JP4912387B2 - Nonlinear optical element - Google Patents

Nonlinear optical element Download PDF

Info

Publication number
JP4912387B2
JP4912387B2 JP2008302828A JP2008302828A JP4912387B2 JP 4912387 B2 JP4912387 B2 JP 4912387B2 JP 2008302828 A JP2008302828 A JP 2008302828A JP 2008302828 A JP2008302828 A JP 2008302828A JP 4912387 B2 JP4912387 B2 JP 4912387B2
Authority
JP
Japan
Prior art keywords
nonlinear optical
optical element
light
function
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008302828A
Other languages
Japanese (ja)
Other versions
JP2010128194A (en
Inventor
勲 富田
毅伺 梅木
修 忠永
雅生 遊部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008302828A priority Critical patent/JP4912387B2/en
Publication of JP2010128194A publication Critical patent/JP2010128194A/en
Application granted granted Critical
Publication of JP4912387B2 publication Critical patent/JP4912387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、非線形光素子に関し、特に光通信システムにおいて用いられる波長変換機能を有する非線形光素子に関する。   The present invention relates to a nonlinear optical device, and more particularly to a nonlinear optical device having a wavelength conversion function used in an optical communication system.

現在の光ネットワークを活用し、通信容量を飛躍的に増大させる技術として波長分割多重(WDM,Wavelength Division Multiplexing)通信技術の研究開発が進展してきている。WDM通信において、波長の異なる複数の光信号を交換機で電気信号に変換せずに光のまま処理できれば、超高速の信号処理が可能となる。   Research and development of wavelength division multiplexing (WDM) communication technology has progressed as a technology for dramatically increasing the communication capacity by utilizing the current optical network. In WDM communication, if a plurality of optical signals having different wavelengths can be processed as light without being converted into electrical signals by an exchange, ultrahigh-speed signal processing can be performed.

これを実現する上で必要となる全光波長変換技術の研究も進展してきており、その代表的な方法として(1)半導体光増幅器の相互利得変調、相互位相変調を利用する方法、(2)非線形光学結晶の2次非線形効果である和周波、差周波発生を活用する方法が提案されている。後者の非線形光学結晶とは、入射光の電界Eに対して結晶の電気分極率Pが、P=ε0(χ(1)E+χ(2)2+χ(3)3+・・・)のように非線形応答を含む応答を示す結晶のことであり、中心対称性のないχ(2)成分の大きいLiNbO3などの結晶がよく使用される。ここで、ε0は真空中の誘電率である。特に和周波、差周波発生を高効率に行うため、非線形結晶中の伝播光の位相整合を有効に行うことができる周期分極反転構造を用いた擬似位相整合(QPM,Quasi-Phase Matching)法が提案されており、この周期分極反転構造を持つLiNbO3(QPM−LM)素子が開発されている。 Research on all-optical wavelength conversion technology necessary to realize this has also progressed, and representative methods include (1) a method using mutual gain modulation and cross phase modulation of a semiconductor optical amplifier, and (2). There has been proposed a method of utilizing sum frequency and difference frequency generation, which is a second order nonlinear effect of a nonlinear optical crystal. In the latter nonlinear optical crystal, the electric polarizability P of the crystal with respect to the electric field E of incident light is P = ε 0(1) E + χ (2) E 2 + χ (3) E 3 +. Thus, a crystal such as LiNbO 3 having a large χ (2) component without central symmetry is often used. Here, ε 0 is the dielectric constant in vacuum. In particular, a quasi-phase matching (QPM) method using a periodically poled structure that can effectively perform phase matching of propagating light in a nonlinear crystal is used to generate sum frequency and difference frequency with high efficiency. A LiNbO 3 (QPM-LM) element having this periodically poled structure has been developed.

上記の波長変換の特徴としては、(1)の方法では、変換先の波長に等しい波長の光(トリガー光)を外部から予め入力する必要があり、任意の波長の光を自在に発生することはできない。一方(2)の方法では、入力しない波長の光でも発生させることができ、トリガー光を発生するレーザ装置を不要とし、煩雑な装置構成も回避できる特長がある。   As a feature of the wavelength conversion described above, in the method (1), it is necessary to input light (trigger light) having a wavelength equal to the wavelength of the conversion destination from the outside in advance, and light of any wavelength can be freely generated. I can't. On the other hand, the method (2) has a feature that it can generate even light of a wavelength that is not input, eliminates the need for a laser device that generates trigger light, and avoids a complicated device configuration.

そこで、(2)の波長変換を取り上げ、光通信分野でよく使用されるカスケード型差周波発生を例にとって以下で説明を行う(図1参照)。図1に、WDM通信での波長変換の一例を説明する図を示す。信号光1は複数個の波長で構成されている。カスケード型波長変換においては、励起光2はSHG光3へ一旦変換され、SHG光3と信号光1が差周波発生を行い、変換光4が出力される。このため、変換光4と信号光1は、励起光2を中心にして対称に出力される。なお、ここでは、カスケード型差周波発生を例にとっているが、外部からSHG光3と同じ波長の励起光を独立に入射しても同様の差周波発生が行われる。   Therefore, the wavelength conversion of (2) will be taken up, and the following explanation will be made by taking as an example a cascade type difference frequency generation often used in the optical communication field (see FIG. 1). FIG. 1 is a diagram illustrating an example of wavelength conversion in WDM communication. The signal light 1 is composed of a plurality of wavelengths. In the cascade type wavelength conversion, the excitation light 2 is once converted into the SHG light 3, the SHG light 3 and the signal light 1 generate a difference frequency, and the converted light 4 is output. Therefore, the converted light 4 and the signal light 1 are output symmetrically with the excitation light 2 as the center. Here, although cascade type difference frequency generation is taken as an example, the same difference frequency generation is performed even if excitation light having the same wavelength as that of the SHG light 3 is independently incident from the outside.

励起光2の波長を掃引すると、SHG光3の波長もシフトし、それに伴って変換光4の波長もシフトすると考えられるが、実際には信号光1とSHG光3および変換光4が以下に示されるような擬似位相整合条件(QPM条件)を満足するように波長のシフトを行わないと、変換光の効率が極度に低下してしまうという問題を生じる。   When the wavelength of the excitation light 2 is swept, it is considered that the wavelength of the SHG light 3 is also shifted, and the wavelength of the converted light 4 is also shifted accordingly. In practice, however, the signal light 1, the SHG light 3, and the converted light 4 are If the wavelength is not shifted so as to satisfy the quasi-phase matching condition (QPM condition) as shown, there arises a problem that the efficiency of the converted light is extremely lowered.

この問題を解決するために離散的ではあるが、QPM条件を満足し、波長シフトを実現できる多重周期QPM構造が提案されている(特許文献1および非特許文献1参照)。この構造により図2に示されるように変換効率を低下させずに変換光4の波長を離散的にシフトさせることができる。   In order to solve this problem, a multi-period QPM structure that is discrete but satisfies the QPM condition and can realize wavelength shift has been proposed (see Patent Document 1 and Non-Patent Document 1). With this structure, as shown in FIG. 2, the wavelength of the converted light 4 can be shifted discretely without reducing the conversion efficiency.

以下に、この原理の簡単な説明とその際に生じる問題点について説明する。   In the following, a brief description of this principle and the problems that occur will be described.

図3に、QPM−LN素子を含む波長変換装置の構成を示す。この装置は、信号光l(波長λ1)と励起光2を合成する合波器5とQPM−LN素子6、および変換光4(波長λ2)と非変換光7を分離する分波器8から構成されている。非変換光7は、信号光1に加えて、QPM−LN素子6内で発生するSHG光(波長λ3)に完全に変換されずに残留した励起光2、および変換光4に完全に変換されずに残留したSHG光3のことを指す。WDM通信では、信号光1の波長は複数個あるが、それらのうちの代表する1つを波長λ1とする。信号光1に波長の分布がある場合でも、QPM条件は信号光波長に対しては大きなトレランスがあるため、WDM光を一括して変換できる。 FIG. 3 shows a configuration of a wavelength conversion device including a QPM-LN element. This apparatus includes a multiplexer 5 and a QPM-LN element 6 that synthesize signal light l (wavelength λ 1 ) and pump light 2, and a demultiplexer that separates converted light 4 (wavelength λ 2 ) and non-converted light 7. 8 is composed. The non-converted light 7 is completely converted into the SHG light (wavelength λ 3 ) generated in the QPM-LN element 6 in addition to the signal light 1 and completely converted into the pumping light 2 and the converted light 4 that remain. It refers to the SHG light 3 remaining without being processed. In WDM communication, the wavelength of the signal light 1 are a plurality, one representative of them is the wavelength lambda 1. Even when the signal light 1 has a wavelength distribution, the WDM light can be collectively converted because the QPM condition has a large tolerance for the signal light wavelength.

図3に示すQPM−LN素子6には、信号光1とSHG光3および変換光4の電界強度を増大させるための光導波路9を設けている。光導波路9のないバルクのQPM−LN素子でも波長変換は実現されるが、電界強度が低下するため、変換効率が減少する。   The QPM-LN element 6 shown in FIG. 3 is provided with an optical waveguide 9 for increasing the electric field strength of the signal light 1, the SHG light 3, and the converted light 4. Although wavelength conversion is realized even in a bulk QPM-LN element without the optical waveguide 9, the conversion efficiency is reduced because the electric field strength is reduced.

QPM−LN素子を含む波長変換装置では、信号光1の波長をλ1、QPM−LN素子6内で発生するSHG光の波長をλ3とすると、以下の関係式を満たす波長λ2の変換光4を出力することができる。 In a wavelength converter including a QPM-LN element, assuming that the wavelength of the signal light 1 is λ 1 and the wavelength of the SHG light generated in the QPM-LN element 6 is λ 3 , the wavelength λ 2 that satisfies the following relational expression is converted: Light 4 can be output.

Figure 0004912387
Figure 0004912387

QPM−LM素子6の2次非線形定数がd(z)のように光の伝播方向zの関数として変調されている場合、変換光5のパワーは   When the second-order nonlinear constant of the QPM-LM element 6 is modulated as a function of the light propagation direction z as d (z), the power of the converted light 5 is

Figure 0004912387
Figure 0004912387

という量に比例する。ここにjは虚数単位、Lは全素子長、Δβは位相不整合量で It is proportional to the quantity. Where j is the imaginary unit, L is the total element length, Δβ is the amount of phase mismatch

Figure 0004912387
Figure 0004912387

と定義される。ここにni(i=1,2,3)は、波長λi(i=1,2,3)に対する屈折率である。関数d(z)が周期Λ0の一様周期の関数である場合、フーリエ係数dmを用いてd(z)は Is defined. Here, n i (i = 1, 2, 3) is a refractive index with respect to the wavelength λ i (i = 1, 2, 3). If the function d (z) is a function of the uniform period of the periodic lambda 0, using the Fourier coefficients d m d (z) is

Figure 0004912387
Figure 0004912387

と展開される(m:整数)。これを用いて変換光4への変換効率ηを計算すると (M: integer). Using this, the conversion efficiency η to the converted light 4 is calculated.

Figure 0004912387
Figure 0004912387

という結果が得られる。ここに、η0はΔβ=2πm/Λ0で実現される変換効率の極大値である。このη0は、1/m2に比例するため、η0が最大となるようにm=1とおき、Λ0がΔβ=2π/Λ0の下で、Λ0を最適設計する必要がある。 The result is obtained. Here, η 0 is the maximum value of the conversion efficiency realized by Δβ = 2πm / Λ 0 . Since η 0 is proportional to 1 / m 2 , it is necessary to optimally design Λ 0 under the condition that Λ 0 is Δβ = 2π / Λ 0 so that η 0 is maximized. .

一方、多重周期QPM−LN素子では、関数d(z)内にΛ0と異なる周期Λphを持つ位相項φ(z)を導入してd(z)に変調を加え、位相整合条件をΔβ=2π/Λ0+2πl/Λph(l:整数)と変化させることができる。これにより離散的ではあるが、より広い波長範囲で位相整合を実現できる(特許文献1および非特許文献1参照)。 On the other hand, in the multi-period QPM-LN element, a phase term φ (z) having a period Λ ph different from Λ 0 is introduced into the function d (z), modulation is applied to d (z), and the phase matching condition is Δβ = 2π / Λ 0 + 2πl / Λ ph (l: integer). Thereby, although it is discrete, phase matching can be realized in a wider wavelength range (see Patent Document 1 and Non-Patent Document 1).

また、所与の整数値lにおける変換効率ηの取り得る値を変換効率η(l)と表記することにする。この変換効率η(l)がN本のlに対して一定で、SHG光のスペクトルも平坦になれば、波長シフト後の変換光の出力も一定となるため、WDM通信での波長変換では重要な条件となる。   Further, a possible value of the conversion efficiency η at a given integer value l is expressed as conversion efficiency η (l). If the conversion efficiency η (l) is constant for N l and the spectrum of SHG light becomes flat, the output of the converted light after wavelength shift becomes constant, which is important for wavelength conversion in WDM communication. It becomes a condition.

変換効率η(l)がlによって変動しないようにするためには、次式   In order to prevent the conversion efficiency η (l) from fluctuating with l,

Figure 0004912387
Figure 0004912387

のδを最小にするように位相関数φ(z)がφ(z)=φ(z+Λph)の条件を満たしつつ、φ(z)の形状を変化させる。これによりN本の変換効率η(l)がηnorm/Nに極めて近い値に揃ったSHG光のスペクトルを得ることができる。ここにηnormは、周期Λ0の一様周期の場合に実現される変換効率である。 The shape of φ (z) is changed while the phase function φ (z) satisfies the condition of φ (z) = φ (z + Λ ph ) so as to minimize δ. As a result, it is possible to obtain a spectrum of SHG light in which N conversion efficiencies η (l) are aligned to a value very close to η norm / N. Here, η norm is the conversion efficiency realized in the case of a uniform period of period Λ 0 .

特許第3971660号明細書Japanese Patent No. 3971660 M.Asobe, O.Tadanaga, H.Miyazawa, Y.Nishida, and H.Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength converslon”, IEEE Journal of Quantum Electronics, 2005, Vol.41, pp.1540-1547M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ (2) grating and its application to variable wavelength converslon”, IEEE Journal of Quantum Electronics, 2005, Vol.41, pp.1540-1547

しかしながら、上記の多重周期QPM−LN素子を用いた波長変換は、QPM条件の位相整合曲線において、図4に示されるようにSHG光のピーク間の波長でもある程度の変換効率が得られてしまうという課題があった。すなわち、このピーク間の裾野の変換効率のためにWDM通信では、信号光の他のチャンネル成分(○印)と変換光の成分(●印)の間で和周波発生(SFG)が起こり、ピーク間にSFG光を発生してしまう。このSFG光を中心として信号光波長が変換光波長域に変換されるため、クロストーク光として変換光へ重畳されてしまうといった課題があった。   However, the wavelength conversion using the multi-cycle QPM-LN element described above can achieve a certain conversion efficiency even at the wavelength between the peaks of the SHG light as shown in FIG. 4 in the phase matching curve under the QPM condition. There was a problem. That is, due to the conversion efficiency at the base between the peaks, in WDM communication, sum frequency generation (SFG) occurs between the other channel components of the signal light (circles) and the component of the converted light (circles). SFG light is generated in the meantime. Since the signal light wavelength is converted into the converted light wavelength region with the SFG light as the center, there is a problem in that it is superimposed on the converted light as crosstalk light.

WDM通信において、ある変換光成分に別の信号光成分が重畳されてクロストークとなると、SN比が劣化するため、WDM信号を分波器で一波ずつに分離して各々を別の配信先に伝送した際、信号の符号誤りを引き起こす。   In WDM communication, when another signal light component is superimposed on a certain converted light component and crosstalk occurs, the SN ratio deteriorates. Therefore, the WDM signal is separated into one wave by a demultiplexer and each is sent to a different delivery destination. Causes a signal error in the signal.

さらに、素子の性能向上の一つとして出力を増大させることは必須であるが、励起光の出力を増大させるか、または導波路径を小さくしてパワー密度を上昇させるなどの方法で、これに対処すると前述のピーク間に存在する余分な光成分も増大し、クロストークも増加してしまう。   Furthermore, it is essential to increase the output as one of the improvement of the performance of the element, but this can be achieved by increasing the output of the pumping light or increasing the power density by reducing the waveguide diameter. If this is dealt with, extra light components existing between the aforementioned peaks will also increase, and crosstalk will also increase.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、カスケード型差周波発生において波長変換を行う際、変換光に重畳される余分な信号光の成分を大幅に低減し、出力が増大してもクロストークが最小限に抑制できる非線形光素子を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to significantly reduce the component of extra signal light superimposed on converted light when performing wavelength conversion in cascade-type difference frequency generation. An object of the present invention is to provide a non-linear optical element that can reduce the crosstalk to a minimum even when the output is increased.

このような目的を達成するために、請求項1に記載の発明は、2次非線形定数の符号が光の進行方向に対して周期的に反転した基本周期Λ0の周期構造を有する非線形光学媒質を有し、且つ、前記周期構造の位相変化を与える関数が周期Λphごとに繰り返されている非線形光素子であって、次式 In order to achieve such an object, the invention described in claim 1 is a nonlinear optical medium having a periodic structure with a fundamental period Λ 0 in which the sign of a second-order nonlinear constant is periodically inverted with respect to the traveling direction of light. And a function that gives the phase change of the periodic structure is repeated for each period Λ ph ,

Figure 0004912387
Figure 0004912387

を満たす3波長λ1、λ2、λ3のうちの1波長または2波長を持つ光を入力し、前記3波長の何れかで、且つ、入力波長と異なる波長へ変換された光を出力する非線形光素子において、前記非線形光素子の周期構造は、前記非線形光素子の隣り合った符号の異なる2次非線形定数を有する2つの領域を1つの分極反転ペアとしたときの、前記分極反転ペアの一方の符号の領域長と両方の符号の領域を含む分極反転ペア長の比であるデューティ比を、前記非線形光素子の全てのペアのデューティ比を表す制御関数であって、前記非線形光素子の両端の前記ペアから中心の前記ペアに向かってデューティ比が双曲正接型関数的に増大する制御関数と、前記3波長λ1、λ2、λ3の媒質中の屈折率をそれぞれn1、n2、n3として、次式 Light having one or two of the three wavelengths λ 1 , λ 2 , and λ 3 satisfying the above conditions is input, and light converted to a wavelength different from the input wavelength at any of the three wavelengths is output. In the non-linear optical element, the periodic structure of the non-linear optical element is that of the polarization inversion pair when two regions having second-order non-linear constants having different signs adjacent to each other are used as one inversion pair. The duty ratio, which is the ratio of the domain-inverted pair length including the area length of one code and the area of both codes, is a control function representing the duty ratio of all pairs of the nonlinear optical elements, A control function in which the duty ratio increases from the pair at both ends toward the pair at the center as a hyperbolic tangent function, and the refractive indices in the medium of the three wavelengths λ 1 , λ 2 , and λ 3 are n 1 , As n 2 and n 3 ,

Figure 0004912387
Figure 0004912387

で与えられる位相不整合量Δβが2π/Λ0+2πl/Λph(l:整数)に一致する時に発生する複数の変換効率のピークが同じ値となるように最適化された前記周期構造の位相変化を与える関数とに基づき設定されたことを特徴とする。 The phase of the periodic structure optimized so that the peaks of a plurality of conversion efficiencies generated when the phase mismatch amount Δβ given by (2) matches 2π / Λ 0 + 2πl / Λ ph (l: integer) have the same value. It is set based on the function which gives a change.

また、請求項2に記載の発明は、請求項1に記載の非線形光素子において、前記非線形光素子の全長をLとし、光の進行方向をz方向とするとき、前記制御関数であるf(z)は、パラメータaを用いて次式   According to a second aspect of the present invention, in the nonlinear optical element according to the first aspect, when the total length of the nonlinear optical element is L and the traveling direction of light is the z direction, the control function is f ( z) is calculated using the parameter a

Figure 0004912387
Figure 0004912387

で与えられる双曲正接型関数であることを特徴とする。 It is a hyperbolic tangent function given by

また、請求項3に記載の発明は、請求項1に記載の非線形光素子において、前記非線形光素子の全長をLとし、光の進行方向をz方向とするとき、前記制御関数であるf′(z)は、パラメータaを用いて次式   According to a third aspect of the present invention, in the nonlinear optical element according to the first aspect, when the total length of the nonlinear optical element is L and the traveling direction of light is the z direction, the control function f ′ (Z) is calculated using the parameter a

Figure 0004912387
Figure 0004912387

で与えられる双曲正接型関数であることを特徴とする。 It is a hyperbolic tangent function given by

また、請求項4に記載の発明は、2次非線形定数の符号が光の進行方向に対して周期的に反転した基本周期Λ0の周期構造を有する非線形光学媒質を有し、且つ、前記周期構造の位相変化を与える関数が周期Λphごとに繰り返されている非線形光素子であって、次式 The invention according to claim 4 includes a nonlinear optical medium having a periodic structure with a fundamental period Λ 0 in which the sign of a second-order nonlinear constant is periodically inverted with respect to the traveling direction of light, and the period A nonlinear optical element in which the function that gives the phase change of the structure is repeated every period Λ ph ,

Figure 0004912387
Figure 0004912387

を満たす3波長λ1、λ2、λ3のうちの1波長または2波長を持つ光を入力し、前記3波長の何れかで、且つ、入力波長と異なる波長へ変換された光を出力する非線形光素子において、前記非線形光素子の周期構造は、前記非線形光素子全体の2次非線形定数の平均的分布を表す制御関数であって、前記非線形光素子の両端付近において2次非線形定数の一方の符号を持つ複数の領域のうち、一部の領域の符号を選択的に反転させ、前記非線形光素子の中心に近づくにつれて符号反転の頻度を低減するような双曲正接型関数である制御関数と、前記3波長λ1、λ2、λ3の媒質の屈折率をそれぞれn1、n2、n3として、次式 Light having one or two of the three wavelengths λ 1 , λ 2 , and λ 3 satisfying the above conditions is input, and light converted to a wavelength different from the input wavelength at any of the three wavelengths is output. In the nonlinear optical element, the periodic structure of the nonlinear optical element is a control function representing an average distribution of the second-order nonlinear constant of the entire nonlinear optical element, and one of the second-order nonlinear constants near both ends of the nonlinear optical element. A control function that is a hyperbolic tangent function that selectively reverses the sign of a part of the plurality of areas having the sign of ## EQU2 ## and reduces the frequency of sign inversion as it approaches the center of the nonlinear optical element. And the refractive indexes of the mediums of the three wavelengths λ 1 , λ 2 , and λ 3 as n 1 , n 2 , and n 3 , respectively,

Figure 0004912387
Figure 0004912387

で与えられる位相不整合量Δβが、2π/Λ0+2πl/Λph(l:整数)に一致する時に発生する複数の変換効率のピークが同じ値となるように最適化された前記周期構造の位相変化を与える関数とに基づき設定されたことを特徴とする。 Of the periodic structure optimized so that the peaks of the plurality of conversion efficiencies generated when the phase mismatch amount Δβ given by (2) matches 2π / Λ 0 + 2πl / Λ ph (l: integer) have the same value. It is set based on the function which gives a phase change.

また、請求項5に記載の発明は、請求項4に記載の非線形光素子において、前記非線形光素子の全長をLとし、光の進行方向をz方向とするとき、前記制御関数であるf(z)は、パラメータaを用いて次式   According to a fifth aspect of the present invention, in the nonlinear optical element according to the fourth aspect, when the total length of the nonlinear optical element is L and the traveling direction of light is the z direction, the control function is f ( z) is calculated using the parameter a

Figure 0004912387
Figure 0004912387

で与えられる双曲正接型関数であることを特徴とする。 It is a hyperbolic tangent function given by

また、請求項6に記載の発明は、請求項4に記載の非線形光素子において、前記非線形光素子の全長をLとし、光の進行方向をz方向とするとき、前記制御関数であるf′(z)は、パラメータaを用いて次式   According to a sixth aspect of the present invention, in the nonlinear optical element according to the fourth aspect, when the total length of the nonlinear optical element is L and the traveling direction of light is the z direction, the control function f ′ (Z) is calculated using the parameter a

Figure 0004912387
Figure 0004912387

で与えられる双曲正接型関数であることを特徴とする。 It is a hyperbolic tangent function given by

さらに、請求項7に記載の発明は、請求項3又は6に記載の非線形光素子において、前記パラメータaは前記ピーク間に生じるリップル値を最小化するように設定されたことを特徴とする。   The invention described in claim 7 is the nonlinear optical element according to claim 3 or 6, wherein the parameter a is set so as to minimize a ripple value generated between the peaks.

また、請求項8に記載の発明は、請求項1乃至7の何れか1項に記載の非線形光素子において、前記非線形光学媒質としてLiNbO3、KNbO3、LiTaO3、KTiOPO4、LiNbXTa1-X3(0≦x≦1)、およびそれらにMg、Zn、In、Scから選ばれた少なくとも一種類の元素を添加した材料を使用することを特徴とする。 The invention according to claim 8 is the nonlinear optical element according to any one of claims 1 to 7, wherein the nonlinear optical medium is LiNbO 3 , KNbO 3 , LiTaO 3 , KTiOPO 4 , LiNb X Ta 1. It is characterized by using -X O 3 (0 ≦ x ≦ 1) and a material in which at least one element selected from Mg, Zn, In, and Sc is added.

本発明によれば、カスケード型差周波発生において波長変換を行う際、変換光に重畳される余分な信号光の成分を大幅に低減し、出力が増大してもクロストークが最小限に抑制することが可能になる。   According to the present invention, when wavelength conversion is performed in cascade-type difference frequency generation, the excess signal light component superimposed on the converted light is significantly reduced, and crosstalk is minimized even when the output increases. It becomes possible.

(実施形態1)
図5に、本発明の一実施形態に係る非線形光素子であるデューティ比の制御された多重周期QPM−LN素子10を備えた波長変換装置の構成を示す。波長変換装置11は、多重周期QPM−LN素子10へ入力する信号光1の発生装置、および励起光2の発生装置を含む。
(Embodiment 1)
FIG. 5 shows a configuration of a wavelength conversion apparatus including a multi-period QPM-LN element 10 with a controlled duty ratio, which is a nonlinear optical element according to an embodiment of the present invention. The wavelength conversion device 11 includes a generation device for signal light 1 and a generation device for pumping light 2 that are input to the multi-cycle QPM-LN element 10.

波長変換装置11では、複数個の光源12から出力されたレーザ光がそれぞれ異なる波長を有しており、それらは変調器13で波長毎に異なる信号が重畳される。その後、合波器5で合波され、光ファイバ14を介して信号光1として多重周期QPM−LM素子10内の光導波路9に送信される。一方、波長可変光源15から発生した励起光2は、非線形光学効果を増強するため、光増幅器16を通過させてパワー増大後、光カプラ17で信号光1と合波し、光導波路9に入力される。信号光1と励起光2とが光導波路9に入力されると、光導波路9内で波長変換を生じ、波長フィルタ18を通して所望の変換光4が取り出される。   In the wavelength converter 11, the laser beams output from the plurality of light sources 12 have different wavelengths, and the modulator 13 superimposes different signals for each wavelength by the modulator 13. Thereafter, the light is multiplexed by the multiplexer 5 and transmitted to the optical waveguide 9 in the multi-period QPM-LM element 10 as the signal light 1 through the optical fiber 14. On the other hand, the pumping light 2 generated from the wavelength tunable light source 15 is passed through the optical amplifier 16 to increase the power in order to enhance the nonlinear optical effect, and then combined with the signal light 1 by the optical coupler 17 and input to the optical waveguide 9. Is done. When the signal light 1 and the excitation light 2 are input to the optical waveguide 9, wavelength conversion occurs in the optical waveguide 9, and the desired converted light 4 is extracted through the wavelength filter 18.

次に多重周期QPM−LN素子10の構造について詳しく述べる。多重周期QPM−LN素子10において、ある方向に向いた分極のドメインとそれと隣り合った反対向きの分極のドメインを1つのペアとして考え、各ペアの長さをDとする。ペアの長さDとペア内の一方向の分極のドメインの占有領域Δとの比Δ/D(これをデューティ比という)を全てのペアに対して所与の関数f(z)で制御することを考える。すなわち、Δ/D=f(z)と置き、Δ/Dをzの関数として変化させる(図6参照)。ここに、zは光の進行方向に沿って素子の一端(z=0)から計った距離であり、素子の全長をLとすると他端はz=Lである。   Next, the structure of the multi-period QPM-LN element 10 will be described in detail. In the multi-period QPM-LN element 10, a domain of polarization directed in a certain direction and a domain of polarization adjacent in the opposite direction are considered as one pair, and the length of each pair is D. The ratio Δ / D between the pair length D and the occupancy region Δ of the unidirectional polarization domain in the pair (this is called the duty ratio) is controlled by a given function f (z) for all pairs. Think about it. That is, Δ / D = f (z) is set, and Δ / D is changed as a function of z (see FIG. 6). Here, z is a distance measured from one end (z = 0) of the element along the light traveling direction, and when the total length of the element is L, the other end is z = L.

関数f(z)が0≦z≦Lにおいてf(z)=1/2のような一定値を取る場合、z=0とz=Lにおいてf(z)の変化が急峻になる。このような急峻な変化は、図4に示すようなSHG光3のピーク間でのリップル(即ち、○成分と●成分のSFGによるリップル)の発生原因となるため、f(z)をz=0とz=Lの近傍で緩やかに変化させるような関数を使用することにより、ピーク間でのリップル発生を低減する。   When the function f (z) takes a constant value such as f (z) = 1/2 when 0 ≦ z ≦ L, the change of f (z) becomes steep when z = 0 and z = L. Such a steep change causes generation of ripples between the peaks of the SHG light 3 as shown in FIG. 4 (that is, ripples due to the SFG of the ○ component and the ● component), and therefore, f (z) is changed to z = By using a function that gradually changes in the vicinity of 0 and z = L, the occurrence of ripples between peaks is reduced.

使用する関数としては、比較のための原型の関数(a)、f(z)=1/2(0≦z≦L)として、ガウス型関数(b)、放物線型関数(c)、正弦波型関数(d)、および双曲正接型関数(e)を用い、SHG光3のスペクトルを解析した。この解析での重要な点は、様々な関数形のf(z)を使用し、且つ、SHG光3のピーク値η(l)(l=1,2,・・・,N(N=5))が平坦になるように次式   As a function to be used, a prototype function (a) for comparison, f (z) = 1/2 (0 ≦ z ≦ L), a Gaussian function (b), a parabolic function (c), a sine wave The spectrum of the SHG light 3 was analyzed using the type function (d) and the hyperbolic tangent type function (e). The important points in this analysis are that f (z) of various functions are used, and the peak value η (l) (l = 1, 2,..., N (N = 5) of the SHG light 3 is used. )) Is flat so that

Figure 0004912387
Figure 0004912387

のδを最小にするように位相関数φ(z)の最適化を行っていることにある。 In other words, the phase function φ (z) is optimized so as to minimize δ.

図7(a)〜(e)に、上記関数(a)〜(e)の場合に平坦化されたスペクトルの結果を示す。図7(b)〜(e)を比べると、図7(b)は各ピークの周囲に図7(c)〜(e)よりも高い値を有しており、図7(c)、(d)は図7(e)よりもピーク間の中央よりに高い値、すなわちリップルを有している。すなわち、次式   7A to 7E show the results of spectra flattened in the case of the functions (a) to (e). 7 (b) to (e), FIG. 7 (b) has a higher value around each peak than FIG. 7 (c) to (e). d) has a higher value than the center between peaks, that is, a ripple, as compared with FIG. That is, the following formula

Figure 0004912387
Figure 0004912387

で与えられる双曲正接型関数(e)の場合に最も良好な結果が得られた。以下、この双曲正接型関数(e)の場合について詳細な解析を行う。ここで、aは無次元量のパラメータであり、以下では、アポダイズ・パラメータと呼ぶ。図8に、アポダイズ・パラメータaを変化させていった場合の関数f(z)の変化の様子を示す。 The best results were obtained with the hyperbolic tangent function (e) given by Hereinafter, a detailed analysis is performed for the case of this hyperbolic tangent function (e). Here, a is a dimensionless amount parameter, and is hereinafter referred to as an apodized parameter. FIG. 8 shows how the function f (z) changes when the apodization parameter a is changed.

図9(a)に、双曲正接型関数(e)の場合にSHG光のピーク間のリップル値がアポダイズ・パラメータの関数として変化する様子を示す。図9(a)では、リップル値はピーク値で規格化されている。図9(a)は、アポダイズ・パラメータaが小さくなるにつれて、リップル値が低減されることを示している。双曲正接型関数(e)は、a→∞とすると原型(a)に関数形f(z)が一致するため、図9のアポダイズ・パラメータaが大きい部分(a>>1)と小さい部分を比較すると、原型(a)と比べた場合のリップル値の低減率を得ることができる。図9(a)に示すように、アポダイズ・パラメータaが1近傍で、原型(a)と比較してリップル値が約15dB低減される。   FIG. 9A shows how the ripple value between the peaks of SHG light changes as a function of the apodized parameter in the case of the hyperbolic tangent function (e). In FIG. 9A, the ripple value is normalized by the peak value. FIG. 9A shows that the ripple value decreases as the apodization parameter a decreases. Since the hyperbolic tangent function (e) has a function form f (z) that matches the prototype (a) when a → ∞, the portion with a large apodization parameter a (a >> 1) and the small portion in FIG. Can be obtained the reduction rate of the ripple value when compared with the prototype (a). As shown in FIG. 9A, when the apodization parameter a is near 1, the ripple value is reduced by about 15 dB compared to the prototype (a).

図9(b)に、同時にQPMピーク波長におけるSHG光3への変換効率を解析した結果を示す。変換効率は、アポダイズ・パラメータaが小さくなるに従って低下する。これは図8に示した双曲正接型関数f(z)が、アポダイズ・パラメータaが減少するにつれて振幅が小さくなり、上向き(または下向き)分極を持つ実効的な2次非線形定数値が小さくなってQPM効果も弱まるからである。   FIG. 9B shows the result of analyzing the conversion efficiency into the SHG light 3 at the QPM peak wavelength at the same time. The conversion efficiency decreases as the apodization parameter a decreases. This is because the hyperbolic tangent function f (z) shown in FIG. 8 decreases in amplitude as the apodization parameter a decreases, and the effective second-order nonlinear constant value having upward (or downward) polarization decreases. This is because the QPM effect is also weakened.

このように、アポダイズ・パラメータaを小さくすると、リップル値が低減される一方で、変換効率も低下するという問題が生じる。   Thus, when the apodization parameter a is reduced, the ripple value is reduced, but the conversion efficiency is also lowered.

次に、このジレンマを解決するために、双曲正接型関数f(z)の振幅を制御し、振幅の最大値が常に一定(=1/2)であるような補正関数f′(z)を採用する。図10に、この補正関数f′(z)関数を示す。ここで、補正関数f′(z)は次式   Next, in order to solve this dilemma, the amplitude of the hyperbolic tangent function f (z) is controlled, and a correction function f ′ (z) in which the maximum value of the amplitude is always constant (= ½). Is adopted. FIG. 10 shows the correction function f ′ (z) function. Here, the correction function f ′ (z) is expressed by the following equation:

Figure 0004912387
Figure 0004912387

で与えられる。 Given in.

図11に、補正関数f′(z)を使用した場合の変換効率を示す。変換効率は、アポダイズ・パラメータaが減少するにつれて低下するが、有限値に収束し、それ以上低下しない。これはアポダイズ・パラメータaが減少するにつれて補正関数f′(z)が三角形に漸近していき、仮にa=0となっても補正関数f′(z)は有限の半値幅を持ち、上向き(または下向き)分極を持つ2次非線形定数の分布も実効的に有限の領域に留まるからである。   FIG. 11 shows the conversion efficiency when the correction function f ′ (z) is used. The conversion efficiency decreases as the apodization parameter a decreases, but converges to a finite value and does not decrease further. This is because the correction function f ′ (z) asymptotically approaches a triangle as the apodization parameter a decreases, and even if a = 0, the correction function f ′ (z) has a finite half-value width and is upward ( This is because the distribution of the second-order nonlinear constant having polarization (or downward) also effectively remains in a finite region.

次に図12に、補正関数f′(z)を使用した場合のリップル値を示す。リップル値は、アポダイズ・パラメータaが減少するにつれて低下する傾向を示すが、a=0.85付近で下限値をとった後、増加する。これは補正により理想的な関数形状からの変形が大きくなったためである。最適値(a=0.85)でのリップル値は、原型関数(a)の場合と比較して約10dB低減できる。実際の素子設計でもこの最適値を使用した。   Next, FIG. 12 shows a ripple value when the correction function f ′ (z) is used. The ripple value tends to decrease as the apodization parameter a decreases, but increases after reaching the lower limit in the vicinity of a = 0.85. This is because the deformation from the ideal function shape is increased by the correction. The ripple value at the optimum value (a = 0.85) can be reduced by about 10 dB compared to the case of the prototype function (a). This optimum value was also used in actual device design.

このように本発明は、変換効率とリップル値とをバランスすることができる。発明の効果は、上向き(または下向き)分極を持つ2次非線形定数の分布が、素子両端から中心へ向かって徐々に増大し、中心で最大となるような関数に従い、関数形としては式(2)または式(3)の場合に有効に発揮される。   Thus, the present invention can balance the conversion efficiency and the ripple value. The effect of the invention is that the distribution of the second-order nonlinear constant having upward (or downward) polarization gradually increases from both ends of the element toward the center and becomes maximum at the center. ) Or formula (3).

(実施形態2)
分極反転ペアのデューティ比を制御する実施形態1と同様に変換効率とリップル値とをバランスさせる効果を有する、多重周期QPM−LN素子10の周期構造の別の設定方法について説明する。
(Embodiment 2)
Another method for setting the periodic structure of the multi-period QPM-LN element 10 having the effect of balancing the conversion efficiency and the ripple value as in the first embodiment for controlling the duty ratio of the polarization inversion pair will be described.

すなわち、各ペアのデューティ比は固定しておき、その代わり、上向き(あるいは下向き)の分極のドメインを素子の両端付近で反対方向に多数反転させ、その近傍の2次非線形定数値を実効的に低減し、素子の中心付近では反転の頻度を低減し、2次非線形定数値を大きくして、且つ、2次非線形定数の分布が式(2)または式(3)に従うような方法をとってもよい。   That is, the duty ratio of each pair is fixed, and instead, a large number of upward (or downward) polarization domains are inverted in opposite directions near both ends of the element, and the second-order nonlinear constant value in the vicinity is effectively changed. A method may be used in which the frequency of inversion is reduced near the center of the element, the second-order nonlinear constant value is increased, and the distribution of the second-order nonlinear constant follows Formula (2) or Formula (3). .

図13(a)に、本発明の実施形態2に係る多重周期QPM−LN素子の構造を示す。図13(a)(1)に示すように、デューティ比が固定(Δ/D=1/2)された多重周期QPM−LN素子において、左端から点線で示すような一定の長さの区間に区切り、図13(a)(2)のように、左端の区間では分極ドメインが多数反転し、中心部へ進むに従って徐々に反転頻度が減少していき、中心部を過ぎると反転頻度が再度増加し、右端の区間で多数のドメイン反転が生じるようにする。   FIG. 13A shows a structure of a multi-period QPM-LN element according to Embodiment 2 of the present invention. As shown in FIGS. 13 (a) and 13 (1), in a multi-cycle QPM-LN element with a fixed duty ratio (Δ / D = 1/2), an interval of a certain length as shown by a dotted line from the left end is provided. As shown in FIGS. 13 (a) and (2), a large number of polarization domains are inverted in the leftmost section, and the inversion frequency gradually decreases as it goes to the center, and after the center, the inversion frequency increases again. In addition, a large number of domain inversions occur in the right end section.

図13(b)に、本発明の実施形態2に係る多重周期QPM−LN素子のSHG位相整合曲線のスペクトル図を示す。このスペクトル図は、多重周期QPM−LN素子の2次非線形定数の分布が式(3)に従うようにドメイン反転を行い、アボダイズパラメータとしてa=0.85と設定した多重周期QPM−LN素子に基づき算出したものである。ピーク間のリップルが充分に低減されていることが確認できる。   FIG. 13B shows a spectrum diagram of the SHG phase matching curve of the multi-period QPM-LN element according to Embodiment 2 of the present invention. This spectrum diagram shows the multi-period QPM-LN element in which the domain inversion is performed so that the distribution of the second-order nonlinear constant of the multi-period QPM-LN element conforms to the equation (3), and a = 0.85 is set as the abolish parameter. It is calculated based on. It can be confirmed that the ripple between peaks is sufficiently reduced.

尚、多重周期QPM−LN素子10の非線形光学材料としては、LiNbO3、KNbO3、LiTaO3、KTiOPO4、LiNbXTa1-X3(0≦x≦1)、およびそれらにMg、Zn、In、Scから選ばれた少なくとも一種類の元素を添加した材料が好ましい。Mg、Zn、In、Scは、光損傷耐性を向上させるために添加されている。上記の非線形光学材料を用いることにより、常温でも自発分極があり、分極方位と反対方向に電界を加えて分極を容易に反転できるという高い制御性が得られるため、本発明のような複雑な周期分極反転構造の作成に適している。また、複雑な周期分極反転構造が設計通りに正確に作製できるので、歩留まりの高い素子生産が可能となる。 The nonlinear optical material of the multi-period QPM-LN element 10 includes LiNbO 3 , KNbO 3 , LiTaO 3 , KTiOPO 4 , LiNb X Ta 1-X O 3 (0 ≦ x ≦ 1), and Mg, Zn A material to which at least one element selected from In, Sc is added is preferable. Mg, Zn, In, and Sc are added to improve photodamage resistance. By using the above-mentioned nonlinear optical material, there is spontaneous polarization even at room temperature, and high controllability that can easily reverse the polarization by applying an electric field in the direction opposite to the polarization orientation can be obtained. Suitable for creating domain-inverted structures. In addition, since a complicated periodic domain-inverted structure can be accurately produced as designed, it is possible to produce devices with a high yield.

従来のカスケード型差周波発生の波長変換において、励起光と変換光の波長が固定されている場合の波長変換を示した図である。It is the figure which showed wavelength conversion in case the wavelength of excitation light and conversion light is fixed in wavelength conversion of the conventional cascade type | mold difference frequency generation. 従来の多重周期QPM−LN素子を用いて励起光の波長を可変化し、変換光の波長も可変となった場合の波長変換を説明した図である。It is a figure explaining wavelength conversion when the wavelength of excitation light is varied using the conventional multi-period QPM-LN element, and the wavelength of converted light is also variable. 従来の多重周期QPM−LN素子を有する波長変換装置を説明する図である。It is a figure explaining the wavelength converter which has the conventional multiperiod QPM-LN element. 従来の多重周期QPM−LN素子を用いて波長変換を行う場合の問題点を説明した図である。It is the figure explaining the problem in the case of performing wavelength conversion using the conventional multiperiod QPM-LN element. 本発明の非線形光素子が用いられる波長変換装置を説明する図である。It is a figure explaining the wavelength converter with which the nonlinear optical element of this invention is used. 本発明の一実施形態に係る非線形光素子であるデューティ比の制御された多重周期QPM−LN素子でデューティ比の制御方法を説明した図である。It is the figure explaining the control method of a duty ratio by the multi-period QPM-LN element by which the duty ratio was controlled which is the nonlinear optical element which concerns on one Embodiment of this invention. 本発明の非線形光素子である多重周期QPM−LN素子の周期構造をデューティ比の制御関数として(a)が原型の関数を用い、(b)がガウス型関数を用い、(c)が放物線型関数を用い、(d)が正弦波型関数を用い、(e)が双曲正接型関数を用いて設定した場合のSHG光のスペクトルを示す図である。(A) is a prototype function, (b) is a Gaussian function, (c) is a parabolic type, with the periodic structure of a multi-period QPM-LN element, which is a nonlinear optical element of the present invention, as a duty ratio control function. It is a figure which shows the spectrum of SHG light when using a function, (d) uses a sine wave type function, (e) uses a hyperbolic tangent type function. 本発明の非線形光素子である多重周期QPM−LN素子において、デューティ比の制御関数として使用する双曲正接型関数(式(2))を示す図である。It is a figure which shows the hyperbolic tangent function (Formula (2)) used as a duty ratio control function in the multi-period QPM-LN element which is the nonlinear optical element of the present invention. 本発明の非線形光素子である多重周期QPM−LN素子を用いて励起光をSHG光に変換した際に発生する(a)がリップル値と(b)が変換効率を示す図である。It is a figure which (a) generate | occur | produces when converting excitation light into SHG light using the multi-period QPM-LN element which is a nonlinear optical element of this invention, and (b) shows a conversion efficiency. 本発明の非線形光素子である多重周期QPM−LN素子において、デューティ比の制御関数(式(2))を補正した関数(式(3))を示す図である。It is a figure which shows the function (Formula (3)) which correct | amended the control function (Formula (2)) of a duty ratio in the multiperiod QPM-LN element which is a nonlinear optical element of this invention. 本発明の非線形光素子である多重周期QPM−LN素子の制御に補正した関数(式(3))を用いた場合の変換効率を表した図である。It is a figure showing the conversion efficiency at the time of using the function (Formula (3)) correct | amended for control of the multiperiod QPM-LN element which is a nonlinear optical element of this invention. 本発明の非線形光素子である多重周期QPM−LN素子の制御に補正した関数(式(3))を用いた場合のリップル値を示す図である。It is a figure which shows the ripple value at the time of using the function (Formula (3)) correct | amended for control of the multiperiod QPM-LN element which is a nonlinear optical element of this invention. (a)は、本発明の実施形態2に係る多重周期QPM−LN素子の構造を示す図であり、(b)は、本発明の実施形態2に係る多重周期QPM−LN素子のSHG位相整合曲線のスペクトル図である。(A) is a figure which shows the structure of the multi-period QPM-LN element which concerns on Embodiment 2 of this invention, (b) is the SHG phase matching of the multi-period QPM-LN element which concerns on Embodiment 2 of this invention. It is a spectrum figure of a curve.

符号の説明Explanation of symbols

1 信号光
2 励起光
3 SHG光
4 変換光
5 合波器
6 QPM−LM素子
7 非変換光
8 分波器
9 光導波路
10 多重周期QPM−LM素子
11 波長変換装置
12 光源
13 変調器
14 光ファイバ
15 波長可変光源
16 光増幅器
17 光カプラ
18 波長フィルタ
DESCRIPTION OF SYMBOLS 1 Signal light 2 Excitation light 3 SHG light 4 Conversion light 5 Multiplexer 6 QPM-LM element 7 Non-conversion light 8 Demultiplexer 9 Optical waveguide 10 Multiperiod QPM-LM element 11 Wavelength converter 12 Light source 13 Modulator 14 Light Fiber 15 Wavelength variable light source 16 Optical amplifier 17 Optical coupler 18 Wavelength filter

Claims (8)

2次非線形定数の符号が光の進行方向に対して周期的に反転した基本周期Λ0の周期構造を有する非線形光学媒質を有し、且つ、前記周期構造の位相変化を与える関数が周期Λphごとに繰り返されている非線形光素子であって、次式
Figure 0004912387
を満たす3波長λ1、λ2、λ3のうちの1波長または2波長を持つ光を入力し、前記3波長の何れかで、且つ、入力波長と異なる波長へ変換された光を出力する非線形光素子において、
前記非線形光素子の周期構造は、
前記非線形光素子の隣り合った符号の異なる2次非線形定数を有する2つの領域を1つの分極反転ペアとしたときの、前記分極反転ペアの一方の符号の領域長と両方の符号の領域を含む分極反転ペア長の比であるデューティ比を、前記非線形光素子の全てのペアのデューティ比を表す制御関数であって、前記非線形光素子の両端の前記ペアから中心の前記ペアに向かってデューティ比が双曲正接型関数的に増大する制御関数と、
前記3波長λ1、λ2、λ3の媒質中の屈折率をそれぞれn1、n2、n3として、次式
Figure 0004912387
で与えられる位相不整合量Δβが2π/Λ0+2πl/Λph(l:整数)に一致する時に発生する複数の変換効率のピークが同じ値となるように最適化された前記周期構造の位相変化を与える関数と
に基づき設定されたことを特徴とする非線形光素子。
A nonlinear optical medium having a periodic structure with a fundamental period Λ 0 in which the sign of a second-order nonlinear constant is periodically inverted with respect to the traveling direction of light, and a function that gives a phase change of the periodic structure is a period Λ ph A non-linear optical element repeated every time,
Figure 0004912387
Light having one or two of the three wavelengths λ 1 , λ 2 , and λ 3 satisfying the above conditions is input, and light converted to a wavelength different from the input wavelength at any of the three wavelengths is output. In the nonlinear optical element,
The periodic structure of the nonlinear optical element is:
When the two regions having the second-order nonlinear constants having different signs adjacent to each other of the nonlinear optical element are used as one polarization reversal pair, the length of one sign of the polarization reversal pair and the region of both signs are included. The duty ratio, which is the ratio of the polarization inversion pair length, is a control function representing the duty ratios of all the pairs of the nonlinear optical elements, and the duty ratio from the pair at both ends of the nonlinear optical elements toward the center pair. Is a hyperbolic tangent functionally increasing control function;
Assuming that the refractive indexes in the medium of the three wavelengths λ 1 , λ 2 , and λ 3 are n 1 , n 2 , and n 3 , respectively,
Figure 0004912387
The phase of the periodic structure optimized so that the peaks of a plurality of conversion efficiencies generated when the phase mismatch amount Δβ given by (2) matches 2π / Λ 0 + 2πl / Λ ph (l: integer) have the same value. A nonlinear optical element characterized in that it is set based on a function that gives a change.
前記非線形光素子の全長をLとし、光の進行方向をz方向とするとき、前記制御関数であるf(z)は、パラメータaを用いて次式
Figure 0004912387
で与えられる双曲正接型関数であることを特徴とする請求項1に記載の非線形光素子。
When the total length of the nonlinear optical element is L and the traveling direction of light is the z direction, the control function f (z) is expressed by the following equation using the parameter a:
Figure 0004912387
The nonlinear optical element according to claim 1, wherein the nonlinear optical element is a hyperbolic tangent function given by:
前記非線形光素子の全長をLとし、光の進行方向をz方向とするとき、前記制御関数であるf′(z)は、パラメータaを用いて次式
Figure 0004912387
で与えられる双曲正接型関数であることを特徴とする請求項1に記載の非線形光素子。
When the total length of the nonlinear optical element is L and the traveling direction of light is the z direction, the control function f ′ (z) is expressed by the following equation using the parameter a:
Figure 0004912387
The nonlinear optical element according to claim 1, wherein the nonlinear optical element is a hyperbolic tangent function given by:
2次非線形定数の符号が光の進行方向に対して周期的に反転した基本周期Λ0の周期構造を有する非線形光学媒質を有し、且つ、前記周期構造の位相変化を与える関数が周期Λphごとに繰り返されている非線形光素子であって、次式
Figure 0004912387
を満たす3波長λ1、λ2、λ3のうちの1波長または2波長を持つ光を入力し、前記3波長の何れかで、且つ、入力波長と異なる波長へ変換された光を出力する非線形光素子において、
前記非線形光素子の周期構造は、
前記非線形光素子全体の2次非線形定数の平均的分布を表す制御関数であって、前記非線形光素子の両端付近において2次非線形定数の一方の符号を持つ複数の領域のうち、一部の領域の符号を選択的に反転させ、前記非線形光素子の中心に近づくにつれて符号反転の頻度を低減するような双曲正接型関数である制御関数と、
前記3波長λ1、λ2、λ3の媒質の屈折率をそれぞれn1、n2、n3として、次式
Figure 0004912387
で与えられる位相不整合量Δβが、2π/Λ0+2πl/Λph(l:整数)に一致する時に発生する複数の変換効率のピークが同じ値となるように最適化された前記周期構造の位相変化を与える関数と
に基づき設定されたことを特徴とする非線形光素子。
A nonlinear optical medium having a periodic structure with a fundamental period Λ 0 in which the sign of a second-order nonlinear constant is periodically inverted with respect to the traveling direction of light, and a function that gives a phase change of the periodic structure is a period Λ ph A non-linear optical element repeated every time,
Figure 0004912387
Light having one or two of the three wavelengths λ 1 , λ 2 , and λ 3 satisfying the above conditions is input, and light converted to a wavelength different from the input wavelength at any of the three wavelengths is output. In the nonlinear optical element,
The periodic structure of the nonlinear optical element is:
A control function representing an average distribution of second-order nonlinear constants of the whole nonlinear optical element, and a part of a plurality of areas having one sign of the second-order nonlinear constant near both ends of the nonlinear optical element And a control function that is a hyperbolic tangent function that reduces the frequency of sign inversion as it approaches the center of the nonlinear optical element,
Let n 1 , n 2 , and n 3 be the refractive indexes of the three wavelengths λ 1 , λ 2 , and λ 3 , respectively.
Figure 0004912387
Of the periodic structure optimized so that the peaks of the plurality of conversion efficiencies generated when the phase mismatch amount Δβ given by (2) matches 2π / Λ 0 + 2πl / Λ ph (l: integer) have the same value. A nonlinear optical element, which is set based on a function that gives a phase change.
前記非線形光素子の全長をLとし、光の進行方向をz方向とするとき、前記制御関数であるf(z)は、パラメータaを用いて次式
Figure 0004912387
で与えられる双曲正接型関数であることを特徴とする請求項4に記載の非線形光素子。
When the total length of the nonlinear optical element is L and the traveling direction of light is the z direction, the control function f (z) is expressed by the following equation using the parameter a:
Figure 0004912387
The nonlinear optical element according to claim 4, wherein the nonlinear optical element is a hyperbolic tangent function given by:
前記非線形光素子の全長をLとし、光の進行方向をz方向とするとき、前記制御関数であるf′(z)は、パラメータaを用いて次式
Figure 0004912387
で与えられる双曲正接型関数であることを特徴とする請求項4に記載の非線形光素子。
When the total length of the nonlinear optical element is L and the traveling direction of light is the z direction, the control function f ′ (z) is expressed by the following equation using the parameter a:
Figure 0004912387
The nonlinear optical element according to claim 4, wherein the nonlinear optical element is a hyperbolic tangent function given by:
前記パラメータaは前記ピーク間に生じるリップル値を最小化するように設定されたことを特徴とする請求項3又は6に記載の非線形光素子。   7. The nonlinear optical element according to claim 3, wherein the parameter a is set so as to minimize a ripple value generated between the peaks. 前記非線形光学媒質としてLiNbO3、KNbO3、LiTaO3、KTiOPO4、LiNbXTa1-X3(0≦x≦1)、およびそれらにMg、Zn、In、Scから選ばれた少なくとも一種類の元素を添加した材料を使用することを特徴とする請求項1乃至7の何れか1項に記載の非線形光素子。 The nonlinear optical medium is LiNbO 3 , KNbO 3 , LiTaO 3 , KTiOPO 4 , LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1), and at least one selected from Mg, Zn, In, and Sc The nonlinear optical element according to claim 1, wherein a material to which any of the elements is added is used.
JP2008302828A 2008-11-27 2008-11-27 Nonlinear optical element Expired - Fee Related JP4912387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008302828A JP4912387B2 (en) 2008-11-27 2008-11-27 Nonlinear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008302828A JP4912387B2 (en) 2008-11-27 2008-11-27 Nonlinear optical element

Publications (2)

Publication Number Publication Date
JP2010128194A JP2010128194A (en) 2010-06-10
JP4912387B2 true JP4912387B2 (en) 2012-04-11

Family

ID=42328632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302828A Expired - Fee Related JP4912387B2 (en) 2008-11-27 2008-11-27 Nonlinear optical element

Country Status (1)

Country Link
JP (1) JP4912387B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118333A (en) * 2010-12-01 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion element
JP5421230B2 (en) * 2010-12-03 2014-02-19 日本電信電話株式会社 Wavelength conversion device and wavelength conversion device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3971660B2 (en) * 2002-06-14 2007-09-05 日本電信電話株式会社 Wavelength conversion element and wavelength conversion device
JP2008089762A (en) * 2006-09-29 2008-04-17 Nippon Telegr & Teleph Corp <Ntt> Wavelength converting element and wavelength converting device

Also Published As

Publication number Publication date
JP2010128194A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
US6806986B2 (en) Wavelength converter and wavelength converting apparatus
Chen et al. Analysis of novel cascaded/spl chi//sup (2)/(SFG+ DFG) wavelength conversions in quasi-phase-matched waveguides
Tehranchi et al. Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second-harmonic generation
JP4912387B2 (en) Nonlinear optical element
KR100467320B1 (en) Wavelength conversion device, method of manufacturing thereof and optical device using the same
JP2007108593A (en) Nonlinear optical medium and wavelength converter using the same
Chen et al. Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides
JP4251040B2 (en) How to use wavelength converter
US6867902B2 (en) Parametric device for wavelength conversion
Tehranchi et al. Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings
JP2007187920A (en) Nonlinear optical medium and wavelength converter using the same
Tehranchi et al. Flattop Efficient Cascaded χ $^{\bf {\bm (} 2 {\bm)}} $(SFG+ DFG)-Based Wideband Wavelength Converters Using Step-Chirped Gratings
Tehranchi et al. Wideband wavelength conversion using double-pass cascaded χ (2): χ (2) interaction in lossy waveguides
Tehranchi et al. Improved cascaded sum and difference frequency generation-based wavelength converters in low-loss quasi-phase-matched lithium niobate waveguides
Kishimoto et al. Chirped Periodically Poled ${\rm LiNbO} _ {3} $ Wavelength Converter With Apodization Structure
Tehranchi et al. Response flattening of efficient broadband wavelength converters based on cascaded sum and difference frequency generation in periodically poled lithium niobate waveguides
JP2012118333A (en) Wavelength conversion element
Dorche et al. Near-visible bright-soliton Kerr comb generation in dispersion-engineered lithium niobate coupled optical microresonators
Wang et al. Double-conversion optical frequency shifter using multiple quasi-phase-matched LiNbO3 waveguides
Tomita et al. Properties of power dependence on low-crosstalk waveband conversion with an apodized multiperiod-QPM LiNbO 3 device
Tehranchi et al. Efficient wavelength converters with flattop responses based on counterpropagating cascaded SFG and DFG in low-loss QPM LiNbO 3 waveguides
Tehranchi et al. A New Design of Apodized Step-Chirped Gratings for Broadband Wavelength Converters
Asobe et al. QPM wavelength conversion using engineered LiNbO3 waveguides
Wang et al. Tunable wavelength conversion based on cascaded sum and difference frequency generation with double-conversion configuration using M-QPM-LN waveguides
EP3316034A1 (en) Apparatus for generating frequency converted radiation, multi-frequency radiation source, fiber laser, method of generating frequency converted radiation

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100528

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4912387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees