JP4913408B2 - Semiconductor sensor - Google Patents

Semiconductor sensor Download PDF

Info

Publication number
JP4913408B2
JP4913408B2 JP2005507242A JP2005507242A JP4913408B2 JP 4913408 B2 JP4913408 B2 JP 4913408B2 JP 2005507242 A JP2005507242 A JP 2005507242A JP 2005507242 A JP2005507242 A JP 2005507242A JP 4913408 B2 JP4913408 B2 JP 4913408B2
Authority
JP
Japan
Prior art keywords
diaphragm
inclined surfaces
shape
semiconductor
semiconductor sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005507242A
Other languages
Japanese (ja)
Other versions
JPWO2004114416A1 (en
Inventor
茂 広瀬
利明 市井
利幸 平木
一哉 小森
南  政克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP2005507242A priority Critical patent/JP4913408B2/en
Publication of JPWO2004114416A1 publication Critical patent/JPWO2004114416A1/en
Application granted granted Critical
Publication of JP4913408B2 publication Critical patent/JP4913408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Description

本発明は、半導体加速度センサ、半導体圧力センサ等の半導体センサに関するものである。  The present invention relates to a semiconductor sensor such as a semiconductor acceleration sensor or a semiconductor pressure sensor.

特開2002−243759号公報(特許文献1)等には、センサ本体と、該センサ本体上に形成された複数のセンサ素子とを具備する半導体センサ(半導体加速度センサ)が示されている。この半導体加速度センサのセンサ本体は、マスクパターンが形成された半導体結晶基板にエッチングが施されて、中心部に重錘固定部、外周部に筒状の支持部、そして重錘固定部と支持部との間に重錘固定部及び支持部よりも厚みが薄いダイヤフラム部が形成されて構成されている。また、複数のセンサ素子は、支持部の反対側に位置するダイヤフラム部の表面上に形成された拡散抵抗から構成されている。この種の半導体加速度センサでは、外部から加えられた力による加速度、または傾斜させた静止状態で加わる重力加速度に基づく力により重錘固定部に固定された重錘が動いてダイヤフラム部が撓むことにより、センサ素子を構成する各拡散抵抗の抵抗値が変化して歪み量に応じた1以上の軸線方向の加速度を検出する。この種の半導体加速度センサでは、通常、ダイヤフラム部の外形形状を四角形にするため、支持部の内周面は、切頭角錐形の内部空間を囲むように、実質的に同形状の4つの台形状の傾斜面が環状に組み合わされて構成されている。  Japanese Unexamined Patent Application Publication No. 2002-243759 (Patent Document 1) and the like show a semiconductor sensor (semiconductor acceleration sensor) including a sensor body and a plurality of sensor elements formed on the sensor body. The sensor body of this semiconductor acceleration sensor is formed by etching a semiconductor crystal substrate on which a mask pattern is formed, a weight fixing portion at the center, a cylindrical support portion at the outer peripheral portion, and a weight fixing portion and a support portion. A diaphragm portion having a thickness smaller than that of the weight fixing portion and the support portion is formed therebetween. Further, the plurality of sensor elements are constituted by diffusion resistors formed on the surface of the diaphragm portion located on the opposite side of the support portion. In this type of semiconductor acceleration sensor, the weight fixed to the weight fixing part moves due to the acceleration based on the force applied from the outside or the force based on the gravitational acceleration applied in a tilted stationary state, and the diaphragm part bends. As a result, the resistance value of each diffused resistor constituting the sensor element changes, and one or more accelerations in the axial direction corresponding to the amount of strain are detected. In this type of semiconductor acceleration sensor, since the outer shape of the diaphragm portion is usually a quadrangle, the inner peripheral surface of the support portion is formed by four platforms having substantially the same shape so as to surround the inner space of the truncated pyramid shape. Shaped inclined surfaces are combined in an annular shape.

しかしながら、従来の半導体加速度センサでは、重錘に作用した加速度によってダイヤフラム部に必要以上の力が加わると、ダイヤフラム部の外形形状の角部に応力が集中し、ダイヤフラム部が損傷することがある。このような問題を解決するために、特開平5−196525号公報(特許文献2)、特開平6−174571号公報(特許文献3)等では、ダイヤフラム部の外形形状を形成する正多角形を正八角形のように多角化(角の数を増やす)したものが提案されている。このように、ダイヤフラム部の正多角形の角の数を増やすと、角部に加わる力を和らげることができる。そのため、ダイヤフラム部の損傷を防ぐことができる。
特開2002−243759号公報(第18頁、図1) 特開平5−196525号公報(第6頁、図4) 特開平6−174571号公報(第9頁、図4)
However, in the conventional semiconductor acceleration sensor, when an excessive force is applied to the diaphragm portion due to the acceleration acting on the weight, stress concentrates on the corner portion of the outer shape of the diaphragm portion, and the diaphragm portion may be damaged. In order to solve such a problem, in Japanese Patent Laid-Open No. 5-196525 (Patent Document 2), Japanese Patent Laid-Open No. 6-174571 (Patent Document 3), etc. The one that is diversified (increases the number of corners) like a regular octagon has been proposed. As described above, when the number of regular polygon corners of the diaphragm portion is increased, the force applied to the corner portion can be reduced. Therefore, damage to the diaphragm portion can be prevented.
JP 2002-243759 A (page 18, FIG. 1) Japanese Patent Laid-Open No. 5-196525 (page 6, FIG. 4) JP-A-6-174571 (page 9, FIG. 4)

しかしながら、ダイヤフラム部の正多角形の角の数を増やすと、マスクパターンの形状が複雑になる上、エッチングが面倒になるという問題があった。  However, when the number of regular polygon corners in the diaphragm portion is increased, there is a problem that the shape of the mask pattern becomes complicated and etching becomes troublesome.

本発明の目的は、ダイヤフラム部の損傷を防ぐことができ、しかも簡単にエッチングが行える半導体センサを得ることを目的とする。  An object of the present invention is to obtain a semiconductor sensor that can prevent damage to a diaphragm portion and that can be easily etched.

本発明が改良の対象とする半導体センサは、中心部に重錘固定部、外周部に筒状の支持部、そして重錘固定部と支持部との間に重錘固定部及び支持部よりも厚みが薄いダイヤフラム部を有する半導体結晶基板からなるセンサ本体と、支持部の反対側に位置するダイヤフラム部の表面上に形成された拡散抵抗からなる複数のセンサ素子とを具備している。そして、支持部の内周面が、切頭角錐形の内部を囲むように、実質的に同形状の少なくとも4つの傾斜面が環状に組み合わされて構成されている。本発明では、少なくとも4つの傾斜面の隣接する2つの傾斜面の間に両傾斜面の境界部を延びて両傾斜面を連結する平面または曲面からなる細長い連結面をそれぞれ形成する。本発明のように、連結面を形成すれば、ダイヤフラム部の外形形状のそれぞれの角部の角度が大きくなるので、ダイヤフラム部の各角部に加わる力を和らげることができる。そのため、ダイヤフラム部の損傷を防ぐことができる。また、本発明では、連結面を形成するものの、基本的には、環状に組み合わされる傾斜面の数(ダイヤフラム部の外形形状の正多角形の角の数)は変わらないため、ダイヤフラム部の正多角形を多角化する(角の数を増やす)場合に比べて、簡単にダイヤフラム部を形成できる。  The semiconductor sensor to be improved by the present invention has a weight fixing part at the center, a cylindrical support part at the outer periphery, and a weight fixing part and a support part between the weight fixing part and the support part. A sensor main body made of a semiconductor crystal substrate having a thin diaphragm portion, and a plurality of sensor elements made of diffusion resistors formed on the surface of the diaphragm portion located on the opposite side of the support portion. Then, at least four inclined surfaces having substantially the same shape are annularly combined so that the inner peripheral surface of the support portion surrounds the inside of the truncated pyramid. In the present invention, an elongated connecting surface composed of a flat surface or a curved surface is formed by extending the boundary between both inclined surfaces between two adjacent inclined surfaces of at least four inclined surfaces. If the connecting surface is formed as in the present invention, the angle of each corner portion of the outer shape of the diaphragm portion increases, so that the force applied to each corner portion of the diaphragm portion can be reduced. Therefore, damage to the diaphragm portion can be prevented. In the present invention, although the connecting surface is formed, basically, the number of inclined surfaces combined in an annular shape (the number of regular polygon corners of the outer shape of the diaphragm portion) does not change. The diaphragm portion can be easily formed as compared with the case where the polygon is diversified (increasing the number of corners).

連結面は、種々の形状を有しているものを採用できる。例えば、平面形状を有していてもよいし、曲面形状を有していてもよいし、複数の平面が組み合わされた形状を有していてもよい。  What has various shapes can be employ | adopted for a connection surface. For example, it may have a planar shape, may have a curved shape, or may have a shape in which a plurality of planes are combined.

ダイヤフラム部には、連結面の端部の近傍においてダイヤフラム部の裏面から突出する厚肉部を形成するのが好ましい。このような厚肉部を形成すれば、ダイヤフラム部の可撓性を大きく低下させることなく、ダイヤフラム部の強度を高めることができる。  In the diaphragm part, it is preferable to form a thick part protruding from the back surface of the diaphragm part in the vicinity of the end part of the connecting surface. If such a thick portion is formed, the strength of the diaphragm portion can be increased without greatly reducing the flexibility of the diaphragm portion.

厚肉部は、連結面の端部からダイヤフラム部の中心部に向かって徐々に厚み寸法が小さくなるように延びているのが好ましい。このようにすれば、ダイヤフラム部の可撓性を大きく低下させることなく、連結面の端部側の強度を高めることができる。  The thick part preferably extends so that the thickness dimension gradually decreases from the end of the connecting surface toward the center of the diaphragm. If it does in this way, the intensity | strength at the edge part side of a connection surface can be raised, without reducing the flexibility of a diaphragm part greatly.

マスクパターンが形成された半導体結晶基板にエッチングを施こしてセンサ本体を形成する場合には、マスクパターンに、エッチングの進行を補正する補正パターンを含ませればよい。そして、補正パターンは、エッチングにおいてダイヤフラム部の形成が完了する時に、少なくとも4つの傾斜面の隣接する2つの傾斜面の間に連結面をそれぞれ形成する寸法及び形状にする。このようにすれば、比較的単純な形状のマスクパターンを用いてエッチングをすることにより連結面を形成することができる。  When the sensor body is formed by etching the semiconductor crystal substrate on which the mask pattern is formed, the mask pattern may include a correction pattern for correcting the progress of etching. Then, the correction pattern has a size and a shape that form a connection surface between two adjacent inclined surfaces of at least four inclined surfaces when the formation of the diaphragm portion is completed in etching. If it does in this way, a connecting surface can be formed by etching using a mask pattern of a comparatively simple shape.

また、補正パターンを、エッチングにおいてダイヤフラム部の形成が完了する時に、厚肉部を更に形成する寸法及び形状を有しているようにすれば、比較的単純な形状のマスクパターンにより厚肉部を形成することができる。  Further, if the correction pattern has a size and shape that further forms the thick part when the formation of the diaphragm part is completed in the etching, the thick part is formed by a relatively simple mask pattern. Can be formed.

特に、半導体結晶基板のミラー指数(100)面にエッチングを施こす場合には、少なくとも4つの傾斜面を環状に組み合わせるような形状に支持部の内周面を形成するようにエッチングを行うのが容易である。そのため、半導体結晶基板のミラー指数(100)面にエッチングを施こす場合には、本発明の効果は顕著である。  In particular, when etching is performed on the Miller index (100) surface of the semiconductor crystal substrate, the etching is performed so that the inner peripheral surface of the support portion is formed in a shape in which at least four inclined surfaces are combined in an annular shape. Easy. Therefore, the effect of the present invention is remarkable when etching is performed on the Miller index (100) plane of the semiconductor crystal substrate.

[図1]図1は、本発明の実施の形態の半導体センサの断面図である。
[図2]図2は、図1のII−II線断面図である。
[図3]図3は、図1の半導体センサに用いるセンサ本体の平面図である。
[図4]図4は、図1の半導体センサに用いるセンサ本体の裏面図である。
[図5]図5は、図4のV−V線断面図である。
[図6]図6は、図1の半導体センサに用いるセンサ本体の製造方法の説明に用いるための図である。
[図7]図7(A)及び(B)は、他の連結面の態様を示す断面図である。
FIG. 1 is a cross-sectional view of a semiconductor sensor according to an embodiment of the present invention.
2 is a cross-sectional view taken along the line II-II in FIG.
[FIG. 3] FIG. 3 is a plan view of a sensor body used in the semiconductor sensor of FIG.
[FIG. 4] FIG. 4 is a back view of a sensor body used in the semiconductor sensor of FIG.
5 is a cross-sectional view taken along line VV in FIG.
[FIG. 6] FIG. 6 is a diagram for explaining a method of manufacturing a sensor main body used in the semiconductor sensor of FIG.
[FIG. 7] FIGS. 7A and 7B are cross-sectional views showing other aspects of the connecting surface.

以下、図面を参照して本発明の実施の形態を詳細に説明する。図1は、半導体加速度センサに適用した本発明の実施の形態の半導体センサの断面図であり、図2は、図1のII−II線断面図である。両図に示すように、本発明の実施の形態の半導体加速度センサは、センサ本体1と、センサ本体1に固定された重錘3と、センサ本体1を支持するガラス製の台座5とを有している。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view of a semiconductor sensor according to an embodiment of the present invention applied to a semiconductor acceleration sensor, and FIG. 2 is a sectional view taken along the line II-II in FIG. As shown in both figures, the semiconductor acceleration sensor according to the embodiment of the present invention has a sensor body 1, a weight 3 fixed to the sensor body 1, and a glass base 5 that supports the sensor body 1. is doing.

図3及び図4は、センサ本体1の平面図及び裏面図である。図1〜図4に示すように、センサ本体1は、中心部に重錘固定部7が位置し、外周部に筒状の支持部9が位置し、重錘固定部7と支持部9との間にダイヤフラム部11を有している。センサ本体1は、単結晶シリコンからなる半導体結晶基板のミラー指数(100)面に異方性エッチングが施されて形成されている。支持部9の反対側に位置するダイヤフラム部11の表面上には、加速度検出用拡散抵抗からなる図示しない複数のセンサ素子が形成されている。支持部9上には、複数の電極8…が形成されている(図3)。本例の半導体加速度センサは、外部から加えられた力による加速度、または傾斜させた静止状態で加わる重力加速度に基づく力により重錘3が動いてダイヤフラム部11が撓むことにより、センサ素子を構成する各拡散抵抗の抵抗値が変化して歪み量に応じた1軸以上の方向の加速度を検出する。  3 and 4 are a plan view and a back view of the sensor main body 1, respectively. As shown in FIGS. 1 to 4, the sensor main body 1 has a weight fixing portion 7 located at the center and a cylindrical support portion 9 located at the outer peripheral portion. A diaphragm portion 11 is provided between the two. The sensor body 1 is formed by performing anisotropic etching on the Miller index (100) plane of a semiconductor crystal substrate made of single crystal silicon. On the surface of the diaphragm portion 11 located on the opposite side of the support portion 9, a plurality of sensor elements (not shown) made of acceleration detection diffusion resistors are formed. A plurality of electrodes 8 are formed on the support portion 9 (FIG. 3). The semiconductor acceleration sensor of this example is configured as a sensor element when the weight 3 is moved and the diaphragm portion 11 is bent by the acceleration based on the force applied from the outside or the force based on the gravitational acceleration applied in a tilted stationary state. The resistance value of each diffused resistor is changed, and acceleration in one or more directions corresponding to the amount of strain is detected.

重錘固定部7は、支持部9の内部空間10内にダイヤフラム部11から重錘3に向かって突出した形状を有している。重錘固定部7の先端には、重錘固定部7の中心を通りダイヤフラム部11が延びる方向と直交する方向に延びる中心線C上に重錘3の中心が位置するように、重錘3が固定されている。この重錘固定部7は、八角形の横断面を有しており、その外周面は、ダイヤフラム部11が位置する側から離れるに従って中心線Cに近づくように傾斜する傾斜面として形成されている。  The weight fixing portion 7 has a shape protruding from the diaphragm portion 11 toward the weight 3 in the internal space 10 of the support portion 9. The weight 3 is positioned so that the center of the weight 3 is positioned at the tip of the weight fixing part 7 on a center line C that passes through the center of the weight fixing part 7 and extends in a direction perpendicular to the direction in which the diaphragm part 11 extends. Is fixed. The weight fixing portion 7 has an octagonal cross section, and the outer peripheral surface thereof is formed as an inclined surface that inclines so as to approach the center line C as it moves away from the side on which the diaphragm portion 11 is located. .

支持部9は、矩形の環状を有しており、内周面は、ほぼ切頭角錐形の内部空を囲むように、実質的に同形状の4つの台形状の傾斜面13…が環状に組み合わされて構成されている。傾斜面13…は、ダイヤフラム部11が位置する側に向かうに従って中心線Cに近づくように傾斜しており、後述するストッパ構造の一部を構成している。4つの傾斜面13…の隣接する2つの傾斜面13,13の間には、両傾斜面13,13の境界部を延びて両傾斜面13,13を連結する平面状の細長い連結面15がそれぞれ形成されている。  The support portion 9 has a rectangular annular shape, and four trapezoidal inclined surfaces 13 of substantially the same shape are annularly formed on the inner peripheral surface so as to surround the inner space of a substantially truncated pyramid shape. It is configured in combination. The inclined surfaces 13 are inclined so as to approach the center line C toward the side where the diaphragm portion 11 is located, and constitute a part of a stopper structure described later. Between the two inclined surfaces 13 and 13 adjacent to the four inclined surfaces 13..., There is a planar elongated connecting surface 15 that extends between the inclined surfaces 13 and 13 and connects the inclined surfaces 13 and 13. Each is formed.

ダイヤフラム部11は、重錘固定部7及び支持部9よりも薄い厚み寸法からなり、可撓性を有している。ダイヤフラム部11の裏面には、4つの厚肉部17…が形成されている。厚肉部17は、図4及び図5に示すように、ダイヤフラム部11の裏面から突出する形状を有しており、連結面15の端部からダイヤフラム部11の中心部に向かって徐々に厚み寸法が小さくなるように延びている。また、厚肉部17は、連結面15の端部から放射状に延びるように厚み寸法の大きな嶺部17a…を有している。  The diaphragm portion 11 is thinner than the weight fixing portion 7 and the support portion 9 and has flexibility. Four thick portions 17 are formed on the back surface of the diaphragm portion 11. As shown in FIGS. 4 and 5, the thick portion 17 has a shape protruding from the back surface of the diaphragm portion 11, and gradually increases in thickness from the end portion of the connecting surface 15 toward the center portion of the diaphragm portion 11. Extends to reduce dimensions. Moreover, the thick part 17 has the flange parts 17a ... with a large thickness dimension so as to extend radially from the end part of the connecting surface 15.

本例では、センサ本体1を次のようにして作った。まず、ほぼ平板状の半導体結晶基板のミラー指数(100)面にシリコン酸化膜、シリコン窒化膜等からなる厚み数百nmのマスクパターンを形成した。マスクパターンとしては、例えば、図6の符号23に示すように、支持部9を形成する支持部形成部25とエッチングの進行を補正する補正パターン部27とを有するものを形成することができる。補正パターン部27は、角形形状を有しており、支持部形成部25の内側角部に連結されて該内側角部から重錘固定部の角部に向かって延びている。また、このマスクパターン23と共に、重錘固定部7を形成する重錘固定部形成部を含むマスクパターンも形成する。次に、KOH等のアルカリエッチング液でエッチングを施して連結面15及び厚肉部17を備えたセンサ本体1を完成した。このように、補正パターン部(27)は、エッチングにおいてダイヤフラム部11の形成が完了する時に、連結面15をそれぞれ形成し、ダイヤフラム部11に厚肉部17を形成する寸法及び形状を有している。本例の半導体加速度センサでは、比較的単純な形状のマスクパターンを用いてエッチングをすることにより連結面15及び厚肉部17を形成することができるので、ダイヤフラム部の可撓性を大きく低下させることなく、ダイヤフラム部の強度を高めることができる。  In this example, the sensor main body 1 was made as follows. First, a mask pattern having a thickness of several hundreds of nanometers made of a silicon oxide film, a silicon nitride film, or the like was formed on the mirror index (100) plane of a substantially flat semiconductor crystal substrate. As the mask pattern, for example, as shown by reference numeral 23 in FIG. 6, a mask pattern having a support portion forming portion 25 for forming the support portion 9 and a correction pattern portion 27 for correcting the progress of etching can be formed. The correction pattern portion 27 has a square shape, is connected to the inner corner portion of the support portion forming portion 25, and extends from the inner corner portion toward the corner portion of the weight fixing portion. Further, a mask pattern including a weight fixing portion forming portion for forming the weight fixing portion 7 is also formed together with the mask pattern 23. Next, etching was performed with an alkaline etching solution such as KOH to complete the sensor body 1 having the connection surface 15 and the thick portion 17. As described above, the correction pattern portion (27) has a size and a shape that form the connecting surface 15 and form the thick portion 17 in the diaphragm portion 11 when the formation of the diaphragm portion 11 is completed in the etching. Yes. In the semiconductor acceleration sensor of this example, since the connecting surface 15 and the thick portion 17 can be formed by etching using a mask pattern having a relatively simple shape, the flexibility of the diaphragm portion is greatly reduced. Without increasing the strength of the diaphragm portion.

重錘3は、円板状に近い輪郭を有するタングステンにより形成されている。この重錘3は、一端が重錘固定部7に接着剤により固定された状態で、支持部9内の内部空間10と台座5内の内部空間12とに跨って2つの内部空間内に配置されている。重錘3の環状の部分3aは、支持部9内の内部空間10に入り込んでいる。本例では、環状の部分3aは、ダイヤフラム部11に沿う方向に延びる第1の面3bと、支持部9の内周面と交差する方向に延びる第2の面3cと、第1の面3bと第2の面3cとの交差点(角部)からなる当接部3dと、ダイヤフラム部11との反対側に位置する底面3eとを有している。当接部3dは、重錘固定部7が位置する側から見た輪郭形状が円形を有するようにほぼ円形の線状に延びている。そのため、図2に示すように、当接部3dは支持部9の4つの傾斜面13…のそれぞれのほぼ中央に対向することになる。本例では、当接部3dと傾斜面13…との接触位置は、傾斜面13…の支持部9の厚み方向の中央位置よりも支持部9の底面側に位置している。また、当接部3dと前述した支持部9の4つの傾斜面13…とにより重錘のストッパ構造が構成されている。そのため、重錘3の変位量が所定の範囲を超えると、当接部3dが傾斜面13…に当接して重錘3の変位量が規制される。  The weight 3 is formed of tungsten having a profile close to a disk shape. The weight 3 is arranged in two internal spaces straddling the internal space 10 in the support portion 9 and the internal space 12 in the pedestal 5 with one end fixed to the weight fixing portion 7 with an adhesive. Has been. The annular portion 3 a of the weight 3 enters the internal space 10 in the support portion 9. In this example, the annular portion 3a includes a first surface 3b extending in a direction along the diaphragm portion 11, a second surface 3c extending in a direction intersecting with the inner peripheral surface of the support portion 9, and a first surface 3b. And a second surface 3c, and a bottom surface 3e located on the opposite side of the diaphragm portion 11. 3 d of contact parts are extended in the substantially circular linear shape so that the outline shape seen from the side in which the weight fixing | fixed part 7 is located has a circular shape. Therefore, as shown in FIG. 2, the abutting portion 3 d faces almost the center of each of the four inclined surfaces 13 of the support portion 9. In this example, the contact position between the contact portion 3d and the inclined surfaces 13 is located closer to the bottom surface side of the support portion 9 than the central position in the thickness direction of the support portions 9 of the inclined surfaces 13. Further, a weight stopper structure is constituted by the contact portion 3d and the four inclined surfaces 13 of the support portion 9 described above. Therefore, when the displacement amount of the weight 3 exceeds a predetermined range, the contact portion 3d abuts on the inclined surfaces 13 and the displacement amount of the weight 3 is restricted.

なお、上記例では、連結面15は、平面形状を有しているが、図7(A)に示すように、連結面35を曲面により形成してもよいし、図7(B)に示すように、連結面45を複数の平面を組み合わせて形成してもよい。  In the above example, the connecting surface 15 has a planar shape. However, as shown in FIG. 7A, the connecting surface 35 may be formed by a curved surface, or as shown in FIG. In this way, the connecting surface 45 may be formed by combining a plurality of planes.

また、上記例は、4つの傾斜面13…が組み合わされてセンサ本体の内周面が構成される半導体加速度センサに本発明を適用した例を示したが、少なくとも4つの傾斜面が組み合わされてセンサ本体の内周面が構成される半導体加速度センサに本発明は適用できる。例えば、8つの傾斜面が組み合わされる半導体加速度センサにも本発明が適用できるのは勿論である。  Moreover, although the said example showed the example which applied this invention to the semiconductor acceleration sensor with which the four inclined surfaces 13 ... are combined and the inner peripheral surface of a sensor main body is comprised, at least four inclined surfaces are combined. The present invention can be applied to a semiconductor acceleration sensor in which the inner peripheral surface of the sensor body is configured. For example, the present invention can of course be applied to a semiconductor acceleration sensor in which eight inclined surfaces are combined.

また、上記例は、本発明を半導体加速度センサに適用した例を示したが、圧力センサ等の他の半導体センサに本発明を適用できるのは勿論である。  Moreover, although the said example showed the example which applied this invention to the semiconductor acceleration sensor, of course, this invention is applicable to other semiconductor sensors, such as a pressure sensor.

本発明によれば、連結面を形成するので、ダイヤフラム部の外形形状の角部が大きくなり、ダイヤフラム部の角部に加わる力を和らげることができる。そのため、ダイヤフラム部の損傷を防ぐことができる。  According to the present invention, since the connecting surface is formed, the corner portion of the outer shape of the diaphragm portion is increased, and the force applied to the corner portion of the diaphragm portion can be reduced. Therefore, damage to the diaphragm portion can be prevented.

特に、本発明では、連結面を形成するものの、基本的には、環状に組み合わされる傾斜面の数(ダイヤフラム部の外形形状の正多角形の角の数)は変わらないため、ダイヤフラム部の正多角形を多角化する(角の数を増やす)場合に比べて、簡単にダイヤフラム部を形成できる。  In particular, in the present invention, although the connection surface is formed, the number of inclined surfaces combined in an annular shape (the number of regular polygon corners of the outer shape of the diaphragm portion) does not change. The diaphragm portion can be easily formed as compared with the case where the polygon is diversified (increasing the number of corners).

Claims (9)

中心部に重錘固定部、外周部に筒状の支持部、そして前記重錘固定部と前記支持部との間に前記重錘固定部及び前記支持部よりも厚みが薄いダイヤフラム部を有する半導体結晶基板からなるセンサ本体と、
前記支持部の反対側に位置する前記ダイヤフラム部の表面上に形成された拡散抵抗からなる複数のセンサ素子とを具備し、
前記支持部の内周面が、切頭角錐形の内部空間を囲むように、実質的に同形状の少なくとも4つの傾斜面が環状に組み合わされて構成されている半導体センサであって、
前記少なくとも4つの傾斜面の隣接する2つの傾斜面の間に両傾斜面の境界部を延びて前記両傾斜面を連結する細長い連結面がそれぞれ形成されており、
前記ダイヤフラム部には、前記連結面の端部の近傍において前記ダイヤフラム部の裏面から突出する厚肉部が形成されており、
前記厚肉部は、連結面の端部からダイヤフラム部の中心部に向かって徐々に厚み寸法が小さくなるように延びている半導体センサ。
A semiconductor having a weight fixing portion at the center, a cylindrical support portion at the outer peripheral portion, and a diaphragm portion having a smaller thickness than the weight fixing portion and the support portion between the weight fixing portion and the supporting portion. A sensor body made of a crystal substrate;
A plurality of sensor elements comprising diffusion resistors formed on the surface of the diaphragm portion located on the opposite side of the support portion;
A semiconductor sensor configured by annularly combining at least four inclined surfaces having substantially the same shape so that an inner peripheral surface of the support portion surrounds a truncated pyramid-shaped internal space;
An elongated connecting surface that extends between the two inclined surfaces and connects the inclined surfaces is formed between two adjacent inclined surfaces of the at least four inclined surfaces ,
The diaphragm portion is formed with a thick portion that protrudes from the back surface of the diaphragm portion in the vicinity of the end portion of the coupling surface,
The thick-walled portion is a semiconductor sensor that extends so that the thickness dimension gradually decreases from the end of the connecting surface toward the center of the diaphragm .
前記連結面は、平面形状を有している請求項1に記載の半導体センサ。  The semiconductor sensor according to claim 1, wherein the connection surface has a planar shape. 前記連結面は、曲面形状を有している請求項1に記載の半導体センサ。  The semiconductor sensor according to claim 1, wherein the connection surface has a curved surface shape. 前記連結面は、複数の平面が組み合わされた形状を有している請求項1に記載の半導体センサ The semiconductor sensor according to claim 1, wherein the connection surface has a shape in which a plurality of planes are combined . マスクパターンが形成された半導体結晶基板にエッチングが施されて、中心部に重錘固定部、外周部に筒状の支持部、そして前記重錘固定部と前記支持部との間前記重錘固定部及び前記支持部よりも厚みが薄いダイヤフラム部が形成されてなるセンサ本体と、
前記支持部の反対側に位置する前記ダイヤフラム部の表面上に形成された拡散抵抗からなる複数のセンサ素子とを具備し、
前記支持部の内周面が、切頭角錐形の内部空間を囲むように、実質的に同形状の少なくとも4つの傾斜面が環状に組み合わされて構成されている半導体センサであって、
前記マスクパターンは、前記エッチングの進行を補正する補正パターンを含んでおり、
前記補正パターンは、前記エッチングにおいて前記ダイヤフラム部の形成が完了するときに、前記少なくとも4つの傾斜面の隣接する2つの傾斜面の間に両傾斜面の境界部を延びて前記両傾斜面を連結する細長い連結面をそれぞれ形成する寸法及び形状を有しており、
前記補正パターンは、前記エッチングにおいて前記ダイヤフラム部の形成が完了するときに、前記連結面の端部の近傍において前記ダイヤフラム部の裏面から突出する厚肉部を更に形成する寸法及び形状を有しており、
前記厚肉部は、連結面の端部からダイヤフラム部の中心部に向かって徐々に厚み寸法が小さくなるように延びている半導体センサ。
Etching is performed on the semiconductor crystal substrate on which the mask pattern is formed, the weight fixing portion at the center, the cylindrical support portion at the outer peripheral portion, and the weight fixing between the weight fixing portion and the support portion A sensor body in which a diaphragm part having a smaller thickness than the support part and the support part is formed;
A plurality of sensor elements comprising diffusion resistors formed on the surface of the diaphragm portion located on the opposite side of the support portion;
A semiconductor sensor configured by annularly combining at least four inclined surfaces having substantially the same shape so that an inner peripheral surface of the support portion surrounds a truncated pyramid-shaped internal space;
The mask pattern includes a correction pattern for correcting the progress of the etching,
In the correction pattern, when the formation of the diaphragm portion is completed in the etching, a boundary portion between the two inclined surfaces extends between two adjacent inclined surfaces of the at least four inclined surfaces to connect the two inclined surfaces. Each having a size and shape that form an elongated connecting surface ,
The correction pattern has a size and shape that further forms a thick portion protruding from the back surface of the diaphragm portion in the vicinity of the end portion of the connecting surface when the formation of the diaphragm portion is completed in the etching. And
The thick-walled portion is a semiconductor sensor that extends so that the thickness dimension gradually decreases from the end of the connecting surface toward the center of the diaphragm .
前記連結面は、平面形状を有している請求項に記載の半導体センサ。The semiconductor sensor according to claim 5 , wherein the connection surface has a planar shape. 前記連結面は、曲面形状を有している請求項に記載の半導体センサ。The semiconductor sensor according to claim 5 , wherein the connection surface has a curved surface shape. 前記連結面は、複数の平面が組み合わされた形状を有している請求項に記載の半導体センサ The semiconductor sensor according to claim 5 , wherein the connection surface has a shape in which a plurality of planes are combined . 前記エッチングは、前記半導体結晶基板のミラー指数(100)面に施されている請求項に記載の半導体センサ。The semiconductor sensor according to claim 5 , wherein the etching is performed on a Miller index (100) plane of the semiconductor crystal substrate.
JP2005507242A 2003-06-20 2004-06-18 Semiconductor sensor Expired - Fee Related JP4913408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005507242A JP4913408B2 (en) 2003-06-20 2004-06-18 Semiconductor sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003176640 2003-06-20
JP2003176640 2003-06-20
PCT/JP2004/008626 WO2004114416A1 (en) 2003-06-20 2004-06-18 Semiconductor sensor
JP2005507242A JP4913408B2 (en) 2003-06-20 2004-06-18 Semiconductor sensor

Publications (2)

Publication Number Publication Date
JPWO2004114416A1 JPWO2004114416A1 (en) 2006-08-03
JP4913408B2 true JP4913408B2 (en) 2012-04-11

Family

ID=33534903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005507242A Expired - Fee Related JP4913408B2 (en) 2003-06-20 2004-06-18 Semiconductor sensor

Country Status (2)

Country Link
JP (1) JP4913408B2 (en)
WO (1) WO2004114416A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100396B2 (en) * 2005-12-20 2012-12-19 北陸電気工業株式会社 Manufacturing method of sensor body for semiconductor sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172378A (en) * 1985-01-28 1986-08-04 Nec Corp Pressure sensor
JPH02256278A (en) * 1987-04-10 1990-10-17 Mitsubishi Electric Corp Semiconductor pressure sensor
JPH07202221A (en) * 1993-12-29 1995-08-04 Zexel Corp Semiconductor acceleration sensor
JPH08167723A (en) * 1994-12-09 1996-06-25 Fujikura Ltd Manufacture of semiconductor acceleration sensor
JPH0982984A (en) * 1995-09-19 1997-03-28 Denso Corp Semiconductor dynamic-quantity sensor and manufacture thereof
JPH10239345A (en) * 1997-02-28 1998-09-11 Fujikura Ltd Semiconductor sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101743B2 (en) * 1988-04-05 1995-11-01 横河電機株式会社 Method for manufacturing semiconductor pressure sensor
JP3489309B2 (en) * 1995-12-27 2004-01-19 株式会社デンソー Method for manufacturing semiconductor dynamic quantity sensor and anisotropic etching mask

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172378A (en) * 1985-01-28 1986-08-04 Nec Corp Pressure sensor
JPH02256278A (en) * 1987-04-10 1990-10-17 Mitsubishi Electric Corp Semiconductor pressure sensor
JPH07202221A (en) * 1993-12-29 1995-08-04 Zexel Corp Semiconductor acceleration sensor
JPH08167723A (en) * 1994-12-09 1996-06-25 Fujikura Ltd Manufacture of semiconductor acceleration sensor
JPH0982984A (en) * 1995-09-19 1997-03-28 Denso Corp Semiconductor dynamic-quantity sensor and manufacture thereof
JPH10239345A (en) * 1997-02-28 1998-09-11 Fujikura Ltd Semiconductor sensor

Also Published As

Publication number Publication date
JPWO2004114416A1 (en) 2006-08-03
WO2004114416A1 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
CN109417671B (en) MEMS structure, and capacitive sensor, piezoelectric sensor, and acoustic sensor having the same
JP5227730B2 (en) Pressure sensor
JP4913408B2 (en) Semiconductor sensor
JP2008224254A (en) Sensor device and manufacturing method for sensor device
EP1715721A1 (en) Capacity detection type sensor element
JP5699757B2 (en) Mechanical quantity sensor
JP5867636B2 (en) Mechanical quantity sensor
JP5065356B2 (en) Semiconductor acceleration sensor
JP4422395B2 (en) Manufacturing method of semiconductor acceleration sensor
JP2006200980A (en) Capacitance type pressure sensor and capacitance type actuator
JP2007298383A (en) Electrostatic capacity sensor
JP6820817B2 (en) Torque detector
JP2006153519A (en) Acceleration sensor
JP7157019B2 (en) pressure sensor
JP5100396B2 (en) Manufacturing method of sensor body for semiconductor sensor
JP2005098891A (en) Electrostatic capacity type sensor
JP2000065854A (en) Semiconductor acceleration sensor element and its manufacture
US9158107B2 (en) Semiconductor device
JP5046240B2 (en) Method for manufacturing acceleration sensor
JP2006064532A (en) Semiconductor acceleration sensor
KR102333526B1 (en) Torque detector and manufacturing method of torque detector
JP2004177233A (en) Semiconductor acceleration sensor
JP2011191103A (en) Force sensor and method of manufacturing the same
JP4464597B2 (en) Semiconductor acceleration sensor
JP3089900U (en) Transducer structure for acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4913408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees