JP4911726B2 - Surface treatment method for quartz glass articles - Google Patents

Surface treatment method for quartz glass articles Download PDF

Info

Publication number
JP4911726B2
JP4911726B2 JP2008046496A JP2008046496A JP4911726B2 JP 4911726 B2 JP4911726 B2 JP 4911726B2 JP 2008046496 A JP2008046496 A JP 2008046496A JP 2008046496 A JP2008046496 A JP 2008046496A JP 4911726 B2 JP4911726 B2 JP 4911726B2
Authority
JP
Japan
Prior art keywords
quartz glass
surface roughness
processing
sample
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008046496A
Other languages
Japanese (ja)
Other versions
JP2009203107A (en
Inventor
朗 藤ノ木
和雄 神屋
博司 川副
博匡 俵山
博之 井上
健太 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Shin Etsu Quartz Products Co Ltd
Original Assignee
YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD., Shin Etsu Quartz Products Co Ltd filed Critical YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Priority to JP2008046496A priority Critical patent/JP4911726B2/en
Publication of JP2009203107A publication Critical patent/JP2009203107A/en
Application granted granted Critical
Publication of JP4911726B2 publication Critical patent/JP4911726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Description

本発明は粗面を有する石英ガラス物品、例えば、機械的な研磨が困難な窪み部を有する石英ガラス物品、あるいは段差や凹凸を有した石英ガラス基板や湾曲した面を有する半導体熱処理等に用いられる石英ガラス管、石英ガラス治具、例えば石英ガラスボートの溝部等の表面粗さを改善する表面処理方法に関する。   INDUSTRIAL APPLICABILITY The present invention is used for a quartz glass article having a rough surface, for example, a quartz glass article having a recess that is difficult to mechanically polish, a quartz glass substrate having a step or unevenness, or a semiconductor heat treatment having a curved surface. The present invention relates to a surface treatment method for improving the surface roughness of a quartz glass tube, a quartz glass jig, such as a groove portion of a quartz glass boat.

石英ガラス製マスクサブストレートや半導体膜付け用石英ガラス基板においては非常に平滑な面を形成するために酸化セリウム等の砥粒を用いた高精度な研磨処理が行われてきた。これらは表面粗さがRa値(定義については後述)で5オングストローム(0.5nm)程度の非常に平滑な面を構成できる上、基板全体の平坦度も確保できるために広く用いられている。これらの研磨方法は回転する定盤に砥粒を流しながら石英ガラス基板を片面あるいは両面同時に研磨するものであるから、平面を構成するためには都合が良いが、例えば部分的に段差がある面や凹凸のある面に関しては実施することが不可能である。   In order to form a very smooth surface in a quartz glass mask substrate or a quartz glass substrate for semiconductor film deposition, high-precision polishing using an abrasive such as cerium oxide has been performed. These are widely used because they can form a very smooth surface with a surface roughness Ra value (the definition will be described later) of about 5 angstroms (0.5 nm), and also can ensure the flatness of the entire substrate. These polishing methods are for polishing a quartz glass substrate on one side or both sides simultaneously while flowing abrasive grains on a rotating platen. It is impossible to carry out on uneven and uneven surfaces.

また、石英ガラス管や石英ガラス棒の研磨はこれらの表面が湾曲しているために前述した研磨は不可能であるから精度は低下するが酸水素バーナーの火炎で表面を部分的に溶融する火炎研磨(ファイアポリッシュ)が行われている。
このような火炎研磨を施す場合、表面の面状態は改善するものの石英ガラス物品を温度の高い火炎(通常2200℃程度と言われている)であぶるために部分的な変形やガスの圧力により部分的な凹凸が形成され面形状が変形してしまうと言う欠点がある。
In addition, because the surfaces of quartz glass tubes and quartz glass rods are curved and the above-mentioned polishing is impossible, the accuracy is lowered, but the flame partially melts with the oxyhydrogen burner flame. Polishing (fire polishing) is performed.
When performing such flame polishing, the surface condition of the surface is improved, but the quartz glass article is exposed to a high-temperature flame (usually said to be about 2200 ° C.), so that partial deformation or gas pressure causes partial There is a drawback that the surface shape is deformed due to the formation of general irregularities.

同様に石英ガラスボートの溝部は石英ガラスロッドに一定の間隔で溝を機械的に研削して形成される。この溝面については前述の研磨処理が不可能であるために火炎研磨が用いられるが、火炎研磨による溝部のだれ等がしばしば問題になることがある。   Similarly, the groove portion of the quartz glass boat is formed by mechanically grinding the groove on the quartz glass rod at regular intervals. Flame polishing is used for this groove surface because the above-described polishing treatment is impossible, but the problem of fluttering of the groove due to flame polishing is often a problem.

一方、特許文献1は、シリカガラスにOH基をドープすることを目的とした処理方法として、シリカガラス治具を水蒸気雰囲気中で少なくとも800℃で加熱処理する方法を記載している。しかしながら、特許文献1は、表面粗さや熱変性については考慮されておらず、表面粗さに関しては何ら記載されていない。
特開平8−250572号公報 Physical Science data 15 handbook of glass data Part A silica glass and binary silicate glasses, ELSEVIER 1983 PP.79 Fig.96
On the other hand, Patent Document 1 describes a method of heat-treating a silica glass jig at a temperature of at least 800 ° C. in a water vapor atmosphere as a treatment method aimed at doping silica glass with OH groups. However, Patent Document 1 does not consider surface roughness and thermal denaturation, and does not describe anything about surface roughness.
JP-A-8-250572 Physical Science data 15 handbook of glass data Part A silica glass and binary silicate glasses, ELSEVIER 1983 PP.79 Fig.96

本発明は、従来の機械研磨が不可能な段差や凹凸を有する石英ガラス基板や湾曲した面、あるいは溝部を有する石英ガラス管や棒、それらを用いた石英ガラス治具の表面を火炎研磨と同じ程度の面粗さまで面の形状変化を起こすことなく平滑化することができる石英ガラス物品の表面処理方法を提供することを目的としている。   The present invention is the same as that of flame polishing on the surface of a quartz glass substrate or curved surface having a step or unevenness that cannot be mechanically polished, a quartz glass tube or rod having a groove, and a quartz glass jig using them. It is an object of the present invention to provide a surface treatment method for a quartz glass article, which can be smoothed without causing a change in shape of the surface to a certain degree of surface roughness.

発明者らはかかる課題を解決するために鋭意検討を重ねた結果、粗面を有する石英ガラスを水蒸気の存在下で加熱保持することによって面粗さが改善することを見出し、かつ面粗さの改善が温度と時間の関数で表されること、同時に面粗さの変化が石英ガラスの粘性変形と競争関係にある事を見出し、適切な条件を見出すことにより本発明を完成した。   As a result of intensive studies to solve such problems, the inventors have found that the surface roughness is improved by heating and holding quartz glass having a rough surface in the presence of water vapor, and the surface roughness is reduced. The present invention was completed by finding that the improvement is expressed as a function of temperature and time, and at the same time, the change in surface roughness is in a competitive relationship with the viscous deformation of quartz glass, and finding appropriate conditions.

すなわち、本発明の石英ガラス物品の表面処理方法は、粗面を有する石英ガラス物品を0.001MPa以上0.1MPa以下の水蒸気分圧を含む雰囲気内にて800℃以上1250℃以下に保持し、前記石英ガラス物品の表面を処理することにより前記石英ガラス物品の表面粗さ(表面粗度)を改善する石英ガラス物品の表面処理方法であって、
前記石英ガラス物品の処理前の表面粗さがRa値で130nm以上400nm以下であり、処理後の表面粗さがRa値で1nm以上120nm以下であり、
前記石英ガラス物品の処理時間の下限値t min を下記数式(1)で決定し、且つ前記石英ガラス物品の処理時間の上限値t max を下記数式(2)で決定することを特徴とする。
[前記数式(1)及び(2)において、t min は処理時間の下限値(時間)、t max は処理時間の上限値(時間)、Rは処理前の表面粗さRa値(nm)、Tは処理温度(℃)である]
That is, in the surface treatment method for a quartz glass article of the present invention, the quartz glass article having a rough surface is maintained at 800 ° C. or more and 1250 ° C. or less in an atmosphere including a water vapor partial pressure of 0.001 MPa or more and 0.1 MPa or less, A method for treating a surface of a quartz glass article that improves the surface roughness (surface roughness) of the quartz glass article by treating the surface of the quartz glass article,
The surface roughness before processing of the quartz glass article is 130 nm to 400 nm in terms of Ra value, and the surface roughness after processing is 1 nm to 120 nm in terms of Ra value,
The lower limit value t min of the processing time of the quartz glass article is determined by the following formula (1), and the upper limit value t max of the processing time of the quartz glass article is determined by the following formula (2) .
[In the above formulas (1) and (2), t min is the lower limit value (time) of the processing time , t max is the upper limit value (time) of the processing time, R is the surface roughness Ra value (nm) before processing, T is the processing temperature (° C)]

本発明において、前記石英ガラス物品の処理前の表面粗さがRa値で130nm以上400nm以下であり、処理後の表面粗さがRa値で1nm以上120nm以下であることが好適である。本発明において、処理前の石英ガラス物品の表面粗さを初期表面粗さと称する。   In the present invention, it is preferable that the surface roughness of the quartz glass article before processing is 130 nm to 400 nm in terms of Ra value, and the surface roughness after processing is 1 nm to 120 nm in terms of Ra value. In the present invention, the surface roughness of the quartz glass article before treatment is referred to as initial surface roughness.

本発明において、前記石英ガラス物品の処理時間の下限値tminを下記数式(1)で決定することが好ましい。また、前記石英ガラス物品の処理時間の上限値tmaxを下記数式(2)で決定することが好適である。 In the present invention, it is preferable that the lower limit value t min of the processing time of the quartz glass article is determined by the following mathematical formula (1). In addition, it is preferable that the upper limit value t max of the processing time of the quartz glass article is determined by the following mathematical formula (2).

[前記数式(1)及び(2)において、tminは処理時間の下限値(時間)、tmaxは処理時間の上限値(時間)、Rは処理前の表面粗さRa値(nm)、Tは処理温度(℃)である] [In the above formulas (1) and (2), t min is the lower limit value (time) of the processing time, t max is the upper limit value (time) of the processing time, R is the surface roughness Ra value (nm) before processing, T is the processing temperature (° C)]

本発明によれば、従来の機械研磨が不可能な段差や凹凸を有する石英ガラス基板や湾曲した面、あるいは溝部を有する石英ガラス管や棒、それらを用いた石英ガラス治具の表面を火炎研磨と同じ程度の面粗さまで面の形状変化を起こすことなく平滑化することができる。   According to the present invention, a conventional quartz glass substrate having a step or unevenness that cannot be mechanically polished, a curved surface, or a quartz glass tube or rod having a groove, and a surface of a quartz glass jig using them are flame-polished. The surface can be smoothed to the same degree of surface roughness without causing a change in shape of the surface.

以下に本発明の実施の形態を添付図面に基づいて説明するが、図示例は例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the illustrated examples are illustrative only, and various modifications can be made without departing from the technical idea of the present invention. .

本発明の石英ガラス物品の表面処理方法は、粗面を有する石英ガラス物品を0.001MPa以上0.1MPa以下の水蒸気分圧を含む雰囲気内にて800℃以上1250℃以下の高温に保持し、石英ガラス物品の表面を熱処理することにより石英ガラス物品の表面粗さを改善することを特徴とする。   In the surface treatment method for a quartz glass article of the present invention, the quartz glass article having a rough surface is held at a high temperature of 800 ° C. or more and 1250 ° C. or less in an atmosphere containing a water vapor partial pressure of 0.001 MPa or more and 0.1 MPa or less, The surface roughness of the quartz glass article is improved by heat-treating the surface of the quartz glass article.

本発明では、熱処理によって得られた試料の表面の凹凸の減少を定量的に示す指標として、表面粗さRaによる評価を行った。この表面粗さRaは下記数式(3)によって定義される。   In the present invention, the evaluation based on the surface roughness Ra was performed as an index quantitatively indicating the decrease in the surface roughness of the sample obtained by the heat treatment. This surface roughness Ra is defined by the following mathematical formula (3).

前記数式(3)において、縦M点と横N点の表面の格子点が測定点であり、その高さの平均をuで表し、各測定点の座標を(x,y)とし、そこでの高さがzである。
本発明において、表面粗さRa値を測定する装置は特に制限はなく、公知の表面粗さ測定機、例えば、触針式の表面粗さ計やレーザー顕微鏡等を用いることができる。
In the mathematical formula (3), the grid points on the surface of the vertical M point and the horizontal N point are measurement points, the average of the height is represented by u, and the coordinates of each measurement point are (x k , y i ), The height there is z.
In the present invention, the apparatus for measuring the surface roughness Ra value is not particularly limited, and a known surface roughness measuring machine, for example, a stylus type surface roughness meter or a laser microscope can be used.

本発明は、表面処理における水蒸気分圧の条件を0.001MPa以上0.1MPa以下とし、0.01MPa以上0.1MPa以下が好ましい。本発明において、水蒸気分圧を0.001MPa以上とすることにより表面粗さを改善することができるが、水蒸気分圧を0.01MPa以上とすることにより、より迅速且つ効率的に表面粗さを改善することができ、より好ましい。水蒸気分圧を0.1MPa(即ち、大気圧)を越える条件とするには大掛かりな装置を必要とし、コストがかかるが、本発明は加圧しなくとも目的を達成することができる為、工業的に非常に有利である。   In the present invention, the water vapor partial pressure condition in the surface treatment is 0.001 MPa or more and 0.1 MPa or less, and preferably 0.01 MPa or more and 0.1 MPa or less. In the present invention, the surface roughness can be improved by setting the water vapor partial pressure to 0.001 MPa or more. However, by setting the water vapor partial pressure to 0.01 MPa or more, the surface roughness can be increased more quickly and efficiently. This can be improved and is more preferable. In order to make the water vapor partial pressure exceed 0.1 MPa (that is, atmospheric pressure), a large-scale apparatus is required and costs are high. However, the present invention can achieve the object without applying pressure, so that it is industrial. Very advantageous.

本発明は、表面処理における温度条件を800℃以上1250℃以下とし、1100℃以上1200℃以下がより好ましい。本発明において、800℃以上の温度条件により表面平滑化が進行するが、温度条件が1250℃を超えると石英ガラス物品の熱変形が増大するため、処理温度は800℃以上1250℃以下とする。石英ガラスの熱変形は実質的に1100℃以上で顕著になる為、1100℃以上1250℃以下の処理温度範囲においては熱処理時間の管理が重要になる。   In the present invention, the temperature condition in the surface treatment is 800 ° C. or more and 1250 ° C. or less, and more preferably 1100 ° C. or more and 1200 ° C. or less. In the present invention, surface smoothing proceeds under a temperature condition of 800 ° C. or higher. However, when the temperature condition exceeds 1250 ° C., thermal deformation of the quartz glass article increases, so that the processing temperature is set to 800 ° C. or higher and 1250 ° C. or lower. Since thermal deformation of quartz glass becomes substantially significant at 1100 ° C. or higher, management of heat treatment time is important in a processing temperature range of 1100 ° C. or higher and 1250 ° C. or lower.

本発明による表面粗さの改善について、平坦化の機構の詳細は不明であるが、後述する処理時間を変えた実施例1の結果から、処理時間と表面粗さRaの変化は一次反応で近似することが出来、平坦化反応の速度定数にアレニウス型を適用できることが判った(表2及び図9)。即ち、図9に示す表面粗さRaの値x(nm)は下記数式(4)で表される。なお、図9は実施例1の試料A(初期表面粗さRa値:約150nm)の処理時間に対する表面粗さの結果を示すグラフである。   Regarding the improvement of the surface roughness according to the present invention, details of the flattening mechanism are unclear, but from the results of Example 1 in which the processing time described later is changed, the change in the processing time and the surface roughness Ra is approximated by a primary reaction. It was found that the Arrhenius type can be applied to the rate constant of the flattening reaction (Table 2 and FIG. 9). That is, the value x (nm) of the surface roughness Ra shown in FIG. 9 is expressed by the following mathematical formula (4). FIG. 9 is a graph showing the results of the surface roughness with respect to the processing time of Sample A (initial surface roughness Ra value: about 150 nm) of Example 1.

前記数式(4)は表面粗さRaの経時変化式であり、前記数式(4)において、xは表面粗さRa(単位:nm)、tは処理時間(単位:時)、A及びkは定数である。実施例1の試料Aの結果より、定数A=156nm、反応速度定数k=2.04×10−2(h−1)となり図9中の破線を得ることが出来る。
また、前記数式(4)は初期表面粗さが300nmの場合、A=300nmとすると実施例1の結果とも同様に非常に良い整合性を与えるため、数式(4)は初期表面粗さRを用いて、下記数式(5)と表すことが出来る。
The equation (4) is a time-dependent change equation of the surface roughness Ra. In the equation (4), x is the surface roughness Ra (unit: nm), t is a processing time (unit: hour), A and k 1 Is a constant. From the result of the sample A of Example 1, the constant A = 156 nm and the reaction rate constant k 1 = 2.04 × 10 −2 (h −1 ), and the broken line in FIG. 9 can be obtained.
In addition, when the initial surface roughness is 300 nm and the equation (4) is A = 300 nm, the result of Example 1 gives very good consistency as well, so that the equation (4) represents the initial surface roughness R. And can be expressed as the following mathematical formula (5).

前記数式(5)において、xは表面粗さRa(単位:nm)、tは処理時間(単位:時)、Rは初期表面粗さRa(単位:nm)、kは定数である。
更に、反応速度定数がアレニウス型であることから、反応速度定数kは活性化エネルギーE、絶対温度T(K)、定数kを用いて、下記数式(6)で示される。
In the above equation (5), x is the surface roughness Ra (Unit: nm), t is treatment time (unit: hour), R is the initial surface roughness Ra (Unit: nm), k 1 is a constant.
Furthermore, since the reaction rate constant is an Arrhenius type, the reaction rate constant k 1 is expressed by the following formula (6) using the activation energy E, the absolute temperature T 1 (K), and the constant k 0 .

前記数式(6)において、kは反応速度定数、Eは活性化エネルギー、Tは絶対温度(単位:K)、kは定数である。
後述する処理温度を変えた実施例1(処理温度:1200℃)と実施例3(処理温度:1000℃)の表面粗さの結果から、ある温度Tにおける反応速度定数kは下記数式(7)で与えられることがわかった。
In Equation (6), k 1 is a reaction rate constant, E is an activation energy, T 1 is an absolute temperature (unit: K), and k 0 is a constant.
From the results of surface roughness in Example 1 (treatment temperature: 1200 ° C.) and Example 3 (treatment temperature: 1000 ° C.) with different treatment temperatures, which will be described later, the reaction rate constant kn at a certain temperature T n is expressed by the following formula ( It was found that it was given in 7).

前記数式(7)において、Tは処理温度(単位:K)、kは処理温度Tにおける反応速度定数である。
更に、後述する水蒸気分圧を変えた実施例1、実施例5及び6の結果から、水蒸気分圧は反応速度にある程度の影響を与えるものの、その影響は温度条件と比べて小さく、水蒸気分圧が0.012MPaから0.085MPaの範囲においては、上記数式(5)〜数式(7)を適用しても実用上問題ないことが判った。ただし、実施例7に示すように水蒸気分圧が0.004MPa以下では反応が遅くなるため、これらの数式を適用するには水蒸気分圧を0.01MPa以上に設定することが好適である。
In the equation (7), T n is the processing temperature (unit: K), k n is the reaction rate constant in the processing temperature T n.
Further, from the results of Examples 1 and 5 and 6 in which the water vapor partial pressure described later was changed, although the water vapor partial pressure has some influence on the reaction rate, the influence is small compared to the temperature condition, and the water vapor partial pressure In the range of 0.012 MPa to 0.085 MPa, it was found that there is no practical problem even if the above formulas (5) to (7) are applied. However, as shown in Example 7, the reaction becomes slow when the water vapor partial pressure is 0.004 MPa or less. Therefore, in order to apply these equations, it is preferable to set the water vapor partial pressure to 0.01 MPa or more.

本発明の表面処理方法は、初期表面粗さがRa値で130nm以上である石英ガラス物品の表面粗さの改善に好適である。通常Ra値が130nm以上ある場合、図2(a)に示した如く、表面における光の散乱によって向こう側の物体がややぼやけて見える。なお、図2(a)は、表面粗さがRa値で約150nmの石英ガラス板(実施例1の処理前の試料A)の写真である。   The surface treatment method of the present invention is suitable for improving the surface roughness of a quartz glass article having an initial surface roughness Ra value of 130 nm or more. Usually, when the Ra value is 130 nm or more, as shown in FIG. 2A, the object on the other side looks slightly blurred due to light scattering on the surface. FIG. 2A is a photograph of a quartz glass plate (sample A before processing in Example 1) having a surface roughness Ra value of about 150 nm.

本発明によれば、石英ガラス物品の処理後の面粗さはRa値で120nm以下とすることができる。Ra値が120nm以下であると、図2(b)に示した如く、石英ガラス物品は十分に透明で向こう側を視認できるようになり、火炎研磨を施した石英ガラス物品とほぼ同等の外観を呈することが出来る。なお、図2(b)は、表面粗さがRa値で56nmの石英ガラス板(実施例1の48時間処理後の試料A)の写真である。
石英ガラス物品の処理後の面粗さの下限値は特に制限はないが、Ra値で1nm以上に設定することが好ましい。初期表面粗さがRa値130nm以上の場合、処理後の表面粗さ1nm未満を達成するには処理時間がいたずらに長くなり、工業的に好ましくない。
According to the present invention, the surface roughness after processing of the quartz glass article can be 120 nm or less in terms of Ra value. When the Ra value is 120 nm or less, as shown in FIG. 2 (b), the quartz glass article is sufficiently transparent so that the other side can be visually recognized, and has almost the same appearance as the quartz glass article subjected to flame polishing. Can be presented. FIG. 2B is a photograph of a quartz glass plate having a surface roughness Ra value of 56 nm (Sample A after 48 hours treatment in Example 1).
The lower limit of the surface roughness after the treatment of the quartz glass article is not particularly limited, but it is preferable to set the Ra value to 1 nm or more. When the initial surface roughness is an Ra value of 130 nm or more, the treatment time is unnecessarily long to achieve a surface roughness after treatment of less than 1 nm, which is not industrially preferable.

本発明の表面処理方法に適用される石英ガラス物品の初期表面粗さの上限値は特に制限はないが、処理後のRa値が120nm以下である石英ガラス物品を得る場合には、初期表面粗さがRa値で400nm以下の石英ガラス物品を選択することが好ましい。   The upper limit value of the initial surface roughness of the quartz glass article applied to the surface treatment method of the present invention is not particularly limited, but when obtaining a quartz glass article having a Ra value of 120 nm or less after the treatment, the initial surface roughness is obtained. It is preferable to select a quartz glass article having a Ra value of 400 nm or less.

本発明において、処理後の表面粗さが所望の数値を達成するための必要な最低処理時間は、前記数式(5)及び数式(7)を用いて算出することができる。例えば、処理後の表面粗さがRa値で120nm以下である石英ガラス物品を得るために必要な最低処理時間は、前記数式(5)及び数式(7)を用いて下記の如く数式化することができる。即ち、数式(5)にx=120を代入し、数式(5)及び数式(7)をtについて解くと、下記数式(1)を得る。   In the present invention, the minimum processing time required for the surface roughness after processing to achieve a desired numerical value can be calculated using Equation (5) and Equation (7). For example, the minimum processing time necessary for obtaining a quartz glass article having a surface roughness after treatment of 120 nm or less in Ra value is expressed by the following equation using Equation (5) and Equation (7). Can do. That is, substituting x = 120 into Equation (5) and solving Equation (5) and Equation (7) for t yields the following Equation (1).

前記数式(1)において、tminは石英ガラス物品の表面粗さがRa値で120nmになるまでの処理時間(単位:時)、Tは処理温度(単位:℃)、Rは初期表面粗さRa(単位:nm)を示す。
前記数式(1)により算出されるtmin以上の処理時間を施すことにより石英ガラス表面の面粗さRaを120nm以下に平坦化することが出来る。
In the formula (1), t min is a processing time (unit: hour) until the surface roughness of the quartz glass article reaches 120 nm in terms of Ra value, T is a processing temperature (unit: ° C.), and R is an initial surface roughness. Ra (unit: nm) is shown.
The surface roughness Ra of the quartz glass surface can be flattened to 120 nm or less by applying a treatment time equal to or greater than t min calculated by the mathematical formula (1).

本発明における面粗さの改良は高温時の石英ガラスの構造変化に伴うものであるから、石英ガラス全体の粘性流動に伴う塑性変形も同時に進行する。本発明の目的である石英ガラス全体の変形を抑制しつつ、表面粗さを改善する事を達成するためには熱処理を石英ガラスの塑性変形が許容範囲内である条件に設定する必要がある。   Since the improvement of the surface roughness in the present invention is accompanied by a change in the structure of the quartz glass at a high temperature, plastic deformation accompanying the viscous flow of the entire quartz glass also proceeds simultaneously. In order to achieve the improvement of the surface roughness while suppressing the deformation of the entire quartz glass, which is the object of the present invention, it is necessary to set the heat treatment to a condition in which the plastic deformation of the quartz glass is within an allowable range.

石英ガラスの粘性変形を知る上で最も重要な要素が粘度であるが、石英ガラスの粘度に関しては過去詳細に調べられている。例えば、非特許文献1は、石英ガラスにおける粘度の温度変化を表す図が記載されている。非特許文献1の図96に記載された石英ガラスにおける粘度と温度の関係を示すグラフを図11に示した。図11に示した如く、非特許文献1より、石英ガラスの粘度と温度について下記数式(8)を得ることができる。下記数式(8)において、ηは粘度(単位:ポアズ)、Tは温度(℃)である。   Viscosity is the most important factor in knowing the viscous deformation of quartz glass, but the viscosity of quartz glass has been investigated in detail in the past. For example, Non-Patent Document 1 describes a diagram showing a temperature change of viscosity in quartz glass. A graph showing the relationship between the viscosity and the temperature in the quartz glass described in FIG. 96 of Non-Patent Document 1 is shown in FIG. As shown in FIG. 11, from Non-Patent Document 1, the following formula (8) can be obtained for the viscosity and temperature of quartz glass. In the following mathematical formula (8), η is the viscosity (unit: poise), and T is the temperature (° C.).

図10は、石英ガラスの熱変形測定方法の一例を示す概略説明図であり、図10(a)は熱処理前、図10(b)は熱処理後をそれぞれ示す。図10において、30は石英ガラス試料、32a及び32bは治具、例えば、SiC治具であり、Lは治具32a及び32bの間隔、bは石英ガラス試料の長さ、dは石英ガラス試料の厚さ、Yは変形量である。
図10(a)に示した如く、石英ガラス試料30の対抗する端面を固定せずに治具32a,32bで保持し熱処理することにより、図10(b)に示した如く、高温で自重にて石英ガラス試料30が熱変形し、変形量Yが測定される。
10A and 10B are schematic explanatory views showing an example of a method for measuring thermal deformation of quartz glass. FIG. 10A shows a state before heat treatment, and FIG. 10B shows a state after heat treatment. In FIG. 10, 30 is a quartz glass sample, 32a and 32b are jigs, for example, SiC jigs, L is the distance between the jigs 32a and 32b, b is the length of the quartz glass sample, and d is the quartz glass sample. Thickness Y is the amount of deformation.
As shown in FIG. 10 (a), the opposing end face of the quartz glass sample 30 is not fixed and is held by the jigs 32a and 32b and heat-treated. Thus, the quartz glass sample 30 is thermally deformed, and the deformation amount Y is measured.

石英ガラスの熱変形は、幅a(cm)、長さb(cm)、厚さd(cm)の粘度ηの石英ガラスの板を、図10に示した如く、間隔L(cm)で自由保持し、熱処理した場合、1時間あたりの変形量y(cm)は間隔Lの4乗に比例し、厚さと粘度に反比例すると考えられ、下記数式(9)で表される。実際にはa及びbは消去されて式上には現れない。   As shown in FIG. 10, a quartz glass plate having a width a (cm), a length b (cm), and a thickness d (cm) and having a viscosity η can be freely deformed at intervals L (cm). When held and heat-treated, the deformation amount y (cm) per hour is considered to be proportional to the fourth power of the interval L and inversely proportional to the thickness and viscosity, and is expressed by the following formula (9). Actually, a and b are deleted and do not appear in the equation.

前記数式(9)において、yは1時間あたりの変形量(cm)、Aは定数、Lは治具32a及び32bの間隔(cm)、dは石英ガラスの厚さ(cm)、ηは粘度(ポアズ)である。
後記する表5は、処理温度及び処理時間を変えた実施例8〜11の熱変形量の結果、並びに前記数式(8)より求められる粘度を示すものである。前記数式(9)に表5に示された変形量及び粘度ηを代入し、定数Aを最小二乗法にて求めると、A=6.747×10を得る。従って、前記数式(9)は、下記数式(10)となる。下記数式(10)において、y、L、d及びηは前記数式(9)と同じである。
In the equation (9), y is the deformation amount (cm) per hour, A is a constant, L is the distance between the jigs 32a and 32b (cm), d is the thickness of the quartz glass (cm), and η is the viscosity. (Poise).
Table 5 to be described later shows the results of thermal deformation amounts of Examples 8 to 11 in which the processing temperature and the processing time are changed, and the viscosity obtained from the mathematical formula (8). Substituting the deformation amount and the viscosity η shown in Table 5 into the equation (9), and obtaining the constant A by the least square method, A = 6.747 × 10 4 is obtained. Therefore, the mathematical formula (9) becomes the following mathematical formula (10). In the following formula (10), y, L, d and η are the same as those in the formula (9).

本発明において、処理後の石英ガラスの変形量を所望の数値以下とするための処理時間の上限値は、前記数式(8)〜数式(10)を用いて算出することができる。
具体的には、本発明において石英ガラスの熱的な変形の限界設定として、一般的に石英ガラスのマスク基板として用いられている6025タイプの石英ガラスマスク基板(幅152mm×長さ152mm×厚さ6.25mmの正方形のガラス基板)を、前述した図10に示した方法により熱変形させた際の変形量Yが100μm以下とすることが好適である。
In the present invention, the upper limit value of the processing time for setting the deformation amount of the treated quartz glass to be equal to or less than a desired numerical value can be calculated using the formulas (8) to (10).
Specifically, in the present invention, as a limit setting of the thermal deformation of quartz glass, a 6025 type quartz glass mask substrate (width 152 mm × length 152 mm × thickness) generally used as a quartz glass mask substrate is used. The deformation amount Y when the 6.25 mm square glass substrate) is thermally deformed by the method shown in FIG. 10 described above is preferably 100 μm or less.

本発明においては、石英ガラス板は通常平面上に静置して熱処理されるかあるいは重力の影響を僅少化する目的で略垂直に立てて熱処理されるため、上記のような重力による自由変形は生じない事から100μmの変形量を最大値とすることは妥当であると考える。
一方、石英ガラス管や棒のような断面円形状の石英ガラス物品の場合は図10のように平板を保持する場合に比べて変形量は実質上1/10程度に低減されるために上記変形量の設定はやはり妥当であると考える。
In the present invention, the quartz glass plate is usually heat-treated by standing on a flat surface, or is heat-treated standing upright in order to minimize the influence of gravity. Since it does not occur, it is considered appropriate to set the deformation amount of 100 μm to the maximum value.
On the other hand, in the case of a quartz glass article having a circular cross section such as a quartz glass tube or a rod, the amount of deformation is substantially reduced to about 1/10 compared to the case of holding a flat plate as shown in FIG. The amount setting is still reasonable.

前述した如く、熱処理における石英ガラスの許容変形量Yを1×10−2(cm)、d=0.63(cm)、L=15(cm)として許容変形量に到るまでの処理時間t(時間)を求めると、下記数式(11)であるから、数式(8)〜数式(11)にこれらの値を代入、ηを消去して下記数式(2)を得る。 As described above, the processing time t until the allowable deformation amount is reached when the allowable deformation amount Y of the quartz glass in the heat treatment is 1 × 10 −2 (cm), d = 0.63 (cm), and L = 15 (cm). When (time) is obtained, it is the following formula (11), so these values are substituted into formulas (8) to (11), and η is deleted to obtain the following formula (2).

前記数式(11)において、tは処理時間(単位:時)、yは1時間あたりの変化量(単位:cm)である。   In the formula (11), t is a processing time (unit: hour), and y is an amount of change per hour (unit: cm).

前記数式(2)において、tmaxは熱処理による石英ガラスの変形量が前述した許容変形量[1×10−2(cm)]となる処置時間(単位:時)であり、Tは処理温度(単位:℃)である。
本発明において、処理時間を前記数式(2)により算出されるtmax以下とすることにより、石英ガラスの熱変形を前述した許容変形量以下に抑えることができる。
In the formula (2), t max is a treatment time (unit: hour) in which the deformation amount of the quartz glass due to the heat treatment becomes the above-described allowable deformation amount [1 × 10 −2 (cm)], and T is a treatment temperature ( Unit: ° C).
In the present invention, by setting the processing time to t max or less calculated by the above formula (2), the thermal deformation of the quartz glass can be suppressed to the allowable deformation amount or less.

本発明において、前記数式(1)及び数式(2)により各温度に関して最小処理時間と最大処理時間をそれぞれ決定することが好ましい。
表1に初期表面粗さがRa値で150nm(R=150)とした時の、各温度における数式(1)によって求まる処理時間の下限値tminと数式(2)によって求まる処理時間の上限値tmaxを示す。
In the present invention, it is preferable to determine the minimum processing time and the maximum processing time for each temperature according to the mathematical formulas (1) and (2).
Table 1 shows the lower limit t min of the processing time determined by the equation (1) at each temperature and the upper limit of the processing time determined by the equation (2) when the initial surface roughness is 150 nm (R = 150) as the Ra value. t max is shown.

表1に示した如く、本発明に適用される処理温度800℃〜1250℃において、tmin以上tmax以下の処理時間の条件で、初期表面粗さがRaで150nmの石英ガラス物品を表面処理することにより、熱変形を抑制し且つ表面粗さをRaで120nm以下に改善することができる。
後述する実施例2に示した如く、表面平滑化は800℃以上の温度で進行する為、本発明において処理温度は800℃以上とするものであるが、表1に示した如く、処理後の表面粗さRaを120nm以下とするためには長い処理時間が必要である。また、表1及び表5に示した如く、石英ガラスの熱変形は実質的に1100℃以上で顕著になる。1100℃以上の処理温度範囲においては熱処理時間の管理が重要になり、1250℃では短時間で表面粗さを改善することができるがプロセス許容度度がより小さい為、処理時間の管理が極めて重要となる。
1250℃を超えると熱変形の速度が表面平滑化反応の速度とほとんど同じになってしまうので、プロセス許容度が得られず、更に、処理温度1300℃では、熱変形を防止する最大処理時間tmaxが表面平滑化を達成する最小処理時間tminよりも大きく、変形が支配的である為、処理温度の上限は1250℃であると考える。
As shown in Table 1, a quartz glass article having an initial surface roughness Ra of 150 nm is surface-treated at a treatment temperature of 800 ° C. to 1250 ° C. and a treatment time of t min or more and t max or less. By doing so, thermal deformation can be suppressed and the surface roughness can be improved to 120 nm or less in terms of Ra.
As shown in Example 2, which will be described later, since the surface smoothing proceeds at a temperature of 800 ° C. or higher, the treatment temperature is set to 800 ° C. or higher in the present invention. A long processing time is required for the surface roughness Ra to be 120 nm or less. Further, as shown in Tables 1 and 5, the thermal deformation of the quartz glass becomes substantially significant at 1100 ° C. or higher. In the processing temperature range of 1100 ° C or higher, it is important to manage the heat treatment time. At 1250 ° C, the surface roughness can be improved in a short time, but the process tolerance is smaller, so the management of the processing time is extremely important. It becomes.
If the temperature exceeds 1250 ° C., the rate of thermal deformation becomes almost the same as the rate of the surface smoothing reaction, so that the process tolerance cannot be obtained. Further, at the processing temperature of 1300 ° C., the maximum processing time t for preventing thermal deformation Since max is larger than the minimum processing time t min for achieving surface smoothing and deformation is dominant, the upper limit of the processing temperature is considered to be 1250 ° C.

図1は、本発明で用いられる装置の構成の一例を示す概略説明図である。
本発明の表面処理方法に用いられる装置は特に制限はなく、処理温度及び水蒸気分圧を制御できる装置であればいずれも好適に使用できるが、例えば、図1に示した装置を用いることができる。
FIG. 1 is a schematic explanatory diagram showing an example of the configuration of an apparatus used in the present invention.
The apparatus used for the surface treatment method of the present invention is not particularly limited, and any apparatus that can control the treatment temperature and water vapor partial pressure can be used suitably. For example, the apparatus shown in FIG. 1 can be used. .

図1において、100は本発明の処理方法に用いられる装置、10a,10bは熱処理炉、12は試料ホルダー、20は石英ガラス試料、22a及び22bは熱電対である。熱処理炉10への水蒸気の導入は特に制限はないが、例えば、図1に示した如く、純水Wを入れたガス洗浄瓶16をオイルバス14に入れ、この洗浄瓶16に乾燥空気を流すことにより容易に熱処理炉を水蒸気雰囲気とすることができる。この際、オイルバス14の温度を調整することによって水蒸気分圧を調整することができる。
炉10における水蒸気の導入部及び排気部にはそれぞれリボンヒーター18a及び18bを巻いて全ての配管を100℃以上に保温し、水蒸気の結露を防止することが好適である。これにより、水蒸気が結露して水蒸気分圧が設定値より低下することを防止することができる。
In FIG. 1, 100 is an apparatus used in the processing method of the present invention, 10a and 10b are heat treatment furnaces, 12 is a sample holder, 20 is a quartz glass sample, and 22a and 22b are thermocouples. The introduction of water vapor into the heat treatment furnace 10 is not particularly limited. For example, as shown in FIG. 1, a gas cleaning bottle 16 containing pure water W is placed in an oil bath 14 and dry air is allowed to flow through the cleaning bottle 16. Thus, the heat treatment furnace can be easily made into a steam atmosphere. At this time, the water vapor partial pressure can be adjusted by adjusting the temperature of the oil bath 14.
It is preferable that ribbon heaters 18a and 18b are respectively wound around the water vapor introduction part and the exhaust part in the furnace 10 to keep all the pipes at 100 ° C. or higher to prevent water vapor condensation. Thereby, it can prevent that water vapor | steam condenses and water vapor partial pressure falls from a setting value.

以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。   The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner.

(実施例1)
〈試料作成〉
幅20mm×長さ20mm×厚さ2mmの石英ガラス板に酸化セリウムを用いた高精度研磨を施し、表面粗さを0.5nm以下に調整した後、粗い砥粒(例えばカーボランダム)を用いて再研磨して表面を一様な面粗さに再調整した。
この際、粒度の異なる2種類の砥粒を用いることで、再調整後の面粗さが表面粗さ計による測定で、Ra値で略300nm、150nmの2種類の試料(試料A,B)を作成した。
Example 1
<Sample preparation>
A quartz glass plate having a width of 20 mm, a length of 20 mm, and a thickness of 2 mm is subjected to high-precision polishing using cerium oxide, the surface roughness is adjusted to 0.5 nm or less, and then coarse abrasive grains (for example, carborundum) are used. The surface was readjusted to a uniform surface roughness.
At this time, by using two types of abrasive grains having different particle sizes, the surface roughness after readjustment was measured with a surface roughness meter, and two types of samples (samples A and B) having an Ra value of about 300 nm and 150 nm. It was created.

〈試料の熱処理〉
前記粗面を有する石英ガラス板(試料A,B)を砥粒の残留を避ける目的で、純水中で10分間超音波洗浄を施し、更に10分間アセトン中で超音波洗浄を施した。
この石英ガラス試料を石英ガラス製の試料ホルダーにのせ、ホルダーごと、図1に示す熱処理炉の中に設置した。炉を所定の温度まで約3時間かけて昇温した後、水蒸気を含んだ空気を流して熱処理を行った。
水蒸気の導入は純水を入れたガス洗浄瓶をオイルバスに入れ、この洗浄瓶に乾燥空気を200ml/分の流量で流して行った。この際、オイルバスの温度を調整することによって水蒸気分圧を調整した。炉における水蒸気の導入部及び排気部にはリボンヒーターを巻いて全ての配管を100℃以上に保温し、水蒸気の結露を防止した。
<Heat treatment of sample>
The quartz glass plates (samples A and B) having the rough surface were subjected to ultrasonic cleaning in pure water for 10 minutes and further subjected to ultrasonic cleaning in acetone for 10 minutes for the purpose of avoiding residual abrasive grains.
The quartz glass sample was placed on a quartz glass sample holder, and the holder was placed in the heat treatment furnace shown in FIG. The temperature of the furnace was raised to a predetermined temperature over about 3 hours, and then heat treatment was performed by flowing air containing water vapor.
The introduction of water vapor was performed by putting a gas washing bottle containing pure water into an oil bath and flowing dry air through the washing bottle at a flow rate of 200 ml / min. At this time, the water vapor partial pressure was adjusted by adjusting the temperature of the oil bath. Ribbon heaters were wound around the water vapor introduction part and the exhaust part in the furnace to keep all the pipes at 100 ° C. or higher to prevent water vapor condensation.

熱処理条件1として、温度を1200℃、水蒸気分圧を0.047MPa(オイルバスの温度を80℃に設定)として設定した。この条件に対して表面粗さがRa値150nm(試料A)と300nm(試料B)のそれぞれ15枚の石英ガラス試料を用意し、3枚1組として5組の試料をそれぞれ1時間、3時間、12時間、24時間、48時間熱処理を施した。これは熱処理による表面粗さの時間変化を観察するためである。   As heat treatment condition 1, the temperature was set to 1200 ° C., and the water vapor partial pressure was set to 0.047 MPa (the oil bath temperature was set to 80 ° C.). Under these conditions, 15 quartz glass samples each having a surface roughness Ra value of 150 nm (sample A) and 300 nm (sample B) are prepared, and 5 samples are set as 1 set for 3 hours for 1 hour and 3 hours respectively. , 12 hours, 24 hours and 48 hours. This is for observing a change in surface roughness with time due to heat treatment.

図2は実施例1の結果を示す写真であり、(a)は熱処理前の試料Aの写真であり、(b)は48時間熱処理を施した試料Aの写真である。この写真から判るように表面の凹凸による散乱が48時間の熱処理によって殆ど消え、透明なガラス試料となったことがわかる。   FIG. 2 is a photograph showing the results of Example 1, (a) is a photograph of Sample A before heat treatment, and (b) is a photograph of Sample A that has been heat treated for 48 hours. As can be seen from this photograph, the scattering due to the unevenness of the surface almost disappeared by the heat treatment for 48 hours, and a transparent glass sample was obtained.

〈表面粗さの測定〉
石英ガラス試料の表面形状を観察するためKEYENCE社製VK−9510レーザー顕微鏡[型式:コントローラ部 VK−9500,測定部 VK−9510]を用いて、倍率9000倍にて試料の表面形状、高さプロファイル、表面粗さを測定した。同じ熱処理条件の3個の試料の表面粗さRaを測定し平均値を求めた。実施例1の処理条件及び処理前後の表面粗さRaの測定結果を表2に示す。図9は、実施例1の試料Aの処理時間に対する表面粗さRaの経時変化を示すグラフである。
<Measurement of surface roughness>
In order to observe the surface shape of a quartz glass sample, the surface shape and height profile of the sample at a magnification of 9000 times using a VK-9510 laser microscope [model: controller unit VK-9500, measurement unit VK-9510] manufactured by KEYENCE. The surface roughness was measured. The surface roughness Ra of three samples under the same heat treatment conditions was measured to obtain an average value. Table 2 shows the processing conditions of Example 1 and the measurement results of the surface roughness Ra before and after the processing. FIG. 9 is a graph showing the change over time of the surface roughness Ra with respect to the processing time of the sample A of Example 1.

表2及び図9に示した如く、処理時間と表面粗さRaの変化は一次反応で近似し、平坦化反応の速度定数にアレニウス型を適用できることが判った。   As shown in Table 2 and FIG. 9, it was found that the change in the processing time and the surface roughness Ra was approximated by a first order reaction, and that the Arrhenius type was applicable to the rate constant of the flattening reaction.

〈レーザー顕微鏡による表面形状と高さプロファイル〉
実施例1の試料Aの表面をレーザー顕微鏡(倍率9000倍)で観察した画像と高さプロファイルを図3〜8に示す。図3及び4は熱処理前の試料Aの画像及び高さプロファイルであり、図5及び6は12時間熱処理を施した試料Aの画像及び高さプロファイルであり、図7及び8は48時間熱処理を施した試料Aの画像及び高さプロファイルである。
処理前の試料において、表面形状(図3)は種々の大きさの凹凸が多く存在し、高さプロファイル(図4)からは鋭い凹凸の存在が目立つことが判った。熱処理条件1にて12時間処理した試料の表面(図5)は、処理前の試料表面に見られる小さな粒子状の凹凸が融けて結合しているように見える。高さプロファイル(図6)では処理前に見られる鋭い凹凸がなくなり、凹凸の数が減少したことがわかる。48時間処理した試料表面(図7)は、滑らかになり、高さプロファイル(図8)からも凹凸が殆ど見えなくなったことが判った。
<Surface shape and height profile by laser microscope>
The image and height profile which observed the surface of the sample A of Example 1 with the laser microscope (9000-times multiplication factor) are shown to FIGS. 3 and 4 are images and height profiles of Sample A before heat treatment, FIGS. 5 and 6 are images and height profiles of Sample A that has been heat treated for 12 hours, and FIGS. 7 and 8 are heat treated for 48 hours. It is the image and height profile of the sample A which were given.
In the sample before the treatment, the surface shape (FIG. 3) has many irregularities of various sizes, and it was found from the height profile (FIG. 4) that sharp irregularities are conspicuous. The surface of the sample treated for 12 hours under the heat treatment condition 1 (FIG. 5) appears to be bonded by melting the small particulate irregularities seen on the sample surface before the treatment. In the height profile (FIG. 6), it can be seen that the sharp irregularities seen before the treatment are eliminated and the number of irregularities is reduced. It was found that the sample surface treated for 48 hours (FIG. 7) became smooth, and the unevenness was hardly visible from the height profile (FIG. 8).

(実施例2〜4)
実施例1と同様に表面粗さがRa値で略150nmの試料を作成した。熱処理条件を、水蒸気分圧は変えずに処理温度を800℃(実施例2)、1000℃(実施例3)又は1250℃(実施例4)に設定し、熱処理を48時間行った以外は実施例1と同様の方法により前記作成した試料の表面処理を行い、表面形状の変化を測定した。実施例2〜4の処理条件及び処理前後の表面粗さRaの測定結果を表3に示す。
(Examples 2 to 4)
In the same manner as in Example 1, a sample having a surface roughness Ra value of about 150 nm was prepared. The heat treatment was carried out except that the treatment temperature was set to 800 ° C. (Example 2), 1000 ° C. (Example 3) or 1250 ° C. (Example 4) without changing the water vapor partial pressure, and the heat treatment was performed for 48 hours. The prepared sample was subjected to a surface treatment in the same manner as in Example 1, and the change in surface shape was measured. Table 3 shows the treatment conditions of Examples 2 to 4 and the measurement results of the surface roughness Ra before and after the treatment.

表3に示した如く、処理温度800℃〜1250℃において、処理温度に応じて表面粗さが改善されていることがわかった。   As shown in Table 3, it was found that the surface roughness was improved according to the treatment temperature at the treatment temperature of 800 ° C. to 1250 ° C.

(実施例5〜7)
実施例1と同様に表面粗さがRa値で略150nmの試料を作成した。熱処理条件を、温度を1200℃に固定して、水蒸気分圧を0.012MPa(実施例5、オイルバスの温度を50℃に設定)、0.085MPa(実施例6、オイルバスの温度を95℃に設定)又は0.004MPa(実施例7、オイルバスの温度を30℃に設定)に設定し、熱処理を48時間行った以外は実施例1と同様の方法により前記作成した試料の表面処理を行い、表面形状の変化を測定した。実施例5〜7の処理条件及び処理前後の表面粗さRaの測定結果を表4に示す。
(Examples 5-7)
In the same manner as in Example 1, a sample having a surface roughness Ra value of about 150 nm was prepared. The heat treatment conditions were such that the temperature was fixed at 1200 ° C., the water vapor partial pressure was 0.012 MPa (Example 5, the oil bath temperature was set to 50 ° C.), and 0.085 MPa (Example 6, the oil bath temperature was 95 ° C.). Set to 0.degree. C.) or 0.004 MPa (Example 7, oil bath temperature set to 30.degree. C.), and the surface treatment of the prepared sample was performed in the same manner as in Example 1 except that heat treatment was performed for 48 hours. And the change of the surface shape was measured. Table 4 shows the treatment conditions of Examples 5 to 7 and the measurement results of the surface roughness Ra before and after the treatment.

表4に示した如く、水蒸気分圧0.004MPa〜0.085MPaにおいて、表面粗さが改善された。特に、水蒸気分圧0.012MPa及び0.085MPaにおいて、迅速に表面粗さが改善されており、水蒸気分圧の変化の影響が少なかった。   As shown in Table 4, the surface roughness was improved at a water vapor partial pressure of 0.004 MPa to 0.085 MPa. In particular, at the water vapor partial pressures of 0.012 MPa and 0.085 MPa, the surface roughness was rapidly improved, and the influence of the change in the water vapor partial pressure was small.

(実施例8〜11及び実験例1)
〈試料作成〉
熱処理による石英ガラスの粘性変形の度合いを調査するために、幅20mm、長さ160mm、厚さ0.63mmの石英ガラス板を用意した。この石英ガラス板は6025タイプの石英ガラスマスクより切り出したために、表面は高精度研磨が施されている。前記石英ガラス板を、実施例1と同様の方法により表面粗さがRa値で約150nmとなるように面粗さを調整する処置を施した。
(Examples 8 to 11 and Experimental Example 1)
<Sample preparation>
In order to investigate the degree of viscous deformation of quartz glass by heat treatment, a quartz glass plate having a width of 20 mm, a length of 160 mm, and a thickness of 0.63 mm was prepared. Since this quartz glass plate was cut out from a 6025 type quartz glass mask, the surface was subjected to high-precision polishing. The quartz glass plate was treated by the same method as in Example 1 to adjust the surface roughness so that the surface roughness was about 150 nm in terms of Ra value.

〈熱処理による変形量の測定〉
上記石英ガラス板を図10に示すようにシリコンカーバイド製の治具に載せ(治具の距離L=15cm)、全体を図1に示す熱処理炉にセットして水蒸気分圧を0.047MPaに設定しつつ、800℃(実施例8)、1000℃(実施例9)、1200℃(実施例10)、1250℃(実施例11)又は1300℃(実験例1)で表5に示す所定時間熱処理を行い、3次元測定器により変形量を測定した。また、前記熱処理前及び熱処理後の石英ガラス板の表面粗さRaを測定した。実施例8〜11及び実験例1の処理条件、石英ガラス試料の変形量及び処理前後の表面粗さRaを表5に示す。
また、前記数式(8)より算出した各処理温度における粘度η、及び前記数式(10)及び処理時間より算出した変形量をあわせて表5に示した。なお、変形量を計算した際に数式(10)に代入した数値は、L=15(cm)、d=0.063(cm)、ηは前記数式(8)より求められた計算値である。
<Measurement of deformation by heat treatment>
The quartz glass plate is placed on a silicon carbide jig as shown in FIG. 10 (jig distance L = 15 cm), and the whole is set in the heat treatment furnace shown in FIG. 1, and the water vapor partial pressure is set to 0.047 MPa. However, heat treatment for a predetermined time shown in Table 5 at 800 ° C. (Example 8), 1000 ° C. (Example 9), 1200 ° C. (Example 10), 1250 ° C. (Example 11) or 1300 ° C. (Experimental Example 1) And the amount of deformation was measured with a three-dimensional measuring device. Further, the surface roughness Ra of the quartz glass plate before and after the heat treatment was measured. Table 5 shows the processing conditions of Examples 8 to 11 and Experimental Example 1, the deformation amount of the quartz glass sample, and the surface roughness Ra before and after the processing.
Table 5 shows the viscosity η at each processing temperature calculated from the formula (8) and the deformation calculated from the formula (10) and the processing time. Note that the numerical values substituted into the formula (10) when calculating the deformation amount are L = 15 (cm), d = 0.063 (cm), and η is the calculated value obtained from the formula (8). .

表5に示した如く、本発明で適用される処理温度800℃〜1250℃において、表面粗さか改善されており且つ変形量が抑制されていたのに対し、処理温度1300℃では変形が著しかった。   As shown in Table 5, the surface roughness was improved and the amount of deformation was suppressed at the processing temperature of 800 ° C. to 1250 ° C. applied in the present invention, whereas the deformation was remarkable at the processing temperature of 1300 ° C. .

本発明で用いられる装置の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the apparatus used by this invention. 実施例1の結果を示す写真であり、(a)は熱処理前の試料Aの写真であり、(b)は48時間熱処理を施した試料Aの写真である。It is a photograph which shows the result of Example 1, (a) is a photograph of the sample A before heat processing, (b) is a photograph of the sample A which heat-processed for 48 hours. 実施例1の熱処理前の試料Aの表面形状をレーザー顕微鏡(倍率9000倍)で観察した画像である。It is the image which observed the surface shape of the sample A before heat processing of Example 1 with the laser microscope (magnification 9000 times). 実施例1の熱処理前の試料Aの表面をレーザー顕微鏡(倍率9000倍)で観察した高さプロファイルである。It is the height profile which observed the surface of the sample A before the heat processing of Example 1 with a laser microscope (magnification 9000 times). 実施例1の12時間熱処理を施した試料Aの表面形状をレーザー顕微鏡(倍率9000倍)で観察した画像である。It is the image which observed the surface shape of the sample A which heat-processed for 12 hours of Example 1 with the laser microscope (magnification 9000 times). 実施例1の12時間熱処理を施した試料Aの表面をレーザー顕微鏡(倍率9000倍)で観察した高さプロファイルである。It is the height profile which observed the surface of the sample A which heat-processed for 12 hours of Example 1 with the laser microscope (magnification 9000 times). 実施例1の48時間熱処理を施した試料Aの表面形状をレーザー顕微鏡(倍率9000倍)で観察した画像である。It is the image which observed the surface shape of the sample A which performed the heat processing for 48 hours of Example 1 with the laser microscope (magnification 9000 times). 実施例1の48時間熱処理を施した試料Aの表面をレーザー顕微鏡(倍率9000倍)で観察した高さプロファイルである。It is the height profile which observed the surface of the sample A which heat-processed for 48 hours of Example 1 with the laser microscope (9000-times multiplication factor). 実施例1の試料Aの処理時間に対する表面粗さの経時変化を示すグラフである。4 is a graph showing the change over time in the surface roughness with respect to the processing time of Sample A in Example 1. 石英ガラスの熱変形測定方法の一例を示す概略説明図であり、(a)は熱処理前、(b)は熱処理後をそれぞれ示す。It is a schematic explanatory drawing which shows an example of the thermal deformation measuring method of quartz glass, (a) shows before heat processing and (b) shows after heat processing, respectively. 石英ガラスにおける粘度と温度の関係を示すグラフである。It is a graph which shows the relationship between the viscosity and temperature in quartz glass.

符号の説明Explanation of symbols

10:熱処理炉、12:試料ホルダー、14:オイルバス、16:ガス洗浄瓶、18a,18b:リボンヒーター、20,30:石英ガラス試料、22a,22b:熱電対、32a,32b:治具、100:装置、W:純水。   10: heat treatment furnace, 12: sample holder, 14: oil bath, 16: gas washing bottle, 18a, 18b: ribbon heater, 20, 30: quartz glass sample, 22a, 22b: thermocouple, 32a, 32b: jig, 100: Apparatus, W: Pure water.

Claims (1)

粗面を有する石英ガラス物品を0.001MPa以上0.1MPa以下の水蒸気分圧を含む雰囲気内にて800℃以上1250℃以下に保持し、前記石英ガラス物品の表面を処理することにより前記石英ガラス物品の表面粗さを改善する石英ガラス物品の表面処理方法であって、
前記石英ガラス物品の処理前の表面粗さがRa値で130nm以上400nm以下であり、処理後の表面粗さがRa値で1nm以上120nm以下であり、
前記石英ガラス物品の処理時間の下限値t min を下記数式(1)で決定し、且つ前記石英ガラス物品の処理時間の上限値t max を下記数式(2)で決定することを特徴とする石英ガラス物品の表面処理方法。
[前記数式(1)及び(2)において、t min は処理時間の下限値(時間)、t max は処理時間の上限値(時間)、Rは処理前の表面粗さRa値(nm)、Tは処理温度(℃)である]
The quartz glass article having a rough surface is maintained at 800 ° C. or more and 1250 ° C. or less in an atmosphere containing a water vapor partial pressure of 0.001 MPa or more and 0.1 MPa or less, and the surface of the quartz glass article is treated to treat the quartz glass article. A surface treatment method for a quartz glass article for improving the surface roughness of the article ,
The surface roughness before processing of the quartz glass article is 130 nm to 400 nm in terms of Ra value, and the surface roughness after processing is 1 nm to 120 nm in terms of Ra value,
The lower limit value t min of the processing time of the quartz glass article is determined by the following formula (1), and the upper limit value t max of the processing time of the quartz glass article is determined by the following formula (2). A method for surface treatment of glass articles.
[In the above formulas (1) and (2), t min is the lower limit value (time) of the processing time , t max is the upper limit value (time) of the processing time, R is the surface roughness Ra value (nm) before processing, T is the processing temperature (° C)]
JP2008046496A 2008-02-27 2008-02-27 Surface treatment method for quartz glass articles Expired - Fee Related JP4911726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046496A JP4911726B2 (en) 2008-02-27 2008-02-27 Surface treatment method for quartz glass articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046496A JP4911726B2 (en) 2008-02-27 2008-02-27 Surface treatment method for quartz glass articles

Publications (2)

Publication Number Publication Date
JP2009203107A JP2009203107A (en) 2009-09-10
JP4911726B2 true JP4911726B2 (en) 2012-04-04

Family

ID=41145737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046496A Expired - Fee Related JP4911726B2 (en) 2008-02-27 2008-02-27 Surface treatment method for quartz glass articles

Country Status (1)

Country Link
JP (1) JP4911726B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114733A (en) * 2014-12-15 2016-06-23 コニカミノルタ株式会社 Method for manufacturing optical element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669674B2 (en) * 1999-08-23 2005-07-13 東芝セラミックス株式会社 Manufacturing method of quartz glass for ultraviolet optics
JP2003012333A (en) * 2001-06-29 2003-01-15 Toshiba Ceramics Co Ltd Quarts glass member and method for producing the same

Also Published As

Publication number Publication date
JP2009203107A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP6725582B2 (en) Method and apparatus for forming a shaped glass article
JP5479468B2 (en) Method for manufacturing a shaped glass article
JP6526090B2 (en) Apparatus and method for forming a bend in thin glass sheet without slack
TWI534108B (en) Method for the production of glass components
CN103941539B (en) EUV lithography component, preparation method and titania-doped quartz glass
JP2014531395A (en) Reforming thin glass sheets
US20170283298A1 (en) Laser sintering system and method for forming high purity, low roughness, low warp silica glass
JP4462557B2 (en) Method for producing synthetic silica glass substrate for photomask, synthetic silica glass substrate for photomask by the method
JP4911726B2 (en) Surface treatment method for quartz glass articles
US9422187B1 (en) Laser sintering system and method for forming high purity, low roughness silica glass
JP5935765B2 (en) Synthetic quartz glass for nanoimprint mold, method for producing the same, and mold for nanoimprint
TW201125832A (en) Method for producing silica-based glass substrate for imprint mold, and method for producing imprint mold
KR101769670B1 (en) Method of making glass substrate and glass substrate
JP2007031217A (en) Large size synthetic quartz glass plate for excimer uv lamp device
Wang et al. Investigation on the smoothing of surface spatial frequency errors for borosilicate glass by heat-treatment
JP2835543B2 (en) Heat treatment method for synthetic quartz glass molded article for optical
JP2010083707A (en) Method for producing synthetic silica glass member
JPH09139330A (en) Dummy wafer
JP2016124746A (en) Production method of glass substrate, and production apparatus of glass substrate
JP2016124747A (en) Production method of glass substrate, and production apparatus of glass substrate
JP2010034239A (en) Manufacturing method of silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

R150 Certificate of patent or registration of utility model

Ref document number: 4911726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees