JP4910950B2 - surge absorber - Google Patents

surge absorber Download PDF

Info

Publication number
JP4910950B2
JP4910950B2 JP2007227150A JP2007227150A JP4910950B2 JP 4910950 B2 JP4910950 B2 JP 4910950B2 JP 2007227150 A JP2007227150 A JP 2007227150A JP 2007227150 A JP2007227150 A JP 2007227150A JP 4910950 B2 JP4910950 B2 JP 4910950B2
Authority
JP
Japan
Prior art keywords
surge absorber
insulating member
discharge
terminal electrode
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007227150A
Other languages
Japanese (ja)
Other versions
JP2009059633A (en
Inventor
芳幸 田中
卓 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007227150A priority Critical patent/JP4910950B2/en
Publication of JP2009059633A publication Critical patent/JP2009059633A/en
Application granted granted Critical
Publication of JP4910950B2 publication Critical patent/JP4910950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Description

本発明は、落雷等で発生するサージから様々な機器を保護し、事故を未然に防ぐのに使用するサージアブソーバに関する。   The present invention relates to a surge absorber used for protecting various devices from a surge caused by a lightning strike or the like and preventing an accident in advance.

電話機、ファクシミリ、モデム等の通信機器用の電子機器が通信線との接続する部分、電源線、アンテナ或いはCRT駆動回路等、雷サージや静電気等の異常電圧(サージ電圧)による電撃を受けやすい部分には、異常電圧によって電子機器やこの機器を搭載するプリント基板の熱的損傷又は発火等による破壊を防止するために、サージアブソーバが接続されている。   Portions where electronic devices for communication devices such as telephones, facsimiles, modems, etc. are connected to communication lines, power lines, antennas, CRT drive circuits, etc., portions that are susceptible to electrical shock due to abnormal voltage (surge voltage) such as lightning surge or static electricity A surge absorber is connected to prevent damage due to thermal damage or ignition of an electronic device or a printed circuit board on which the device is mounted due to an abnormal voltage.

従来、応答性の良好なサージアブソーバとして、例えば特許文献1に示すように、マイクロギャップを有するサージ吸収素子を用いたサージアブソーバが提案されている。このサージアブソーバは、導電性皮膜で被包した円柱状の絶縁性部材であるセラミックス部材の周面に、いわゆるマイクロギャップが形成され、セラミックス部材の両端に一対のキャップ電極を有するサージ吸収素子が放電制御ガスと共にガラス管内に収容され、円筒状のガラス管の両端にリード線を有する封止電極が高温加熱で封着された放電型サージアブソーバである。   Conventionally, a surge absorber using a surge absorbing element having a micro gap has been proposed as a surge absorber having a good response, as shown in Patent Document 1, for example. In this surge absorber, a so-called microgap is formed on the peripheral surface of a ceramic member, which is a cylindrical insulating member encapsulated with a conductive film, and a surge absorbing element having a pair of cap electrodes at both ends of the ceramic member is discharged. It is a discharge type surge absorber in which sealing electrodes that are housed in a glass tube together with a control gas and have lead wires on both ends of a cylindrical glass tube are sealed by high-temperature heating.

一方、例えば特許文献2に示すように、棒状の放電基体よりなる複数の放電電極を放電間隙を隔てて対向配置し、これを放電ガスと共に気密容器内に封入し、電極基体の下端部に接続されたリード端子を気密容器外に導出した放電型サージ吸収素子において、気密容器内の誘電体基台表面にカーボン線のトリガー電極を各放電電極と微小間隙を開けて設けたカーボントリガ線式の放電型サージ吸収素子が提案されている。   On the other hand, as shown in Patent Document 2, for example, a plurality of discharge electrodes made of rod-shaped discharge bases are arranged opposite to each other with a discharge gap therebetween, and this is enclosed in an airtight container together with a discharge gas and connected to the lower end of the electrode base body. In the discharge type surge absorbing element in which the lead terminals are led out of the hermetic vessel, a carbon trigger wire type electrode in which a carbon wire trigger electrode is provided with a small gap from each discharge electrode on the surface of the dielectric base in the hermetic vessel. Discharge type surge absorbers have been proposed.

特開2003−282216号公報JP 2003-282216 A 特許第2745393号公報Japanese Patent No. 2745393

上記従来の技術には、以下の課題が残されている。
すなわち、特許文献1に示すようなマイクロギャップ式のサージアブソーバでは、素子を作製するのに着膜などの工程が多数必要であり、製造コストが高いという不都合があった。また、特許文献2に示すようなカーボントリガ線式のサージアブソーバでは、放電に面する碍子(誘電体基台)の表面にカーボン線を描かねばならず、少なくとも量産時においてコスト上昇の要因となっていた。
The following problems remain in the conventional technology.
In other words, the microgap type surge absorber as shown in Patent Document 1 has a disadvantage in that many steps such as film formation are required to manufacture the element, and the manufacturing cost is high. Moreover, in the carbon trigger wire type surge absorber as shown in Patent Document 2, the carbon wire must be drawn on the surface of the insulator (dielectric base) facing the discharge, which causes a cost increase at least during mass production. It was.

本発明は、前述の課題に鑑みてなされたもので、低コストに作製可能で高速応答性を有するサージアブソーバを提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a surge absorber that can be manufactured at low cost and has high-speed response.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のサージアブソーバは、柱状又は筒状の絶縁性部材と、該絶縁性部材の両端部に対向配置されて該両端部に接触する一対の端子電極部材と、前記一対の端子電極部材を両端に配して前記絶縁性部材を内部に放電制御ガスと共に封止する絶縁性管と、を備え、前記絶縁性部材の両端部に、前記端子電極部材に接触する接触部から前記端子電極部材に対して漸次離間するように傾斜して半径方向に延在するテーパー面が形成され、前記絶縁性部材の外周部に、軸線に沿って延在し前記両端部を結ぶ放電空間用溝が形成されていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, a surge absorber according to the present invention includes a columnar or cylindrical insulating member, a pair of terminal electrode members that are opposed to both ends of the insulating member and in contact with the both ends, and the pair of terminal electrode members An insulating tube that seals the insulating member together with a discharge control gas inside at both ends, the terminal electrode from the contact portion that contacts the terminal electrode member at both ends of the insulating member A tapered surface that is inclined so as to be gradually separated from the member and extends in the radial direction is formed, and a discharge space groove extending along an axis and connecting the both end portions is formed on the outer peripheral portion of the insulating member. It is formed.

このサージアブソーバでは、絶縁性部材の両端部に、端子電極部材に接触する接触部から端子電極部材に対して漸次離間するように傾斜して半径方向に延在するテーパー面が形成されているので、テーパー面と端子電極部材との間に断面V字状の溝が形成され、この溝でサージ発生時にトリガー放電が行われる。したがって、テーパー面が形成された絶縁性部材を絶縁性管内に封止した簡易な構成であるため、容易にかつ低コストで作製することができると共に、溝によるトリガー放電によって高速応答性を得ることができる。さらに、テーパー面と端子電極部材との間の角度(溝の角度)をサージに応じた角度に適宜設定することで、応答性を向上させることも可能である。
さらに、絶縁性部材の外周部に、軸線に沿って延在し両端部を結ぶ放電空間用溝が形成されているので、テーパー部と端子電極部材との間の微小空間(溝)でトリガーされた微小放電が、放電空間用溝を介して短距離で進展するので、インパルスに対してより高い応答性を得ることができる。
放電空間用溝が形成されていない絶縁性部材の外周部であると、トリガーされた微小放電が一旦、電界方向とは異なる半径方向外方に進展した後に外周部表面を沿面放電しなければならず、放電する距離が伸びて進展が阻害され易く、応答性を十分に向上させることが難しかった。しかしながら、本発明では、放電空間用溝内を沿面放電させ進展させることによって放電が半径方向外方へ進展する距離が殆どなく、最短距離で進展して高い応答性が得られる。
また、放電空間用溝が形成されることで、見かけ上の外形よりも断面積が小さくなり、外周面に放電空間が広く確保され、放電制御ガスの封入量を増大させることができ、大きな電流を放電させることができる。
In this surge absorber, tapered surfaces extending in the radial direction are formed at both ends of the insulating member so as to be gradually separated from the terminal electrode member from the contact portion that contacts the terminal electrode member. A groove having a V-shaped cross section is formed between the tapered surface and the terminal electrode member, and trigger discharge is performed in this groove when a surge occurs. Therefore, since the insulating member with the tapered surface is sealed in the insulating tube, it can be manufactured easily and at a low cost, and high-speed response can be obtained by trigger discharge by the groove. Can do. Furthermore, the responsiveness can be improved by appropriately setting the angle between the tapered surface and the terminal electrode member (the groove angle) to an angle corresponding to the surge.
Furthermore, since a discharge space groove extending along the axis and connecting both ends is formed on the outer peripheral portion of the insulating member, it is triggered by a minute space (groove) between the tapered portion and the terminal electrode member. Since the minute discharge is developed at a short distance through the discharge space groove, higher response to the impulse can be obtained.
If the outer peripheral portion of the insulating member is not formed with a discharge space groove, the triggered surface must once creep along the outer peripheral surface after progressing radially outwardly different from the electric field direction. However, it is difficult to sufficiently improve the responsiveness because the discharge distance is extended and the progress is easily hindered. However, in the present invention, there is almost no distance at which the discharge progresses radially outward by creeping discharge in the discharge space groove, and high responsiveness is obtained by developing at the shortest distance.
In addition, since the discharge space groove is formed, the cross-sectional area becomes smaller than the apparent outer shape, a wide discharge space is secured on the outer peripheral surface, the amount of discharge control gas filled can be increased, and a large current Can be discharged.

また、本発明のサージアブソーバは、前記放電空間用溝が、複数形成されていることを特徴とする。すなわち、このサージアブソーバでは、複数の放電空間用溝が形成されているので、より多くの放電空間が確保されて、放電制御ガスの封入量をより増大させることができ、さらに大きな電流を放電させることができる。   The surge absorber of the present invention is characterized in that a plurality of the discharge space grooves are formed. That is, in this surge absorber, since a plurality of grooves for the discharge space are formed, more discharge spaces are secured, the amount of discharge control gas enclosed can be increased, and a larger current is discharged. be able to.

さらに、本発明のサージアブソーバは、前記絶縁性部材の外周部に、軸線部分から半径方向外方に前記絶縁性管の内面まで放射状に突出すると共に軸線に沿って延在し前記両端部を結ぶ複数の突条部が形成され、隣接する前記突条部の間に、前記放電空間用溝が形成されていることを特徴とする。すなわち、このサージアブソーバでは、突条部が絶縁性管の内面まで放射状に突出して形成されているので、突条部先端が絶縁性管に当接して絶縁性部材が絶縁性管内に支持されて位置決めされる。これにより、絶縁性部材を絶縁性管内に投入した際に、倒れてしまうことを防ぐことができる。   Furthermore, the surge absorber of the present invention projects radially from the axial portion to the inner surface of the insulating tube radially outward from the axial portion and extends along the axial line to connect the both end portions to the outer peripheral portion of the insulating member. A plurality of protrusions are formed, and the discharge space groove is formed between the adjacent protrusions. That is, in this surge absorber, since the protrusion is formed to protrude radially to the inner surface of the insulating tube, the tip of the protrusion is in contact with the insulating tube and the insulating member is supported in the insulating tube. Positioned. Thereby, when an insulating member is thrown in in an insulating pipe | tube, it can prevent falling down.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るサージアブソーバによれば、絶縁性部材の両端部に、端子電極部材に接触する接触部から端子電極部材に対して漸次離間するように傾斜して半径方向に延在するテーパー面が形成されているので、簡易な構成で容易にかつ低コストで作製することができると共に、テーパー面と端子電極部材との間の溝によるトリガー放電によって高速応答性を得ることができる。さらに、絶縁性部材の外周部に、軸線に沿って延在し両端部を結ぶ放電空間用溝が形成されているので、短距離で放電が進展して高い応答性を得ることができると共に、放電空間が広く確保され、放電制御ガスの封入量増大によって大きな電流を放電させることができる。
The present invention has the following effects.
That is, according to the surge absorber according to the present invention, the taper that extends in the radial direction is inclined at both ends of the insulating member so as to be gradually separated from the terminal electrode member from the contact portion that contacts the terminal electrode member. Since the surface is formed, it can be easily manufactured at a low cost with a simple configuration, and high-speed response can be obtained by trigger discharge by a groove between the tapered surface and the terminal electrode member. Furthermore, since the discharge space groove extending along the axis and connecting the both ends is formed on the outer peripheral portion of the insulating member, the discharge progresses in a short distance and high responsiveness can be obtained. A large discharge space is secured, and a large current can be discharged by increasing the amount of discharge control gas enclosed.

以下、本発明に係るサージアブソーバの第1実施形態を、図1及び図2を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, a first embodiment of a surge absorber according to the present invention will be described with reference to FIGS. 1 and 2. In each drawing used for the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.

本実施形態のサージアブソーバ1は、図1に示すように、柱状の絶縁性部材2と、該絶縁性部材2の両端部に対向配置されて該両端部に接触する一対の端子電極部材3と、一対の端子電極部材3を両端に配して絶縁性部材2を内部に放電制御ガス(図示略)と共に封止する絶縁性管4と、一対の端子電極部材3の外端面に基端が固定された一対のリード線5と、を備えている。   As shown in FIG. 1, the surge absorber 1 of the present embodiment includes a columnar insulating member 2, a pair of terminal electrode members 3 that are disposed opposite to both ends of the insulating member 2 and are in contact with the both ends. A pair of terminal electrode members 3 at both ends and an insulating tube 4 that seals the insulating member 2 with a discharge control gas (not shown) inside, and a base end on the outer end surface of the pair of terminal electrode members 3 And a pair of fixed lead wires 5.

上記絶縁性部材2は、比誘電率が5〜100、好ましくは8.5〜40の碍子であって、絶縁性管4よりも比誘電率が大きく、ジルコニア程度の比誘電率を有するものである。
この絶縁性部材2の両端部には、端子電極部材3に接触する中心の接触部から外周面まで端子電極部材3に対して漸次離間するように傾斜して半径方向に延在するテーパー面2aが形成されている。すなわち、このテーパー面2aと端子電極部材3との間に溝が形成されている。このテーパー面2aは、一定の角度で端子電極部材3に接触している。このテーパー面2aと端子電極部材3との角度は、1〜60°の範囲内に設定されている。
The insulating member 2 is an insulator having a relative dielectric constant of 5 to 100, preferably 8.5 to 40, having a relative dielectric constant larger than that of the insulating tube 4 and having a relative dielectric constant of about zirconia. is there.
At both ends of the insulating member 2, tapered surfaces 2 a that are inclined so as to be gradually separated from the terminal electrode member 3 from the central contact portion that contacts the terminal electrode member 3 to the outer peripheral surface and extend in the radial direction. Is formed. That is, a groove is formed between the tapered surface 2 a and the terminal electrode member 3. The tapered surface 2a is in contact with the terminal electrode member 3 at a certain angle. The angle between the tapered surface 2a and the terminal electrode member 3 is set in the range of 1 to 60 °.

また、絶縁性部材2の外周部に、軸線部分から半径方向外方に絶縁性管4の内面まで放射状に突出すると共に軸線に沿って延在し両端部を結ぶ複数の突条部2bが形成されている。そして、絶縁性部材2の外周部には、隣接する突条部2bの間に、軸線に沿って延在し両端部を結ぶ複数の放電空間用溝2cが形成されている。
なお、第1実施形態の絶縁性部材2は、4つの突条部2bが軸線から放射状に突出し、軸線に直交する断面形状が十字型になっている。
In addition, a plurality of protrusions 2b are formed on the outer peripheral portion of the insulating member 2 so as to project radially from the axial portion to the inner surface of the insulating tube 4 radially outward and extend along the axial line to connect both ends. Has been. A plurality of discharge space grooves 2c extending along the axis and connecting both ends are formed between the adjacent protrusions 2b on the outer peripheral portion of the insulating member 2.
In the insulating member 2 of the first embodiment, the four ridges 2b protrude radially from the axis, and the cross-sectional shape orthogonal to the axis is a cross shape.

上記端子電極部材3は、放電電極であって、高温加熱で絶縁性管4の両端に封着されており、絶縁性部材2の中心軸が絶縁性管4の中心軸に一致するように封止される。
上記絶縁性管4は、鉛ガラス等のガラス管又はセラミックス管で形成されている。
上記放電制御ガスは、He、Ar、Ne、Xe、SF、CO、C、C、CF、H及びこれらの混合ガス等の不活性ガスである。
The terminal electrode member 3 is a discharge electrode and is sealed at both ends of the insulating tube 4 by high-temperature heating, and sealed so that the central axis of the insulating member 2 coincides with the central axis of the insulating tube 4. Stopped.
The insulating tube 4 is formed of a glass tube such as lead glass or a ceramic tube.
The discharge control gas is an inert gas such as He, Ar, Ne, Xe, SF 6 , CO 2 , C 3 F 8 , C 2 F 6 , CF 4 , H 2, or a mixed gas thereof.

このサージアブソーバ1を作製するには、まず絶縁性部材2を一対の端子電極部材3で挟んで保持し、この状態で絶縁性管4内に挿入する。そして、絶縁性管4内の空気を所定の放電制御ガス(例えば、Ar)で置換した後に、絶縁性管4の両端を加熱して溶かすことで端子電極部材3と密着させて封止を行う。これにより、絶縁性部材2を絶縁性管4内に封入したサージアブソーバ1が得られる。   In order to produce this surge absorber 1, first, the insulating member 2 is held between the pair of terminal electrode members 3, and inserted into the insulating tube 4 in this state. Then, after the air in the insulating tube 4 is replaced with a predetermined discharge control gas (for example, Ar), both ends of the insulating tube 4 are heated and melted to be brought into close contact with the terminal electrode member 3 and sealed. . Thereby, the surge absorber 1 in which the insulating member 2 is sealed in the insulating tube 4 is obtained.

このサージアブソーバ1では、過電圧又は過電流が侵入すると、まずテーパー面2aと端子電極部材3との間の溝でトリガー放電が行われ、さらに放電が進展して絶縁性部材2の放電空間用溝2cで沿面放電が行われることでサージが吸収される。   In this surge absorber 1, when overvoltage or overcurrent enters, trigger discharge is first performed in the groove between the taper surface 2 a and the terminal electrode member 3, and further discharge progresses to form a discharge space groove in the insulating member 2. Surge is absorbed by creeping discharge in 2c.

このように本実施形態のサージアブソーバ1では、絶縁性部材2の両端部に、端子電極部材3に接触する接触部から端子電極部材3に対して漸次離間するように傾斜して半径方向に延在するテーパー面2aが形成されているので、テーパー面2aと端子電極部材3との間に断面V字状の溝が形成され、この溝でサージ発生時にトリガー放電が行われる。   As described above, in the surge absorber 1 according to the present embodiment, the both ends of the insulating member 2 are inclined so as to be gradually separated from the terminal electrode member 3 from the contact portion that contacts the terminal electrode member 3 and extend in the radial direction. Since the existing tapered surface 2a is formed, a groove having a V-shaped cross section is formed between the tapered surface 2a and the terminal electrode member 3, and trigger discharge is performed in this groove when a surge occurs.

したがって、テーパー面2aが形成された絶縁性部材2を絶縁性管4内に封止した簡易な構成であるため、容易にかつ低コストで作製することができると共に、溝によるトリガー放電によって高速応答性を得ることができる。さらに、テーパー面2aと端子電極部材3との間の角度(溝の角度)をサージに応じた角度に適宜設定することで、応答性を向上させることも可能である。   Accordingly, since the insulating member 2 with the tapered surface 2a is sealed in the insulating tube 4, it can be manufactured easily and at low cost, and at the same time a high-speed response is achieved by the trigger discharge by the groove. Sex can be obtained. Furthermore, it is also possible to improve the responsiveness by appropriately setting the angle (groove angle) between the tapered surface 2a and the terminal electrode member 3 to an angle corresponding to the surge.

また、絶縁性部材2の外周部に、軸線に沿って延在し両端部を結ぶ放電空間用溝2cが形成されているので、図2の(a)に示すように、テーパー面2aと端子電極部材3との間の微小空間(溝)でトリガーされた微小放電が、放電空間用溝2cを介して短距離で進展するので、インパルスに対してより高い応答性を得ることができる。
図2の(b)に示すように、放電空間用溝2cが形成されていない絶縁性部材12の外周部であると、テーパー部12aでトリガーされた微小放電が一旦、電界方向とは異なる半径方向外方に進展した後に外周部表面を沿面放電しなければならず、放電する距離が伸びて進展が阻害され易く、応答性を十分に向上させることが難しかった。しかしながら、本実施形態では、放電空間用溝2c内を沿面放電させ進展させることによって放電が半径方向外方へ進展する距離が殆どなく、最短距離で進展して高い応答性が得られる。
Further, since a discharge space groove 2c extending along the axis and connecting both ends is formed on the outer peripheral portion of the insulating member 2, as shown in FIG. 2A, the tapered surface 2a and the terminal Since the micro discharge triggered in the micro space (groove) between the electrode members 3 develops in a short distance via the discharge space groove 2c, higher response to the impulse can be obtained.
As shown in FIG. 2B, if the discharge space groove 2c is not formed on the outer peripheral portion of the insulating member 12, the microdischarge triggered by the tapered portion 12a once has a radius different from the electric field direction. After progressing outward in the direction, the surface of the outer peripheral portion must be subjected to creeping discharge, the discharge distance is extended, and the progress is easily hindered, making it difficult to sufficiently improve the responsiveness. However, in the present embodiment, there is almost no distance at which the discharge progresses radially outward by creeping discharge in the discharge space groove 2c, and high responsiveness is obtained by developing at the shortest distance.

また、断面形状が多角形状の十字型とされ、放電空間用溝2cが複数形成されることで、見かけ上の外形よりも断面積が小さくなり、外周面に放電空間が広く確保され、放電制御ガスの封入量を増大させることができ、大きな電流を放電させることができる。
さらに、突条部2bが絶縁性管4の内面まで放射状に突出して形成されているので、突条部2b先端が絶縁性管4に当接して絶縁性部材2が絶縁性管4内に支持されて位置決めされる。これにより、絶縁性部材2を絶縁性管4内に投入した際に、倒れてしまうことを防ぐことができる。
In addition, the cross-sectional shape is a polygonal cross shape, and a plurality of discharge space grooves 2c are formed, so that the cross-sectional area is smaller than the apparent outer shape, a wide discharge space is secured on the outer peripheral surface, and discharge control is performed. The amount of gas enclosed can be increased, and a large current can be discharged.
Further, since the protrusion 2b is formed to protrude radially to the inner surface of the insulating tube 4, the tip of the protrusion 2b contacts the insulating tube 4, and the insulating member 2 is supported in the insulating tube 4. To be positioned. Thereby, when the insulating member 2 is put into the insulating tube 4, it can be prevented from falling down.

次に、本発明に係るサージアブソーバの第2実施形態から第6実施形態について、図3から図7を参照して以下に説明する。なお、以下の各実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, the second to sixth embodiments of the surge absorber according to the present invention will be described below with reference to FIGS. In the following description of each embodiment, the same constituent elements described in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、絶縁性部材2のテーパー面2aが両端部の中心の接触部から外周面まで形成されているのに対し、第2実施形態のサージアブソーバ21では、図3に示すように、絶縁性部材22の両端部において中央が凹部22dとされ、その周囲が接触部とされている点である。すなわち、第2実施形態のサージアブソーバ21では、凹部21dの内面にもテーパー面22aが形成されている。したがって、凹部22dの内面のテーパー面22aと外側のテーパー面22aとのいずれかでトリガー放電が生じ、放電空間用溝22c内を沿面放電してサージが吸収される。なお、第2実施形態では、凹部22dを設けた分だけ、より放電空間を大きくすることができる。   The difference between the second embodiment and the first embodiment is that, in the first embodiment, the tapered surface 2a of the insulating member 2 is formed from the contact portion at the center of both ends to the outer peripheral surface. In the surge absorber 21 of the second embodiment, as shown in FIG. 3, the center is a recess 22 d at both ends of the insulating member 22, and the periphery is a contact portion. That is, in the surge absorber 21 of the second embodiment, the tapered surface 22a is also formed on the inner surface of the recess 21d. Therefore, trigger discharge occurs on either the tapered surface 22a on the inner surface of the recess 22d or the outer tapered surface 22a, and the surge is absorbed by creeping discharge in the discharge space groove 22c. In the second embodiment, the discharge space can be increased by the amount of the recess 22d.

第3実施形態と第1実施形態との異なる点は、第1実施形態では、突条部2bが軸線を中心に四方に突出した断面形状十字型の絶縁性部材2を採用しているのに対し、第3実施形態のサージアブソーバ31では、図4に示すように、突条部32bが軸線を中心に三方に放射状に突出した絶縁性部材32を採用している点である。すなわち、第3実施形態のサージアブソーバ31では、3つのテーパー面32aのいずれかで発生したトリガー放電が、3つの放電空間用溝32c内で沿面放電してサージが吸収される。なお、第3実施形態では、突条部32bを4つから3つに減少させている分だけ、より放電空間を大きくすることができる。   The difference between the third embodiment and the first embodiment is that, in the first embodiment, the ridge portion 2b employs a cross-shaped insulating member 2 having a cross-sectional shape projecting in four directions around the axis. On the other hand, in the surge absorber 31 of the third embodiment, as shown in FIG. 4, the protrusion 32b employs an insulating member 32 that protrudes radially in three directions around the axis. That is, in the surge absorber 31 of the third embodiment, the trigger discharge generated in any one of the three tapered surfaces 32a is creepingly discharged in the three discharge space grooves 32c to absorb the surge. In the third embodiment, the discharge space can be further increased by the amount of the protrusions 32b being reduced from four to three.

第4実施形態と第2実施形態との異なる点は、第2実施形態では、突条部22bが軸線を中心に四方に突出した断面形状十字型の絶縁性部材22を採用しているのに対し、第4実施形態のサージアブソーバ41では、図5に示すように、第3実施形態と同様に突条部42bが軸線を中心に三方に放射状に突出した絶縁性部材42を採用している点である。すなわち、第4実施形態のサージアブソーバ41では、凹部42d内の3つのテーパー面42aと外側の3つのテーパー面42aとのいずれかで発生したトリガー放電が、3つの放電空間用溝42cのいずれかで沿面放電してサージが吸収される。   The difference between the fourth embodiment and the second embodiment is that, in the second embodiment, the ridge 22b employs a cross-shaped insulating member 22 having a cross-sectional shape that protrudes in four directions around the axis. On the other hand, in the surge absorber 41 of the fourth embodiment, as shown in FIG. 5, as in the third embodiment, the protruding portion 42b employs an insulating member 42 that protrudes radially in three directions around the axis. Is a point. That is, in the surge absorber 41 of the fourth embodiment, the trigger discharge generated on any of the three tapered surfaces 42a in the recess 42d and the outer three tapered surfaces 42a is caused by any of the three discharge space grooves 42c. The surge is absorbed by creeping discharge.

第5実施形態と第1実施形態との異なる点は、第1実施形態では、4つのテーパー面2aが端子電極部材3に対して全て同じ傾斜角度であるのに対し、第5実施形態のサージアブソーバ51では、図6に示すように、4つのテーパー面52aのうち2つのテーパー面52aが他の2つのテーパー面52aよりも上記傾斜角度が大きく設定されている点である。すなわち、第5実施形態のサージアブソーバ51では、傾斜角度の異なる二対のテーパー面52aを有した異なる形状の二対の突条部52bを有している。したがって、第5実施形態のサージアブソーバ51では、異なる傾斜角度のテーパー面52aを有しているので、サージのレベルに適した方の角度のテーパー面52aでトリガー放電がなされ、より応答性を向上させることができる。   The difference between the fifth embodiment and the first embodiment is that in the first embodiment, the four tapered surfaces 2a are all at the same inclination angle with respect to the terminal electrode member 3, whereas the surge of the fifth embodiment is different. In the absorber 51, as shown in FIG. 6, the two tapered surfaces 52a out of the four tapered surfaces 52a are set to have a larger inclination angle than the other two tapered surfaces 52a. In other words, the surge absorber 51 of the fifth embodiment has two pairs of protrusions 52b having different shapes and having two pairs of tapered surfaces 52a having different inclination angles. Therefore, since the surge absorber 51 of the fifth embodiment has the tapered surface 52a having different inclination angles, the trigger discharge is performed on the tapered surface 52a having the angle suitable for the surge level, and the responsiveness is further improved. Can be made.

第6実施形態と第1実施形態との異なる点は、第1実施形態では、絶縁性部材2の両端面にそれぞれ4つの突条部2bが形成されているのに対し、第6実施形態のサージアブソーバ61では、図7に示すように、軸線方向に突出量が漸次減少する2対の突条部62bが向きを変えて互い違いに絶縁性部材62の外周面に形成され、絶縁性部材62の両端面にそれぞれ2つのテーパー面61aが形成されている点である。すなわち、第6実施形態のサージアブソーバ61では、片側の2つのテーパー面62aで生じたトリガー放電が、放電空間用溝62c内を沿面放電してサージが吸収される。なお、第6実施形態では、突条部61bの突出量が漸次減少されている分だけ、より放電空間を大きくすることができる。   The difference between the sixth embodiment and the first embodiment is that, in the first embodiment, four protrusions 2b are formed on both end faces of the insulating member 2, respectively. In the surge absorber 61, as shown in FIG. 7, two pairs of protrusions 62 b whose projecting amount gradually decreases in the axial direction are alternately formed on the outer peripheral surface of the insulating member 62. The two taper surfaces 61a are formed on the both end surfaces of each. That is, in the surge absorber 61 of the sixth embodiment, the trigger discharge generated on the two tapered surfaces 62a on one side is creepingly discharged in the discharge space groove 62c and the surge is absorbed. In the sixth embodiment, the discharge space can be further increased by the amount by which the protruding amount of the protrusion 61b is gradually reduced.

次に、本発明に係るサージアブソーバを、実際に作製した実施例により評価した結果を具体的に説明する。   Next, the results of evaluating the surge absorber according to the present invention by the actually produced examples will be specifically described.

本発明に係るサージアブソーバの実施例としては、第1実施形態のサージアブソーバ1と同じ形態(断面形状十字型のもの)のものを作製した。また、絶縁性管4としてはガラス管を使用し、絶縁性部材2としては比誘電率が8.5(実施例)の碍子をそれぞれ使用した。また、テーパー面2aと端子電極部材3との角度(溝の角度)は、45°に設定した。なお、絶縁性管4内に封入するガスとしては、Arを用いた。   As an example of the surge absorber according to the present invention, a surge absorber having the same form (cross-sectional shape) as the surge absorber 1 of the first embodiment was produced. Further, a glass tube was used as the insulating tube 4, and an insulator having a relative dielectric constant of 8.5 (Example) was used as the insulating member 2. The angle between the tapered surface 2a and the terminal electrode member 3 (groove angle) was set to 45 °. In addition, Ar was used as a gas sealed in the insulating tube 4.

また、比較例1として、図2の(b)に示すように、放電空間用溝2cを形成せず、両端面に45°のテーパー面2aが形成された円柱状であって比誘電率8.5の絶縁性部材12を用いたものも同様に作製した。
さらに、比較例2として、比較例1よりも径が小さい円柱状の絶縁性部材であって、他の条件が同様のものを作製した。
Further, as Comparative Example 1, as shown in FIG. 2B, the discharge space groove 2c is not formed, but a cylindrical shape in which tapered surfaces 2a of 45 ° are formed on both end faces, and the relative permittivity is 8 A member using the insulating member 12 of .5 was produced in the same manner.
Furthermore, as Comparative Example 2, a cylindrical insulating member having a diameter smaller than that of Comparative Example 1 and the other conditions were the same.

これら実施例及び比較例1,2について、衝撃比(「インパルス放電開始電圧」/「直流放電開始電圧」)を測定した。なお、衝撃比は、1に近いほど応答性がよい。また、上記インパルスは、電圧波形1.2/50、5kVを印加した。
この評価の結果、実施例の衝撃比が2.2、比較例1の衝撃比が2.6、比較例2の衝撃比が2.6であった。このように、本発明の実施例では、比較例に比べて衝撃比が小さく、1に近い値であり、高速応答性を有していることがわかる。
For these Examples and Comparative Examples 1 and 2, the impact ratio (“impulse discharge start voltage” / “DC discharge start voltage”) was measured. The closer the impact ratio is to 1, the better the response. In addition, a voltage waveform of 1.2 / 50, 5 kV was applied as the impulse.
As a result of the evaluation, the impact ratio of the example was 2.2, the impact ratio of Comparative Example 1 was 2.6, and the impact ratio of Comparative Example 2 was 2.6. Thus, in the Example of this invention, it can be seen that the impact ratio is smaller than that of the comparative example, which is a value close to 1, and has high-speed response.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明に係るサージアブソーバの第1実施形態において、サージアブソーバの分解斜視図並びに絶縁性管及び端子電極部材を破断して絶縁性部材を露出させた側面図である。In 1st Embodiment of the surge absorber which concerns on this invention, it is the exploded perspective view of a surge absorber, and the side view which fractured | ruptured the insulating tube and the terminal electrode member, and exposed the insulating member. 本発明に係るサージアブソーバの第1実施形態において、放電経路を説明するための本実施形態を示す斜視図及び比較例を示す斜視図である。In 1st Embodiment of the surge absorber which concerns on this invention, it is a perspective view which shows this embodiment for demonstrating a discharge path, and a perspective view which shows a comparative example. 本発明に係るサージアブソーバの第2実施形態において、サージアブソーバの分解斜視図並びに絶縁性管及び端子電極部材を破断して絶縁性部材を露出させた側面図である。In 2nd Embodiment of the surge absorber which concerns on this invention, it is the disassembled perspective view of a surge absorber, and the side view which fractured | ruptured the insulating pipe | tube and the terminal electrode member and exposed the insulating member. 本発明に係るサージアブソーバの第3実施形態において、サージアブソーバの分解斜視図並びに絶縁性管及び端子電極部材を破断して絶縁性部材を露出させた側面図である。In 3rd Embodiment of the surge absorber which concerns on this invention, it is the exploded perspective view of a surge absorber, and the side view which fractured | ruptured the insulating tube and the terminal electrode member, and exposed the insulating member. 本発明に係るサージアブソーバの第4実施形態において、サージアブソーバの分解斜視図並びに絶縁性管及び端子電極部材を破断して絶縁性部材を露出させた側面図である。In 4th Embodiment of the surge absorber which concerns on this invention, it is the exploded perspective view of a surge absorber, and the side view which fractured | ruptured the insulating tube and the terminal electrode member, and exposed the insulating member. 本発明に係るサージアブソーバの第5実施形態において、サージアブソーバの分解斜視図並びに絶縁性管及び端子電極部材を破断して絶縁性部材を露出させた側面図である。In 5th Embodiment of the surge absorber which concerns on this invention, it is the exploded perspective view of a surge absorber, and the side view which fractured | ruptured the insulating tube and the terminal electrode member, and exposed the insulating member. 本発明に係るサージアブソーバの第6実施形態において、サージアブソーバの分解斜視図並びに絶縁性管及び端子電極部材を破断して絶縁性部材を露出させた側面図である。In 6th Embodiment of the surge absorber which concerns on this invention, it is the exploded perspective view of a surge absorber, and the side view which fractured | ruptured the insulating tube and the terminal electrode member, and exposed the insulating member.

符号の説明Explanation of symbols

1,21,31,41,51,61…サージアブソーバ、2,12,22,32,42,52,62…絶縁性部材、2a,12a,22a,32a,42a,52a,62a…テーパー面、2b,22b,32b,42b,52b,62b…突条部、2c,22c,32c,42c,52c,62c…放電空間用溝、3…端子電極部材、4…絶縁性管、5…リード線   1, 21, 31, 41, 51, 61 ... surge absorber, 2, 12, 22, 32, 42, 52, 62 ... insulating member, 2a, 12a, 22a, 32a, 42a, 52a, 62a ... tapered surface, 2b, 22b, 32b, 42b, 52b, 62b ... ridges, 2c, 22c, 32c, 42c, 52c, 62c ... discharge space groove, 3 ... terminal electrode member, 4 ... insulating tube, 5 ... lead wire

Claims (3)

柱状又は筒状の絶縁性部材と、
該絶縁性部材の両端部に対向配置されて該両端部に接触する一対の端子電極部材と、
前記一対の端子電極部材を両端に配して前記絶縁性部材を内部に放電制御ガスと共に封止する絶縁性管と、を備え、
前記絶縁性部材の両端部に、前記端子電極部材に接触する接触部から前記端子電極部材に対して漸次離間するように傾斜して半径方向に延在するテーパー面が形成され、
前記絶縁性部材の外周部に、軸線に沿って延在し前記両端部を結ぶ放電空間用溝が形成されていることを特徴とするサージアブソーバ。
A columnar or tubular insulating member;
A pair of terminal electrode members disposed opposite to both ends of the insulating member and in contact with the both ends;
An insulating tube that arranges the pair of terminal electrode members at both ends and seals the insulating member together with a discharge control gas inside,
At both end portions of the insulating member, tapered surfaces extending in a radial direction are formed so as to be gradually separated from the terminal electrode member from a contact portion that contacts the terminal electrode member,
A surge absorber, wherein a discharge space groove extending along an axis and connecting the both end portions is formed on an outer peripheral portion of the insulating member.
請求項1に記載のサージアブソーバにおいて、
前記放電空間用溝が、複数形成されていることを特徴とするサージアブソーバ。
The surge absorber according to claim 1,
A surge absorber comprising a plurality of the discharge space grooves.
請求項2に記載のサージアブソーバにおいて、
前記絶縁性部材の外周部に、軸線部分から半径方向外方に前記絶縁性管の内面まで放射状に突出すると共に軸線に沿って延在し前記両端部を結ぶ複数の突条部が形成され、
隣接する前記突条部の間に、前記放電空間用溝が形成されていることを特徴とするサージアブソーバ。
The surge absorber according to claim 2,
A plurality of ridges are formed on the outer peripheral portion of the insulating member, radially projecting radially outward from the axial portion to the inner surface of the insulating tube and extending along the axial line and connecting the both ends.
The surge absorber, wherein the discharge space groove is formed between the adjacent protrusions.
JP2007227150A 2007-08-31 2007-08-31 surge absorber Active JP4910950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227150A JP4910950B2 (en) 2007-08-31 2007-08-31 surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227150A JP4910950B2 (en) 2007-08-31 2007-08-31 surge absorber

Publications (2)

Publication Number Publication Date
JP2009059633A JP2009059633A (en) 2009-03-19
JP4910950B2 true JP4910950B2 (en) 2012-04-04

Family

ID=40555186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227150A Active JP4910950B2 (en) 2007-08-31 2007-08-31 surge absorber

Country Status (1)

Country Link
JP (1) JP4910950B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878134A (en) * 1994-09-08 1996-03-22 Patent Puromooto Center:Kk Serge absorber and its manufacture
JP3536592B2 (en) * 1997-06-10 2004-06-14 三菱マテリアル株式会社 Discharge tube type surge absorber
JPH11317276A (en) * 1998-04-30 1999-11-16 Sumishou Kk Arrester

Also Published As

Publication number Publication date
JP2009059633A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US20110279218A1 (en) Double wound fusible element and associated fuse
US9224564B2 (en) Fuse with counter-bore body
JP5003888B2 (en) surge absorber
JP6218962B2 (en) Surge protection element
JP4910950B2 (en) surge absorber
JP5003889B2 (en) surge absorber
WO2014168589A1 (en) Flat gas discharge tube
JP2010198738A (en) Surge absorber, and method of manufacturing the same
JP5316020B2 (en) surge absorber
JPH11339924A (en) Manufacture of surge absorbing element and surge absorbing element thereby
US5768085A (en) Reserve series gap for a gas-filled surge diverter and gas-filled three-electrode surge diverter with mounted reserve series gaps
JP7459767B2 (en) surge protection element
US9627855B2 (en) Surge arrester
JP6094882B2 (en) surge absorber
JP7161144B2 (en) surge protective element
JP6521313B2 (en) surge absorber
JP6658433B2 (en) Surge protection element
JP2023119198A (en) surge protective element
JP5395038B2 (en) Gas insulated electrical equipment
JP2010192322A (en) Surge absorber, and manufacturing method thereof
JP2024070997A (en) Surge protection device
JP2927698B2 (en) Discharge type surge absorbing element
JP6167681B2 (en) surge absorber
CN117134199A (en) Gas discharge tube
WO2012020448A1 (en) Surge absorber and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3