JP4910292B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4910292B2
JP4910292B2 JP2005033050A JP2005033050A JP4910292B2 JP 4910292 B2 JP4910292 B2 JP 4910292B2 JP 2005033050 A JP2005033050 A JP 2005033050A JP 2005033050 A JP2005033050 A JP 2005033050A JP 4910292 B2 JP4910292 B2 JP 4910292B2
Authority
JP
Japan
Prior art keywords
region
film
insulating film
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005033050A
Other languages
Japanese (ja)
Other versions
JP2006222210A (en
Inventor
泰正 渡辺
秀明 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005033050A priority Critical patent/JP4910292B2/en
Publication of JP2006222210A publication Critical patent/JP2006222210A/en
Application granted granted Critical
Publication of JP4910292B2 publication Critical patent/JP4910292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

この発明は、高耐圧の半導体装置に関する。   The present invention relates to a high breakdown voltage semiconductor device.

ワンチップパワーICは、シリコン基板に制御用LSIと電力用パワー素子を作り込むことにより、チップサイズの縮小や高機能化を図るものである。
商用電源電圧は、一般に100〜240Vであるため、目的とする機器に合わせて電圧変換を行なう必要がある。たとえば、コンピュータやエレクトロニクス機器では半導体素子の動作電圧である数V程度までトランスを用いて降圧してきた。
近年、携帯機器の発展によりトランスについての小型・軽量化が行なわれるようになった。高周波化によりインダクタンスの低減を図るものであり、数百キロヘルツから数メガヘルツで高速スイッチングを行なう。スイッチング素子には、電源電圧の最大波高値が印加されるため、例えば、240V電源用素子耐圧は約700V必要である。シリコン半導体では、高耐圧化は必然的に素子長さの増加を伴い、コスト増の要因となっていた。
The one-chip power IC is intended to reduce the chip size and increase the functionality by forming a control LSI and a power element on a silicon substrate.
Since the commercial power supply voltage is generally 100 to 240 V, it is necessary to perform voltage conversion according to the target device. For example, in computers and electronic equipment, the voltage is stepped down using a transformer to about several volts, which is the operating voltage of a semiconductor element.
In recent years, with the development of portable devices, transformers have become smaller and lighter. Inductance is reduced by using higher frequencies, and high-speed switching is performed from several hundred kilohertz to several megahertz. Since the maximum peak value of the power supply voltage is applied to the switching element, for example, the element withstand voltage of 240V power supply needs about 700V. In a silicon semiconductor, a high breakdown voltage inevitably accompanies an increase in the element length, which causes an increase in cost.

これを解決するための手段が、特許文献1の「横型高耐圧トレンチMOSFETおよびその製造方法」に開示されている。半導体基板上にトレンチを形成し、トレンチ周囲にオフセットドレイン領域を設け、高耐圧化を実現しようとするものである。例えば、耐圧700Vの素子におけるオフセットドレイン長は60μm必要だが、これを深さ20μm、幅20μm位のトレンチにより代替するものである。
図9は、従来のトレンチ横型パワーMOSFETの要部断面図である。図中の符号で、1はp型半導体基板、2はトレンチ、2aはトレンチを充填する絶縁物、3はトレンチ周囲に均一な厚みを有するn- オフセットドレイン領域、4はpウェル領域、5はpベース領域、6はnウェル領域、7はn+ ソース領域、8はn+ ドレイン領域、9はゲート絶縁膜、10はゲート電極、11は層間絶縁膜、12はソース電極、13はドレイン電極、14は層間絶縁膜および16は封止用樹脂層(樹脂被覆層)である。
Means for solving this problem is disclosed in “Lateral high voltage trench MOSFET and manufacturing method thereof” of Patent Document 1. A trench is formed on a semiconductor substrate, and an offset drain region is provided around the trench to achieve a high breakdown voltage. For example, the offset drain length of an element having a withstand voltage of 700 V is required to be 60 μm, and this is replaced with a trench having a depth of 20 μm and a width of about 20 μm.
FIG. 9 is a cross-sectional view of a main part of a conventional trench lateral power MOSFET. In the figure, 1 is a p-type semiconductor substrate, 2 is a trench, 2a is an insulator filling the trench, 3 is an n - offset drain region having a uniform thickness around the trench, 4 is a p-well region, 5 is p base region, 6 is an n well region, 7 is an n + source region, 8 is an n + drain region, 9 is a gate insulating film, 10 is a gate electrode, 11 is an interlayer insulating film, 12 is a source electrode, and 13 is a drain electrode. , 14 are interlayer insulating films, and 16 is a sealing resin layer (resin coating layer).

層間絶縁膜14は、ソース電極12、ドレイン電極13の保護膜として水分が透過し難い窒化膜を堆積する。また、封止用樹脂層16は、信頼性の観点から、可動イオンの少ない材料を採用する必要がある。
トレンチ横型素子では、ソース電極12とドレイン電極13の間の間隔を10μm程度に設定するため、層間絶縁膜11および14、封止用樹脂層16に印加される電界強度はより高くなり、これらの膜11、14内部および界面21に分極電荷や可動イオンを誘導し蓄積する。その結果として、電位分布が変化し、例えば、ソース電極12端部近傍に樹脂の正イオン22が蓄積されたり、ドレイン電極13端部に負イオン23が蓄積されることで耐圧が低下する。また、ソース電極12端部またはドレイン電極13端部に誘導された正イオン22または負イオン23によりオン状態でのn- オフセットドレイン領域での電位分布が影響を受けて、オン電流が流れ難くなり、オン抵抗が増大する。
The interlayer insulating film 14 deposits a nitride film that hardly allows moisture to pass therethrough as a protective film for the source electrode 12 and the drain electrode 13. In addition, the sealing resin layer 16 needs to employ a material with less movable ions from the viewpoint of reliability.
In the trench lateral element, since the distance between the source electrode 12 and the drain electrode 13 is set to about 10 μm, the electric field strength applied to the interlayer insulating films 11 and 14 and the sealing resin layer 16 becomes higher. Polarized charges and mobile ions are induced and accumulated in the films 11 and 14 and the interface 21. As a result, the potential distribution changes. For example, resin positive ions 22 are accumulated near the end of the source electrode 12, or negative ions 23 are accumulated at the end of the drain electrode 13. In addition, the potential distribution in the n offset drain region in the on state is affected by the positive ions 22 or the negative ions 23 induced at the end of the source electrode 12 or the drain electrode 13, and the on-current hardly flows. On-resistance increases.

特許文献2では、モールド樹脂中の可動イオンが電極近傍へ誘起され、より下層部に配置されたプラズマ酸化膜に分極を生じさせて、デバイスの電位分布が変動し、耐圧変動を起こす。これを防止するために、窒素添加したTEOS(Tetraethyl−Ortho−Silicate)膜を形成して、電気電導度を酸化膜と窒化膜の中間値とし、TEOS膜内に生じた分極電荷をリーク電流として除去することで耐圧変動を抑制できることが開示されている。
また、特許文献3の図11、図12では、モールド樹脂中の可動イオンの影響を防止するため、ソース電極上、ドレイン電極上および層間絶縁膜上にシリコンの組成を高めに設定したSi+ 窒化膜を形成し、さらに通常の窒化膜(絶縁窒化膜)であるパッシベーション膜などを形成し、さらにその上にソース電極またはドレイン電極と接続する導電膜を形成することで、Si+ 窒化膜を空乏化してリーク電流を低く抑えて高温でのパワーMOSFETの熱暴走(耐圧低下)を防ぐことができる。また、モールド樹脂の可動イオンの影響を遮蔽でき、パワーMOSFETの耐圧変動を無くすことが開示されている。
In Patent Document 2, mobile ions in a mold resin are induced in the vicinity of an electrode, causing polarization in a plasma oxide film disposed in a lower layer, thereby changing the potential distribution of the device and causing a change in breakdown voltage. In order to prevent this, a TEOS (tetraethyl-ortho-silicate) film doped with nitrogen is formed, the electric conductivity is set to an intermediate value between the oxide film and the nitride film, and the polarization charge generated in the TEOS film is used as a leakage current. It is disclosed that the withstand voltage fluctuation can be suppressed by removing.
Further, in FIGS. 11 and 12 of Patent Document 3, in order to prevent the influence of mobile ions in the mold resin, Si + nitridation in which the composition of silicon is set higher on the source electrode, the drain electrode, and the interlayer insulating film is used. Form a film, further form a passivation film, which is a normal nitride film (insulating nitride film), and then form a conductive film connected to the source or drain electrode on top of it to deplete the Si + nitride film Thus, the leakage current can be kept low, and thermal runaway (decrease in breakdown voltage) of the power MOSFET at a high temperature can be prevented. Further, it is disclosed that the influence of movable ions of the mold resin can be shielded and the withstand voltage fluctuation of the power MOSFET is eliminated.

また、特許文献4には、実使用時における高電圧・高湿下での経時的な耐圧低下をフィールドプレートの張り出しと層間絶縁膜の膜厚を所定の値とすることで防止できることが開示されている。
特開平8−97411号公報 特開2003−124459号公報 特開2001−7327号公報 図11、図12 特開2002−270830号公報
Further, Patent Document 4 discloses that a withstand voltage drop with time under high voltage and high humidity during actual use can be prevented by setting the overhang of the field plate and the film thickness of the interlayer insulating film to a predetermined value. ing.
JP-A-8-97411 JP 2003-12459 A JP, 2001-7327, A FIG. JP 2002-270830 A

しかし、実素子では、特許文献2で説明した分極電荷の影響の他に、モールド樹脂中の電荷を蓄積することで起こる影響もある。特に、400℃程度以下で成膜されたプラズマ酸化膜は、Si−H結合、N−H結合、大量の水素を含有しており、高温、高電界の印加により、結合手が切断され、空孔を生じ易いため、この空孔の再配置の状態により、正または負の荷電状態を取り得る。そのため、このような結合を多く含む薄膜は耐圧変動が生じ易くなる。したがって、モールド樹脂に生じた可動イオン自体を除去する必要があり、そのために、TEOS膜では、通常、1000℃程度で熱処理を行ない膜を高純度化している。
しかし、アルミニウムなどの低融点材料で形成されるソース電極およびドレイン電極の保護膜としてTEOS膜を用いる場合には、1000℃程度の高温処理では電極を変質させるため行うことができず、400℃程度以下の低温処理となる。その結果、前記のような結合を多数含む薄膜となり耐圧変動が生じ易くなる。
However, in the actual element, in addition to the influence of the polarization charge described in Patent Document 2, there is an influence caused by accumulating the charge in the mold resin. In particular, a plasma oxide film formed at about 400 ° C. or lower contains Si—H bonds, N—H bonds, and a large amount of hydrogen. Since holes are easily generated, a positive or negative charged state can be taken depending on the state of rearrangement of the holes. For this reason, a thin film containing a large amount of such bonds is likely to cause a fluctuation in breakdown voltage. Therefore, it is necessary to remove the mobile ions themselves generated in the mold resin. For this reason, the TEOS film is usually heat-treated at about 1000 ° C. to make the film highly purified.
However, when a TEOS film is used as a protective film for a source electrode and a drain electrode formed of a low-melting-point material such as aluminum, the high-temperature treatment at about 1000 ° C. cannot be performed because the electrode is altered, and about 400 ° C. The following low-temperature treatment is performed. As a result, a thin film including a large number of bonds as described above is likely to cause a change in breakdown voltage.

また、特許文献3に示すように、耐圧変動を防止するために、Si+ 窒化膜と導電膜を積層した構造の場合には、膜形成の製造コストが高くなる。
この発明の目的は、前記の課題を解決して、低い製造コストで、耐圧変動を防止できる半導体装置を提供することにある。
In addition, as shown in Patent Document 3, in the case of a structure in which a Si + nitride film and a conductive film are stacked in order to prevent a fluctuation in breakdown voltage, the manufacturing cost of film formation increases.
An object of the present invention is to provide a semiconductor device that solves the above-mentioned problems and can prevent fluctuations in breakdown voltage at a low manufacturing cost.

前記の目的を達成するために、パッシベーション膜などの保護膜(層間絶縁膜)を備えた半導体装置において、前記保護膜上に形成された、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜を備えた構成とする。
また保護膜と、該保護膜を介して形成した樹脂被覆層(モールド樹脂などの封止用樹脂層)とを備えた半導体装置において、前記保護膜と前記樹脂被覆層との間に形成された、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜を備えた構成とする。
また、半導体基板の一方の表面層に離れて形成され、その間で主電流を流す第1、第2の半導体領域と、前記第1、第2の半導体領域の間の前記半導体基板表面上に形成された絶縁膜と、前記第1、第2の半導体領域および前記絶縁膜の上に形成された保護膜と、該保護膜上に形成された、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜を被覆した樹脂被覆層とを備えた構成とする。
In order to achieve the above object, in a semiconductor device provided with a protective film (interlayer insulating film) such as a passivation film , any of metal, semiconductor and carbon formed on the protective film is equivalent. sheet resistance, a structure having a 1 × 10 9 Ω / □ ~1 × 10 10 Ω / □ discontinuous film is.
Further, in a semiconductor device including a protective film and a resin coating layer (a sealing resin layer such as a mold resin) formed through the protective film, the protective film is formed between the protective film and the resin coating layer. And a discontinuous thin film having an equivalent sheet resistance value of 1 × 10 9 Ω / □ to 1 × 10 10 Ω / □ .
Further, the first semiconductor layer is formed on one surface layer of the semiconductor substrate and is formed on the surface of the semiconductor substrate between the first and second semiconductor regions and the first and second semiconductor regions through which a main current flows. An insulating film formed thereon, a protective film formed on the first and second semiconductor regions and the insulating film, and any one of metal, semiconductor and carbon formed on the protective film , and equivalent And a resin coating layer coated with a discontinuous thin film having a typical sheet resistance value of 1 × 10 9 Ω / □ to 1 × 10 10 Ω / □ .

また、前記金属が、カーボン、タングステンおよび白金のいずれかであるとよい。
また、第1導電型の半導体層(例えば、p型半導体層)の表面から内部に形成されたトレンチと、該トレンチに沿って形成される第2導電型の第1領域(例えばn型オフセットドレイン領域)と、該第1領域と接し、該トレンチを挟んで対向して形成される第1導電型の第2領域(例えば、p型ウェル領域)および第2導電型の第3領域(例えば、n型ウェル領域)と、前記第2領域の表面層に前記第1領域と接する第1導電型の第4領域(例えば、p型ベース領域)と、該第4領域の表面層に第2導電型の第5領域(例えば、n型ソース領域)と、前記第3領域の表面層に形成する第1導電型の第6領域(例えば、n型ドレイン領域)と、前記トレンチ内を充填する第1絶縁膜と、前記第5領域と前記第2領域に挟まれた前記第4領域上と前記第2領域上に渡って形成されるゲート絶縁膜と、該ゲート絶縁膜上と前記第1絶縁膜上の一部に渡って形成されるゲート電極と、該ゲート電極上と前記第1絶縁膜上に形成される第2絶縁膜(例えば、層間絶縁膜)と、前記第4領域と前記第5領域に接し、前記第2絶縁膜上に延在する第1主電極(例えば、ソース電極)と、前記第6領域に接し、前記第2絶縁膜上に延在する第2主電極(例えば、ドレイン電極)と、前記第1主電極上と前記第2絶縁膜上と前記第2主電極上に渡って形成される第3絶縁膜(例えば、パッシベーション膜)と、該第3絶縁膜上に形成される樹脂被覆層と、を備える半導体装置において、前記第3絶縁膜と前記樹脂被覆層の間に、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜が形成されるとするよい。
The metal may be carbon, tungsten, or platinum.
Also, a trench formed inside from the surface of the first conductivity type semiconductor layer (eg, p-type semiconductor layer), and a second conductivity type first region (eg, n-type offset drain) formed along the trench. Region), a first conductivity type second region (for example, a p-type well region) and a second conductivity type third region (for example, for example) formed in contact with the first region and across the trench n-type well region), a first conductive type fourth region (for example, a p-type base region) in contact with the first region on the surface layer of the second region, and a second conductive material on the surface layer of the fourth region. A fifth region (for example, an n-type source region) of a type, a sixth region of a first conductivity type (for example, an n-type drain region) formed in the surface layer of the third region, and a first region that fills the trench. 1 insulating film, on the fourth region sandwiched between the fifth region and the second region, A gate insulating film formed over the second region, a gate electrode formed over the gate insulating film and a part of the first insulating film, and the first insulating film over the gate electrode A second insulating film (for example, an interlayer insulating film) formed on the film, and a first main electrode (for example, a source electrode) in contact with the fourth region and the fifth region and extending on the second insulating film ), A second main electrode (for example, a drain electrode) that is in contact with the sixth region and extends on the second insulating film, on the first main electrode, on the second insulating film, and on the second main film In a semiconductor device comprising a third insulating film (for example, a passivation film) formed over an electrode, and a resin coating layer formed on the third insulating film, the third insulating film and the resin coating between the layers, the metal is any of a semiconductor and carbon, are equivalent sheet resistance Good and 1 × 10 9 Ω / □ ~1 × 10 10 Ω / □ discontinuous film is is formed.

また、第1導電型の半導体層の表面層に形成され、互いに対向して形成される第1導電型の第2領域および第2導電型の第3領域と、前記第2領域の表面層に形成される第1導電型の第4領域と、該第4領域の表面層に第2導電型の第5領域と、前記第3領域の表面層に形成する第2導電型の第6領域と、前記第5領域と前記第2領域に挟まれた前記第4領域上に形成されるゲート絶縁膜と、該ゲート絶縁膜上に形成されるゲート電極と、該ゲート電極上と前記半導体層上に形成される第2絶縁膜と、前記第4領域と前記第5領域に接し、前記第2絶縁膜上に延在する第1主電極と、前記第6領域に接し、前記第2絶縁膜上に延在する第2主電極と、前記第1主電極上と前記第2絶縁膜上と前記第2主電極上に渡って形成される第3絶縁膜と、該第3絶縁膜上に形成される樹脂被覆層と、を備える半導体装置において、前記第3絶縁膜と前記樹脂被覆層の間に、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜が形成されるとよい。
The first conductive type second region and the second conductive type third region formed on the surface layer of the first conductive type semiconductor layer and facing each other, and the surface layer of the second region A fourth region of the first conductivity type to be formed; a fifth region of the second conductivity type in the surface layer of the fourth region; a sixth region of the second conductivity type formed in the surface layer of the third region; A gate insulating film formed on the fourth region sandwiched between the fifth region and the second region, a gate electrode formed on the gate insulating film, on the gate electrode and on the semiconductor layer A second insulating film formed on the first insulating film; a first main electrode in contact with the fourth region and the fifth region; and extending on the second insulating film; and in contact with the sixth region; A second main electrode extending upward, a third insulating film formed over the first main electrode, the second insulating film, and the second main electrode; A semiconductor device comprising a resin coating layer formed on the third insulating film, and between the resin coating layer and the third insulating film, a metal is any of a semiconductor and carbon equivalent sheet A discontinuous thin film having a resistance value of 1 × 10 9 Ω / □ to 1 × 10 10 Ω / □ may be formed.

また、前記不連続薄膜が、前記第1主電極および前記第2主電極のいずれとも接続せずに浮遊電位状態にあってもよい。
また、前記不連続薄膜が、少なくとも前記第1主電極および前記第2主電極の一方と電気的に接続するとよい。
また、前記不連続薄膜の等価的なシート抵抗値が、1×109 Ω/□〜1×1010Ω/□であるとよい。ここで等価的なシート抵抗値とは、第1主電極と第2主電極の間に印加する印加電圧を図2で示すリーク電流のピーク値で割った抵抗値をシート抵抗値に換算したものをいう。
また、前記不連続薄膜の膜厚が、0.1nm〜2nmであるとよい。
また、前記不連続薄膜の膜厚が、0.1nm〜0.5nmであるとさらに好ましい。
〔作用〕
層間絶縁膜と樹脂の間に不連続薄膜を挿入すると、電極近傍の樹脂被覆層や層間絶縁膜内に存在する可動イオンや分極電荷が不連続薄膜を介して電子のやり取りをして中和化することが考えられる。この不連続薄膜内を電子が移動することでリーク電流が流れると推定される。
The discontinuous thin film may be in a floating potential state without being connected to either the first main electrode or the second main electrode.
The discontinuous thin film may be electrically connected to at least one of the first main electrode and the second main electrode.
The equivalent sheet resistance value of the discontinuous thin film is preferably 1 × 10 9 Ω / □ to 1 × 10 10 Ω / □. Here, the equivalent sheet resistance value is obtained by converting the resistance value obtained by dividing the applied voltage applied between the first main electrode and the second main electrode by the peak value of the leakage current shown in FIG. 2 into the sheet resistance value. Say.
Moreover, the film thickness of the said discontinuous thin film is good in it being 0.1 nm-2 nm.
Moreover, it is more preferable that the thickness of the discontinuous thin film is 0.1 nm to 0.5 nm.
[Action]
When a discontinuous thin film is inserted between the interlayer insulation film and the resin, the mobile ions and polarization charges existing in the resin coating layer and the interlayer insulation film near the electrodes are neutralized by exchanging electrons through the discontinuous thin film. It is possible to do. It is presumed that leakage current flows as electrons move in the discontinuous thin film.

薄膜ハンドブック オーム社 pp463〜pp472(1982)に記載されている不連続膜(不連続薄膜)の説明によると、不連続膜とは、絶縁膜上に金属膜を形成した時に、核形成、島の成長、凝集を経て網目構造を経て連続膜となる。電極間が金属で導通していないことを意味する。連続膜から不連続膜への境界膜厚は、Alで約17nm、Auで約40nmであり、これ以下の膜厚では、厚さと抵抗率が比例しない、いわゆるサイズ効果が現れ、さらに、電子のド・ブロイ波長である数オングストローム以下になると、量子力学的効果が現れる。つまり、不連続薄膜を流れるリーク電流は量子力学的挙動を伴って引き起こされる。
一般的な不連続膜の電気伝導の特徴は、例えばシート抵抗が〜10kΩ/□以上と高抵抗を示し、温度係数が負であり、活性化エネルギーが、0.001〜0.8eVと広範囲に渡るのが特徴である。
According to the explanation of the discontinuous film (discontinuous thin film) described in Thin Film Handbook Ohm Co., pp 463-pp 472 (1982), the discontinuous film means that when a metal film is formed on an insulating film, nucleation, A continuous film is formed through a network structure through growth and aggregation. It means that the electrodes are not conductive with metal. The boundary film thickness from the continuous film to the discontinuous film is about 17 nm for Al and about 40 nm for Au. If the film thickness is less than this, a so-called size effect in which the thickness is not proportional to the resistivity appears. When the de Broglie wavelength is below several angstroms, quantum mechanical effects appear. That is, the leakage current flowing through the discontinuous thin film is caused with quantum mechanical behavior.
The characteristics of the electrical conduction of a general discontinuous film are, for example, a sheet resistance as high as 10 kΩ / □ or higher, a negative temperature coefficient, and an activation energy ranging from 0.001 to 0.8 eV over a wide range. It is characteristic to cross.

ただし、不連続膜の電気伝導のメカニズムについては、熱電子放出モデル、活性化トンネリングモデル、基板の不純物、表面準位を介したトンネリングモデル等があり確定はされてはおらない。
不連続膜は、金属もしくは半導体で下地の絶縁膜に対して化合物を作り難く、濡れ性が悪く粒子形態を取りやすいものが良い。たとえば、酸化膜や窒化膜上に設ける材料としては、白金、炭素、タングステン等が良い。導電層の形成方法は、たとえば、スパッタ法を用いる事により、層間絶縁膜の内部に粒子を浸透できるため、よりプロセスマージンは大きくなり望ましい。
湿式メッキにおける核形成方法のように導電性材料を分散させた溶液に浸積処理し試料表面に極微量、付着させる方法でも良い。さらには、イオン注入法により、膜質を変化させ等価的に膜表面を導電化する方法でも良い。不連続薄膜は、シート抵抗値として数G(ギガ)Ω/□あれば、電荷蓄積の影響を軽減できる。電位分布への影響も小さく、耐圧やオン抵抗などのデバイス特性の劣化をもたらさない。
However, the mechanism of electrical conduction in the discontinuous film includes a thermionic emission model, an activated tunneling model, a substrate impurity, a tunneling model via surface states, etc. and has not been determined.
The discontinuous film is preferably made of a metal or a semiconductor, which is difficult to form a compound with respect to the underlying insulating film, has poor wettability, and easily takes a particle form. For example, the material provided on the oxide film or nitride film is preferably platinum, carbon, tungsten, or the like. As a method for forming the conductive layer, for example, by using a sputtering method, particles can penetrate into the interlayer insulating film.
As in the nucleation method in wet plating, a method of immersing in a solution in which a conductive material is dispersed and attaching a trace amount to the sample surface may be used. Furthermore, a method of changing the film quality and equivalently conducting the film surface by ion implantation may be used. If the discontinuous thin film has a sheet resistance value of several G (giga) Ω / □, the effect of charge accumulation can be reduced. The influence on the potential distribution is small, and device characteristics such as breakdown voltage and on-resistance are not degraded.

不連続薄膜は、層間絶縁膜と樹脂被覆層の間に挿入する。フローティング状態(浮遊電位状態)でも効果はあるが、電極と接しているとさらに大きな効果が得られる。   The discontinuous thin film is inserted between the interlayer insulating film and the resin coating layer. Although it is effective even in a floating state (floating potential state), a larger effect can be obtained when it is in contact with the electrode.

この発明によれば、高電界が印加される電極上とパッシべーション膜上に不連続薄膜を形成することで、電極近傍のパッシベーション膜などの層間絶縁膜やモールド樹脂などの封止用樹脂層あるいはこれらの界面に電荷が蓄積することを防止することができる。
その結果、低い製造コストで、素子の電位分布の変動が防止され、耐圧変動を防止することができる。また、オン電流の低下(オン抵抗の増大)を防止することもできる。
According to this invention, by forming a discontinuous thin film on the electrode to which a high electric field is applied and on the passivation film, an interlayer insulating film such as a passivation film in the vicinity of the electrode and a sealing resin layer such as a mold resin Alternatively, it is possible to prevent charges from accumulating at these interfaces.
As a result, the fluctuation of the potential distribution of the element can be prevented and the withstand voltage fluctuation can be prevented at a low manufacturing cost. In addition, a decrease in on-current (an increase in on-resistance) can be prevented.

実施の最良の形態については、横型素子を例に挙げて以下の実施例で説明するが、本発明は縦型素子にも適用できる。   The best mode for carrying out the invention will be described in the following examples by taking a horizontal element as an example, but the present invention can also be applied to a vertical element.

図1は、この発明の第1実施例の半導体装置の要部断面図である。この図は、トレンチ横型MOSFETの断面構造を示し、図9と同一部位には同一の符号を付した。図中の符号の1はp型半導体基板、2はトレンチ、2aはトレンチを充填する絶縁物、3はトレンチ周囲に均一な厚みを有するn- オフセットドレイン領域、4はpウェル領域、5はpベース領域、6はnウェル領域、7はn+ ソース領域、8はn+ ドレイン領域、9はゲート絶縁膜、10はゲート電極、11は層間絶縁膜、12はソース電極、13はドレイン電極、14は層間絶縁膜、15はカーボン不連続薄膜、16はモールド樹脂などの封止用樹脂層(樹脂被覆層)である。
図1に示す構成の半導体装置の製造方法について説明する。比抵抗が100Ωcmのp型半導体基板1の表面部分に、通常の半導体プロセスを用いて、pウェル領域4、nウェル領域6を形成した。このpウェル領域4の表面部分にフォトエッチング技術により、幅20μmで深さ20μmのトレンチ2を形成した。
FIG. 1 is a cross-sectional view of a main part of a semiconductor device according to a first embodiment of the present invention. This figure shows a cross-sectional structure of a trench lateral MOSFET, and the same parts as those in FIG. In the figure, reference numeral 1 denotes a p-type semiconductor substrate, 2 denotes a trench, 2a denotes an insulator filling the trench, 3 denotes an n offset drain region having a uniform thickness around the trench, 4 denotes a p-well region, and 5 denotes p Base region, 6 is an n well region, 7 is an n + source region, 8 is an n + drain region, 9 is a gate insulating film, 10 is a gate electrode, 11 is an interlayer insulating film, 12 is a source electrode, 13 is a drain electrode, 14 is an interlayer insulating film, 15 is a carbon discontinuous thin film, and 16 is a sealing resin layer (resin coating layer) such as a mold resin.
A method for manufacturing the semiconductor device having the configuration shown in FIG. 1 will be described. A p-well region 4 and an n-well region 6 were formed on the surface portion of the p-type semiconductor substrate 1 having a specific resistance of 100 Ωcm using a normal semiconductor process. A trench 2 having a width of 20 μm and a depth of 20 μm was formed on the surface portion of the p-well region 4 by a photoetching technique.

続けて、バッファ酸化膜を形成し、リンを両側側壁および底部に注入し、窒素雰囲気中で熱処理して、表面濃度が5×1015cm-3で、拡散深さ(xj)が4μm程度のn- オフセットドレイン領域3を形成した。複数回のSOG塗布、キュア工程を経た後、表面をCMP(Chemical Mechanical Polishing)により平坦化してトレンチ2内部を酸化膜などの絶縁物2aで充填した。
ゲート絶縁膜9を形成し、その上にポリシリコンを堆積しフォトエッチング技術によりゲート電極10を形成した。ゲート電極10のソース側の端部によるセルフアラインで、pウェル領域4の表面部分にpベース領域5を形成した。n+ ソース領域7と同時にトレンチ2の反対側のn- オフセットドレイン領域3の表面部分にn+ ドレイン領域8を形成した。層間絶縁膜11を堆積し、その層間絶縁膜11にコンタクトホールを開口し、ソース電極12およびドレイン電極13をトレンチ2上に各5μm張り出して形成した。ドレイン電極13とソース電極12の間隔は10μmとした。続けて、プラズマ窒化膜よりなる層間絶縁膜14を形成した。高融点材料でプラズマ窒化膜との濡れ性が悪いカーボンを厚さ0.1nm,0.5nmの2種類形成しカーボン不連続薄膜15とした。
Subsequently, a buffer oxide film is formed, phosphorus is implanted into both side walls and the bottom, and heat treatment is performed in a nitrogen atmosphere. The surface concentration is 5 × 10 15 cm −3 and the diffusion depth (xj) is about 4 μm. An n offset drain region 3 was formed. After a plurality of SOG coating and curing processes, the surface was flattened by CMP (Chemical Mechanical Polishing), and the inside of the trench 2 was filled with an insulator 2a such as an oxide film.
A gate insulating film 9 was formed, polysilicon was deposited thereon, and a gate electrode 10 was formed by a photoetching technique. A p base region 5 was formed on the surface portion of the p well region 4 by self-alignment by the source side end of the gate electrode 10. Simultaneously with the n + source region 7, an n + drain region 8 was formed on the surface portion of the n offset drain region 3 on the opposite side of the trench 2. An interlayer insulating film 11 was deposited, contact holes were opened in the interlayer insulating film 11, and a source electrode 12 and a drain electrode 13 were formed over the trench 2 by 5 μm each. The distance between the drain electrode 13 and the source electrode 12 was 10 μm. Subsequently, an interlayer insulating film 14 made of a plasma nitride film was formed. Two types of carbon having a high melting point and poor wettability with the plasma nitride film having a thickness of 0.1 nm and 0.5 nm were formed as the carbon discontinuous thin film 15.

カーボン不連続膜15は原料ガスとしてメタンガスを約2000℃に加熱したフィラメントで熱分解する熱フィラメント化学的気相成長法を用いて形成した。始めに、原料ガス濃度およびガス供給流量を120分間の形成時間で50nm連続薄膜となるように調整し、その後、時間制御で膜厚の制御を行った。成膜時間14秒間を0.1nm膜厚相当値とし、成膜時間72秒間を0.5nm膜厚相当値とした。
カーボンなどの濡れ性の悪い材料を用いるのは、プラズマ窒化膜上でのカーボン粒子が表面張力の関係で丸まり、原子レベルで離散したカーボン粒子層が形成されて不連続薄膜にすることができるためである。最後に、モールド樹脂などの封止用樹脂層16で封入した。カーボンの膜厚は気相成長させる時間で制御し、その成長時間は分のオーダである。 従来の横型MOSFETの製造工程に、カーボン不連続薄膜15を形成する工程を追加しただけで他の工程は、従来工程と同一である。
The discontinuous carbon film 15 was formed using a hot filament chemical vapor deposition method in which methane gas as a source gas was pyrolyzed with a filament heated to about 2000 ° C. First, the raw material gas concentration and the gas supply flow rate were adjusted to be a 50 nm continuous thin film with a formation time of 120 minutes, and then the film thickness was controlled by time control. The film formation time of 14 seconds was set to a value corresponding to a thickness of 0.1 nm, and the film formation time of 72 seconds was set to a value corresponding to a thickness of 0.5 nm.
The use of materials with poor wettability such as carbon is because the carbon particles on the plasma nitride film are rounded due to surface tension, and a discrete carbon particle layer can be formed at the atomic level to form a discontinuous thin film. It is. Finally, it was sealed with a sealing resin layer 16 such as a mold resin. The film thickness of carbon is controlled by the time for vapor phase growth, and the growth time is on the order of minutes. The other steps are the same as the conventional steps except that the step of forming the carbon discontinuous thin film 15 is added to the conventional step of manufacturing the lateral MOSFET.

温度125℃、電圧700Vの条件でのBT(Bias Temperature)試験結果を表1に示す。   Table 1 shows the results of a BT (Bias Temperature) test under the conditions of a temperature of 125 ° C. and a voltage of 700V.

従来構造での耐圧は、初期値740Vが、165時間後に700Vに低下し、耐圧低下率は、5.4%であった。
本発明を適用することで、1000時間経過後においても700V以上の耐圧が得られた。耐圧低下率は、膜厚0.1nmで2.7%,膜厚0.5nmで1.4%であった。いずれも、耐圧低下率が改善された。
図2は、リーク電流の時間変化を示す模式図である。短時間にリーク電流のピークが現れ、つぎにそのリーク電流は減少し、極小値を経て再び増加に転じる。これは、リーク電流が、不連続薄膜近傍の位置にある可動イオンが不連続薄膜を介して電子のやり取りをすることで生じる早い時期に流れる第1電流成分と、不連続薄膜から離れた位置にある可動イオンが徐々に不連続薄膜を介して電子のやり取りすることで生じる遅い時期に流れる第2電流成分で構成されるためである。不連続薄膜がない場合には第2電流成分のみとなる。
With respect to the breakdown voltage in the conventional structure, the initial value of 740 V decreased to 700 V after 165 hours, and the breakdown voltage reduction rate was 5.4%.
By applying the present invention, a withstand voltage of 700 V or more was obtained even after 1000 hours. The rate of breakdown voltage reduction was 2.7% at a film thickness of 0.1 nm and 1.4% at a film thickness of 0.5 nm. In both cases, the breakdown voltage reduction rate was improved.
FIG. 2 is a schematic diagram showing a change in leakage current over time. The peak of the leak current appears in a short time, and then the leak current decreases and starts increasing again after passing through the minimum value. This is because the leakage current is generated at a position away from the discontinuous thin film and the first current component flowing at an early stage that occurs when mobile ions located near the discontinuous thin film exchange electrons through the discontinuous thin film. This is because a certain mobile ion is composed of a second current component that flows at a later time which is generated by the exchange of electrons through the discontinuous thin film. When there is no discontinuous thin film, only the second current component is obtained.

第1電流成分のピークが早い時期に現れ、そのピーク値が大きい方が、可動イオンと電子とのやり取りが速やか行われ、中性化し、耐圧変動が起こり難くくなる。
740Vの耐圧のカーボン不連続薄膜15を適用した素子に700Vの印加電圧を印加した場合について説明する。第1電流成分のピークは、膜厚0.1nmの時は20分後に現われリーク電流のピーク値は32nAであった。膜厚0.5nmも同様に20分後に現れ、30nAで0.1nmとほぼ同じであった。また、リーク電流の極小値は、膜厚0.1nmの時には60時間後に現れ、5nAであり、膜厚0.5nmの時には、6時間後に現れ7nAで、電流値はほぼ同じである、極小値になる時間が0.5nmの方が1/10と大幅に短く、短時間で可動イオンが中和されて、耐圧変動が小さくなる。
しかし、膜厚が2nmを超えるとカーボン不連続薄膜がカーボン連続膜に変わるので、リーク電流が急増して素子が熱暴走を起こす可能性が出てくる。従って、カーボン不連続薄膜15の膜厚としては0.1nmから2nmがよく、好ましくは0.1nmから0.5nmがよい。
When the peak of the first current component appears earlier and the peak value is larger, the exchange between the mobile ions and the electrons is performed quickly, and the neutralization occurs, and the breakdown voltage fluctuation is less likely to occur.
A case where an applied voltage of 700 V is applied to an element to which the carbon discontinuous thin film 15 having a withstand voltage of 740 V is applied will be described. The peak of the first current component appeared after 20 minutes when the film thickness was 0.1 nm, and the peak value of the leakage current was 32 nA. A film thickness of 0.5 nm also appeared after 20 minutes and was almost the same as 0.1 nm at 30 nA. Further, the minimum value of the leakage current appears after 60 hours when the film thickness is 0.1 nm, is 5 nA, and appears after 6 hours when the film thickness is 0.5 nm, 7 nA, and the current value is almost the same. When the time to become 0.5 nm is significantly shorter as 1/10, the mobile ions are neutralized in a short time, and the withstand voltage fluctuation is reduced.
However, if the film thickness exceeds 2 nm, the carbon discontinuous thin film changes to a carbon continuous film, so that there is a possibility that the leakage current increases rapidly and the device causes thermal runaway. Therefore, the film thickness of the carbon discontinuous thin film 15 is preferably 0.1 nm to 2 nm, and preferably 0.1 nm to 0.5 nm.

本実験における、ソース・ドレイン間の電界強度は印加電圧が700Vでソース電極・ドレイン電極間距離が10μmであるので、700V/10μm=7×105 V/cmであり、また、そのときのリーク電流のピーク値から極小値を引いた値(増加分)は、0.1μm,0.5μmでそれぞれ27nA,23nAとほぼ同じであり、25nA程度である。
また、印加電圧をピーク電流で割った抵抗値をシート抵抗に換算したカーボン不連続薄膜の等価的なシート抵抗値は約10GΩ/□である。この等価的なシート抵抗値は1GΩ/□(1×109 Ω/□)未満では、リーク電流が増大し素子の発生損失が大きくなり熱暴走を起こす可能性がある。また、10GΩ/□を超えると可動イオンの中和に時間が掛かり耐圧低下を起こす。そのため、カーボン不連続薄膜の等価的なシート抵抗値は1GΩ(1×109 Ω)/□から10GΩ(1×1010Ω)/□の範囲がよい。
In this experiment, the electric field strength between the source and the drain is 700 V / 10 μm = 7 × 10 5 V / cm because the applied voltage is 700 V and the distance between the source electrode and the drain electrode is 10 μm, and the leakage at that time The value obtained by subtracting the minimum value from the peak value of the current (increase) is approximately the same as 27 nA and 23 nA at 0.1 μm and 0.5 μm, respectively, and is approximately 25 nA.
Moreover, the equivalent sheet resistance value of the carbon discontinuous thin film obtained by converting the resistance value obtained by dividing the applied voltage by the peak current into the sheet resistance is about 10 GΩ / □. If this equivalent sheet resistance value is less than 1 GΩ / □ (1 × 10 9 Ω / □), the leakage current increases and the generation loss of the element increases, which may cause thermal runaway. On the other hand, if it exceeds 10 GΩ / □, it takes time to neutralize the mobile ions and causes a decrease in pressure resistance. Therefore, the equivalent sheet resistance value of the carbon discontinuous thin film is preferably in the range of 1 GΩ (1 × 10 9 Ω) / □ to 10 GΩ (1 × 10 10 Ω) / □.

また、第1実施例ではカーボン不連続薄膜15はソース電極12およびドレイン電極13と接続しない場合であるが、図示しないが一方の電極に接続すると、リーク電流の極小値が現れる時間は短くなり、蓄積した可動イオンが中和する時間が第1実施例より早くなり、電圧変動は一層起こり難くくなる。   Further, in the first embodiment, the carbon discontinuous thin film 15 is not connected to the source electrode 12 and the drain electrode 13, but although not shown, when connected to one of the electrodes, the time when the minimum value of the leakage current appears is shortened, The time for neutralizing the accumulated mobile ions is earlier than in the first embodiment, and voltage fluctuation is less likely to occur.

図3は、この発明の第2実施例の半導体装置の要部断面図である。図1との違いは、カーボン不連続薄膜15がソース電極12およびドレイン電極13の双方に接続している点である。蓄積した可動イオンは、双方の電極にカーボン不連続薄膜15を接続することで第1実施例および図示しない一方の電極のみに接続した場合より早く減少する。耐圧変動が一層少なくなる効果がある。   FIG. 3 is a cross-sectional view of the main part of the semiconductor device according to the second embodiment of the present invention. The difference from FIG. 1 is that the carbon discontinuous thin film 15 is connected to both the source electrode 12 and the drain electrode 13. Accumulated mobile ions are reduced faster by connecting the carbon discontinuous thin film 15 to both electrodes than in the first embodiment and only one electrode (not shown). There is an effect that the withstand voltage fluctuation is further reduced.

図4は、この発明の第3実施例の半導体装置の要部断面図である。図1との違いは、不連続薄膜にスパッタ法を用いたタングステン不連続薄膜17としている点である。
本発明のプロセスは、プラズマ窒化膜よりなるパッシベーション膜である層間絶縁膜14の形成までは、実施例1と同一である。その後、層間絶縁膜14上に、スパッタ法用いて高融点材料でプラズマ窒化膜との濡れ性が悪いタングステン不連続薄膜17を膜厚0.1nm,0.5nmで2種類形成した。
タングステン不連続膜17は、原料ガスとして六フッ化タングステンを約2000℃に加熱したフィラメントで熱分解する熱フィラメント化学的気相成長法を用いて形成した。始めに、原料ガス濃度およびガス供給流量を、100分間の形成時間で約50nmの連続薄膜となるように調整し、その後、時間制御で膜厚の制御を行った。成膜時間12秒間を0.1nm膜厚相当値とし、成膜時間60秒間を0.5nm膜厚相当値とした。
FIG. 4 is a cross-sectional view of the main part of the semiconductor device according to the third embodiment of the present invention. The difference from FIG. 1 is that the discontinuous thin film 17 is a discontinuous thin film 17 using a sputtering method.
The process of the present invention is the same as that of Example 1 until the formation of the interlayer insulating film 14 which is a passivation film made of a plasma nitride film. After that, two types of tungsten discontinuous thin films 17 having a film thickness of 0.1 nm and 0.5 nm were formed on the interlayer insulating film 14 by sputtering using a high melting point material and poor wettability with the plasma nitride film.
The tungsten discontinuous film 17 was formed using a hot filament chemical vapor deposition method in which tungsten hexafluoride was heated as a source gas to a filament heated to about 2000 ° C. First, the raw material gas concentration and the gas supply flow rate were adjusted so that a continuous thin film of about 50 nm was formed in a formation time of 100 minutes, and then the film thickness was controlled by time control. The film formation time of 12 seconds was set to a value corresponding to a thickness of 0.1 nm, and the film formation time of 60 seconds was set to a value corresponding to a thickness of 0.5 nm.

タングステン不連続薄膜形成後、モールド樹脂などの封止用樹脂層16で封入して、トレンチ横型MOSFETを作製した。第1実施例と同じ条件でのBT試結果を表2に示す。   After forming the tungsten discontinuous thin film, it was sealed with a sealing resin layer 16 such as a mold resin to produce a trench lateral MOSFET. Table 2 shows the BT test results under the same conditions as in the first example.

1000時間経過後の耐圧低下率は、膜厚0.1m相当で2.5%,膜厚0.5nm相当で1.0%であり、従来の5.4%より改善された。また、表1に比べると耐圧低下率が多少小さい。これは材質の違いによるものと推定される。また、図3のようにソース電極12およびドレイン電極13にタングステン不連続薄膜17を接続することで、耐圧低下率をさらに減少させることができる。この場合も、カーボン不連続薄膜15の場合と同様に、タングステン不連続薄膜の等価的なシート抵抗値は1GΩ/□から10GΩ/□の範囲がよく、タングステン不連続薄膜17の膜厚としては0.1nmから2nmがよく、好ましくは0.1nmから0.5nmがよい。
図1、図3および図4では、気相成長法によりカーボンとタングステンの不連続薄膜による効果について紹介したが、材料および形状の組み合わせは、界面電荷を蓄積しない経路を形成するという発明の趣旨にそって組み合わせが可能である。 また、不連続薄膜の材質としては、前記の他に白金や例えばSiCなどの半導体であってもよい。この場合も不連続薄膜の等価的なシート抵抗値は1GΩ/□から10GΩ/□の範囲がよく、膜厚としては0.1nmから2nmがよく、好ましくは0.1nmから0.5nmがよい。
The rate of decrease in pressure resistance after 1000 hours was 2.5% for a film thickness of 0.1 m and 1.0% for a film thickness of 0.5 nm, which is an improvement over the conventional 5.4%. Also, the breakdown voltage reduction rate is somewhat smaller than in Table 1. This is presumed to be due to the difference in material. Further, by connecting the tungsten discontinuous thin film 17 to the source electrode 12 and the drain electrode 13 as shown in FIG. 3, the breakdown voltage reduction rate can be further reduced. Also in this case, as in the case of the carbon discontinuous thin film 15, the equivalent sheet resistance value of the tungsten discontinuous thin film is preferably in the range of 1 GΩ / □ to 10 GΩ / □, and the film thickness of the tungsten discontinuous thin film 17 is 0. .1 nm to 2 nm is preferable, and 0.1 nm to 0.5 nm is preferable.
1, 3, and 4, the effects of the discontinuous thin film of carbon and tungsten were introduced by the vapor phase growth method. However, the combination of materials and shapes is intended to form a path that does not accumulate interface charges. Combinations are possible. In addition to the above, the material of the discontinuous thin film may be platinum or a semiconductor such as SiC. Also in this case, the equivalent sheet resistance value of the discontinuous thin film is preferably in the range of 1 GΩ / □ to 10 GΩ / □, and the film thickness is preferably 0.1 nm to 2 nm, preferably 0.1 nm to 0.5 nm.

図5は、この発明の第4実施例の半導体装置の要部断面図である。これは、特許文献3の図11の第3導電膜421の代わりに不連続薄膜18を形成したものである。
以下に膜構造について説明する。第1メタルである第1導電膜417を形成した後に、シリコンの組成比を高めに設定した窒化膜420(n型の導電性をもつn型のSi+ 窒化膜)を形成し、さらに通常の窒化膜(絶縁窒化膜)であるパッシベーション膜419などを形成し、さらにコンタクトホールを、ソース電極612上に形成した第1導電膜417に形成し、パッシベーション膜419上に不連続薄膜18を形成し、その上にモールド樹脂などで封止用樹脂層620を形成する。この場合は、前記の実施例のうち、一方の電極のみに不連続薄膜を接続した場合と同様の効果がある。不連続薄膜18の材質としてはカーボン、タングステン、白金、SiCなどである。
FIG. 5 is a sectional view showing the principal part of a semiconductor device according to the fourth embodiment of the present invention. In this example, the discontinuous thin film 18 is formed instead of the third conductive film 421 of FIG.
The film structure will be described below. After forming the first conductive film 417 which is the first metal, a nitride film 420 (n-type Si + nitride film having n-type conductivity) with a high silicon composition ratio is formed, and a normal film is further formed. A passivation film 419, which is a nitride film (insulating nitride film), is formed, contact holes are formed in the first conductive film 417 formed on the source electrode 612, and a discontinuous thin film 18 is formed on the passivation film 419. Then, a sealing resin layer 620 is formed thereon with a mold resin or the like. This case has the same effect as the case where the discontinuous thin film is connected to only one of the above-described embodiments. The material of the discontinuous thin film 18 is carbon, tungsten, platinum, SiC, or the like.

尚、図中の416は層間絶縁膜、418は第2導電膜、601はp基板、602はn+ ソース領域、603はp+ 基板コンタクト領域、604はnウェル領域、605はn+ ドレイン領域、606はゲート酸化膜、607はゲート電極、612はソース電極、613はドレイン電極である。
また、図6のように、特許文献3の図12の第4導電膜521の代わりに不連続薄膜18を形成しても同様の効果が得られる。図5との違いは、n型のSi+ 窒化膜420をp型の導電性を持つp型のSi+ 窒化膜520とし、ドレイン電極613上に形成した第2導電膜418に接続して、張り出した不連続薄膜18が形成されている点である。
In the figure, 416 is an interlayer insulating film, 418 is a second conductive film, 601 is a p substrate, 602 is an n + source region, 603 is a p + substrate contact region, 604 is an n well region, and 605 is an n + drain region. 606 is a gate oxide film, 607 is a gate electrode, 612 is a source electrode, and 613 is a drain electrode.
As shown in FIG. 6, the same effect can be obtained by forming the discontinuous thin film 18 instead of the fourth conductive film 521 of FIG. The difference from FIG. 5 is that the n-type Si + nitride film 420 is a p-type Si + nitride film 520 having p-type conductivity and connected to the second conductive film 418 formed on the drain electrode 613. This is a point where a discontinuous thin film 18 is formed.

図7は、この発明の第5実施例の半導体装置の要部断面図である。これは、特許文献4の図19の保護膜14(図7では714)と樹脂被覆層15(図7では715)との間に不連続薄膜18を形成したものである。また、図19の層間絶縁膜25(図7では725)は酸化膜であり、図19のFP1(フィールドプレート)がないものである。この場合も前記と同様の効果が得られる。
尚、図中の701は高抵抗p型半導体基板、702はp型チャネル領域(pウェル)、703はn+ のソース領域、704はp+ の基板コンタクト、705はn型ドレイン・ドリフト領域、706はn+ のドレイン領域、707はゲート絶縁膜、708は熱酸化膜(フィールド酸化膜)、709はゲート電極層、710は層間絶縁膜(第1の層間絶縁膜)、711はソース電極層、712はドレイン電極層、715は外囲器のモールド樹脂、FP2はフィールドプレート、FP3はフィールドプレートである。
FIG. 7 is a sectional view showing the principal part of the semiconductor device according to the fifth embodiment of the present invention. This is a discontinuous thin film 18 formed between the protective film 14 (714 in FIG. 7) and the resin coating layer 15 (715 in FIG. 7) of Patent Document 4. Further, the interlayer insulating film 25 (725 in FIG. 7) in FIG. 19 is an oxide film, and does not have the FP1 (field plate) in FIG. In this case, the same effect as described above can be obtained.
In the figure, 701 is a high-resistance p-type semiconductor substrate, 702 is a p-type channel region (p-well), 703 is an n + source region, 704 is a p + substrate contact, 705 is an n-type drain / drift region, 706 is an n + drain region, 707 is a gate insulating film, 708 is a thermal oxide film (field oxide film), 709 is a gate electrode layer, 710 is an interlayer insulating film (first interlayer insulating film), and 711 is a source electrode layer. , 712 are drain electrode layers, 715 is a mold resin for the envelope, FP2 is a field plate, and FP3 is a field plate.

図8は、この発明の第6実施例の半導体装置の要部断面図である。これは、特許文献4の図19のFP2(図8のFP2)、FP3(図8のFP3)が不連続薄膜18で形成され、さらに、図19の保護膜14(図8では714)と樹脂被覆層15(図8では715)の間に不連続薄膜18を形成したものである。不連続薄膜18が2箇所に形成されているので、第5実施例より効果は大きい。
尚、前記の第1実施例から第6実施例では横型素子の場合を例に挙げて説明したが、図示しないが縦型素子の耐圧構造部(ガードリング上やフィールドプレート上のパッシベーション膜上)に不連続薄膜18を適用した場合も、横型素子の場合と同様の効果が得られる。
FIG. 8 is a cross-sectional view of the principal part of the semiconductor device according to the sixth embodiment of the present invention. This is because the FP2 (FP2 in FIG. 8) and FP3 (FP3 in FIG. 8) of FIG. 19 of Patent Document 4 are formed of the discontinuous thin film 18, and the protective film 14 (714 in FIG. 8) of FIG. A discontinuous thin film 18 is formed between the covering layers 15 (715 in FIG. 8). Since the discontinuous thin film 18 is formed in two places, the effect is greater than in the fifth embodiment.
In the first to sixth embodiments, the case of a horizontal element has been described as an example. However, although not shown, the breakdown voltage structure of the vertical element (on the guard ring or on the passivation film on the field plate). Even when the discontinuous thin film 18 is applied to the above, the same effect as in the case of the lateral element can be obtained.

この発明の第1実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 1st Example of this invention. リーク電流の時間変化を示す模式図Schematic diagram showing changes in leakage current over time この発明の第2実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 2nd Example of this invention この発明の第3実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 3rd Example of this invention. この発明の第4実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 4th Example of this invention. この発明の第4実施例の別の半導体装置の要部断面図Sectional drawing of the principal part of another semiconductor device of 4th Example of this invention この発明の第5実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 5th Example of this invention この発明の第6実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 6th Example of this invention 従来のトレンチ横型パワーMOSFETの要部断面図Sectional view of the main part of a conventional trench lateral power MOSFET

符号の説明Explanation of symbols

1 p型半導体基板
2 トレンチ
2a 絶縁物
3 nオフセットドレイン領域
4 pウェル領域
5 pベース領域
6 nウェル領域
7 n+ ソース領域
8 n+ ドレイン領域
9 nオフセットドレイン領域
10 ゲート電極
11、14 層間絶縁膜
12 ソース電極
13 ドレイン電極
15 カーボン不連続薄膜
16 封止用樹脂層
17 タングステン不連続薄膜
18 不連続薄膜
416 層間絶縁膜
418 第2導電膜
419 パッシベーション膜
420 窒化膜
601 p基板
602 n+ ソース領域
603 p+ 基板コンタクト領域
604 nウェル領域
605 n+ ドレイン領域
606 ゲート酸化膜
607 ゲート電極
612 ソース電極
613 ドレイン電極
701 高抵抗p型半導体基板
702 p型チャネル領域(pウェル)
703 n+ のソース領域
704 p+ の基板コンタクト
705 n型ドレイン・ドリフト領域
706 n+ のドレイン領域
707 ゲート絶縁膜
708 熱酸化膜(フィールド酸化膜)
709 ゲート電極層
710 層間絶縁膜(第1の層間絶縁膜)
711 ソース電極層
712 ドレイン電極層
715 外囲器のモールド樹脂
714 保護膜
715 樹脂被覆層
725 層間絶縁膜(第2の層間絶縁膜)
FP2 FP3 フィールドプレート
1 p-type semiconductor substrate 2 trench 2a insulator 3 n offset drain region 4 p well region 5 p base region 6 n well region 7 n + source region 8 n + drain region 9 n offset drain region 10 gate electrode 11, 14 interlayer insulation Film 12 source electrode 13 drain electrode 15 carbon discontinuous thin film 16 sealing resin layer 17 tungsten discontinuous thin film 18 discontinuous thin film 416 interlayer insulating film 418 second conductive film 419 passivation film 420 nitride film 601 p substrate 602 n + source region 603 p + substrate contact region 604 n well region 605 n + drain region 606 gate oxide film 607 gate electrode 612 source electrode 613 drain electrode 701 high resistance p type semiconductor substrate 702 p type channel region (p well)
703 n + source region 704 p + substrate contact 705 n-type drain / drift region 706 n + drain region 707 gate insulating film 708 thermal oxide film (field oxide film)
709 Gate electrode layer 710 Interlayer insulating film (first interlayer insulating film)
711 Source electrode layer 712 Drain electrode layer 715 Mold resin for envelope 714 Protective film 715 Resin coating layer 725 Interlayer insulating film (second interlayer insulating film)
FP2 FP3 Field plate

Claims (10)

保護膜を備えた半導体装置において、前記保護膜上に、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜を形成することを特徴とする半導体装置。 In the semiconductor device provided with the protective film , the equivalent sheet resistance value of 1 × 10 9 Ω / □ to 1 × 10 10 Ω / □ is any of metal, semiconductor, and carbon on the protective film. A semiconductor device characterized by forming a discontinuous thin film. 保護膜と、該保護膜上に形成された樹脂被覆層とを備えた半導体装置において、前記保護膜と前記樹脂被覆層との間に、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜を形成することを特徴とする半導体装置。 In a semiconductor device including a protective film and a resin coating layer formed on the protective film , any of metal, semiconductor, and carbon is equivalent between the protective film and the resin coating layer. A semiconductor device , wherein a discontinuous thin film having a sheet resistance value of 1 × 10 9 Ω / □ to 1 × 10 10 Ω / □ is formed. 半導体基板の一方の表面層に離れて形成され、その間で主電流を流す第1、第2の半導体領域と、前記第1、第2の半導体領域の間の前記半導体基板表面上に形成された絶縁膜と、前記第1、第2の半導体領域および前記絶縁膜の上に形成された保護膜と、該保護膜上に形成された、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜を被覆した樹脂被覆層とを備えたことを特徴とする半導体装置。 Formed on one surface layer of the semiconductor substrate and formed on the surface of the semiconductor substrate between the first and second semiconductor regions and the first and second semiconductor regions through which a main current flows. An insulating film, a protective film formed on the first and second semiconductor regions and the insulating film, and one of metal, semiconductor, and carbon formed on the protective film , and equivalent A semiconductor device comprising: a resin coating layer coated with a discontinuous thin film having a sheet resistance value of 1 × 10 9 Ω / □ to 1 × 10 10 Ω / □ . 第1導電型の半導体層の表面から内部に形成されたトレンチと、該トレンチに沿って形成される第2導電型の第1領域と、該第1領域と接し、該トレンチを挟んで対向して形成される第1導電型の第2領域および第2導電型の第3領域と、前記第2領域の表面層に前記第1領域と接する第1導電型の第4領域と、該第4領域の表面層に第2導電型の第5領域と、前記第3領域の表面層に形成する第2導電型の第6領域と、前記トレンチ内を充填する第1絶縁膜と、前記第5領域と前記第2領域に挟まれた前記第4領域上と前記第2領域上に渡って形成されるゲート絶縁膜と、該ゲート絶縁膜上と前記第1絶縁膜上の一部に渡って形成されるゲート電極と、該ゲート電極上と前記第1絶縁膜上に形成される第2絶縁膜と、前記第4領域と前記第5領域に接し、前記第2絶縁膜上に延在する第1主電極と、前記第6領域に接し、前記第2絶縁膜上に延在する第2主電極と、前記第1主電極上と前記第2絶縁膜上と前記第2主電極上に渡って形成される第3絶縁膜と、該第3絶縁膜上に形成される樹脂被覆層と、を備える半導体装置において、
前記第3絶縁膜と前記樹脂被覆層の間に、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜を形成することを特徴とする半導体装置。
A trench formed inside from the surface of the first conductivity type semiconductor layer, a first region of the second conductivity type formed along the trench, and in contact with the first region, facing each other across the trench A first conductivity type second region and a second conductivity type third region, a first conductivity type fourth region in contact with the first region on the surface layer of the second region, and the fourth region A fifth region of the second conductivity type on the surface layer of the region, a sixth region of the second conductivity type formed in the surface layer of the third region, a first insulating film filling the trench, and the fifth A gate insulating film formed over the fourth region and the second region sandwiched between the region and the second region, and over a part of the gate insulating film and the first insulating film A gate electrode formed; a second insulating film formed on the gate electrode and the first insulating film; the fourth region; A first main electrode in contact with the region and extending on the second insulating film; a second main electrode in contact with the sixth region and extending on the second insulating film; and on the first main electrode; In a semiconductor device comprising: a third insulating film formed over the second insulating film and the second main electrode; and a resin coating layer formed on the third insulating film.
Between the third insulating film and the resin coating layer, any of metal, semiconductor, and carbon is used, and an equivalent sheet resistance value is 1 × 10 9 Ω / □ to 1 × 10 10 Ω / □. A semiconductor device characterized by forming a discontinuous thin film.
第1導電型の半導体層の表面層に形成され、互いに対向して形成される第1導電型の第2領域および第2導電型の第3領域と、前記第2領域の表面層に形成される第1導電型の第4領域と、該第4領域の表面層に第2導電型の第5領域と、前記第3領域の表面層に形成する第2導電型の第6領域と、前記第5領域と前記第2領域に挟まれた前記第4領域上に形成されるゲート絶縁膜と、該ゲート絶縁膜上に形成されるゲート電極と、該ゲート電極上と前記半導体層上に形成される第2絶縁膜と、前記第4領域と前記第5領域に接し、前記第2絶縁膜上に延在する第1主電極と、前記第6領域に接し、前記第2絶縁膜上に延在する第2主電極と、前記第1主電極上と前記第2絶縁膜上と前記第2主電極上に渡って形成される第3絶縁膜と、該第3絶縁膜上に形成される樹脂被覆層と、を備える半導体装置において、
前記第3絶縁膜と前記樹脂被覆層の間に、金属、半導体およびカーボンのいずれかであり、等価的なシート抵抗値が、1×10 9 Ω/□〜1×10 10 Ω/□である不連続薄膜を形成することを特徴とする半導体装置。
Formed on the surface layer of the first conductivity type semiconductor layer and formed on the surface layer of the second region and the second region of the first conductivity type and the second region of the second conductivity type formed opposite to each other. A fourth region of the first conductivity type, a fifth region of the second conductivity type in the surface layer of the fourth region, a sixth region of the second conductivity type formed in the surface layer of the third region, A gate insulating film formed on the fourth region sandwiched between the fifth region and the second region, a gate electrode formed on the gate insulating film, and formed on the gate electrode and the semiconductor layer A first main electrode extending on the second insulating film, in contact with the fourth region, on the second insulating film, and on the second insulating film. A second main electrode extending, a third insulating film formed over the first main electrode, the second insulating film, and the second main electrode; A resin coating layer formed on the insulating film, a semiconductor device equipped with,
Between the third insulating film and the resin coating layer, any of metal, semiconductor, and carbon is used, and an equivalent sheet resistance value is 1 × 10 9 Ω / □ to 1 × 10 10 Ω / □. A semiconductor device characterized by forming a discontinuous thin film.
前記不連続薄膜が、前記第1主電極および前記第2主電極のいずれとも接続していないことを特徴とする請求項4または5に記載の半導体装置。 The semiconductor device according to claim 4, wherein the discontinuous thin film is not connected to any of the first main electrode and the second main electrode. 前記不連続薄膜が、少なくとも前記第1主電極および前記第2主電極の一方と接続することを特徴とする請求項4または5に記載の半導体装置。 The semiconductor device according to claim 4, wherein the discontinuous thin film is connected to at least one of the first main electrode and the second main electrode. 前記金属が、タングステンおよび白金のいずれかであることを特徴とする請求項1〜7のいずれか一項に記載の半導体装置。 The semiconductor device according to claim 1, wherein the metal is tungsten or platinum . 前記不連続薄膜の膜厚が、0.1nm〜2nmであることを特徴とする請求項1ないし8のいずれか一項に記載の半導体装置。 The semiconductor device according to claim 1, wherein the discontinuous thin film has a thickness of 0.1 nm to 2 nm . 前記不連続薄膜の膜厚が、0.1nm〜0.5nmであることを特徴とする請求項9に記載の半導体装置。 The semiconductor device according to claim 9, wherein the discontinuous thin film has a thickness of 0.1 nm to 0.5 nm .
JP2005033050A 2005-02-09 2005-02-09 Semiconductor device Expired - Fee Related JP4910292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033050A JP4910292B2 (en) 2005-02-09 2005-02-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033050A JP4910292B2 (en) 2005-02-09 2005-02-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2006222210A JP2006222210A (en) 2006-08-24
JP4910292B2 true JP4910292B2 (en) 2012-04-04

Family

ID=36984317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033050A Expired - Fee Related JP4910292B2 (en) 2005-02-09 2005-02-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4910292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9741846B2 (en) 2013-12-20 2017-08-22 Denso Corporation Semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699420B2 (en) * 2008-06-16 2015-04-08 富士電機株式会社 MOS type semiconductor device
WO2011027523A1 (en) * 2009-09-03 2011-03-10 パナソニック株式会社 Semiconductor device and method for producing same
JP5674380B2 (en) 2010-08-11 2015-02-25 ラピスセミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
JP5720613B2 (en) * 2012-04-04 2015-05-20 トヨタ自動車株式会社 Semiconductor device and manufacturing method thereof
JP6292926B2 (en) 2013-11-08 2018-03-14 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347958A (en) * 1986-08-18 1988-02-29 Toshiba Corp Resin-sealed semiconductor device
JPH0468576A (en) * 1990-07-09 1992-03-04 Mitsubishi Electric Corp Semiconductor device
JP2001007327A (en) * 1999-06-22 2001-01-12 Fuji Electric Co Ltd High breakdown voltage semiconductor device
JP2001127095A (en) * 1999-10-29 2001-05-11 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2002270830A (en) * 2001-03-12 2002-09-20 Fuji Electric Co Ltd Semiconductor device
JP4972842B2 (en) * 2001-05-11 2012-07-11 富士電機株式会社 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9741846B2 (en) 2013-12-20 2017-08-22 Denso Corporation Semiconductor device

Also Published As

Publication number Publication date
JP2006222210A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
US11417759B2 (en) Semiconductor device and method for reduced bias threshold instability
US10062759B2 (en) Silicon carbide semiconductor device and method for manufacturing same
JP4910292B2 (en) Semiconductor device
JP2002270830A (en) Semiconductor device
JP6550580B2 (en) Schottky barrier rectifier
US20140183561A1 (en) Semiconductor device and method for manufacturing the same
JP2009194197A (en) Semiconductor device and its manufacturing method
CN106601786A (en) Thin film transistor and preparation method thereof, and array substrate
JP5092385B2 (en) Method for manufacturing silicon carbide semiconductor device
CN103681256B (en) A kind of silicon carbide MOSFET device and preparation method thereof
CN104253150B (en) Semiconductor devices and its manufacture method
JP2019212902A (en) Semiconductor device with silicon carbide body and method of manufacture
CN111029404A (en) P-GaN/AlGaN/GaN enhancement device based on fin-shaped gate structure and manufacturing method thereof
CN104617142B (en) Semiconductor devices and the method for producing it
US20200105611A1 (en) Semiconductor structure and fabrication method thereof
JPH08255919A (en) Power semiconductor device
CN107895738B (en) Well local high-doping MOS device and preparation method thereof
US10192954B2 (en) Junctionless nanowire transistor and manufacturing method for the same
US20240055513A1 (en) Semiconductor device with integrated junction field effect transistor and associated manufacturing method
US20240055514A1 (en) Semiconductor device with integrated junction field effect transistor and associated manufacturing method
US20210376061A1 (en) Power mosfet with reduced current leakage and method of fabricating the power mosfet
Kim et al. Amorphous silicon thin‐film transistors with two‐layer gate insulator
TWI821798B (en) Semiconductor device and fabrication method thereof
US20240006530A1 (en) High voltage device having multi-field plates and manufacturing method thereof
JP5295172B2 (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees