperture radar system
US6879279B2 (en) 2003-01-14 2005-04-12 The Regents Of The University Of California Differential optical synthetic aperture radar
US20060181451A1 (en) * 2005-02-14 2006-08-17 Honeywell International Inc. System and method for combining displaced phase center antenna and space-time adaptive processing techniques to enhance clutter suppression in radar on moving platforms
US7411540B1 (en) * 2005-03-10 2008-08-12 Itt Manufacturing Enterprises Inc. Synthetic aperture radar (SAR) data compression
US7154434B1 (en) 2005-09-12 2006-12-26 The Boeing Company Anti-personnel airborne radar application
DE102006022814A1 (de) 2006-05-13 2007-11-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hochauflösendes Synthetik-Apertur-Seitenansicht-Radarsystem mittels Digital Beamforming
DE602006013113D1 (de) 2006-07-07 2010-05-06 Selex Galileo Spa Verfahren und Vorrichtung zur Detektion von bewegten Objekten mittels SAR Bildern
BRPI0622161A2 (pt) * 2006-12-11 2011-12-27 Ericsson Telefon Ab L M sistema de radar, e, mÉtodo para fornecer uma imagem de um cenÁrio
US7920262B2 (en) * 2008-09-17 2011-04-05 The United States Of America As Represented By The Secretary Of The Army Systems for measuring backscattered light using rotating mirror
US7928901B2 (en) * 2008-10-16 2011-04-19 The United States Of America As Represented By The Secretary Of The Army Systems and methods for producing radar images
US8212710B2 (en) 2008-10-31 2012-07-03 Raytheon Company Radar image generation system
US8698668B2 (en) * 2008-11-11 2014-04-15 Saab Ab SAR radar system
US8035545B2 (en) * 2009-03-13 2011-10-11 Raytheon Company Vehicular surveillance system using a synthetic aperture radar
DE102009013768A1 (de) * 2009-03-18 2010-10-14 Eads Deutschland Gmbh Verfahren und Einrichtung zum Ermitteln von Aspektwinkeln
US7764220B1 (en) 2009-04-22 2010-07-27 Raytheon Company Synthetic aperture radar incorporating height filtering for use with land-based vehicles
US8223062B2 (en) * 2009-05-27 2012-07-17 Honeywell International Inc. Systems and methods for aircraft to aircraft exchange of radar information over low bandwidth communication channels
DE102009030076A1 (de) * 2009-06-23 2010-12-30 Symeo Gmbh Abbildungsverfahren mittels synthetischer Apertur, Verfahren zur Bestimmung einer Relativgeschwindigkeit zwischen einem wellenbasierten Sensor und einem Objekt bzw. Vorrichtung zur Durchführung der Verfahren
EP2320247B1 (en) * 2009-11-04 2017-05-17 Rockwell-Collins France A method and system for detecting ground obstacles from an airborne platform
JP5542615B2 (ja) * 2010-10-27 2014-07-09 三菱電機株式会社 レーダ画像処理装置
CN102169174B (zh) * 2010-12-07 2012-11-28 北京理工大学 一种地球同步轨道合成孔径雷达高精度聚焦方法
CN102162844B (zh) * 2010-12-07 2012-12-05 北京理工大学 一种sar大范围森林场景遥感数据的快速模拟方法
CN102401898A (zh) * 2011-08-25 2012-04-04 北京理工大学 一种合成孔径雷达森林遥感数据的定量化模拟方法
JP2014052299A (ja) * 2012-09-07 2014-03-20 Toshiba Corp ウェイト算出方法、ウェイト算出装置、アダプティブアレーアンテナ及びレーダ装置
CN103698749B (zh) * 2013-12-31 2015-10-21 中国人民解放军国防科学技术大学 一种利用小数据集sar图像序列提取永久散射体的方法
EP3089263B1 (de) 2015-04-29 2022-04-13 Rohde & Schwarz GmbH & Co. KG Tragbare richtantenne, messanordnung und messverfahren
JP6819794B2 (ja) * 2017-10-02 2021-01-27 日本電気株式会社 レーダ画像処理装置、レーダ画像処理方法およびレーダ画像処理プログラム
EP3575830A1 (de) * 2018-05-28 2019-12-04 Gottfried Wilhelm Leibniz Universität Hannover Verfahren zum abschätzen einer objektgeschwindigkeit sowie vorrichtung und fluggerät
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
DE102019220223A1 (de) * 2019-12-19 2021-06-24 Robert Bosch Gmbh Verfahren zum Betreiben eines Sensors eines Kraftfahrzeugs
DE102020207879A1 (de) * 2020-06-25 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betrieb eines Radarsensors in einem Kraftfahrzeug
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
CN112799064B (zh) * 2020-12-30 2023-05-26 内蒙古工业大学 柱面孔径非线性渐进式相位迭代成像的方法及装置
CN113009484A (zh) * 2021-03-04 2021-06-22 中山大学 一种双基地低频超宽带csar成像方法
CN115980738B (zh) * 2023-03-15 2023-06-02 深圳安智杰科技有限公司 一种基于动静分离的多目标跟踪方法
CN116359876B (zh) * 2023-05-30 2023-08-11 北京立同新元科技有限公司 一种雷达信号处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193086A (ja) * 1985-02-22 1986-08-27 Mitsubishi Electric Corp 合成開口レ−ダ
US5122803A (en) * 1991-11-06 1992-06-16 The United States Of America As Represented By The Secretary Of The Army Moving target imaging synthetic aperture radar
JPH06138219A (ja) * 1992-10-30 1994-05-20 Toshiba Corp 移動目標検出レーダ装置
WO1997011387A1 (en) * 1995-09-21 1997-03-27 Hans Hellsten A sar radar system
US5818383A (en) * 1981-11-27 1998-10-06 Northrop Grumman Corporation Interferometric moving vehicle imaging apparatus and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE456117B (sv) * 1984-11-28 1988-09-05 Hans Hellsten Sett for radaravbildning av ett omrade, inkluderande avbildning av strukturer som er dolda av dielektriska skikt samt radaranleggning for genomforande av settet
US4965582A (en) 1984-11-24 1990-10-23 Hellsten Hans O Method for radar mapping an area and a radar equipment to carry out the method
US5675550A (en) * 1995-06-08 1997-10-07 Ekhaus; Ira B. Reduced wavenumber synthetic aperture
SE516718C2 (sv) 1996-03-28 2002-02-19 Totalfoersvarets Forskningsins Ett ultrabredbandigt koherent radarsystem som optimerar möjligheten till radiostörningsdetektering
US5708436A (en) * 1996-06-24 1998-01-13 Northrop Grumman Corporation Multi-mode radar system having real-time ultra high resolution synthetic aperture radar (SAR) capability
SE9602594D0 (sv) * 1996-07-01 1996-07-01 Stefan Nilsson Förfarande och anordning vid datortomografi
US5805098A (en) * 1996-11-01 1998-09-08 The United States Of America As Represented By The Secretary Of The Army Method and system for forming image by backprojection
SE9702331L (sv) 1997-06-18 1998-07-27 Foersvarets Forskningsanstalt Sätt att framställa en tredimensionell bild av ett markområde med hjälp av en SAR-radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818383A (en) * 1981-11-27 1998-10-06 Northrop Grumman Corporation Interferometric moving vehicle imaging apparatus and method
JPS61193086A (ja) * 1985-02-22 1986-08-27 Mitsubishi Electric Corp 合成開口レ−ダ
US5122803A (en) * 1991-11-06 1992-06-16 The United States Of America As Represented By The Secretary Of The Army Moving target imaging synthetic aperture radar
JPH06138219A (ja) * 1992-10-30 1994-05-20 Toshiba Corp 移動目標検出レーダ装置
WO1997011387A1 (en) * 1995-09-21 1997-03-27 Hans Hellsten A sar radar system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955546B2 (en) 2015-11-25 2021-03-23 Urthecast Corp. Synthetic aperture radar imaging apparatus and methods
US11754703B2 (en) 2015-11-25 2023-09-12 Spacealpha Insights Corp. Synthetic aperture radar imaging apparatus and methods
US11506778B2 (en) 2017-05-23 2022-11-22 Spacealpha Insights Corp. Synthetic aperture radar imaging apparatus and methods
WO2019226194A3 (en) * 2017-11-22 2020-01-30 Urthecast Corp. Synthetic aperture radar apparatus and methods
US11525910B2 (en) 2017-11-22 2022-12-13 Spacealpha Insights Corp. Synthetic aperture radar apparatus and methods

Also Published As

Publication number Publication date
DE69924011T2 (de) 2006-02-09
JP2002533685A (ja) 2002-10-08
SE511952C2 (sv) 1999-12-20
EP1141748A1 (en) 2001-10-10
EP1141748B1 (en) 2005-03-02
US6441772B1 (en) 2002-08-27
WO2000037965A1 (en) 2000-06-29
SE9804417L (sv) 1999-12-20
DE69924011D1 (de) 2005-04-07
ATE290222T1 (de) 2005-03-15

Similar Documents

Publication Publication Date Title
JP4917206B2 (ja) Sarレーダーシステム
US6518914B1 (en) Synthetic aperture radar system capable of detecting moving targets
Le Chevalier Principles of radar and sonar signal processing
EP1348978B1 (en) Radar processing system and method for detecting and maintaining targets
US7038618B2 (en) Method and apparatus for performing bistatic radar functions
US5675550A (en) Reduced wavenumber synthetic aperture
CA1226057A (en) Imaging doppler interferometer
US7106243B2 (en) Technique for enhanced quality high resolution 2D imaging of ground moving targets
US8159384B2 (en) Method for examining an ice region or dry region using radar echo sounding
US20050179579A1 (en) Radar receiver motion compensation system and method
CN109283536A (zh) 一种多波束测深声呐水体成像波束形成算法
US20210215795A1 (en) Synthetic aperture radar method and synthetic aperture radar device
EP2909652B1 (en) Interferometric inverse synthetic aperture radar and method
US6720910B2 (en) Pri-staggered post-doppler adaptive monopulse processing for detection and location of a moving target in ground clutter
EP1159637B1 (en) Method of detecting objects that change with time by means of a sar radar
Marston et al. Volumetric acoustic imaging via circular multipass aperture synthesis
She et al. Three-dimensional space-borne synthetic aperture radar (SAR) imaging with multiple pass processing
Marston et al. Spatially variant autofocus for circular synthetic aperture sonar
US5329286A (en) Method for two dimensional doppler imaging of radar targets
Cerutti-Maori et al. Performance analysis of multistatic configurations for spaceborne GMTI based on the auxiliary beam approach
CN114488142A (zh) 一种基于差-和波束的雷达二维角成像方法及系统
Pettersson et al. Detection and imaging of moving targets in wide band SAS using fast time backprojection combined with space time processing
Moore et al. Nonparametric array manifold calibration for ice sheet tomography
Ramakrishnan et al. Synthetic aperture radar imaging using spectral estimation techniques
GB2314628A (en) Acoustic and radar direction finding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110622

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110722

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees