JP4915136B2 - Multiple power converter control device - Google Patents

Multiple power converter control device Download PDF

Info

Publication number
JP4915136B2
JP4915136B2 JP2006123680A JP2006123680A JP4915136B2 JP 4915136 B2 JP4915136 B2 JP 4915136B2 JP 2006123680 A JP2006123680 A JP 2006123680A JP 2006123680 A JP2006123680 A JP 2006123680A JP 4915136 B2 JP4915136 B2 JP 4915136B2
Authority
JP
Japan
Prior art keywords
power converter
control
pwm
individual
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006123680A
Other languages
Japanese (ja)
Other versions
JP2007295777A (en
Inventor
究 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006123680A priority Critical patent/JP4915136B2/en
Publication of JP2007295777A publication Critical patent/JP2007295777A/en
Application granted granted Critical
Publication of JP4915136B2 publication Critical patent/JP4915136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Rectifiers (AREA)

Description

この発明は、多重電力変換装置をパルス幅変調(PWM)制御する制御装置に関する。   The present invention relates to a control device that performs pulse width modulation (PWM) control of a multiple power conversion device.

図9に例えば非特許文献1に開示された電力変換システムの従来例を示す。
図9において、破線で囲んだCNVは電力変換器の主回路、Q1〜Q4はスイッチング動作を行なうIGBT(絶縁ゲート型バイポーラトランジスタ)等のスイッチング素子、Cは直流平滑コンデンサである。またPSは交流電源、Lsはリアクトル、CTは電力変換器の交流電流Icを検出するための電流検出器、PTは電力変換器の直流電圧Edを検出するための電圧検出器、DLは直流側に接続された負荷装置である。
FIG. 9 shows a conventional example of a power conversion system disclosed in Non-Patent Document 1, for example.
In FIG. 9, CNV surrounded by a broken line is a main circuit of the power converter, Q1 to Q4 are switching elements such as IGBTs (insulated gate bipolar transistors) that perform a switching operation, and C is a DC smoothing capacitor. PS is an AC power source, Ls is a reactor, CT is a current detector for detecting an AC current Ic of the power converter, PT is a voltage detector for detecting a DC voltage Ed of the power converter, and DL is a DC side. Is a load device connected to the.

図10は図9の動作説明図である。
図10(1)において、Vc*は電圧指令、TRIaは電圧指令Vc*との比較によりQ1とQ2のスイッチング動作に必要なPWM演算を行なうための三角波、同様にTRIbはQ3とQ4のスイッチング動作に必要なPWM演算を行なうための三角波である。これらの三角波TRIaとTRIbは図10(3)のように、三角波の周期(2π)に対して1/2周期(π)の位相差を持たせている。
FIG. 10 is an explanatory diagram of the operation of FIG.
In FIG. 10 (1), Vc * is a voltage command, TRIa is a triangular wave for performing a PWM operation necessary for the switching operation of Q1 and Q2 by comparison with the voltage command Vc *, and similarly TRIb is a switching operation of Q3 and Q4. This is a triangular wave for performing the PWM calculation necessary for the operation. These triangular waves TRIa and TRIb have a phase difference of ½ period (π) with respect to the period (2π) of the triangular wave as shown in FIG.

図10(1)のPWM演算では、電圧指令Vc*が2個の三角波TRIa,TRIbのいずれよりも大きいときにQ1とQ4がオン状態(Q2とQ3はオフ状態)となり、交流側電圧Vcは正(+Ed)である。電圧指令Vc*が三角波TRIa以上で、かつTRIb以下のときにQ1とQ3がオン状態(Q2とQ4はオフ状態)となり、交流側電圧VcはVc=0となる。また、電圧指令Vc*が三角波TRIa以下、かつTRIb以上のときにはQ2とQ4がオン状態(Q1とQ3はオフ状態)となり、交流側電圧VcはVc=0となる。さらに、電圧指令Vc*が2個の三角波TRIa,TRIbのいずれよりも小さいときにQ2とQ3がオン状態(Q1とQ4はオフ状態)となり、交流側電圧VcはVc=−Edとなる。 In the PWM calculation of FIG. 10A, when the voltage command Vc * is larger than any of the two triangular waves TRIa and TRIb, Q1 and Q4 are turned on (Q2 and Q3 are turned off), and the AC side voltage Vc is Positive (+ Ed). When the voltage command Vc * is equal to or greater than the triangular wave TRIa and equal to or less than TRIb, Q1 and Q3 are turned on (Q2 and Q4 are turned off), and the AC side voltage Vc is Vc = 0. When the voltage command Vc * is equal to or less than the triangular wave TRIa and equal to or greater than TRIb, Q2 and Q4 are turned on (Q1 and Q3 are turned off), and the AC side voltage Vc is Vc = 0. Further, when the voltage command Vc * is smaller than either of the two triangular waves TRIa and TRIb, Q2 and Q3 are turned on (Q1 and Q4 are turned off), and the AC side voltage Vc is Vc = −Ed.

図11に、図9に示す電力変換器の制御ブロックの例を示す。
図11のEd*は直流電圧指令、SUB1はEd*とEdの差をとる減算器、AVRは電圧調節器、sinωt(ωは角周波数、周波数をf[Hz]とするとω=2πf[rad/s])は電源に位相同期した基準正弦波、MULはAVR出力と基準正弦波sinωtを掛け合わせて電流指令Ic*を演算する乗算器、SUB2は指令値Ic*と検出値Icとの差分をとる減算器、ACRは交流電圧指令Vc*を演算する電流調節器、PWMはACRの演算結果である電圧指令Vc*と三角波に対して、比較演算を行なうPWM演算器である。ここで、PWM演算器に入力される三角波はTRIaのみであるが、図10(1)に示す三角波TRIbは、PWM演算器の内部でTRIaの位相を反転して生成される。
FIG. 11 shows an example of a control block of the power converter shown in FIG.
In FIG. 11, Ed * is a DC voltage command, SUB1 is a subtractor that takes the difference between Ed * and Ed, AVR is a voltage regulator, sin ωt (ω is an angular frequency, and frequency is f [Hz], ω = 2πf [rad / s]) is a reference sine wave that is phase-synchronized with the power source, MUL is a multiplier that multiplies the AVR output and the reference sine wave sin ωt to calculate the current command Ic * , and SUB2 is the difference between the command value Ic * and the detected value Ic. A subtractor, ACR is a current regulator that calculates an AC voltage command Vc * , and PWM is a PWM calculator that performs a comparison operation on the voltage command Vc * that is the calculation result of ACR and a triangular wave. Here, the triangular wave input to the PWM calculator is only TRIa, but the triangular wave TRIb shown in FIG. 10A is generated by inverting the phase of TRIa inside the PWM calculator.

図11のような制御系では、直流電圧の検出値(実際値)Edを指令値Ed*に一致させるように電圧調節器AVRが動作し、電流指令の振幅を決定する。交流電流制御部では前段から出力された電流指令の振幅に基準正弦波sinωtを乗じて電流指令Ic*を演算し、電流調節器ACRにおいて、電流検出値(実際値)Icを指令値に一致させるような交流電圧指令Vc*が演算される。PWM演算器ではPWM信号を演算し、これに基づくスイッチング動作により、交流側電圧Vcが図10(2)のように決定される。 In the control system as shown in FIG. 11, the voltage regulator AVR operates so as to make the detected value (actual value) Ed of the DC voltage coincide with the command value Ed * , and determines the amplitude of the current command. The AC current control unit calculates the current command Ic * by multiplying the amplitude of the current command output from the previous stage by the reference sine wave sin ωt, and causes the current regulator ACR to match the detected current value (actual value) Ic with the command value. Such an AC voltage command Vc * is calculated. The PWM calculator calculates the PWM signal, and the alternating-side voltage Vc is determined as shown in FIG.

電力変換器を変圧器により多重接続構成とすることにより、並列接続された直流側には同じ電力変換器が1台の場合に比べて数倍の電力を給電できることが知られている。
図12に、2台の電力変換器CNV1,CNV2の交流側を変圧器により結合して多重化した例を示す。TR1,TR2はそれぞれCNV1,CNV2の入力側トランスであり、他の符号は図9と同様なので詳細は省略する。ここでは、2台の電力変換器に1台ずつ変圧器を接続した例を示すが、2次側に複数の巻線を施すことにより、1台の変圧器で置き換えることもできる。
It is known that by using a power converter having a multiple connection configuration with a transformer, it is possible to supply several times the power to the DC side connected in parallel as compared with the case where the same power converter is provided.
FIG. 12 shows an example in which the AC sides of two power converters CNV1 and CNV2 are combined by a transformer and multiplexed. TR1 and TR2 are input side transformers of CNV1 and CNV2, respectively, and the other symbols are the same as those in FIG. Here, an example is shown in which one transformer is connected to each of two power converters, but a plurality of windings are provided on the secondary side, so that one transformer can be replaced.

図16は図12の動作説明図である。
図16のPWM演算では、2台の電力変換器CNV1,CNV2のそれぞれの電圧指令Vc1*とVc2*を、ほぼ同一の正弦波として重ね合わせて表記している。実際の動作では、CNV1側では図17(1)のように、電圧指令Vc1*と三角波TRI1a,TRI1bとの比較によりQ11〜Q14がスイッチング動作をして、図17(2)にVc1で示すような波形の電圧が出力され、CNV2側では図18(1)のように、電圧指令Vc2*と三角波TRI2a,TRI2bとの比較によりQ21〜Q24がスイッチング動作をして、図18(2)にVc2で示すような波形の電圧が出力される。4個の三角波TRI1a,TRI1b,TRI2a,TRI2bは図19のように、1/4周期(π/2)の位相差を持たせている。変圧器TR1,TR2の1次側と2次側の電圧が同じ大きさとして、2次側の電圧であるVc1とVc2を1次側で合成すると、図16(4)のVcのような波形が得られる。
FIG. 16 is an explanatory diagram of the operation of FIG.
In the PWM calculation of FIG. 16, the voltage commands Vc1 * and Vc2 * of the two power converters CNV1 and CNV2 are superposed as substantially the same sine wave. In actual operation, on the CNV1 side, as shown in FIG. 17 (1), Q11 to Q14 perform switching operation by comparing the voltage command Vc1 * with the triangular waves TRI1a and TRI1b, and as indicated by Vc1 in FIG. 17 (2). In the CNV2 side, as shown in FIG. 18 (1), Q21 to Q24 perform a switching operation by comparing the voltage command Vc2 * with the triangular waves TRI2a and TRI2b, and Vc2 in FIG. 18 (2). A voltage having a waveform as shown in FIG. The four triangular waves TRI1a, TRI1b, TRI2a, and TRI2b have a phase difference of ¼ period (π / 2) as shown in FIG. When the voltages on the primary side and the secondary side of the transformers TR1 and TR2 are the same, and the voltages Vc1 and Vc2 which are the voltages on the secondary side are synthesized on the primary side, a waveform like Vc in FIG. Is obtained.

図13に、図12に示す電力変換器の制御ブロックの例を示す。
図13のPHSは三角波TRI1aに対しTRI2aの位相を遅延させる位相遅延器であり、その他は図11とほぼ同様なので詳細は省略する。
2台の電力変換器は直流側が並列接続されているので、直流電圧制御部は共通である。また、交流電流制御部においても2台の電力変換器は同一の電流指令で動作するが、電流検出値(実際値)は異なる瞬時値となるので、個別の電流調節器ACR1とACR2により制御が行なわれる。また、電流調節器ACR1,ACR2からはそれぞれ異なる交流電圧指令Vc1*,Vc2*が出力され、これらの電圧指令に対しPWM1,PWM2においてそれぞれ図17,図18のような演算が行なわれる。
FIG. 13 shows an example of a control block of the power converter shown in FIG.
The PHS in FIG. 13 is a phase delay device that delays the phase of the TRI2a with respect to the triangular wave TRI1a.
Since the DC power sides of the two power converters are connected in parallel, the DC voltage control unit is common. Also, in the AC current control unit, the two power converters operate with the same current command, but the current detection value (actual value) becomes a different instantaneous value, so that control is performed by the individual current regulators ACR1 and ACR2. Done. Further, different AC voltage commands Vc1 * and Vc2 * are output from the current regulators ACR1 and ACR2, respectively, and the operations shown in FIGS. 17 and 18 are performed on these voltage commands in the PWM1 and PWM2, respectively.

2台の電力変換器を多重接続することで、並列接続された直流側には同じ容量の電力変換器1台の場合に比べ、2倍の電力を供給できる。また、位相遅延器の設定により、図19のように三角波TRI1aとTRI2aの間に、1/4周期(π/2)の位相差をつけて運転することで、交流側電流の合成電流Icは1台の場合と比較して等価的なキャリア周波数を2倍にでき、結果として変圧器で結合された電源側の高調波の割合を低減することができる。
以上のような電力変換器の多重化構成とその動作については、例えば非特許文献2に記載されている。
By multiply connecting two power converters, twice the power can be supplied to the DC side connected in parallel as compared with the case of one power converter having the same capacity. Further, by setting the phase delay device and operating with a phase difference of ¼ period (π / 2) between the triangular waves TRI1a and TRI2a as shown in FIG. The equivalent carrier frequency can be doubled compared to the case of one unit, and as a result, the proportion of harmonics on the power source side coupled by the transformer can be reduced.
The multiplexing configuration and operation of the power converter as described above are described in Non-Patent Document 2, for example.

電力変換器を多重接続する構成として、共通の直流回路に接続する場合について説明したが、別の構成として図14のように変換器毎に独立した直流回路を接続する構成も考えられる。
同図において、PT1,PT2は2台の変換器CNV1,CNV2それぞれの直流電圧Ed1,Ed2を検出するための電圧検出器、DL1,DL2は変換器CNV1,CNV2それぞれの負荷装置であり、その他は図12と同様なので詳細は省略する。
Although the case of connecting to a common DC circuit has been described as a configuration for multiplex connection of power converters, a configuration in which an independent DC circuit is connected to each converter as shown in FIG. 14 may be considered as another configuration.
In the figure, PT1 and PT2 are voltage detectors for detecting DC voltages Ed1 and Ed2 of two converters CNV1 and CNV2, DL1 and DL2 are load devices of converters CNV1 and CNV2, respectively. Details are omitted because they are the same as in FIG.

図14の構成において、各電力変換器の動作は全く独立したものとなるので、これに適用する制御方法としては変換器CNV1,CNV2のそれぞれを図11の制御ブロックにより動作させればよいが、2台の変換器のPWM演算の際に、三角波に位相差を付けて運転することで、交流側電流の合成電流は1台の場合と比較して等価的なキャリア周波数を2倍にでき、結果として変圧器で結合される電源側の高調波の割合を低減できることは容易に類推できる。
図15は図14に対する制御ブロック図で、基本的には各変換器に図11と同様の制御ブロックを適用し、2台のPWM演算において三角波に位相差を付ける機能を付加するようにしている。
In the configuration of FIG. 14, the operation of each power converter is completely independent. Therefore, as a control method applied to this, each of the converters CNV1 and CNV2 may be operated by the control block of FIG. When PWM operation of two converters is performed with a phase difference added to the triangular wave, the combined current of the AC side current can double the equivalent carrier frequency compared to the case of one, As a result, it can be easily analogized that the ratio of harmonics on the power source side coupled by the transformer can be reduced.
FIG. 15 is a control block diagram corresponding to FIG. 14. Basically, the same control block as that of FIG. 11 is applied to each converter, and a function of adding a phase difference to a triangular wave in two PWM operations is added. .

電力変換器を多重接続する別の構成例を図20に示す。
図12では電力変換器毎に電流検出器を設置していたのに対し、この構成では変圧器の1次側(図の左側)に設置することで、電力変換器の合成電流を一括して検出する(この方式は、例えば特許文献1に開示されている)。この場合のPWM方式として図21のように、変換器の台数に応じてそれぞれバイアスを付けた複数の三角波と電圧指令とを比較する方法がある(例えば、非特許文献3参照)。変換器CNV1では、図21の三角波TRI3が電圧指令Vc*との比較によりQ11とQ12のスイッチング動作に必要なPWM信号を発生するための三角波、同じく三角波TRI4がQ13とQ14のスイッチング動作に必要なPWM信号を発生するための三角波である。
FIG. 20 shows another configuration example in which power converters are multiplex connected.
In FIG. 12, a current detector is installed for each power converter, but in this configuration, the combined current of the power converters is integrated by installing it on the primary side (left side of the figure) of the transformer. (This method is disclosed in, for example, Patent Document 1). As a PWM method in this case, as shown in FIG. 21, there is a method of comparing a voltage command with a plurality of triangular waves each biased according to the number of converters (see, for example, Non-Patent Document 3). In the converter CNV1, the triangular wave TRI3 of FIG. 21 is used for generating a PWM signal necessary for the switching operation of Q11 and Q12 by comparison with the voltage command Vc *, and the triangular wave TRI4 is also necessary for the switching operation of Q13 and Q14. It is a triangular wave for generating a PWM signal.

出力電圧Vc1は、電圧指令Vc*がTRI3とTRI4のいずれよりも大きいときに正(+Ed),電圧指令Vc*がTRI3とTRI4のいずれよりも小さいときに負(−Ed)、電圧指令Vc*がTRI3以下でTRI4以上のときに零となる。
変換器CNV2では、図21の三角波TRI1が電圧指令Vc*との比較によりQ21とQ22をスイッチングするための三角波、同じく三角波TRI2がQ23とQ24をスイッチングするための三角波である。出力電圧Vc2は、電圧指令Vc*がTRI1とTRI2のいずれよりも大きいときに正(+Ed),電圧指令Vc*がTRI1とTRI2のいずれよりも小さいときに負(−Ed)、電圧指令Vc*がTRI1以下でTRI2以上のときに零となる。
Negative when the output voltage Vc1 is positive when the voltage command Vc * greater than any of TRI3 and TRI4 (+ Ed), the voltage command Vc * is smaller than either of TRI3 and TRI4 (-Ed), voltage command Vc * Becomes zero when TRI3 or less and TRI4 or more.
In the converter CNV2, the triangular wave TRI1 of FIG. 21 is a triangular wave for switching Q21 and Q22 by comparison with the voltage command Vc *, and the triangular wave TRI2 is also a triangular wave for switching Q23 and Q24. The output voltage Vc2 is the voltage command Vc * is positive (+ Ed) when greater than any of the TRI1 and TRI2, negative (-Ed) when the voltage command Vc * is smaller than any of the TRI1 and TRI2, voltage command Vc * Becomes zero when TRI1 or less and TRI2 or more.

2台の電力変換器を変圧器で結合した構成の多重変換器に対するPWM方式として、図16のように位相差を付けた三角波方式と、図21のようにバイアスを付けた三角波方式とを説明したが、これらを交流側の高調波について比較すると、後者の図21の方が高調波を少なくできることが知られている。
図22は位相差をつけた複数の三角波を利用するPWM方式において、R相とS相の電圧指令から相電圧を生成し、これらを合成した線間電圧の生成に至るまでの波形を示している。また、図23はバイアスを付けた複数の三角波を用いるPWM方式において、R相とS相の電圧指令から相電圧を生成し、これらを合成した線間電圧の生成に至るまでの波形を示している。図22と図23の相電圧波形を比較すると、電圧レベルが変化する回数は同一となっており、両者におけるスイッチング動作の回数は等しいことが分かる。しかし、線間電圧では図22は図23よりも同じ三角波の周期内で、電圧変化する回数が大きくなっている。このような線間電圧の違いは含まれる高調波の違いを示しており、結果的に図23の波形は図22よりも高調波が少ないことになる。
As a PWM system for a multiple converter having a configuration in which two power converters are coupled by a transformer, a triangular wave system with a phase difference as shown in FIG. 16 and a triangular wave system with a bias as shown in FIG. However, when these are compared with respect to harmonics on the AC side, it is known that the latter FIG. 21 can reduce harmonics.
FIG. 22 shows waveforms until a phase voltage is generated from R-phase and S-phase voltage commands and a combined line voltage is generated in a PWM system using a plurality of triangular waves with phase differences. Yes. Further, FIG. 23 shows waveforms until a phase voltage is generated from R-phase and S-phase voltage commands and a combined line voltage is generated in a PWM system using a plurality of biased triangular waves. Yes. Comparing the phase voltage waveforms of FIG. 22 and FIG. 23, it can be seen that the number of times the voltage level changes is the same, and the number of switching operations in both is the same. However, in the line voltage, FIG. 22 has a larger number of voltage changes within the same triangular wave period than FIG. Such a difference in line voltage indicates a difference in included harmonics, and as a result, the waveform in FIG. 23 has fewer harmonics than in FIG.

以上のような高調波の相違については、例えば非特許文献4において詳細に説明されており、同文献には図24のようなPWM方式の違いによる高調波の比較のグラフが記載されている。同図は横軸を電圧の大きさ、縦軸を高調波として5Level−Aの曲線が位相差をつけた複数の三角波を利用するPWM方式に対応し、5Level−Bの曲線がバイアスを付けた複数の三角波を用いるPWM方式に対応する。両曲線の比較から、バイアスを付けた複数の三角波を用いるPWM方式の方が、位相差をつけた複数の三角波を利用するPWM方式より高調波が少ないことが定量的に明らかである。   The above-described difference in harmonics is described in detail, for example, in Non-Patent Document 4, which describes a graph for comparing harmonics due to differences in PWM methods as shown in FIG. This figure corresponds to the PWM method using a plurality of triangular waves with the horizontal axis representing the voltage magnitude and the vertical axis representing the harmonic, and the 5 Level-A curve having a phase difference, and the 5 Level-B curve is biased. This corresponds to a PWM method using a plurality of triangular waves. From the comparison of both curves, it is quantitatively clear that the PWM method using a plurality of triangular waves with a bias has fewer harmonics than the PWM method using a plurality of triangular waves with a phase difference.

「半導体電力変換回路」電気学会発行,p216〜221参照"Semiconductor power conversion circuit" published by the Institute of Electrical Engineers of Japan, see pages 216-221 昭和60年電気学会全国大会論文集,No.547「PWMコンバータの制御特性検討」の項参照1985 Proceedings of the IEEJ National Convention, No. Refer to 547 “Examination of PWM converter control characteristics” PESC 1990,Conference Record,p363〜371「A NEW MULTILEVEL PWM METHOD:A THEORETICAL ANALYSIS」の項参照See PESC 1990, Conference Record, p363-371 “A NEW MULTILEVEL PWM METHOD: A THEORETICAL ANALYSIS”. 電気学会論文誌,D部門,Vol.119,No.6,1999,p769〜774「キャリア波を用いたマルチレベルPWM法の高調波特性評価」の項参照IEEJ Transactions, Department D, Vol. 119, no. 6, 1999, pp. 769-774 “Harmonic characteristics evaluation of multi-level PWM method using carrier wave” 特開2003−169477号公報JP 2003-169477 A

以上のように、電力変換器を多重化する方法としては、図12,14または図20のような方法や、これらに対するPWM方式としては、図16のように位相差を付けた複数の三角波と電圧指令から演算する方式と、図21のようにバイアスを付けた複数の三角波と電圧指令から演算する方式とがある。
高調波低減の観点から、バイアスを付けた複数の三角波と電圧指令からPWM信号を得る方法が有利であるにも拘わらず、図12,14では位相差を付けた複数の三角波と電圧指令から演算する方式を採用している。
As described above, as a method of multiplexing power converters, a method as shown in FIG. 12, 14 or 20 and a PWM method corresponding to these methods include a plurality of triangular waves with phase differences as shown in FIG. There are a method of calculating from a voltage command and a method of calculating from a plurality of triangular waves with a bias and a voltage command as shown in FIG.
Although it is advantageous to obtain a PWM signal from a plurality of triangular waves with a bias and a voltage command from the viewpoint of reducing harmonics, in FIGS. 12 and 14, calculation is performed from a plurality of triangular waves with a phase difference and a voltage command. The method to do is adopted.

これに対し、図20ではバイアスを付けた複数の三角波と電圧指令から演算するPWM方式を採用している。しかし、この方法は電流を変圧器の一次側で検出しているため、電力変換器毎に正確な制御ができず、出力電圧に誤差が生じ偏磁などの異常が発生するという問題が生じる。
したがって、この発明の課題は、変圧器を用いて電力変換器を多重化するものにおいても、バイアスを付けた複数の三角波と電圧指令から演算するPWM方式を適用できるようにすることにある。
On the other hand, FIG. 20 employs a PWM system that calculates from a plurality of biased triangular waves and voltage commands. However, since this method detects the current on the primary side of the transformer, accurate control cannot be performed for each power converter, resulting in a problem that an error occurs in the output voltage and abnormalities such as magnetic bias occur.
Therefore, an object of the present invention is to make it possible to apply a PWM system that calculates from a plurality of biased triangular waves and voltage commands even when a power converter is multiplexed using a transformer.

このような課題を解決するため、この発明では、個別または共通の直流回路に接続した複数の電力変換器の交流側を変圧器により結合した構成の多重電力変換装置に、バイアスを付けた複数の三角波を用いたPWM演算方式を適用するとともに、電力変換器毎の電流検出値を基に電流制御した結果をPWM信号に対して補正値として反映させる。さらに、PWM信号のタイミングを調整して複数の電力変換器が均等にスイッチングできるようにする。   In order to solve such a problem, in the present invention, a plurality of power converters having a configuration in which the AC sides of a plurality of power converters connected to individual or common DC circuits are coupled by a transformer are biased. A PWM calculation method using a triangular wave is applied, and the result of current control based on the current detection value for each power converter is reflected as a correction value on the PWM signal. Further, the timing of the PWM signal is adjusted so that a plurality of power converters can be switched evenly.

この発明によれば、個別または共通の直流回路に接続した複数の電力変換器の交流側を変圧器により結合した多重電力変換装置に、バイアスを付けた複数の三角波を用いたPWM方式を適用可能とすることにより、電力変換器毎に十分な電流制御を可能として多重電力変換装置を安全かつ安定に動作できるようになる。PWM信号のタイミングを調整して複数の電力変換器が均等にスイッチングできるようにすることで、複数の電力変換器の電力分担を均一にできるようになる。   According to the present invention, a PWM system using a plurality of biased triangular waves can be applied to a multiple power conversion device in which the AC sides of a plurality of power converters connected to individual or common DC circuits are coupled by a transformer. By doing so, sufficient current control can be performed for each power converter, and the multiple power converter can be operated safely and stably. By adjusting the timing of the PWM signal so that the plurality of power converters can be switched evenly, the power sharing of the plurality of power converters can be made uniform.

図1はこの発明の実施の形態を示す制御ブロック構成図で、多重化構成は図12と同様である。図1のPWMは電圧指令Vc*と三角波TRIを基にして、図21のようなバイアスを付けた三角波を用いてPWM演算を行なうPWM演算器、SUB1は直流電圧の指令Ed*と検出値Edの差分をとる減算器、AVRはSUB1の出力を基に直流電圧を制御するための電圧調節器、MULはAVRの出力と基準正弦波を掛け合わせる乗算器、SUB2は2台の電力変換器の一方(図12のCNV1)の電流検出値Ic1と電流指令Ic*との差分をとる減算器、SUB3は2台の電力変換器の他方(図12のCNV2)の電流検出値Ic2と電流指令Ic*との差分をとる減算器、ACR1,ACR2はそれぞれSUB1,SUB2の出力を基に電流を制御するための電流調節器、PCOM1,PCOM2はそれぞれACR1,ACR2の出力を基にPWM演算結果を補正する補正演算器である。 FIG. 1 is a control block configuration diagram showing an embodiment of the present invention, and a multiplexing configuration is the same as FIG. The PWM shown in FIG. 1 is based on the voltage command Vc * and the triangular wave TRI, and is a PWM calculator that performs PWM calculation using a biased triangular wave as shown in FIG. 21. SUB1 is a DC voltage command Ed * and a detected value Ed. AVR is a voltage regulator for controlling the DC voltage based on the output of SUB1, MUL is a multiplier that multiplies the output of AVR and a reference sine wave, and SUB2 is a power converter of two power converters. A subtractor that takes the difference between the current detection value Ic1 on one side (CNV1 in FIG. 12) and the current command Ic * , SUB3 is the current detection value Ic2 and current command Ic on the other (CNV2 in FIG. 12) of the two power converters. * taking a difference between the subtractor, ACR1, ACR2 each SUB1, SUB2 current regulator for controlling the current based on the output of, PCOM1, PCOM2 each ACR1, ACR2 of Based on the force which is a correction calculator for correcting the PWM calculation result.

ここで、図1の動作について説明する。
PWMでは電圧指令Vc*と三角波TRIを入力として、電圧指令とバイアスを付けた複数の三角波との比較演算により、スイッチングに必要なPWM信号を生成する。ここで、電圧指令Vc*は、大きさと位相が電源側の相電圧と同じ正弦波としておけば良い。直流電圧制御部では、直流電圧の指令値Ed*と検出値Edの差分をAVRで増幅して出力する。AVRの出力は直流量なので、MULで基準正弦波sinωtと乗算して交流量に変換し電流指令Ic*とする。
Here, the operation of FIG. 1 will be described.
In PWM, a voltage command Vc * and a triangular wave TRI are input, and a PWM signal necessary for switching is generated by a comparison operation between the voltage command and a plurality of triangular waves with a bias. Here, the voltage command Vc * may be a sine wave having the same magnitude and phase as the phase voltage on the power supply side. In the DC voltage control unit, the difference between the DC voltage command value Ed * and the detected value Ed is amplified by AVR and output. Since the output of AVR is a direct current amount, it is multiplied by a reference sine wave sin ωt by MUL to be converted into an alternating current amount, which is used as a current command Ic * .

交流制御部では、前段で演算された電流指令を2台の電力変換器CNV1,CNV2に対し共通に与え、各電流検出値Ic1,Ic2に基づきACR1,ACR2で独立に電流制御演算を実行する。PCOM1,PCOM2ではACR1,ACR2で演算された結果をPWM演算結果に反映させ、実際にCNV1,CNV2をスイッチング動作させる最終的なPWM信号を出力する。   In the AC control unit, the current command calculated in the previous stage is given in common to the two power converters CNV1 and CNV2, and the current control calculation is executed independently by ACR1 and ACR2 based on the detected current values Ic1 and Ic2. In PCOM1 and PCOM2, the result calculated by ACR1 and ACR2 is reflected in the PWM calculation result, and the final PWM signal for actually switching CNV1 and CNV2 is output.

図2(a)は図1に示す制御ブロック図において、交流電流制御部が正側に一定の値を出力する場合の例である。図2(a)では、その(1)に示すPWM演算部からの出力を、補正量として示す交流電流制御部からの図2(a)の(2)のような出力によって、図2(a)の(3)のように補正する。交流電流制御部が零を出力する図2(b)の場合、交流電流制御部が負側に一定の値を出力する図2(c)の場合も、上記と同様の演算操作がそれぞれ行なわれる。   FIG. 2A is an example in the case where the alternating current control unit outputs a constant value on the positive side in the control block diagram shown in FIG. In FIG. 2 (a), the output from the PWM calculation unit shown in (1) is changed to the output shown in FIG. 2 (a) from the AC current control unit shown as the correction amount. ) Is corrected as in (3). In the case of FIG. 2B in which the AC current control unit outputs zero, and in the case of FIG. 2C in which the AC current control unit outputs a constant value on the negative side, the same arithmetic operation as described above is performed. .

図3は補正演算の結果得られる各電力変換器への出力信号を示す波形図である。
図3(1),(2)のVc1,Vc2はそれぞれ補正前のPWM演算器の出力を示し、図2(3),(4)Vc1,Vc2はそれぞれ補正演算された後の電圧波形を示す。補正演算により、Vc1,Vc2とも斜線部分のように電圧が変化して、電力変換器の各素子のスイッチング制御が行なわれる。
FIG. 3 is a waveform diagram showing an output signal to each power converter obtained as a result of the correction calculation.
Vc1 and Vc2 in FIGS. 3 (1) and 3 (2) respectively indicate the outputs of the PWM calculator before correction, and FIGS. 2 (3) and 2 (4) Vc1 and Vc2 respectively indicate voltage waveforms after the correction calculation. . As a result of the correction calculation, the voltages of both Vc1 and Vc2 change as indicated by the hatched portion, and switching control of each element of the power converter is performed.

図4に直流部分が分離された電力変換器の交流側を、変圧器により結合して多重化した場合の制御ブロック例を示す。
ここでは、直流部分が分離されている関係で直流電圧は個別に検出されるため、電圧調節器をAVR1,2のように個別に設け、MUL1,2でそれぞれ基準正弦波sinωtと乗算して交流量に変換し、電流指令Ic1*,2*を得るようにする他は図1と同様である。
FIG. 4 shows an example of a control block when the AC side of the power converter from which the DC part is separated is combined by a transformer and multiplexed.
Here, since the DC voltage is individually detected because the DC part is separated, voltage regulators are individually provided as AVR1 and 2, and MUL1 and 2 are multiplied by the reference sine wave sinωt, respectively. It is the same as FIG. 1 except that it is converted into a quantity and current commands Ic1 * and 2 * are obtained.

ところで、図1や図4の制御方式では、図3の(1)と(2)または(3)と(4)を比較すれば明らかなように、各電力変換器に対する交流側電圧の大きさが互いに異なり、結果として複数の電力変換器の電力にアンバランスが発生するおそれがある。
図5はこのような問題に対処し得る別の実施形態を示す。同図からも明らかなように、図5に示すものは図1に示すものに対し、均等化演算器PEQを付加した点が特徴である。この均等化演算器PEQはPWM演算器の出力に対し、2台の電力変換器のスイッチング動作が均等になるように、PWM信号の振り分けを行なうものである。なお、その他は図1と同様なので、詳細は省略する。
By the way, in the control system of FIG.1 and FIG.4, the magnitude | size of the alternating current side voltage with respect to each power converter is clear when comparing (1) and (2) or (3) and (4) of FIG. Are different from each other, and as a result, there is a possibility that the power of the plurality of power converters may be unbalanced.
FIG. 5 shows another embodiment that may address such issues. As is apparent from FIG. 5, the feature shown in FIG. 5 is that an equalization computing unit PEQ is added to that shown in FIG. The equalization computing unit PEQ distributes PWM signals so that the switching operations of the two power converters are equalized with respect to the output of the PWM computing unit. Other details are the same as in FIG.

図5の動作について、図7を参照して説明する。いま、PWM演算器の出力に対し何も手を加えることなくそのまま用いて2台の電力変換器CNV1,CNv2を動作させると、CNV1,CNv2に対する出力電圧は、PWM演算から交流側電圧に至るまでは図21と同様に、図7(2),(3)の均等化前のVc1,Vc2のような波形となる。ここで、均等化前のVc1,Vc2の波形を比較すると、電圧指令の1周期中において正(+Ed)または負(−Ed)の電圧が出力されている期間が異なることから、2台の電力変換器の電力負担も異なる。   The operation of FIG. 5 will be described with reference to FIG. Now, when the two power converters CNV1 and CNv2 are operated without any change to the output of the PWM calculator, the output voltage for CNV1 and CNv2 is from the PWM calculation to the AC side voltage. As in FIG. 21, the waveforms are as Vc1 and Vc2 before equalization in FIGS. 7 (2) and (3). Here, when comparing the waveforms of Vc1 and Vc2 before equalization, the period during which a positive (+ Ed) or negative (-Ed) voltage is output in one cycle of the voltage command is different. The power burden on the converter is also different.

このため、均等化演算器PEQは、電圧指令の正側の期間では出力電圧が零から正に変化する動作と、正から零に変化する動作が2台の電力変換器で交互に行なわれるようにタイミングを調整する。このような演算を実施することにより、2台の電力変換器の交流側電圧が図7(4),(5)の均等化後のVc1,Vc2のような波形となり、電圧を出力する期間が均等になって、結果として電力負担も均等化される。2台の電力変換器の合成された出力電圧は図7(6)のVcのようになるが、これは均等化演算が有る場合と無い場合で同一である。   For this reason, the equalization computing unit PEQ is configured so that the operation in which the output voltage changes from zero to positive and the operation in which the output voltage changes from positive to zero are alternately performed by the two power converters during the positive period of the voltage command. Adjust the timing. By carrying out such an operation, the AC side voltages of the two power converters have waveforms such as Vc1 and Vc2 after equalization in FIGS. 7 (4) and (5), and the voltage output period is As a result, the power burden is also equalized. The combined output voltage of the two power converters is Vc in FIG. 7 (6), which is the same with and without the equalization operation.

図8は上記のような均等化演算に対し、さらに補正演算器PCOM1,PCOM2による補正演算結果を示す波形図である。
図8(1),(2)は、図7の(4),(5)の均等化後のVc1,Vc2波形と同じであり、これに対し補正演算を施すことにより、図8(3),(4)に斜線で示すような補正が行なわれる。
図6は図4に示すものに対し、均等化演算器PEQを付加したもので、それ以外は図4や図5で説明したものと同様なので、詳細は省略する。
FIG. 8 is a waveform diagram showing correction calculation results by the correction calculators PCOM1 and PCOM2 for the above equalization calculation.
8 (1) and (2) are the same as the Vc1 and Vc2 waveforms after equalization in (4) and (5) of FIG. 7, and by performing a correction operation on this, FIG. 8 (3) , (4) is corrected as indicated by hatching.
FIG. 6 is the same as that shown in FIG. 4 except that an equalization computing unit PEQ is added to the one shown in FIG.

直流回路を共通とする場合のこの発明の実施の形態を示す制御ブロック図Control block diagram showing an embodiment of the present invention when a DC circuit is shared 図1における補正演算の概念を説明する波形図Waveform diagram illustrating the concept of correction calculation in FIG. 図2のような補正演算の結果得られる各電力変換器への出力信号を示す波形図Waveform diagram showing an output signal to each power converter obtained as a result of the correction calculation as shown in FIG. 電力変換器毎に独立した直流回路を持つ場合の制御ブロック図Control block diagram when there is an independent DC circuit for each power converter 図1の変形例を示す制御ブロック図Control block diagram showing a modification of FIG. 図4の変形例を示す制御ブロック図Control block diagram showing a modification of FIG. 均等化演算を説明する波形図Waveform diagram explaining equalization calculation 均等化演算に補正演算を施した結果を説明する波形図Waveform diagram explaining the result of applying correction calculation to equalization calculation 1台の電力変換器を交流電源に接続した一般的なシステム構成図General system configuration diagram with one power converter connected to AC power supply 図9の動作説明図FIG. 9 illustrates the operation 図9の電力変換器の制御ブロック図Control block diagram of the power converter of FIG. 直流回路を共通とする多重電力変換器のシステム構成図System configuration diagram of multiple power converter with common DC circuit 図12に対応する制御ブロック図Control block diagram corresponding to FIG. 直流回路が個別の場合の多重電力変換器のシステム構成図System configuration diagram of multiple power converter when DC circuit is individual 図14に示す電力変換器の制御ブロック図Control block diagram of the power converter shown in FIG. 図13,15の制御動作説明図Control operation explanatory diagram of FIGS. 図16の一方の電力変換器に対するPWM演算方法の説明図Explanatory drawing of the PWM calculation method with respect to one power converter of FIG. 図16のもう一方の電力変換器に対するPWM演算方法の説明図Explanatory drawing of the PWM calculation method with respect to the other power converter of FIG. 三角波キャリアの位相関係説明図Triangular wave carrier phase diagram 多重電力変換器システムの別の例を示す構成図Configuration diagram showing another example of a multiple power converter system 図20のPWM制御方法の説明図20 is an explanatory diagram of the PWM control method of FIG. 位相差をつけた複数の三角波を利用するPWM方式説明図Explanation of PWM method using multiple triangular waves with phase difference バイアスを付けた複数の三角波を用いるPWM方式説明図Explanation of PWM method using multiple triangular waves with bias PWM方式の違いによる高調波の相違を示すグラフGraph showing differences in harmonics due to differences in PWM method

符号の説明Explanation of symbols

PS…交流電源、PWM…PWM演算器、AVR,AVR1,AVR2…電圧調節器、ACR,ACR1,ACR2…電流調節器、PCOM1,PCOM2…補正演算器、SUB,SUB1,SUB2,SUB3,SUB4…減算器、MUL,MUL1,MUL2…乗算器、Ls,Ls1,Ls2…リアクトル、DL,DL1,DL2…負荷装置。   PS: AC power supply, PWM: PWM calculator, AVR, AVR1, AVR2 ... Voltage regulator, ACR, ACR1, ACR2 ... Current regulator, PCOM1, PCOM2 ... Correction calculator, SUB, SUB1, SUB2, SUB3, SUB4 ... Subtract MUL, MUL1, MUL2 ... multiplier, Ls, Ls1, Ls2 ... reactor, DL, DL1, DL2 ... load device.

Claims (4)

同一の直流回路に接続された複数の電力変換器の交流端が変圧器を介して結合された多重電力変換器を制御する多重電力変換器の制御装置において、
前記複数の電力変換器に対し、バイアスを付けた複数の三角波と電圧指令との比較によりPWM(パルス幅変調)信号を生成する1つのPWM演算手段と、共通の直流電圧指令と共通の直流電圧検出値との偏差を零にする制御演算により共通の交流電流指令値を生成し、この交流電流指令値と個別の交流電流検出値との偏差を零にする制御演算により個別の制御量を生成する制御演算手段と、前記PWM信号のパルス幅を前記制御演算手段からの出力に基づき個々に補正する補正手段とを設け、この補正手段からの出力に基づき各電力変換器を制御することを特徴とする多重電力変換器の制御装置。
In a control apparatus for a multiple power converter that controls a multiple power converter in which AC terminals of a plurality of power converters connected to the same DC circuit are coupled via a transformer,
One PWM calculation means for generating a PWM (pulse width modulation) signal by comparing a plurality of biased triangular waves and a voltage command for the plurality of power converters, a common DC voltage command and a common DC voltage generate individual control amount by the control operation by the control calculation to zero a deviation between the detection value to generate a common alternating current command value, the deviation between the AC current command value and the individual alternating current detected value to zero And a control means for individually correcting the pulse width of the PWM signal based on the output from the control calculation means, and each power converter is controlled based on the output from the correction means. A control device for a multiple power converter.
個別の直流回路に接続された複数の電力変換器の交流端が変圧器を介して結合された多重電力変換器を制御する多重電力変換器の制御装置において、
前記複数の電力変換器に対し、バイアスを付けた複数の三角波と電圧指令との比較によりPWM(パルス幅変調)信号を生成する1つのPWM演算手段と、共通の直流電圧指令と個別の直流電圧検出値との偏差を零にする制御演算により個別の交流電流指令値を生成し、各交流電流指令値と個別の交流電流検出値との偏差を零にする制御演算により個別の制御量を生成する制御演算手段と、前記PWM信号のパルス幅を前記制御演算手段からの出力に基づき個々に補正する補正手段とを設け、この補正手段からの出力に基づき各電力変換器を制御することを特徴とする多重電力変換器の制御装置。
In a control apparatus for a multiple power converter that controls a multiple power converter in which AC terminals of a plurality of power converters connected to individual DC circuits are coupled via a transformer,
One PWM calculation means for generating a PWM (pulse width modulation) signal by comparing a plurality of biased triangular waves and a voltage command for the plurality of power converters, a common DC voltage command and individual DC voltages generate individual control quantity by a control operation to generate individual alternating current command value to zero a deviation between the alternating current command value and the individual alternating current detected value by controlling operation to zero the deviation between the detection value And a control means for individually correcting the pulse width of the PWM signal based on the output from the control calculation means, and each power converter is controlled based on the output from the correction means. A control device for a multiple power converter.
同一の直流回路に接続された複数の電力変換器の交流端が変圧器を介して結合された多重電力変換器を制御する多重電力変換器の制御装置において、
前記複数の電力変換器に対し、バイアスを付けた複数の三角波と電圧指令との比較によりPWM(パルス幅変調)信号を生成する1つのPWM演算手段と、生成したPWM信号を複数の電力変換器に対し均等に分配するための演算をする均等化演算手段と、共通の直流電圧指令と共通の直流電圧検出値との偏差を零にする制御演算により共通の交流電流指令値を生成し、この交流電流指令値と個別の交流電流検出値との偏差を零にする制御演算により個別の制御量を生成する制御演算手段と、前記均等化演算手段からの出力のパルス幅を前記制御演算手段からの出力に基づき個々に補正する補正手段とを設け、この補正手段からの出力に基づき各電力変換器を制御することを特徴とする多重電力変換器の制御装置。
In a control apparatus for a multiple power converter that controls a multiple power converter in which AC terminals of a plurality of power converters connected to the same DC circuit are coupled via a transformer,
One PWM calculation means for generating a PWM (pulse width modulation) signal by comparing a plurality of biased triangular waves and a voltage command with respect to the plurality of power converters, and the generated PWM signal to a plurality of power converters A common AC current command value is generated by an equalization calculation means for performing a calculation for evenly distributing the output and a control calculation for setting the deviation between the common DC voltage command and the common DC voltage detection value to zero. Control calculation means for generating individual control amounts by control calculation that makes the deviation between the AC current command value and the individual AC current detection value zero, and the pulse width of the output from the equalization calculation means from the control calculation means And a correction unit that individually corrects the power converter based on the output of the power, and controls each power converter based on the output from the correction unit.
個別の直流回路に接続された複数の電力変換器の交流端が変圧器を介して結合された多重電力変換器を制御する多重電力変換器の制御装置において、
前記複数の電力変換器に対し、バイアスを付けた複数の三角波と電圧指令との比較によりPWM(パルス幅変調)信号を生成する1つのPWM演算手段と、生成したPWM信号を複数の電力変換器に対し均等に分配するための演算をする均等化演算手段と、共通の直流電圧指令と個別の直流電圧検出値との偏差を零にする制御演算により個別の交流電流指令値を生成し、各交流電流指令値と個別の交流電流検出値との偏差を零にする制御演算により個別の制御量を生成する制御演算手段と、前記均等化演算手段からの出力のパルス幅を前記制御演算手段からの出力に基づき個々に補正する補正手段とを設け、この補正手段からの出力に基づき各電力変換器を制御することを特徴とする多重電力変換器の制御装置。

In a control apparatus for a multiple power converter that controls a multiple power converter in which AC terminals of a plurality of power converters connected to individual DC circuits are coupled via a transformer,
One PWM calculation means for generating a PWM (pulse width modulation) signal by comparing a plurality of biased triangular waves and a voltage command with respect to the plurality of power converters, and the generated PWM signal to a plurality of power converters Individual AC current command values are generated by an equalization calculation means for performing an operation for evenly distributing to each other, and a control calculation for making a deviation between a common DC voltage command and an individual DC voltage detection value zero, Control calculation means for generating individual control amounts by control calculation that makes the deviation between the AC current command value and the individual AC current detection value zero, and the pulse width of the output from the equalization calculation means from the control calculation means And a correction unit that individually corrects the power converter based on the output of the power, and controls each power converter based on the output from the correction unit.

JP2006123680A 2006-04-27 2006-04-27 Multiple power converter control device Expired - Fee Related JP4915136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123680A JP4915136B2 (en) 2006-04-27 2006-04-27 Multiple power converter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123680A JP4915136B2 (en) 2006-04-27 2006-04-27 Multiple power converter control device

Publications (2)

Publication Number Publication Date
JP2007295777A JP2007295777A (en) 2007-11-08
JP4915136B2 true JP4915136B2 (en) 2012-04-11

Family

ID=38765841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123680A Expired - Fee Related JP4915136B2 (en) 2006-04-27 2006-04-27 Multiple power converter control device

Country Status (1)

Country Link
JP (1) JP4915136B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270272B2 (en) * 2008-09-11 2013-08-21 株式会社ダイヘン Inverter control circuit, grid-connected inverter system provided with this inverter control circuit, program for realizing this inverter control circuit, and recording medium recording this program
JP7249238B2 (en) * 2019-08-09 2023-03-30 東芝三菱電機産業システム株式会社 Series multiplex power converter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509935B2 (en) * 1994-06-20 2004-03-22 株式会社日立製作所 Control device for voltage source PWM converter
JPH10127065A (en) * 1996-10-18 1998-05-15 Tokyo Electric Power Co Inc:The Power converter
JP4096502B2 (en) * 2000-08-08 2008-06-04 富士電機ホールディングス株式会社 Multiple power converter control device
JP4177983B2 (en) * 2001-11-30 2008-11-05 株式会社日立製作所 Multiple power converter and control method thereof

Also Published As

Publication number Publication date
JP2007295777A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
Acuna et al. A single-objective predictive control method for a multivariable single-phase three-level NPC converter-based active power filter
JP6509352B2 (en) Power converter
KR960000802B1 (en) Parallel operation system of ac output inverters
JP2526992B2 (en) AC output converter parallel operation system
US8009450B2 (en) Method and apparatus for phase current balance in active converter with unbalanced AC line voltage source
JP4649252B2 (en) Power converter
JP6449807B2 (en) Grid-connected inverter controller
US11936306B2 (en) Power conversion device
EP3109993A1 (en) Power conversion device control method
JP6178433B2 (en) Power converter
JP6372201B2 (en) Power converter
WO2021186524A1 (en) Power conversion device
JP4701770B2 (en) Multiphase series multiple power converter
JP6538542B2 (en) Self-excited reactive power compensator
Ghanizadeh et al. Distributed hierarchical control structure for voltage harmonic compensation and harmonic current sharing in isolated MicroGrids
JP4915136B2 (en) Multiple power converter control device
Rivera et al. Predictive control of the indirect matrix converter with active damping
US4074348A (en) Circuit arrangement with a number of cycloconverters, particularly direct cycloconverters in y-connection
JP2017225214A (en) Parallel operation control method and parallel operation control apparatus for three-phase inverter
EP3514942B1 (en) Power supply system
JP2924601B2 (en) Power converter
WO2018179234A1 (en) H-bridge converter and power conditioner
JP4400442B2 (en) Parallel operation control method for uninterruptible power supply
JP2730383B2 (en) Parallel operation control device for AC output converter
JP2011172387A (en) Power conversion controller, converter control circuit, power conversion control method, power conversion control program and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees