JP4912220B2 - Receiving machine - Google Patents

Receiving machine Download PDF

Info

Publication number
JP4912220B2
JP4912220B2 JP2007142157A JP2007142157A JP4912220B2 JP 4912220 B2 JP4912220 B2 JP 4912220B2 JP 2007142157 A JP2007142157 A JP 2007142157A JP 2007142157 A JP2007142157 A JP 2007142157A JP 4912220 B2 JP4912220 B2 JP 4912220B2
Authority
JP
Japan
Prior art keywords
frequency domain
signal
value
transmission
hard decision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007142157A
Other languages
Japanese (ja)
Other versions
JP2008300962A (en
Inventor
博嗣 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007142157A priority Critical patent/JP4912220B2/en
Publication of JP2008300962A publication Critical patent/JP2008300962A/en
Application granted granted Critical
Publication of JP4912220B2 publication Critical patent/JP4912220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)
  • Error Detection And Correction (AREA)

Description

本発明は、MIMO(Multiple Input Multiple Output)空間多重伝送方式を採用する通信システムにおける受信機に関するものである。   The present invention relates to a receiver in a communication system employing a MIMO (Multiple Input Multiple Output) spatial multiplexing transmission system.

MIMO空間多重伝送方式では、送信側がN系統の送信アンテナから異なった情報を送信し、受信側がM系統の受信アンテナを備えてN系統の信号を分離抽出する。MIMO空間多重伝送方式の採用する通信システムの従来の受信機として、たとえば、下記非特許文献に記載されているように、M系統の受信信号系列をDFT処理した信号をMIMO空間フィルタリングし、その結果を逆DFTすることによりN系統の送信信号を分離する受信機が提案されている。   In the MIMO spatial multiplexing transmission system, the transmitting side transmits different information from N transmission antennas, and the receiving side includes M receiving antennas to separate and extract N signals. As a conventional receiver of a communication system adopting the MIMO spatial multiplexing transmission system, for example, as described in the following non-patent document, MIMO spatial filtering is performed on a signal obtained by performing DFT processing on M received signal sequences. A receiver that separates N-system transmission signals by performing inverse DFT on the signal has been proposed.

空間フィルタリングの技術では、たとえば、送信信号を変数x,yとし、受信信号をA,Bとし、a,b,c,dを定数とするとき、下記式(1)のような簡単な連立方程式を構成し、変数x,yを導出する。
ax+by=A
cx+dy=B …(1)
In the spatial filtering technique, for example, when transmission signals are variables x and y, reception signals are A and B, and a, b, c, and d are constants, a simple simultaneous equation such as the following equation (1) is used. And variables x and y are derived.
ax + by = A
cx + dy = B (1)

この手法は計算が簡単であるが、理想特性からの劣化量が大きいという問題がある。一方、N系統の送信信号を分離するための別の手法として、最尤判定という変数x,yの起こりうる候補全てを準備して最適なセットを選択するという手法がある。この手法は理想特性に近い性能を実現できるが、起こりうる候補数に比例して演算量が増加し、たとえば、16値変調,信号ブロック長が100シンボル,送信アンテナ数を4と仮定すると、16400という天文学的数字となってしまう。 This method is easy to calculate, but has a problem that the amount of deterioration from the ideal characteristic is large. On the other hand, as another method for separating N transmission signals, there is a method of preparing all the possible candidates for variables x and y called maximum likelihood determination and selecting an optimal set. This method can achieve performance close to ideal characteristics, but the amount of computation increases in proportion to the number of possible candidates. For example, assuming that 16-value modulation, signal block length is 100 symbols, and the number of transmitting antennas is 4, 400 astronomical numbers.

M.Morelli, L.Sanguinetti and U.Mengali著「Channel Estimation for Adaptive Frequency-Domain Equalization」IEEE Trans. Wireless Communications Vol.4, No.5, pp.2508-2518, Sept. 2005.M. Morelli, L. Sanguinetti and U. Mengali, “Channel Estimation for Adaptive Frequency-Domain Equalization” IEEE Trans. Wireless Communications Vol.4, No.5, pp.2508-2518, Sept. 2005.

しかしながら、上記従来の技術によれば、送信信号の分離処理に空間フィルタリングを採用した場合には高い信号分離精度の実現が困難であり、最尤判定を採用した場合には高い信号分離精度を実現できるが演算量が大きい、という問題があった。   However, according to the above conventional technique, it is difficult to achieve high signal separation accuracy when spatial filtering is used for transmission signal separation processing, and high signal separation accuracy is realized when maximum likelihood determination is adopted. However, there was a problem that the amount of calculation was large.

本発明は、上記に鑑みてなされたものであって、少ない演算量で高い信号分離精度を実現する受信機を得ることを目的とする。   The present invention has been made in view of the above, and an object thereof is to obtain a receiver that realizes high signal separation accuracy with a small amount of calculation.

上述した課題を解決し、目的を達成するために、本発明は、MIMO空間多重伝送方式を採用する受信機であって、受信信号を周波数変換した周波数領域受信信号および伝送路特性の周波数領域値を算出するとともに、送信信号系列ごとの信頼度指標に基づいて送信信号系列の処理順序を算出する周波数領域変換手段と、前記処理順序で、前記伝送路特性の周波数領域値の送信信号系列に対応する成分を並び替える順序並替手段と、前記並び替えた伝送路特性の周波数領域値および前記周波数領域受信信号に基づいて送信信号系列の推定処理を1回以上の繰り返すことにより、送信信号系列の判定値を算出するMIMO繰り返し空間分離手段と、前記処理順序に基づき、前記送信信号系列の判定値を前記順序並替手段による並び替えと逆の順序に並び替える順序逆並替手段と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is a receiver that employs a MIMO spatial multiplexing transmission system, and is a frequency domain received signal obtained by frequency conversion of a received signal and a frequency domain value of a transmission path characteristic. And a frequency domain converting means for calculating a processing order of the transmission signal sequence based on a reliability index for each transmission signal sequence, and corresponding to the transmission signal sequence of the frequency domain value of the transmission path characteristic in the processing order Reordering means for rearranging the components to be transmitted, and by repeating the transmission signal sequence estimation process one or more times based on the frequency domain values of the rearranged transmission path characteristics and the frequency domain received signal, MIMO repetitive space separation means for calculating a decision value; and based on the processing order, the decision values of the transmission signal sequence are in the reverse order of the rearrangement by the order rearrangement means. Characterized in that it comprises arrangement and order Gyakunamikawa means changing, to.

この発明によれば、送信信号系列の信頼度の高い順に伝送路特性値の並び替えを行った後に、並び替えた順番で判定処理を行い、さらに、判定処理を繰返すことにより送信信号系列の判定値を求めるようにしたので、少ない演算量で高い信号分離精度を実現する受信機を得ることができるという効果を奏する。   According to the present invention, after the transmission path characteristic values are rearranged in the descending order of the reliability of the transmission signal sequence, the determination process is performed in the rearranged order, and the determination process is repeated to determine the transmission signal sequence. Since the value is obtained, it is possible to obtain a receiver that realizes high signal separation accuracy with a small amount of calculation.

以下に、本発明にかかる受信機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a receiver according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明にかかる受信機の実施の形態1の機能構成例を示す図である。図1に示すように、本実施の形態の受信機は、M(Mは受信アンテナ数)系統の受信信号系列入力端子1−1〜1−Mと、N(Nは送信アンテナ数)系統の送信信号判定値出力端子2−1〜2−Nと、受信信号・伝送路特性周波数領域変換回路3と、順序並替回路4と、MIMO繰返し空間分離回路5と、順序逆並替回路6と、を備えている。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a functional configuration example of a first embodiment of a receiver according to the present invention. As shown in FIG. 1, the receiver according to the present embodiment includes M (M is the number of receiving antennas) systems of received signal sequence input terminals 1-1 to 1-M and N (N is the number of transmitting antennas) systems. Transmission signal determination value output terminals 2-1 to 2-N, reception signal / transmission path characteristic frequency domain conversion circuit 3, order rearrangement circuit 4, MIMO repetitive space separation circuit 5, and order reverse rearrangement circuit 6 It is equipped with.

つづいて、本実施の形態の動作について説明する。まず、受信信号・伝送路特性周波数領域変換回路3は、図示しない受信アンテナで受信され受信信号系列入力端子1−1〜1−Mから入力された時間領域の受信信号系列に基づいて、M系統の受信信号系列の周波数領域値と、S(S=N×M)系統の伝送路特性の周波数領域値と、N系統の送信信号系列の処理順序を算出する。そして、受信信号・伝送路特性周波数領域変換回路3は、M系統の受信信号系列の周波数領域値をMIMO繰返し空間分離回路5へ、S系統の伝送路特性の周波数領域値とN系統の送信信号系列の処理順序を順序並替回路4および順序逆並替回路6へ出力する。送信信号系列の処理順序は、たとえば、既知の信頼度の高い順とする。   Next, the operation of the present embodiment will be described. First, the received signal / transmission path characteristic frequency domain conversion circuit 3 receives M systems based on time domain received signal sequences received by a receiving antenna (not shown) and input from received signal sequence input terminals 1-1 to 1-M. The frequency domain value of the received signal sequence, the frequency domain value of the transmission path characteristics of the S (S = N × M) system, and the processing order of the N transmission signal sequences are calculated. Then, the reception signal / transmission path characteristic frequency domain conversion circuit 3 sends the frequency domain values of the M system reception signal series to the MIMO repetition space separation circuit 5 and the frequency domain values of the S system transmission path characteristics and the N system transmission signals. The sequence processing order is output to the order rearrangement circuit 4 and the order reverse rearrangement circuit 6. The processing order of the transmission signal sequence is, for example, the order of known reliability.

次に、順序並替回路4は、入力された送信信号系列の処理順序に従い、N×Mの伝送路特性のうち、Nに関する成分を送信信号系列の順序に従って並び替える(N×Mの行列として考えた場合、各行の順序を送信信号系列の順に並び替える)。そして、MIMO繰返し空間分離回路5は、受信信号・伝送路特性周波数領域変換回路3から出力されたM系統の受信信号系列の周波数領域値,順序並替回路4から出力された出力されたS系統の伝送路特性の周波数領域値に基づき、空間フィルタリングと同様の処理を繰り返し(繰り返し回数は1回以上)、N系統の送信系列の判定値を順序逆並替回路6に出力する。順序逆並替回路6は、受信信号・伝送路特性周波数領域変換回路3から出力された送信信号系列の処理順序に基づき、N系統の送信信号系列の判定値を逆の順序(順序並替回路4で並び替えられた順序をもとに戻す並び替えの順序)に並び替える。   Next, the order rearrangement circuit 4 rearranges the N-related components of the N × M transmission path characteristics according to the processing order of the input transmission signal sequence according to the order of the transmission signal sequence (as an N × M matrix). If considered, the order of each row is rearranged in the order of the transmission signal series). Then, the MIMO repetition space separation circuit 5 includes the frequency domain values of the M reception signal sequences output from the reception signal / transmission path characteristic frequency domain conversion circuit 3 and the output S system output from the order rearrangement circuit 4. Based on the frequency domain value of the transmission path characteristics, the same processing as the spatial filtering is repeated (the number of repetitions is 1 or more), and the determination values of N transmission sequences are output to the order reverse rearrangement circuit 6. Based on the processing order of the transmission signal sequence output from the received signal / transmission path characteristic frequency domain conversion circuit 3, the order reverse rearrangement circuit 6 converts the determination values of the N transmission signal sequences in the reverse order (order rearrangement circuit). The order is rearranged to the order in which the order rearranged in step 4 is restored.

このように、本実施の形態では、順序並替回路4が信頼度の高い順に並び替えを行った後に、MIMO繰返し空間分離回路5が空間フィルタリングと同様の処理を繰返すことによりN系統の送信系列の判定値を求めるようにした。このため、繰り返しの無い空間フィルタリングを行う場合に比べ、信号分離精度を高めることができ、また、順序並替を実施することにより、信頼度の高い送信信号系列から信号判定が可能となり、さらに信号分離精度を高めることができる。さらに、本実施の形態では、最尤判定のように指数関数的には増加する膨大な演算量となることはなく、空間フィルタリング時と比較して繰返し数に比例して増加する程度の少ない演算量でMIMO空間分離を実現することができる。   As described above, in the present embodiment, after the order rearrangement circuit 4 performs rearrangement in the order of high reliability, the MIMO repetition space separation circuit 5 repeats the same processing as the spatial filtering, whereby N transmission systems are transmitted. The judgment value of was to be obtained. For this reason, signal separation accuracy can be improved compared to the case of performing spatial filtering without repetition, and by performing rearrangement, signal determination can be performed from a highly reliable transmission signal sequence, and further, Separation accuracy can be increased. Further, in the present embodiment, unlike the maximum likelihood determination, there is no huge amount of calculation that increases exponentially, and an operation that increases less in proportion to the number of repetitions compared to the time of spatial filtering. MIMO spatial separation can be achieved in quantity.

実施の形態2.
図2は、本発明にかかる受信機の実施の形態2のMIMO繰返し空間分離回路の機能構成例を示す図である。本実施の形態の受信機の構成は、図1のMIMO繰返し空間分離回路5を図2に示すMIMO繰返し空間分離回路とする以外は、実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 2 is a diagram illustrating a functional configuration example of the MIMO repetition space separation circuit according to the second embodiment of the receiver according to the present invention. The configuration of the receiver of this embodiment is the same as that of Embodiment 1 except that the MIMO repetition space separation circuit 5 of FIG. 1 is replaced with the MIMO repetition space separation circuit shown in FIG.

図2に示すように、本実施の形態のMIMO繰り返し分離回路は、N×繰返し数個の軟判定信号分離回路10−1〜10−2Nで構成され、M系統の周波数領域受信信号を入力するための周波数領域受信信号入力端子7と、順序並び替え後のS系統の周波数領域伝送路特性値を入力するための周波数領域伝送路特性入力端子8と、N系統の軟判定値を出力するための軟判定値出力端子9−1〜9−Nと、に接続されている。なお、図2では、繰り返し数を2とし、軟判定信号分離回路10−1〜10−Nが1回目の繰り返しを行い、軟判定信号分離回路10−(N+1)〜10−2Nが2回目の繰り返し処理を行う場合の例を示しているが、繰り返し数は2回に限らず、1回以上であれば何回としてもよい。   As shown in FIG. 2, the MIMO repetition demultiplexing circuit of this embodiment is composed of N × several number of soft decision signal demultiplexing circuits 10-1 to 10-2N, and inputs M frequency domain received signals. A frequency domain reception signal input terminal 7 for input, a frequency domain transmission line characteristic input terminal 8 for inputting the frequency domain transmission line characteristic value of the S system after the rearrangement, and a soft decision value for N system. Are connected to the soft decision value output terminals 9-1 to 9-N. In FIG. 2, the number of repetitions is 2, soft decision signal separation circuits 10-1 to 10-N perform the first iteration, and soft decision signal separation circuits 10- (N + 1) to 10-2N perform the second iteration. Although an example in the case of performing the repetition process is shown, the number of repetitions is not limited to two, and may be any number of times as long as it is one or more.

つづいて、本実施の形態のMIMO繰返し空間分離回路の動作について説明する。軟判定信号分離回路10−1は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性値と、に基づいて処理順序の1番目の送信信号系列に対応する信頼度情報を算出し、軟判定信号分離回路10−2〜10−N,10−(N+1)に出力する。軟判定信号分離回路10−2は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性値と、1番目の送信信号系列の信頼度情報と、に基づいて処理順序の2番目に対応する送信信号系列の信頼度情報を算出し、軟判定信号分離回路10−3〜10−N,10−(N+1),10−(N+2)に出力する。   Next, the operation of the MIMO repetitive space separation circuit of the present embodiment will be described. The soft decision signal separation circuit 10-1 includes M frequency domain reception signals input from the frequency domain reception signal input terminal 7 and S frequency domain transmission path characteristics input from the frequency domain transmission path characteristic input terminal 8. The reliability information corresponding to the first transmission signal sequence in the processing order is calculated based on the value and output to the soft decision signal separation circuits 10-2 to 10-N, 10- (N + 1). The soft decision signal separation circuit 10-2 includes M frequency domain received signals input from the frequency domain received signal input terminal 7 and S frequency domain transmission path characteristics input from the frequency domain transmission path characteristic input terminal 8. Based on the value and the reliability information of the first transmission signal sequence, the reliability information of the transmission signal sequence corresponding to the second in the processing order is calculated, and the soft decision signal separation circuits 10-3 to 10-N, Output to 10− (N + 1) and 10− (N + 2).

このように、1回目の繰り返し処理を行う軟判定信号分離回路10−i(i=1〜N)は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性値と、先行して算出された1〜(i−1)番目の処理順序の送信信号系列の信頼度と、に基づいてi番目の処理順序に対応する送信信号系列の信頼度を算出する。そして、算出した信頼度を、軟判定信号分離回路10−(i+1)〜10−N,10−(N+1)〜10−(N+i)に出力する。なお、軟判定信号分離回路10−1の処理のように、先行して算出された信頼度情報が無い場合には、信頼度情報が無い(信頼度情報“0”)として、情報を保有しないように処理する。   As described above, the soft decision signal separation circuit 10-i (i = 1 to N) that performs the first iterative process includes the M frequency domain reception signals input from the frequency domain reception signal input terminal 7 and the frequency domain. Based on the S-system frequency domain transmission line characteristic value input from the transmission line characteristic input terminal 8 and the reliability of the transmission signal sequence of the 1st to (i-1) th processing order calculated in advance. The reliability of the transmission signal sequence corresponding to the i-th processing order is calculated. Then, the calculated reliability is output to the soft decision signal separation circuits 10- (i + 1) to 10-N, 10- (N + 1) to 10- (N + i). Note that, when there is no reliability information calculated in advance, as in the processing of the soft decision signal separation circuit 10-1, no reliability information is present (reliability information “0”) and no information is held. Process as follows.

2回目の繰り返し処理を行う軟判定信号分離回路10−(N+i)は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性値と、先行して算出された1回目の繰り返しの1〜(i−1)番目の処理順序の送信信号系列の信頼度と、に基づいてi番目の処理順序に対応する送信信号系列の信頼度を算出する。そして、算出した信頼度を、軟判定信号分離回路10−(N+i+1)〜10−2Nに出力する。また、軟判定信号分離回路10−(N+i)は、判定値を軟判定値出力端子9−i経由で順序逆並替回路6に出力する。本実施の形態の以上のMIMO繰返し空間分離回路の動作以外の動作は、実施の形態1と同様である。   The soft decision signal separation circuit 10- (N + i) that performs the second iterative process is input from the frequency domain reception signal input terminal 7 and the frequency domain reception signal input terminal 7 and the frequency domain transmission line characteristic input terminal 8. I-th processing based on the frequency domain transmission line characteristic value of the S system and the reliability of the transmission signal sequence in the 1st to (i-1) th processing order of the first iteration calculated in advance. The reliability of the transmission signal sequence corresponding to the order is calculated. Then, the calculated reliability is output to the soft decision signal separation circuits 10- (N + i + 1) to 10-2N. Further, the soft decision signal separation circuit 10- (N + i) outputs the decision value to the order reverse rearrangement circuit 6 via the soft decision value output terminal 9-i. Operations other than the operation of the MIMO repetitive space separation circuit in the present embodiment are the same as those in the first embodiment.

なお、本実施の形態では、繰り返し回数2回の場合について説明したが、3回以上の繰り返し処理を行う場合には、ひとつ前の繰り返し処理で算出された現時点の処理順序i以下の処理順序の送信信号系列に対応する信頼度と、現時点の繰り返し処理のうち先行して処理された(処理順序がi−1以下の)送信信号系列の信頼度と、に基づいて、同様に送信信号系列の信頼度を算出する。そして、最後の繰り返し処理に対応する軟判定信号分離回路がそれぞれ判定値を順序逆並替回路6に出力するようにすればよい。   In the present embodiment, the case where the number of repetitions is two has been described. However, in the case where three or more repetitions are performed, the processing order equal to or lower than the current processing order i calculated in the previous repetition processing is performed. Similarly, based on the reliability corresponding to the transmission signal sequence and the reliability of the transmission signal sequence processed in advance in the current iterative process (processing order is i-1 or less), the transmission signal sequence Calculate reliability. Then, the soft decision signal separation circuit corresponding to the last iterative process may output the decision value to the order reverse rearrangement circuit 6.

このように、本実施の形態では、MIMO繰返し空間分離回路として、軟判定信号分離回路10−1〜10−2Nを用い、軟判定信号分離回路10−1〜10−2Nが、周波数領域受信信号と周波数領域伝送路特性値と、ひとつ前の繰り返し処理で算出された現時点の処理順序i以下の処理順序の送信信号系列に対応する信頼度と、現時点の繰り返し処理のうち先行して処理された(処理順序がi−1以下の)送信信号系列の信頼度と、に基づいて送信信号系列の信頼度を算出するようにした。このため、実施の形態1と同様に、少ない演算量で信号分離精度を高めることができる。   As described above, in the present embodiment, soft decision signal separation circuits 10-1 to 10-2N are used as MIMO repetition space separation circuits, and soft decision signal separation circuits 10-1 to 10-2N are frequency domain received signals. , The frequency domain transmission line characteristic value, the reliability corresponding to the transmission signal sequence in the processing order equal to or lower than the current processing order i calculated in the previous iterative process, and the current iterative process. The reliability of the transmission signal sequence is calculated based on the reliability of the transmission signal sequence (the processing order is i-1 or less). For this reason, as in the first embodiment, the signal separation accuracy can be increased with a small amount of calculation.

実施の形態3.
図3は、本発明にかかる受信機の実施の形態3のMIMO繰返し空間分離回路の軟判定信号分離回路の機能構成例を示す図である。本実施の形態のMIMO繰り返し空間回路の構成は、図2の軟判定分離回路を図3に示す軟判定信号分離回路とする以外は、実施の形態2と同様である。また、本実施の形態のMIMO繰り返し空間回路以外の構成は、実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 3 is a diagram illustrating a functional configuration example of the soft decision signal separation circuit of the MIMO repetition space separation circuit according to the third embodiment of the receiver of the present invention. The configuration of the MIMO repetition spatial circuit of the present embodiment is the same as that of the second embodiment except that the soft decision separation circuit of FIG. 2 is the soft decision signal separation circuit shown in FIG. The configuration other than the MIMO repetition space circuit of the present embodiment is the same as that of the first embodiment.

図3に示すように、本実施の形態の軟判定信号分離回路は、判定対象の信号成分を除いた信号を生成する軟判定キャンセリング回路24と、判定対象以外の信号成分を空間フィルタリングした結果を出力する残留空間フィルタリング回路25と、残留空間フィルタリング回路25の出力に逆DFTを行う逆DFT回路26と、逆DFT結果に基づき軟判定値を算出する軟判定回路27と、軟判定値(時間領域)から軟判定値(周波数領域)を算出するDFT回路28と、軟判定値(時間領域)と軟判定値(周波数領域)に基づき信頼度情報を算出する軟判定情報処理回路29と、を備えている。   As shown in FIG. 3, the soft decision signal separation circuit according to the present embodiment includes a soft decision canceling circuit 24 that generates a signal excluding a signal component to be determined, and a result of spatial filtering of signal components other than the determination target. A residual space filtering circuit 25, an inverse DFT circuit 26 that performs inverse DFT on the output of the residual space filtering circuit 25, a soft decision circuit 27 that calculates a soft decision value based on the inverse DFT result, and a soft decision value (time A DFT circuit 28 that calculates a soft decision value (frequency region) from a region), and a soft decision information processing circuit 29 that calculates reliability information based on the soft decision value (time region) and the soft decision value (frequency region). I have.

また、本実施の形態の軟判定信号分離回路は、M系統の周波数領域を入力するための周波数領域受信信号入力端子7と、S系統の周波数領域伝送路特性を入力するための周波数領域伝送路特性入力端子8と、信頼度情報を入力するための信頼度情報入力端子21と、信頼度情報を出力するための信頼度情報出力端子22と、軟判定値を出力するための軟判定値出力端子23と、に接続されている。   Further, the soft decision signal separation circuit of the present embodiment includes a frequency domain reception signal input terminal 7 for inputting M frequency domains and a frequency domain transmission path for inputting S frequency domain characteristics. A characteristic input terminal 8, a reliability information input terminal 21 for inputting reliability information, a reliability information output terminal 22 for outputting reliability information, and a soft decision value output for outputting a soft decision value And the terminal 23.

つづいて、本実施の形態の軟判定信号分離回路の動作について説明する。まず、軟判定キャンセリング回路24は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、信頼度情報入力端子21から入力される信頼度情報と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性に基づき、周波数領域受信信号から判定対象の信号系列以外の信号成分をキャンセルしたM系統の信号を算出して残留空間フィルタリング回路25に出力する。ここで、信頼度情報入力端子21から入力される信頼度情報は、ひとつ前の繰り返し処理で算出された現時点の処理順序i以下の処理順序の送信信号系列に対応する信頼度と、現時点の繰り返し処理のうち先行して処理された送信信号系列の信頼度とする。算出されていない信頼度情報は、信頼度情報“0”として情報を保有しないように処理する。   Next, the operation of the soft decision signal separation circuit of this embodiment will be described. First, the soft decision canceling circuit 24 has M frequency domain received signals input from the frequency domain received signal input terminal 7, reliability information input from the reliability information input terminal 21, and frequency domain transmission path characteristics. Based on the frequency domain transmission path characteristics of the S system input from the input terminal 8, M system signals in which signal components other than the signal sequence to be determined are canceled are calculated from the frequency domain received signal and output to the residual spatial filtering circuit 25. To do. Here, the reliability information input from the reliability information input terminal 21 includes the reliability corresponding to the transmission signal sequence in the processing order equal to or lower than the current processing order i calculated in the previous repetition processing, and the current repetition. The reliability of the transmission signal sequence processed in advance of the processing is used. The reliability information that has not been calculated is processed as reliability information “0” so as not to hold the information.

残留空間フィルタリング回路25は、キャンセル処理後のM系統の信号と、信頼度情報と、S系統の周波数領域伝送路特性と、に基づき、キャンセル処理後に残留している判定対象の送信系列信号以外の信号成分を空間フィルタリングした結果を算出し、逆DFT回路26に出力する。逆DFT回路26は、残留空間フィルタリング回路25から出力された空間フィルタリング結果を逆DFTし、軟判定回路27に逆DFT結果を出力する。軟判定回路27は、逆DFT結果に基づいて軟判定値(時間領域)を算出し、DFT回路28に出力するとともに、最終の繰り返し処理(繰り返し数をRとするとき、R回目の繰り返し処理)でない場合には軟判定情報処理回路29へ、最終の繰り返し処理の場合には軟判定値出力端子23に出力する。   The residual space filtering circuit 25 is based on the M system signals after the cancellation process, the reliability information, and the frequency domain transmission path characteristics of the S system, except for the transmission sequence signal to be determined that remains after the cancellation process. The result of spatial filtering of the signal component is calculated and output to the inverse DFT circuit 26. The inverse DFT circuit 26 performs inverse DFT on the spatial filtering result output from the residual spatial filtering circuit 25 and outputs the inverse DFT result to the soft decision circuit 27. The soft decision circuit 27 calculates a soft decision value (time domain) based on the inverse DFT result and outputs it to the DFT circuit 28, and at the same time, the final iteration process (when the iteration number is R, the R-th iteration process). If not, it is output to the soft decision information processing circuit 29, and in the case of the final repetitive processing, it is outputted to the soft decision value output terminal.

DFT回路28は、軟判定値(時間領域)をDFTし、軟判定値(周波数領域)を算出し、軟判定情報処理回路29へ出力する。軟判定情報処理回路29は、軟判定値(時間領域)と軟判定値(周波数領域)に基づいて信頼度情報を算出して、信頼度情報出力端子22経由で、現在の繰り返し処理の処理順序の後の処理を行う軟判定信号分離回路、および、1つ先の繰り返し処理のうち処理順序が現在の処理順序以下の処理を行う軟判定信号分離回路に接続される信頼度情報入力端子21へ出力される。   The DFT circuit 28 performs DFT on the soft decision value (time domain), calculates the soft decision value (frequency domain), and outputs it to the soft decision information processing circuit 29. The soft decision information processing circuit 29 calculates reliability information based on the soft decision value (time domain) and the soft decision value (frequency domain), and the processing order of the current iterative process via the reliability information output terminal 22. To the reliability information input terminal 21 connected to the soft decision signal separation circuit that performs the subsequent processing, and the soft decision signal separation circuit that performs the processing in the processing order that is equal to or less than the current processing order among the one repetitive processing. Is output.

最終の繰り返し処理で軟判定値出力端子23に出力された軟判定値は、順序逆並替回路6に出力される。本実施の形態の以上説明した軟判定信号分離回路の動作以外の動作は、実施の形態1または実施の形態2と同様である。   The soft decision value output to the soft decision value output terminal 23 in the final repetition process is output to the order reverse rearrangement circuit 6. Operations other than the operation of the soft decision signal separation circuit described above in the present embodiment are the same as those in the first or second embodiment.

このように、本実施の形態では、軟判定キャンセリング回路24が先行して計算された信頼度情報に基づいて判定対象以外の送信信号系列のキャンセルを行うことにより、MIMO空間分離精度を高めることができる。   As described above, in this embodiment, the soft decision canceling circuit 24 cancels transmission signal sequences other than the determination target based on the reliability information calculated in advance, thereby improving the MIMO spatial separation accuracy. Can do.

実施の形態4.
図4は、本発明にかかる受信機の実施の形態4のMIMO繰返し空間分離回路の機能構成例を示す図である。本実施の形態の受信機の構成は、図1のMIMO繰返し空間分離回路5を図4に示すMIMO繰返し空間分離回路とする以外は、実施の形態1と同様である。
Embodiment 4 FIG.
FIG. 4 is a diagram illustrating a functional configuration example of the MIMO repetitive space separation circuit according to the fourth embodiment of the receiver according to the present invention. The configuration of the receiver of this embodiment is the same as that of Embodiment 1 except that the MIMO repetition space separation circuit 5 of FIG. 1 is replaced with the MIMO repetition space separation circuit shown in FIG.

図4に示すように、本実施の形態のMIMO繰り返し分離回路は、N×繰返し数個の硬判定信号分離回路12−1〜12−2Nで構成され、M系統の周波数領域受信信号を入力するための周波数領域受信信号入力端子7と、順序並び替え後のS系統の周波数領域伝送路特性値を入力するための周波数領域伝送路特性入力端子8と、N系統の硬判定値を出力するための硬判定値出力端子11−1〜11−Nに接続されている。   As shown in FIG. 4, the MIMO repetition separation circuit of the present embodiment is composed of N × repetition number of hard decision signal separation circuits 12-1 to 12-2N, and inputs M frequency domain reception signals. A frequency domain reception signal input terminal 7 for input, a frequency domain transmission path characteristic input terminal 8 for inputting the frequency domain transmission path characteristic value of the S system after the rearrangement, and a hard decision value for N system. Are connected to the hard decision value output terminals 11-1 to 11-N.

つづいて、本実施の形態のMIMO繰返し空間分離回路の動作について説明する。硬判定信号分離回路12−1は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性値と、に基づいて処理順序の1番目の送信信号系列に対応する硬判定値を算出し、硬判定信号分離回路12−2〜12−N,12−(N+1)に出力する。硬判定信号分離回路12−2は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性値と、1番目の送信信号系列の硬判定値と、に基づいて処理順序の2番目に対応する送信信号系列の硬判定値を算出し、硬判定信号分離回路12−3〜12−N,12−(N+1),12−(N+2)に出力する。   Next, the operation of the MIMO repetitive space separation circuit of the present embodiment will be described. The hard decision signal separation circuit 12-1 includes M frequency domain received signals input from the frequency domain received signal input terminal 7 and S frequency domain transmission path characteristics input from the frequency domain transmission path characteristic input terminal 8. Based on the value, a hard decision value corresponding to the first transmission signal sequence in the processing order is calculated and output to hard decision signal separation circuits 12-2 to 12-N, 12- (N + 1). The hard decision signal separation circuit 12-2 includes M frequency domain received signals input from the frequency domain received signal input terminal 7 and S frequency domain transmission path characteristics input from the frequency domain transmission path characteristic input terminal 8. A hard decision value corresponding to the second transmission signal sequence in the processing order is calculated based on the value and the hard decision value of the first transmission signal sequence, and hard decision signal separation circuits 12-3 to 12-N, Output to 12- (N + 1), 12- (N + 2).

このように、1回目の繰り返し処理を行う硬判定信号分離回路12−i(i=1〜N)は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性値と、先行して算出された1〜(i−1)番目の処理順序の送信信号系列の硬判定値と、に基づいてi番目の処理順序に対応する送信信号系列の硬判定値を算出する。そして、算出した硬判定値を、硬判定信号分離回路12−(i+1)〜12−N,12−(N+1)〜12−(N+i)に出力する。なお、硬判定信号分離回路12−1の処理のように、先行して算出された硬判定値が無い場合には、硬判定値は“0”として情報を保有しないように処理する。   In this way, the hard decision signal separation circuit 12-i (i = 1 to N) that performs the first iterative process includes the M frequency domain received signals input from the frequency domain received signal input terminal 7 and the frequency domain. Based on the S-system frequency domain transmission line characteristic value input from the transmission line characteristic input terminal 8 and the hard decision value of the transmission signal sequence of the 1st to (i-1) th processing order calculated in advance. Then, the hard decision value of the transmission signal sequence corresponding to the i-th processing order is calculated. The calculated hard decision values are output to the hard decision signal separation circuits 12- (i + 1) to 12-N and 12- (N + 1) to 12- (N + i). If there is no hard decision value calculated in advance, as in the processing of the hard decision signal separation circuit 12-1, the hard decision value is set to “0” so that no information is held.

2回目の繰り返し処理を行う硬判定信号分離回路12−(N+i)は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性値と、先行して算出された1回目の繰り返しの1〜(i−1)番目の処理順序の送信信号系列の硬判定値と、に基づいてi番目の処理順序に対応する送信信号系列の硬判定値を算出する。そして、算出した硬判定値を、硬判定信号分離回路12−(N+i+1)〜12−2Nに出力する。また、硬判定信号分離回路12−(N+i)は、硬判定値を硬判定値出力端子11−i経由で順序逆並替回路6に出力する。本実施の形態の以上のMIMO繰返し空間分離回路の動作以外の動作は、実施の形態1と同様である。   The hard decision signal separation circuit 12- (N + i) that performs the second iterative process is inputted from the frequency domain received signal input terminal 7 and the frequency domain received signal input terminal 7 and the frequency domain transmission line characteristic input terminal 8. Based on the frequency domain transmission line characteristic value of the S system and the hard decision value of the transmission signal sequence of the 1st to (i-1) th processing order of the first iteration calculated in advance. A hard decision value of the transmission signal sequence corresponding to the processing order is calculated. Then, the calculated hard decision value is output to hard decision signal separation circuits 12- (N + i + 1) to 12-2N. Further, the hard decision signal separation circuit 12- (N + i) outputs the hard decision value to the order reverse rearrangement circuit 6 via the hard decision value output terminal 11-i. Operations other than the operation of the MIMO repetitive space separation circuit in the present embodiment are the same as those in the first embodiment.

なお、本実施の形態では、繰り返し回数2回の場合について説明したが、3回以上の繰り返し処理を行う場合には、ひとつ前の繰り返し処理で算出された現時点の処理順序i以下の処理順序の送信信号系列に対応する硬判定値と、現時点の繰り返し処理のうち先行して処理された(処理順序がi−1以下の)送信信号系列の硬判定値と、に基づいて、同様に送信信号系列の硬判定値を算出する。そして、最後の繰り返し処理に対応する硬判定信号分離回路がそれぞれ硬判定値を順序逆並替回路6に出力するようにすればよい。   In the present embodiment, the case where the number of repetitions is two has been described. However, in the case where three or more repetitions are performed, the processing order equal to or lower than the current processing order i calculated in the previous repetition processing is performed. Similarly, the transmission signal is based on the hard decision value corresponding to the transmission signal sequence and the hard decision value of the transmission signal sequence processed in advance (processing order is i-1 or less) in the current iterative process. A series hard decision value is calculated. Then, the hard decision signal separation circuit corresponding to the last repetitive process may output the hard decision value to the order reverse rearrangement circuit 6.

このように、本実施の形態では、MIMO繰返し空間分離回路として、硬判定信号分離回路12−1〜12−2Nを用い、硬判定信号分離回路12−1〜12−2Nが、周波数領域受信信号と周波数領域伝送路特性値と、ひとつ前の繰り返し処理で算出された現時点の処理順序i以下の処理順序の送信信号系列に対応する硬判定値と、現時点の繰り返し処理のうち先行して処理された(処理順序がi−1以下の)送信信号系列の硬判定値と、に基づいて送信信号系列の硬判定値を算出するようにした。このため、実施の形態1と同様に、少ない演算量で信号分離精度を高めることができる。   Thus, in the present embodiment, hard decision signal separation circuits 12-1 to 12-2N are used as the MIMO repetition space separation circuits, and hard decision signal separation circuits 12-1 to 12-2N are frequency domain received signals. And the frequency domain transmission line characteristic value, the hard decision value corresponding to the transmission signal sequence in the processing order equal to or lower than the current processing order i calculated in the previous repetitive processing, and the current repetitive processing are processed in advance. The hard decision value of the transmission signal sequence is calculated based on the hard decision value of the transmission signal sequence (the processing order is i-1 or less). For this reason, as in the first embodiment, the signal separation accuracy can be increased with a small amount of calculation.

実施の形態5.
図5は、本発明にかかる受信機の実施の形態5のMIMO繰返し空間分離回路の硬判定信号分離回路の機能構成例を示す図である。本実施の形態のMIMO繰り返し空間回路の構成は、図4の硬判定分離回路を図5に示す硬判定信号分離回路とする以外は、実施の形態4と同様である。また、本実施の形態のMIMO繰り返し空間回路以外の構成は、実施の形態1と同様である。
Embodiment 5 FIG.
FIG. 5 is a diagram illustrating a functional configuration example of the hard decision signal separation circuit of the MIMO repetition space separation circuit according to the fifth embodiment of the receiver of the present invention. The configuration of the MIMO repetition spatial circuit of the present embodiment is the same as that of the fourth embodiment, except that the hard decision separation circuit of FIG. 4 is the hard decision signal separation circuit shown in FIG. The configuration other than the MIMO repetition space circuit of the present embodiment is the same as that of the first embodiment.

図5に示すように、本実施の形態の硬判定信号分離回路は、判定対象の信号成分を除いた信号を生成する硬判定キャンセリング回路31と、硬判定キャンセリング回路31が生成した信号と、S系統の周波数領域伝送路特性に基づいてダイバーシチ合成値を算出するダイバーシチ合成回路32と、ダイバーシチ合成値に逆DFTを行う逆DFT回路26と、逆DFT結果に基づき硬判定値(時間領域)を算出する硬判定回路33と、硬判定値(時間領域)から硬判定値(周波数領域)を算出するDFT回路28と、を備えている。   As shown in FIG. 5, the hard decision signal separation circuit according to the present embodiment includes a hard decision canceling circuit 31 that generates a signal excluding a signal component to be judged, and a signal generated by the hard decision canceling circuit 31. , A diversity combining circuit 32 that calculates a diversity combined value based on the frequency domain transmission line characteristics of the S system, an inverse DFT circuit 26 that performs inverse DFT on the diversity combined value, and a hard decision value (time domain) based on the inverse DFT result And a DFT circuit 28 for calculating a hard decision value (frequency domain) from the hard decision value (time domain).

また、本実施の形態の硬判定信号分離回路は、M系統の周波数領域を入力するための周波数領域受信信号入力端子7と、S系統の周波数領域伝送路特性を入力するための周波数領域伝送路特性入力端子8と、硬判定値を入力するための硬判定値入力端子34と、硬判定値(時間領域)を出力するための第1の硬判定値出力端子35と、硬判定値(周波数領域)を出力するための第2の硬判定値出力端子36と、に接続されている。   Further, the hard decision signal separation circuit of the present embodiment includes a frequency domain reception signal input terminal 7 for inputting M frequency domains, and a frequency domain transmission path for inputting S system frequency domain characteristics. A characteristic input terminal 8, a hard decision value input terminal 34 for inputting a hard decision value, a first hard decision value output terminal 35 for outputting a hard decision value (time domain), and a hard decision value (frequency) And a second hard decision value output terminal 36 for outputting (region).

つづいて、本実施の形態の硬判定信号分離回路の動作について説明する。まず、硬判定キャンセリング回路31は、周波数領域受信信号入力端子7から入力されるM系統の周波数領域受信信号と、硬判定値入力端子34から入力される硬判定値と、周波数領域伝送路特性入力端子8から入力されるS系統の周波数領域伝送路特性に基づき、判定対象の信号系列以外の信号成分をキャンセルしたM系統の信号を算出してダイバーシチ合成回路32に出力する。ここで、硬判定値入力端子34から入力される硬判定値は、ひとつ前の繰り返し処理で算出された現時点の処理順序i以下の処理順序の送信信号系列に対応する硬判定値と、現時点の繰り返し処理のうち先行して処理された送信信号系列の硬判定値とする。算出されていない硬判定値は“0”として情報を保有しないように処理する。   Next, the operation of the hard decision signal separation circuit according to the present embodiment will be described. First, the hard decision canceling circuit 31 includes M frequency domain received signals input from the frequency domain received signal input terminal 7, hard decision values input from the hard decision value input terminal 34, and frequency domain transmission path characteristics. Based on the frequency domain transmission path characteristics of the S system input from the input terminal 8, the M system signals from which signal components other than the signal sequence to be determined are canceled are calculated and output to the diversity combining circuit 32. Here, the hard decision value input from the hard decision value input terminal 34 includes the hard decision value corresponding to the transmission signal sequence of the processing order equal to or lower than the current processing order i calculated in the previous iteration process, and the current decision value. The hard decision value of the transmission signal sequence processed in advance in the iterative process is used. The hard decision value that has not been calculated is processed as "0" so that no information is held.

ダイバーシチ合成回路25は、キャンセル処理後のM系統の信号と、S系統の周波数領域伝送路特性と、に基づきダイバーシチ合成値を算出し、逆DFT回路26に出力する。逆DFT回路26は、ダイバーシチ合成値を逆DFTして硬判定値回路33へ出力する。硬判定回路33は、逆DFT結果に基づいて硬判定値(時間領域)を算出し、最終の繰り返し処理でない場合にはDFT回路28へ、最終の繰り返し処理の場合には第1の硬判定値出力端子35に出力する。   The diversity combining circuit 25 calculates a diversity combined value based on the M system signals after the cancellation process and the frequency domain transmission path characteristics of the S system, and outputs them to the inverse DFT circuit 26. The inverse DFT circuit 26 performs inverse DFT on the diversity composite value and outputs the result to the hard decision value circuit 33. The hard decision circuit 33 calculates a hard decision value (time domain) based on the inverse DFT result, and if it is not the final iterative process, it goes to the DFT circuit 28, and if it is the final iterative process, the first hard decision value. Output to the output terminal 35.

DFT回路28は、硬判定値(時間領域)をDFTし、硬判定値(周波数領域)を算出し、第2の硬判定値出力端子36へ出力する。第2の硬判定値出力端子36へ出力された硬判定値(周波数領域)は、現在の繰り返し処理の処理順序の後の処理を行う硬判定信号分離回路、および、1つ先の繰り返し処理のうち処理順序が現在の処理順序以下の処理を行う硬判定信号分離回路に接続される硬判定値入力端子34へ出力される。   The DFT circuit 28 performs a DFT on the hard decision value (time domain), calculates a hard decision value (frequency domain), and outputs it to the second hard decision value output terminal 36. The hard decision value (frequency domain) output to the second hard decision value output terminal 36 is a hard decision signal separation circuit that performs processing subsequent to the processing order of the current iterative processing, and the one iteration processing ahead. Of these, the processing order is output to the hard decision value input terminal 34 connected to the hard decision signal separation circuit that performs processing below the current processing order.

最終の繰り返し処理で第1の硬判定値出力端子35に出力された硬判定値は、順序逆並替回路6に出力される。本実施の形態の以上説明した軟判定信号分離回路の動作以外の動作は、実施の形態1または実施の形態4と同様である。   The hard decision value output to the first hard decision value output terminal 35 in the final iterative process is output to the order reverse rearrangement circuit 6. Operations other than the operation of the soft decision signal separation circuit described above in the present embodiment are the same as those in the first or fourth embodiment.

このように、本実施の形態では、硬判定キャンセリング回路31が、先行して計算された送信信号系列の硬判定結果に基づいて判定対象以外の送信信号系列信号のキャンセリングを行うことにより、MIMO空間分離精度を高めることができる。   Thus, in the present embodiment, the hard decision canceling circuit 31 cancels transmission signal sequence signals other than the determination target based on the hard decision result of the transmission signal sequence calculated in advance. MIMO space separation accuracy can be increased.

以上のように、本発明にかかる受信機は、MIMO(Multiple Input Multiple Output)空間多重伝送方式を採用する通信システムに有用であり、特に、高い信号分離精度を要求される通信システムに適している。   As described above, the receiver according to the present invention is useful for a communication system employing a MIMO (Multiple Input Multiple Output) spatial multiplexing transmission system, and particularly suitable for a communication system that requires high signal separation accuracy. .

本発明にかかる受信機の実施の形態1の機能構成例を示す図である。It is a figure which shows the function structural example of Embodiment 1 of the receiver concerning this invention. 実施の形態2のMIMO繰返し空間分離回路の機能構成例を示す図である。6 is a diagram illustrating a functional configuration example of a MIMO repetitive space separation circuit according to a second embodiment. FIG. 実施の形態3のMIMO繰返し空間分離回路の軟判定信号分離回路の機能構成例を示す図である。FIG. 10 is a diagram illustrating a functional configuration example of a soft decision signal separation circuit of a MIMO repetition space separation circuit according to a third embodiment. 実施の形態4のMIMO繰返し空間分離回路の機能構成例を示す図である。FIG. 10 is a diagram illustrating a functional configuration example of a MIMO repetition space separation circuit according to a fourth embodiment. 実施の形態5のMIMO繰返し空間分離回路の硬判定信号分離回路の機能構成例を示す図である。FIG. 10 is a diagram illustrating a functional configuration example of a hard decision signal separation circuit of a MIMO repetition space separation circuit according to a fifth embodiment.

符号の説明Explanation of symbols

1−1〜1−M 受信信号系列入力端子
2−1〜2−N 送信信号判定値出力端子
3 受信信号・伝送路特性周波数領域変換回路
4 順序並替回路
5 MIMO繰返し空間分離回路
6 順序逆並替回路
7 周波数領域受信信号入力端子
8 周波数領域伝送路特性入力端子
9−1〜9−N 軟判定値出力端子
10−1〜10−N 軟判定信号分離回路
11−1〜11−N 硬判定値出力端子
12−1〜12−N 硬判定信号分離回路
21 信頼度情報入力端子
22 信頼度情報出力端子
23 軟判定値出力端子
24 軟判定キャンセリング回路
25 残留空間フィルタリング回路
26 逆DFT回路
27 軟判定回路
28 DFT回路
29 軟判定情報処理回路
31 硬判定キャンセリング回路
32 ダイバーシチ合成回路
33 硬判定回路
34 硬判定値入力端子
35 第1の硬判定値出力端子
36 第2の硬判定値出力端子
1-1 to 1-M received signal series input terminals 2-1 to 2-N transmitted signal determination value output terminals 3 received signal / transmission path characteristic frequency domain conversion circuit 4 order rearrangement circuit 5 MIMO repetition space separation circuit 6 order reverse Rearrangement circuit 7 Frequency domain received signal input terminal 8 Frequency domain transmission line characteristic input terminal 9-1 to 9-N Soft decision value output terminal 10-1 to 10-N Soft decision signal separation circuit 11-1 to 11-N Hard Decision value output terminals 12-1 to 12-N Hard decision signal separation circuit 21 Reliability information input terminal 22 Reliability information output terminal 23 Soft decision value output terminal 24 Soft decision canceling circuit 25 Residual space filtering circuit 26 Inverse DFT circuit 27 Soft decision circuit 28 DFT circuit 29 Soft decision information processing circuit 31 Hard decision canceling circuit 32 Diversity synthesis circuit 33 Hard decision circuit 34 Hard decision value input terminal Child 35 First hard decision value output terminal 36 Second hard decision value output terminal

Claims (2)

MIMO空間多重伝送方式を採用する受信機であって、
受信信号を周波数変換した周波数領域受信信号および伝送路特性の周波数領域値を算出するとともに、送信信号系列ごとの信頼度指標に基づいて送信信号系列の処理順序を算出する周波数領域変換手段と、
前記処理順序で、前記伝送路特性の周波数領域値の送信信号系列に対応する成分を並び替える順序並替手段と、
前記並び替えた伝送路特性の周波数領域値および前記周波数領域受信信号に基づいて送信信号系列の推定処理を1回以上繰り返すことにより、送信信号系列の判定値を算出するMIMO繰り返し空間分離手段と、
前記処理順序に基づき、前記送信信号系列の判定値を前記順序並替手段による並び替えと逆の順序に並び替える順序逆並替手段と、
を備え、
前記MIMO繰り返し空間分離手段は、
軟判定値の確からしさを表す信頼度情報を出力する軟判定信号分離手段を、1回の繰り返し処理あたり送信信号系列の個数備え、
前記軟判定信号分離手段は、前記並び替えた伝送路特性の周波数領域値と、前記周波数領域受信信号と、同一の繰り返し回数の処理を行う軟判定信号分離手段がすでに算出した信頼度情報と、1回前の繰り返し処理により算出された信頼度情報と、に基づき、前記周波数領域受信信号から判定対象とする系列以外の信号成分を除いた信号であるキャンセリング信号を出力する軟判定キャンセリング手段と、
前記キャンセリング信号と、前記並び替えた伝送路特性の周波数領域値と、同一の繰り返し回数の処理を行う軟判定信号分離手段がすでに算出した信頼度情報と、1回前の繰り返し処理により算出された信頼度情報と、に基づき、判定対象の送信信号系列信号成分以外の信号成分を空間フィルタリングしたフィルタリング信号を出力する残留空間フィルタリング手段と、
前記フィルタリング信号を逆DFT処理する逆DFT手段と、
前記逆DFT結果に基づいて軟判定値を算出する軟判定手段と、
前記軟判定値をDFT処理するDFT手段と、
前記DFT結果と前記軟判定値に基づいて信頼度情報を算出する軟判定情報処理手段と、
を備えることを特徴とする受信機。
A receiver employing a MIMO spatial multiplexing transmission system,
A frequency domain conversion means for calculating a frequency domain received signal obtained by frequency conversion of a received signal and a frequency domain value of transmission path characteristics, and calculating a processing order of transmission signal sequences based on a reliability index for each transmission signal sequence;
Order reordering means for rearranging components corresponding to transmission signal sequences of the frequency domain values of the transmission path characteristics in the processing order;
MIMO repetitive space separation means for calculating a determination value of a transmission signal sequence by repeating a transmission signal sequence estimation process one or more times based on the rearranged frequency domain value of the channel characteristics and the frequency domain received signal;
Based on the processing order, order reverse rearrangement means for rearranging the determination value of the transmission signal sequence in an order reverse to the rearrangement by the order rearrangement means;
With
The MIMO repetitive space separation means includes:
Soft decision signal separation means for outputting reliability information representing the probability of the soft decision value is provided with the number of transmission signal sequences per one iteration process,
The soft decision signal separation means includes the frequency domain values of the rearranged transmission path characteristics, the frequency domain received signal, and reliability information already calculated by the soft decision signal separation means that performs the same number of repetitions, and Soft decision canceling means for outputting a canceling signal which is a signal obtained by removing signal components other than the sequence to be judged from the frequency domain received signal based on reliability information calculated by the previous iteration process When,
Calculated by the canceling signal, the frequency domain values of the rearranged transmission line characteristics, the reliability information already calculated by the soft decision signal separation means for performing the same number of repetitions, and the previous repetition process. Based on the reliability information, a residual spatial filtering means for outputting a filtered signal obtained by spatially filtering a signal component other than the transmission signal sequence signal component to be determined;
Inverse DFT means for inverse DFT processing the filtered signal;
Soft decision means for calculating a soft decision value based on the inverse DFT result;
DFT means for DFT processing the soft decision value;
Soft decision information processing means for calculating reliability information based on the DFT result and the soft decision value;
A receiver comprising:
MIMO空間多重伝送方式を採用する受信機であって、
受信信号を周波数変換した周波数領域受信信号および伝送路特性の周波数領域値を算出するとともに、送信信号系列ごとの信頼度指標に基づいて送信信号系列の処理順序を算出する周波数領域変換手段と、
前記処理順序で、前記伝送路特性の周波数領域値の送信信号系列に対応する成分を並び替える順序並替手段と、
前記並び替えた伝送路特性の周波数領域値および前記周波数領域受信信号に基づいて送信信号系列の推定処理を1回以上繰り返すことにより、送信信号系列の判定値を算出するMIMO繰り返し空間分離手段と、
前記処理順序に基づき、前記送信信号系列の判定値を前記順序並替手段による並び替えと逆の順序に並び替える順序逆並替手段と、
を備え、
前記MIMO繰り返し空間分離手段は、周波数領域および時間領域の硬判定値を算出する硬判定信号分離手段を1回の繰り返し処理あたり送信信号系列の個数備え、
前記硬判定信号分離手段は、
前記並び替えた伝送路特性の周波数領域値と、前記周波数領域受信信号と、同一の繰り返し回数の処理を行う硬判定信号分離手段が既に算出した周波数領域の硬判定値と、1回前の繰り返し処理により算出された周波数領域の硬判定値と、に基づき、前記周波数領域受信信号から判定対象とする系列以外の信号成分を除いた信号であるキャンセリング信号を出力する硬判定キャンセリング手段と、
前記キャンセリング信号と、前記並び替えた伝送路特性の周波数領域値と、に基づき、ダイバーシチ合成を行うダイバーシチ合成手段と、
前記ダイバーシチ合成結果を逆DFT処理する逆DFT手段と、
前記逆DFT結果に基づいて時間領域の硬判定値を算出する硬判定手段と、
前記硬判定値をDFT処理した周波数領域の硬判定値を算出するDFT手段と、
を備えることを特徴とする受信機。
A receiver employing a MIMO spatial multiplexing transmission system,
A frequency domain conversion means for calculating a frequency domain received signal obtained by frequency conversion of a received signal and a frequency domain value of transmission path characteristics, and calculating a processing order of transmission signal sequences based on a reliability index for each transmission signal sequence;
Order reordering means for rearranging components corresponding to transmission signal sequences of the frequency domain values of the transmission path characteristics in the processing order;
MIMO repetitive space separation means for calculating a determination value of a transmission signal sequence by repeating a transmission signal sequence estimation process one or more times based on the rearranged frequency domain value of the channel characteristics and the frequency domain received signal;
Based on the processing order, order reverse rearrangement means for rearranging the determination value of the transmission signal sequence in an order reverse to the rearrangement by the order rearrangement means;
With
The MIMO repetition space separation means includes hard decision signal separation means for calculating frequency domain and time domain hard decision values, and the number of transmission signal sequences per one iteration process,
The hard decision signal separating means is
The frequency domain hard decision value already calculated by the hard decision signal separation means that performs the same number of repetitions of the frequency domain value of the rearranged transmission path characteristics, the frequency domain received signal, and the previous iteration Hard decision canceling means for outputting a canceling signal that is a signal obtained by removing signal components other than the sequence to be determined from the frequency domain received signal based on the frequency domain hard decision value calculated by the processing;
Diversity combining means for performing diversity combining based on the canceling signal and the frequency domain value of the rearranged transmission path characteristics;
An inverse DFT means for inverse DFT processing the diversity combining result;
Hard decision means for calculating a hard decision value in the time domain based on the inverse DFT result;
DFT means for calculating a hard decision value in a frequency domain obtained by performing DFT processing on the hard decision value;
Receiver device you comprising: a.
JP2007142157A 2007-05-29 2007-05-29 Receiving machine Expired - Fee Related JP4912220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142157A JP4912220B2 (en) 2007-05-29 2007-05-29 Receiving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142157A JP4912220B2 (en) 2007-05-29 2007-05-29 Receiving machine

Publications (2)

Publication Number Publication Date
JP2008300962A JP2008300962A (en) 2008-12-11
JP4912220B2 true JP4912220B2 (en) 2012-04-11

Family

ID=40174098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142157A Expired - Fee Related JP4912220B2 (en) 2007-05-29 2007-05-29 Receiving machine

Country Status (1)

Country Link
JP (1) JP4912220B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656888B2 (en) 2011-07-28 2014-02-25 Pratt & Whitney Canada Corp. Rotary internal combustion engine with variable volumetric compression ratio
US9038594B2 (en) 2011-07-28 2015-05-26 Pratt & Whitney Canada Corp. Rotary internal combustion engine with pilot subchamber
US9528434B1 (en) 2011-07-28 2016-12-27 Pratt & Whitney Canada Corp. Rotary internal combustion engine with pilot subchamber
US9926842B2 (en) 2011-07-28 2018-03-27 Pratt & Whitney Canada Corp. Rotary internal combustion engine with exhaust purge
US11028768B2 (en) 2011-07-28 2021-06-08 Pratt & Whitney Canada Corp. Rotary internal combustion engine with removable subchamber insert

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078955A1 (en) * 2004-02-13 2005-08-25 Nec Corporation Radio communication system, reception device, demodulation method used for them, and program thereof
US7734990B2 (en) * 2004-05-26 2010-06-08 Nec Corporation Spatial-multiplexed signal detection method and spatial and temporal iterative decoder that uses this method
JP4290660B2 (en) * 2005-02-14 2009-07-08 日本電信電話株式会社 Spatial multiplexed signal detection circuit and spatial multiplexed signal detection method
JP2007049267A (en) * 2005-08-08 2007-02-22 Nippon Telegr & Teleph Corp <Ntt> Receiver of wireless communication system, method and program for detecting wireless signal transmitted from transmitter and recording medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656888B2 (en) 2011-07-28 2014-02-25 Pratt & Whitney Canada Corp. Rotary internal combustion engine with variable volumetric compression ratio
US9038594B2 (en) 2011-07-28 2015-05-26 Pratt & Whitney Canada Corp. Rotary internal combustion engine with pilot subchamber
US9528434B1 (en) 2011-07-28 2016-12-27 Pratt & Whitney Canada Corp. Rotary internal combustion engine with pilot subchamber
US9540992B2 (en) 2011-07-28 2017-01-10 Pratt & Whitney Canada Corp. Rotary internal combustion engine with variable volumetric compression ratio
US9828906B2 (en) 2011-07-28 2017-11-28 Pratt & Whitney Canada Corp. Rotary internal combustion engine with variable volumetric compression ratio
US9926842B2 (en) 2011-07-28 2018-03-27 Pratt & Whitney Canada Corp. Rotary internal combustion engine with exhaust purge
US10125676B2 (en) 2011-07-28 2018-11-13 Pratt & Whitney Canada Corp. Rotary internal combustion engine with pilot subchamber
US10138804B2 (en) 2011-07-28 2018-11-27 Pratt & Whitney Canada Corp. Rotary internal combustion engine
US10697365B2 (en) 2011-07-28 2020-06-30 Pratt & Whitney Canada Corp. Rotary internal combustion engine with pilot subchamber
US11028768B2 (en) 2011-07-28 2021-06-08 Pratt & Whitney Canada Corp. Rotary internal combustion engine with removable subchamber insert

Also Published As

Publication number Publication date
JP2008300962A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
RU2476994C2 (en) Pilot transmission and channel estimation for multiple-input single-output (miso) and multiple-input multiple output (mimo) systems
JP4841615B2 (en) Repetitive MIMO receiver using group-wise demapping
JP5030279B2 (en) Wireless communication apparatus and wireless communication method
JP3714910B2 (en) Turbo receiving method and receiver thereof
EP1974512B1 (en) Recursive computation of a channel matrix for a mimo equalizer
KR101260835B1 (en) Apparatus and method for transceiving a signal in a multi antenna system
JP5043702B2 (en) Receiving apparatus, receiving method, and communication system
JP4912220B2 (en) Receiving machine
JP4943263B2 (en) Maximum likelihood decoding method and receiver
JP2008017143A (en) Wireless receiving apparatus and method
JP2009100478A (en) Wireless communication apparatus
JP2009135906A (en) Radio communication equipment
JP2008124843A (en) Radio receiver
WO2006059767A1 (en) Mixed signal blind separating method and apparatus, and mixed signal transmitting method and apparatus
JP2008205697A (en) Mimo receiver and reception method
JP4854610B2 (en) Wireless communication apparatus and wireless communication method
WO2010022675A1 (en) Method and apparatus for signal detection in multi-antenna digital wireless communication system
KR101048883B1 (en) Data processing method and receiver for cyclic delay diversity technique and energy expansion transformation based equalization technique
JP4813335B2 (en) Wireless signal detection method
JP5121752B2 (en) Spatial multiplexed multicarrier receiver and spatially multiplexed multicarrier receiving method
JP4549162B2 (en) Radio base station apparatus and radio communication method
JP6466313B2 (en) MIMO radio transmission system, MIMO radio transmission method, and receiver
WO2011069452A1 (en) Link transmission device and method, and space frequency block coding device and method in sc-fdma system
JP4545663B2 (en) Multi-user receiving apparatus and multi-user receiving method
KR101093920B1 (en) Lattice Reduction method-based MIMO receiver under time varying fading environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees