JP4910151B2 - Phosphor mixture - Google Patents

Phosphor mixture Download PDF

Info

Publication number
JP4910151B2
JP4910151B2 JP2007067878A JP2007067878A JP4910151B2 JP 4910151 B2 JP4910151 B2 JP 4910151B2 JP 2007067878 A JP2007067878 A JP 2007067878A JP 2007067878 A JP2007067878 A JP 2007067878A JP 4910151 B2 JP4910151 B2 JP 4910151B2
Authority
JP
Japan
Prior art keywords
sample
phosphor
phase
mixture
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007067878A
Other languages
Japanese (ja)
Other versions
JP2008222989A (en
Inventor
功一郎 福田
知之 岩田
真英 羽生田
慎也 竹村
Original Assignee
国立大学法人 名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 名古屋工業大学 filed Critical 国立大学法人 名古屋工業大学
Priority to JP2007067878A priority Critical patent/JP4910151B2/en
Publication of JP2008222989A publication Critical patent/JP2008222989A/en
Application granted granted Critical
Publication of JP4910151B2 publication Critical patent/JP4910151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、蛍光体混合物及びその製造方法に関するもので、照明や表示媒体などに利用できる蛍光体組成物の開発に関するものである。   The present invention relates to a phosphor mixture and a method for producing the same, and relates to the development of a phosphor composition that can be used for illumination, display media, and the like.

従来から照明用光源として広く普及している白色蛍光灯には、白色ハロリン酸カルシウム蛍光体が使用されている。しかし、発光スペクトルに赤味成分が乏しく、演色性に劣るという問題点があった。そこで最近になって、蛍光灯の演色性と発光出力を改善する目的で、赤色蛍光体と緑色蛍光体、青色蛍光体の適切な混合物を用いる三波長発光型蛍光灯が実用化されている。特許文献1乃至3では、三波長発光よりも演色性の優れた発光を実現するために、四種類以上の蛍光体を組み合わせて蛍光体混合物を製造する方法が開示されている。色むらの無い発光色を実現するためには、これら複数種類の蛍光体粉末を凝集させることなく均一に混合することが必要である。その解決方法として、特許文献4では均一沈殿法を用いて単一球状蛍光体粒子を合成し、凝集を防ぐ方法が開示されている。
2006−63233 2004−269845 2002−198008 平8−143305
White calcium halophosphate phosphors are used in white fluorescent lamps that have been widely used as illumination light sources. However, there is a problem in that the red light component is poor in the emission spectrum and the color rendering properties are poor. Therefore, recently, for the purpose of improving the color rendering properties and light output of the fluorescent lamp, a three-wavelength fluorescent lamp using an appropriate mixture of a red phosphor, a green phosphor and a blue phosphor has been put into practical use. Patent Documents 1 to 3 disclose a method of manufacturing a phosphor mixture by combining four or more kinds of phosphors in order to realize light emission with better color rendering than three-wavelength light emission. In order to realize a light emission color with no color unevenness, it is necessary to uniformly mix these plural types of phosphor powders without agglomeration. As a solution to this problem, Patent Document 4 discloses a method of preventing aggregation by synthesizing single spherical phosphor particles using a uniform precipitation method.
2006-63233 2004-269845 2002-198008 Hei 8-143305

しかし、特許文献1乃至3で開示されているような、複数種類の蛍光体を組み合わせて蛍光体混合物を製造する方法では、複数種類の蛍光体を均一に混合して色むらを防ぐこと、さらに各種蛍光体混合粉末の相対的な割合を微調整して要求された色度に設定することが容易ではないという問題があった。   However, in the method of manufacturing a phosphor mixture by combining a plurality of types of phosphors as disclosed in Patent Documents 1 to 3, a plurality of types of phosphors are uniformly mixed to prevent color unevenness, There is a problem that it is not easy to finely adjust the relative proportions of the various phosphor mixed powders to set the required chromaticity.

また、上記特許文献4で開示された均一沈殿法を用いて凝集を防ぐ方法では、合成時に精密な温度調整や溶液の濃度調整を必要とするため、製造プロセスが複雑になるという問題があった。   Further, the method for preventing aggregation using the uniform precipitation method disclosed in Patent Document 4 has a problem that the manufacturing process becomes complicated because precise temperature adjustment and solution concentration adjustment are required during synthesis. .

本発明は、上記従来の実情に鑑みてなされたものであって、適切な化学組成と温度・圧力の選択によって、複数種類の蛍光体が均一に混合した蛍光体混合物を、簡単な製造プロセスで提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and a phosphor mixture in which a plurality of types of phosphors are uniformly mixed can be obtained by a simple manufacturing process by selecting an appropriate chemical composition and temperature / pressure. Providing is a problem to be solved.

請求項1記載の発明は、適切な化学組成と温度・圧力の選択によって、複数の固相が安定に共存する領域で合成される多相混合物を蛍光体の母体とすることを特徴とする蛍光体混合物及びその製造方法である。   According to the first aspect of the present invention, a fluorescent material is characterized in that a multiphase mixture synthesized in a region where a plurality of solid phases are stably coexisting is selected as a base material of a phosphor by selecting an appropriate chemical composition and temperature / pressure. Body mixture and method for producing the same.

本発明によれば、適切な化学組成と温度・圧力の選択によって、複数の固相が安定に共存する領域で合成される多相混合物を蛍光体の母体とすることによって、複数種類の蛍光体が均一に混合し、色度調整された蛍光体混合物を簡単なプロセスで製造することができる。   According to the present invention, by selecting an appropriate chemical composition and temperature / pressure, a multi-phase mixture synthesized in a region where a plurality of solid phases stably coexist is used as a matrix of the phosphor, so that a plurality of types of phosphors can be obtained. Can be mixed in a uniform process and a chromaticity-adjusted phosphor mixture can be produced by a simple process.

適切な化学組成と温度・圧力の選択によって、複数の固相が安定に共存する領域で合成される複数種類の蛍光体混合物は、各蛍光体が均一に分散して生成することから、混合プロセスが不要もしくは大幅に省くことができる。
さらに、多相共存領域内において平均化学組成がごく僅かでも変化すると、共存する相の割合(相組成)がその影響を受けて変化し、結果的に蛍光体混合物全体の発光スペクトルが変化する。すなわち、蛍光体混合物の平均化学組成を操作することによって、蛍光体混合物全体の色度を微調整することができる。
By selecting the appropriate chemical composition and temperature / pressure, multiple types of phosphor mixtures synthesized in a region where multiple solid phases coexist stably are produced by uniformly dispersing each phosphor. Is unnecessary or can be omitted significantly.
Furthermore, if the average chemical composition changes even slightly in the multiphase coexistence region, the proportion of the coexisting phase (phase composition) changes under the influence, and as a result, the emission spectrum of the entire phosphor mixture changes. That is, by manipulating the average chemical composition of the phosphor mixture, the chromaticity of the entire phosphor mixture can be finely adjusted.

また、共存する多相混合物の化学組成や結晶構造が類似している場合には、全く異なる化学組成や結晶構造をもつ蛍光体同士を混合して製造する蛍光体ブレンドに比べて、共存する蛍光体が経時劣化する速度の差が小さく、カラーバランスが崩れにくいという利点も期待できる。   In addition, when the chemical composition and crystal structure of the coexisting multiphase mixture are similar, the coexisting fluorescence is compared with the phosphor blend produced by mixing phosphors having completely different chemical compositions and crystal structures. It can be expected that the difference in speed at which the body deteriorates with time is small and the color balance is not easily lost.

複数種類の蛍光体からなる蛍光体混合物を製造する従来の方法では、各種蛍光体を別々に合成し、その後、それら複数種類の蛍光体粉末を所定の割合で均一に混合することが必要であった。本発明による蛍光体混合物の製造方法によると、均一に分散した複数種類の蛍光体混合物が製造プロセスの結果として得られるので、混合プロセスが不要もしくは大幅に省くことができる。   In the conventional method for producing a phosphor mixture composed of a plurality of types of phosphors, it is necessary to synthesize various phosphors separately and then uniformly mix the plurality of types of phosphor powders at a predetermined ratio. It was. According to the method for producing a phosphor mixture according to the present invention, a plurality of uniformly dispersed phosphor mixtures are obtained as a result of the production process, so that the mixing process is unnecessary or can be greatly omitted.

従来の蛍光体混合物では、色度を調整するためには、複数種類の蛍光体を所定の割合で混合する必要があった。しかし本発明では、蛍光体混合物の平均化学組成を操作することによって、蛍光体混合物全体の発光スペクトル又は色度を調整することができる。   In the conventional phosphor mixture, in order to adjust the chromaticity, it is necessary to mix plural kinds of phosphors at a predetermined ratio. However, in the present invention, the emission spectrum or chromaticity of the entire phosphor mixture can be adjusted by manipulating the average chemical composition of the phosphor mixture.

複数種類の蛍光体からなる混合粉末を、製品に実装した場合、各蛍光体の耐久性に差があり、各蛍光体が異なった経時劣化を示し、その結果全体のカラーバランスが崩れてしまうという問題があった。しかし、本発明による蛍光体混合物では、共存する蛍光体の化学組成や結晶構造が類似している場合には、全く異なる化学組成や結晶構造をもつ蛍光体同士を混合して製造する蛍光体ブレンドに比べて、共存する蛍光体が経時劣化する速度の差が小さく、カラーバランスが崩れにくいという利点も期待できる。   When a mixed powder consisting of multiple types of phosphors is mounted on a product, there is a difference in the durability of each phosphor, and each phosphor exhibits a different deterioration with time, resulting in the loss of the overall color balance. There was a problem. However, in the phosphor mixture according to the present invention, when the chemical composition and crystal structure of the coexisting phosphors are similar, the phosphor blend produced by mixing phosphors having completely different chemical compositions and crystal structures. Compared to the above, there can be expected an advantage that the difference in the rate of deterioration of the coexisting phosphors with time is small and the color balance is not easily lost.

ある種の蛍光体は、母体結晶中に賦活剤と呼ばれる不純物イオンが分散した構造をもつ。賦活剤としての発光イオン種は、希土類など一部のイオンに限定されるのに対し、母体結晶は賦活剤の濃度や種類を変化させることによって、異なる用途に転用することが可能である。したがって、請求項1から請求項6によって提供するところの蛍光体混合物は、今回の実施例に用いた発光イオンに限った蛍光体ではなく、発光中心を生成しうる元素であれば、これを賦活剤として用いることができる。さらに、請求項1から請求項6によって提供するところの蛍光体混合物は、波長200 nmから400 nmの紫外線励起に限った発光材料ではなく、真空紫外光や電子線、電界などの励起によって発光する表示媒体や照明用の蛍光体へ転用が可能であり、液晶ディスプレイやプラズマディスプレイ、電界放射ディスプレイ、フルカラー蛍光表示管、エレクトロルミネッセンスなどに応用できる材料である。   Some phosphors have a structure in which impurity ions called activators are dispersed in a base crystal. The luminescent ion species as the activator is limited to some ions such as rare earth, while the base crystal can be diverted to different applications by changing the concentration and type of the activator. Therefore, the phosphor mixture provided by claims 1 to 6 is not a phosphor limited to the luminescent ions used in the present example, but is activated if it is an element that can generate a luminescent center. It can be used as an agent. Furthermore, the phosphor mixture provided by claims 1 to 6 is not a light emitting material limited to ultraviolet excitation at a wavelength of 200 nm to 400 nm, but emits light by excitation of vacuum ultraviolet light, electron beam, electric field, etc. It can be used as a display medium or a phosphor for illumination, and can be applied to liquid crystal displays, plasma displays, field emission displays, full-color fluorescent display tubes, electroluminescence, and the like.

以下に、本発明の実施例1、2について図面を参照して詳細に説明する。本実施例では、二種類の蛍光体が均一に分散して共存する蛍光体混合物を製造するが、これらは例示であり、三種類もしくはそれ以上の蛍光体が共存する蛍光体混合物を製造する場合でも、本発明が成立することはいうまでもない。   Embodiments 1 and 2 of the present invention will be described below in detail with reference to the drawings. In this example, a phosphor mixture in which two types of phosphors are uniformly dispersed and coexist is manufactured, but these are examples, and a phosphor mixture in which three or more types of phosphors coexist is manufactured. However, it goes without saying that the present invention is established.

また、本実施例では、結晶質の焼結体試料を合成・粉砕してから蛍光体混合粉末を得て、蛍光特性を評価しているが、薄膜又はガラス又はその他の形状の試料を合成しても、本発明が成立することはいうまでもない。   Further, in this example, a phosphor sintered powder is obtained after synthesizing and pulverizing a crystalline sintered body sample, and the fluorescence characteristics are evaluated. However, a thin film or glass or other shape sample is synthesized. However, it goes without saying that the present invention is established.

また、単一の固相又は単一の液相が安定な領域で均一な単一の固相又は均一な単一の液相を合成した後に、温度又は圧力を操作して複数の固相が安定に共存する温度・圧力領域に変化させて、スピノーダル分解又は均一核生成・成長又は不均一核生成・成長などの相分離を起こさせることによって複数の固相が共存する蛍光体混合物を製造する場合でも、本発明が成立することはいうまでもない。   In addition, after synthesizing a single solid phase or a uniform single solid phase in a region where a single solid phase or a single liquid phase is stable, a plurality of solid phases can be formed by manipulating temperature or pressure. A phosphor mixture in which multiple solid phases coexist is produced by changing to a stable temperature and pressure range and causing phase separation such as spinodal decomposition or homogeneous nucleation / growth or heterogeneous nucleation / growth. Even in this case, it goes without saying that the present invention is established.

本実施例では、Ca3(PO4)2−Sr3(PO4)2二成分系におけるα相とβ’相の二相が共存する混合物に、Euを賦活することによって得られる蛍光体混合物の製造方法について説明する。 In this example, a phosphor mixture obtained by activating Eu in a mixture in which two phases of an α phase and a β ′ phase coexist in a binary system of Ca 3 (PO 4 ) 2 —Sr 3 (PO 4 ) 2 The manufacturing method will be described.

Ca3(PO4)2−Sr3(PO4)2二成分系の組成物であるCa3-xSrx(PO4)2の相組成は、非特許文献1にその報告がある。それによると、xの値が2.31以上の化学組成範囲(2.31≦x)で、α相とβ’相が安定であるとされている。しかし、α相はSr3(PO4)2 (x = 3)と等価な構造であることから、xの値が3に近い化学組成領域では、α単一相が安定であると考えられる。そこで、先ずCa3(PO4)2−Sr3(PO4)2二成分系におけるα相とβ’相の二相共存領域を決定した。
Chemistry of Materials, Vol.14, No.7, 3197 (2002) 出発原料として炭酸カルシウム(CaCO3)と炭酸ストロンチウム(SrCO3)、リン酸二水素アンモニウム(NH4H2PO4)を用い,0.06:2.94:2及び0.05:2.95:2(モル比)で混合した。これらの出発原料比はそれぞれ平均化学組成がCa0.06Sr2.94(PO4)2(x = 2.94)とCa0.05Sr2.95(PO4)2(x = 2.95)で表される組成物が生成する比である。次にこれらの混合粉末を直径約12mm×高さ約3mmのペレット状に一軸加圧成形し,大気中にて400℃で1時間加熱した後、電気炉から取り出して室温まで冷却した。得られた試料を粉砕混合した後、直径約12mm×高さ約3mmのペレット状に一軸加圧成形し,大気中にて1300℃で3時間加熱し、電気炉の電源を切って炉内で約3時間かけて室温まで冷却した。
Non-patent document 1 reports the phase composition of Ca 3-x Sr x (PO 4 ) 2 which is a Ca 3 (PO 4 ) 2 -Sr 3 (PO 4 ) 2 binary composition. According to this, it is said that the α phase and the β ′ phase are stable in the chemical composition range (2.31 ≦ x) where the value of x is 2.31 or more. However, since the α phase has a structure equivalent to Sr 3 (PO 4 ) 2 (x = 3), it is considered that the α single phase is stable in the chemical composition region where the value of x is close to 3. Therefore, first, the two-phase coexistence region of α phase and β ′ phase in the binary system of Ca 3 (PO 4 ) 2 —Sr 3 (PO 4 ) 2 was determined.
Chemistry of Materials, Vol.14, No.7, 3197 (2002) Using calcium carbonate (CaCO3), strontium carbonate (SrCO3), and ammonium dihydrogen phosphate (NH4H2PO4) as starting materials, 0.06: 2.94: 2 and 0.05: Mixed at 2.95: 2 (molar ratio). The ratios of these starting materials are the ratios in which the chemical compositions with the average chemical composition of Ca0.06Sr2.94 (PO4) 2 (x = 2.94) and Ca0.05Sr2.95 (PO4) 2 (x = 2.95) are produced. It is. Next, these mixed powders were uniaxially pressed into pellets with a diameter of about 12 mm and a height of about 3 mm, heated in the atmosphere at 400 ° C. for 1 hour, then removed from the electric furnace and cooled to room temperature. After pulverizing and mixing the obtained sample, it was uniaxially pressed into pellets with a diameter of about 12 mm and a height of about 3 mm, heated in the atmosphere at 1300 ° C for 3 hours, the electric furnace was turned off and the furnace was turned on. Cooled to room temperature over about 3 hours.

得られた試料は粉砕して細かな粉末にした。CuKα1線(45 kV×40mA)を入射光とする X線粉末回折装置を用いて,10.0°から75.0°の2θ範囲におけるプロフィル強度を測定した。得られたX線回折パターンから、Ca0.06Sr2.94(PO4)2(x = 2.94)組成の試料は、α相と微量のβ’相が共存していたのに対して、Ca0.05Sr2.95(PO4)2(x = 2.95)組成の試料は、α単一相から構成されていた。以上から、Ca3(PO4)2−Sr3(PO4)2二成分系におけるα相とβ’相の二相共存領域の化学組成範囲は、2.31≦x≦2.95であることが判明した。 The obtained sample was pulverized into a fine powder. The profile intensity in the 2θ range from 10.0 ° to 75.0 ° was measured using an X-ray powder diffractometer with CuKα 1 line (45 kV × 40 mA) as incident light. From the obtained X-ray diffraction pattern, a sample having a composition of Ca 0.06 Sr 2.94 (PO 4 ) 2 (x = 2.94) coexisted with an α phase and a small amount of β ′ phase, whereas Ca 0.05 Sr 2.95 The sample of (PO 4 ) 2 (x = 2.95) composition was composed of α single phase. From the above, it was found that the chemical composition range of the two-phase coexistence region of α phase and β ′ phase in the Ca 3 (PO 4 ) 2 -Sr 3 (PO 4 ) 2 binary system is 2.31 ≦ x ≦ 2.95. .

そこで、発明者らは、α相とβ’相の二相が共存するCa3-xSrx(PO4)2組成物が、本発明による蛍光体混合物の母体として有望であると考え、Euを賦活剤とする蛍光体二相混合物の作製を試みた。 Therefore, the inventors consider that a Ca 3-x Sr x (PO 4 ) 2 composition in which two phases of α phase and β ′ phase coexist is promising as a matrix of the phosphor mixture according to the present invention, Eu Attempts were made to prepare a phosphor two-phase mixture using as an activator.

出発原料として炭酸カルシウム(CaCO3)と炭酸ストロンチウム(SrCO3)、酸化ユーロピウム(Eu2O3)、リン酸二水素アンモニウム(NH4H2PO4)を用い,1.00:1.98:0.01:2.00及び0.39:2.59:0.01:2.00、0.35:2.63:0.01:2.00、0:2.98:0.01:2.00(モル比)で混合して、4種類の原料混合粉末を得た。それぞれの原料混合比は、平均化学組成がCa3-xSrx-0.02Eu2+ 0.02(PO4)2であり、xの値がx = 2.00と2.61、2.65、3.00で表される4種類の組成物が生成する比である。原料混合粉末を直径約12mm×高さ約3mmのペレット状に一軸加圧成形し,大気中にて400℃で1時間加熱した後、電気炉から取り出して室温まで冷却した。得られた試料を粉砕混合した後、直径約12mm×高さ約3mmのペレット状に一軸加圧成形し,3%の水素と97%のアルゴンガス混合気流中にて、1300℃で3時間加熱し、電気炉の電源を切って炉内で約3時間かけて室温まで冷却した。 Using calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), europium oxide (Eu 2 O 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) as starting materials, 1.00: 1.98: 0.01: 2.00 It was mixed at 0.39: 2.59: 0.01: 2.00, 0.35: 2.63: 0.01: 2.00, 0: 2.98: 0.01: 2.00 (molar ratio) to obtain four kinds of raw material mixed powder. Each raw material mixing ratio is 4 types, in which the average chemical composition is Ca 3-x Sr x-0.02 Eu 2+ 0.02 (PO 4 ) 2 and the value of x is represented by x = 2.00 and 2.61, 2.65, 3.00 The ratio of the composition produced. The raw material mixed powder was uniaxially pressed into pellets with a diameter of about 12 mm and a height of about 3 mm, heated in the atmosphere at 400 ° C. for 1 hour, then removed from the electric furnace and cooled to room temperature. The obtained sample was pulverized and mixed, then uniaxially pressed into a pellet with a diameter of about 12 mm × height of about 3 mm, and heated at 1300 ° C for 3 hours in a mixed gas stream of 3% hydrogen and 97% argon gas. The electric furnace was turned off and cooled to room temperature in the furnace over about 3 hours.

得られた試料は粉砕して細かな粉末にした。CuKα1線(45 kV×40mA)を入射光とする X線粉末回折装置を用いて,10.0°から75.0°の2θ 範囲におけるプロフィル強度を測定した。このX線回折パターンから、試料x = 2.00はβ’単一相であり、試料x = 3.00はα単一相であった。一方、試料x = 2.61と試料 x = 2.65はβ’相とα相の二相が共存していた。これらの試料中に含まれるβ’相とα相の存在割合を,X線粉末回折パターンからリートベルト法(非特許文献2)を用いて求めたところ、試料x = 2.61は19wt%α相+81wt%β’相であり、試料x = 2.65は22%wtα相+78%wtβ’相であった。
Journal of Applied Crystallography, Vol. 2, 65 (1969) 市販の分光蛍光光度計を用い、波長200 nmから400 nmの励起光を用いて、波長200 nmから800 nmの蛍光強度を測定した。発光色は国際照明委員会の定めたXYZ表示系で示し、評価はJIS Z8722に準じて行った。
The obtained sample was pulverized into a fine powder. The profile intensity in the 2θ range from 10.0 ° to 75.0 ° was measured using an X-ray powder diffractometer with CuKα 1 line (45 kV × 40 mA) as the incident light. From this X-ray diffraction pattern, sample x = 2.00 was a β ′ single phase and sample x = 3.00 was an α single phase. On the other hand, sample x = 2.61 and sample x = 2.65 coexisted two phases of β ′ phase and α phase. The existence ratio of β 'phase and α phase contained in these samples was determined from the X-ray powder diffraction pattern using the Rietveld method (Non-patent Document 2). Sample x = 2.61 was 19 wt% α phase + 81 wt. % Β ′ phase and sample x = 2.65 was 22% wt α phase + 78% wt β ′ phase.
Journal of Applied Crystallography, Vol. 2, 65 (1969) Using a commercially available spectrofluorometer, the fluorescence intensity at a wavelength of 200 nm to 800 nm was measured using excitation light having a wavelength of 200 nm to 400 nm. The luminescent color was shown by the XYZ display system defined by the International Lighting Commission, and the evaluation was performed according to JIS Z8722.

試料x = 2.00の励起スペクトル及び、発光スペクトルについて評価した結果を図1に示す。図1に示す評価結果から明らかなように、得られた試料x = 2.00は280 nm付近の紫外域に励起ピーク波長を有している。励起波長280 nmの紫外線により試料x = 2.00の発光スペクトルを観測したところ、蛍光はピークが515 nmで半価幅が98 nmの比較的ブロードなスペクトルを観測し、350 nmから700 nmにわたる幅の比較的広いスペクトルになった。   The results of evaluating the excitation spectrum and emission spectrum of sample x = 2.00 are shown in FIG. As is clear from the evaluation results shown in FIG. 1, the obtained sample x = 2.00 has an excitation peak wavelength in the ultraviolet region near 280 nm. When the emission spectrum of sample x = 2.00 was observed with ultraviolet light having an excitation wavelength of 280 nm, the fluorescence had a relatively broad spectrum with a peak at 515 nm and a half-value width of 98 nm, and a width ranging from 350 nm to 700 nm. It became a relatively broad spectrum.

試料x = 3.00の励起スペクトル及び、発光スペクトルについて評価した結果を図2に示す。図2に示す評価結果から明らかなように、得られた試料x = 3.00は275 nm付近の紫外域に励起ピーク波長を有している。励起波長275 nmの紫外線により試料x = 3.00の発光スペクトルを観測したところ、蛍光はピークが406 nmで半価幅が35 nmの比較的シャープなスペクトルを観測した。   FIG. 2 shows the results of evaluating the excitation spectrum and emission spectrum of sample x = 3.00. As is apparent from the evaluation results shown in FIG. 2, the obtained sample x = 3.00 has an excitation peak wavelength in the ultraviolet region near 275 nm. When the emission spectrum of sample x = 3.00 was observed with ultraviolet light having an excitation wavelength of 275 nm, the fluorescence had a relatively sharp spectrum with a peak of 406 nm and a half-value width of 35 nm.

次に、励起波長365 nmの紫外線により、試料x = 2.00と試料x = 3.00の発光スペクトルを観測した(図3)。試料x = 2.00では、蛍光はピークが515 nmで半価幅が85 nmの比較的ブロードなスペクトルを観測し、435 nmから685 nmにわたる幅の比較的広いスペクトルになった。色度座標の値から、発光色は黄がかった緑に分類された(図4)。すなわち、上記の方法により得られたユーロピウム賦活のβ’相カルシウムストロンチウムリン酸塩系蛍光体は、波長が365 nmの紫外線により励起されて黄がかった緑に発光する蛍光体である。一方、試料x = 3.00では、蛍光はピークが406 nmで半価幅が40 nmの比較的シャープなスペクトルを観測した。色度座標の値から、発光色は青がかった紫に分類された(図4)。すなわち、上記の方法により得られたユーロピウム賦活のα相ストロンチウムリン酸塩系蛍光体は、波長が365 nmの紫外線により励起されて青がかった紫に発光する蛍光体である。     Next, emission spectra of sample x = 2.00 and sample x = 3.00 were observed with ultraviolet light having an excitation wavelength of 365 nm (Fig. 3). In sample x = 2.00, the fluorescence observed a relatively broad spectrum with a peak at 515 nm and a half-value width of 85 nm, and became a relatively wide spectrum ranging from 435 nm to 685 nm. From the value of chromaticity coordinates, the emission color was classified as yellowish green (Fig. 4). That is, the europium-activated β′-phase calcium strontium phosphate phosphor obtained by the above method is a phosphor that emits yellowish green when excited by ultraviolet rays having a wavelength of 365 nm. On the other hand, for sample x = 3.00, a relatively sharp spectrum with a peak of 406 nm and a half width of 40 nm was observed. From the value of the chromaticity coordinates, the emission color was classified into bluish purple (Fig. 4). That is, the europium-activated α-phase strontium phosphate phosphor obtained by the above method is a phosphor that emits blue-violet light when excited by ultraviolet light having a wavelength of 365 nm.

励起波長365 nmの紫外線により、試料x = 2.61と試料x = 2.65の発光スペクトルを観測した(図5)。試料x = 2.61と試料x = 2.65は、共にβ’相とα相の二相が共存していることから、両相に帰属する発光スペクトルの特徴を示している。すなわち、試料x = 2.61と試料x = 2.65には、蛍光のピークが515 nmと410 nmの二箇所に存在し、380 nmから650 nmにわたるブロードなスペクトルを観測した。色度座標の値から、試料x = 2.61の発光色は白色に分類され、試料x = 2.65の発光色は青がかった紫色に分類された(図4)。   The emission spectra of sample x = 2.61 and sample x = 2.65 were observed with ultraviolet light having an excitation wavelength of 365 nm (Fig. 5). Sample x = 2.61 and sample x = 2.65 both show the characteristics of the emission spectra belonging to both phases because the two phases of β ′ phase and α phase coexist. That is, in samples x = 2.61 and x = 2.65, fluorescence peaks exist at two locations of 515 nm and 410 nm, and broad spectra ranging from 380 nm to 650 nm were observed. From the chromaticity coordinate values, the emission color of sample x = 2.61 was classified as white, and the emission color of sample x = 2.65 was classified as bluish purple (FIG. 4).

高圧水銀灯から発せられる紫外線を用いて、x = 2.61と試料x = 2.65の発光色を肉眼で確認したところ、均一な発光色であった。このことから、発光スペクトルの異なる二種類の蛍光体が均一に混合されていることが確認できた。   When the emission colors of x = 2.61 and sample x = 2.65 were confirmed with the naked eye using ultraviolet rays emitted from a high-pressure mercury lamp, the emission color was uniform. From this, it was confirmed that two types of phosphors having different emission spectra were uniformly mixed.

図4に示す色度図から明らかなように、β’相とα相の二相が共存している試料x = 2.61とx = 2.65の色度座標の位置は、β’単一相から成る試料x = 2.00の色度座標(0.295, 0.569)と、α単一相から成る試料x = 3.00の色度座標(0.164, 0.012)の位置を繋ぐ直線上にある。このことから、上記の方法により得られた平均化学組成が一般式Ca3-xSrx-0.02Eu2+ 0.02(PO4)2(但し、xは2.31≦x≦2.95の範囲の数である。)で表される蛍光体混合物は、発光スペクトルの異なる二種類の蛍光体が均一に共存しており、xの値を操作することによって発光の色度を色度座標(0.295, 0.569)から色度座標(0.164, 0.012)の間で、任意に設定することができる。 As is clear from the chromaticity diagram shown in FIG. 4, the positions of the chromaticity coordinates of the samples x = 2.61 and x = 2.65 in which two phases of β 'and α phases coexist are composed of β' single phase. It is on a straight line connecting the position of the chromaticity coordinate (0.295, 0.569) of the sample x = 2.00 and the position of the chromaticity coordinate (0.164, 0.012) of the sample x = 3.00 made of α single phase. From this, the average chemical composition obtained by the above method has the general formula Ca 3-x Sr x-0.02 Eu 2+ 0.02 (PO 4 ) 2 (where x is a number in the range of 2.31 ≦ x ≦ 2.95) In the phosphor mixture represented by.), Two types of phosphors with different emission spectra coexist uniformly, and the chromaticity of light emission can be determined from the chromaticity coordinates (0.295, 0.569) by manipulating the value of x. It can be arbitrarily set between chromaticity coordinates (0.164, 0.012).

本実施例では、平均化学組成が一般式Na2xCa3-xAl2O6 (但し、xは0.10≦x≦0.16の範囲の数である。)で表される組成物に、Biを賦活することによって得られる蛍光体混合物の製造方法について説明する。 In this example, Bi was activated in a composition having an average chemical composition represented by the general formula Na 2x Ca 3-x Al 2 O 6 (where x is a number in the range of 0.10 ≦ x ≦ 0.16). A method for producing the phosphor mixture obtained by doing so will be described.

この母体結晶は、非特許文献3によって、Naの濃度に対する相組成が報告されている。それによるとxの値が0≦x<0.10の範囲では立方晶系の結晶構造(C相)が安定であり、0.16<x≦0.20の範囲では斜方晶系の結晶構造(O相)が安定である。一方、0.10≦x≦0.16の範囲では、x = 0.10組成のC相とx = 0.16組成のO相の二相が共存することが明らかにされている。
Cement Chemistry; pp. 1-28. Thomas Telford Publishing, London, U.K., (1997) 発明者らは、一般式Na2xCa3-xAl2O6で表される0.10≦x≦0.16の範囲の二相混合物が、本発明による蛍光体混合物の母体として有望であるとの着想を得て、以下に記述するところの蛍光体二相混合物の合成実験を行った。
Non-patent document 3 reports a phase composition with respect to the concentration of Na for this base crystal. According to this, the cubic crystal structure (C phase) is stable when the value of x is in the range of 0 ≦ x <0.10, and the orthorhombic crystal structure (O phase) is in the range of 0.16 <x ≦ 0.20. It is stable. On the other hand, in the range of 0.10 ≦ x ≦ 0.16, it has been clarified that two phases of a C phase having an x = 0.10 composition and an O phase having an x = 0.16 composition coexist.
Cement Chemistry; pp. 1-28. Thomas Telford Publishing, London, UK, (1997) The inventors have described that a two-phase mixture represented by the general formula Na2xCa3-xAl2O6 in the range of 0.10 ≦ x ≦ 0.16 is in accordance with the present invention. Taking the idea of being promising as a matrix of a phosphor mixture, a synthesis experiment of a phosphor two-phase mixture described below was conducted.

出発原料として炭酸カルシウム(CaCO3)とアルミナ(Al2O3)、炭酸水素ナトリウム(NaHCO3)、酸化ビスマス(Bi2O3)を用い,平均化学組成がNa2xCa2.97-xBi0.02Al2O6(x = 0.05、0.10、0.11、0.125、0.135、0.15、0.16、0.20)で表される8種類の組成物が生成する割合で秤量した。これらの原料混合粉末を直径約12mm×高さ約3mmのペレット状に一軸加圧成形し,大気中にて925℃で1時間加熱した後、電気炉から取り出して室温まで冷却した。得られた試料を粉砕混合した後、直径約12mm×高さ約3mmのペレット状に一軸加圧成形し,大気中にて、1200℃で2時間加熱し、電気炉から取り出して室温まで冷却した。 Calcium carbonate (CaCO 3 ), alumina (Al 2 O 3 ), sodium bicarbonate (NaHCO 3 ), bismuth oxide (Bi 2 O 3 ) are used as starting materials, and the average chemical composition is Na 2x Ca 2.97-x Bi 0.02 Al It was weighed at a ratio of 8 compositions represented by 2 O 6 (x = 0.05, 0.10, 0.11, 0.125, 0.135, 0.15, 0.16, 0.20). These raw material mixed powders were uniaxially pressed into pellets with a diameter of about 12 mm and a height of about 3 mm, heated in the atmosphere at 925 ° C. for 1 hour, then removed from the electric furnace and cooled to room temperature. After the obtained sample was pulverized and mixed, it was uniaxially pressed into a pellet with a diameter of about 12 mm and a height of about 3 mm, heated in the atmosphere at 1200 ° C for 2 hours, taken out of the electric furnace, and cooled to room temperature. .

得られた試料は粉砕して細かな粉末にした。CuKα1線(45 kV×40mA)を入射光とする X線粉末回折装置を用いて,10.0°から60.0°の2θ 範囲におけるプロフィル強度を測定した。得られたX線回折パターンから、xの値が0.05≦x≦0.10の範囲の試料はC相であり、0.16≦x≦0.20の範囲の試料はO相であり、xの値が0.11≦x≦0.15の範囲の試料はC相とO相の二相が共存していることを確認した。 The obtained sample was pulverized into a fine powder. The profile intensity in the 2θ range from 10.0 ° to 60.0 ° was measured using an X-ray powder diffractometer with CuKα 1 line (45 kV × 40 mA) as the incident light. From the obtained X-ray diffraction pattern, the sample in the range of x value 0.05 ≦ x ≦ 0.10 is the C phase, the sample in the range 0.16 ≦ x ≦ 0.20 is the O phase, and the value of x is 0.11 ≦ x It was confirmed that the sample in the range of ≦ 0.15 coexisted with two phases of C phase and O phase.

市販の分光蛍光光度計を用い、波長254 nmの励起光を用いて、波長200 nmから800 nmの蛍光強度を測定した。発光色は国際照明委員会の定めたXYZ表示系で示し、評価はJIS Z8722に準じて行った。   Using a commercially available spectrofluorometer, the fluorescence intensity of wavelengths from 200 nm to 800 nm was measured using excitation light having a wavelength of 254 nm. The luminescent color was shown by the XYZ display system defined by the International Lighting Commission, and the evaluation was performed according to JIS Z8722.

試料x = 0.05と試料x =0.10は共にC相のみから構成されていることから、これらの発光スペクトルに顕著な違いは認められなかった。また、試料x = 0.16と試料x =0.20は共にO相のみから構成されていることから、これらの発光スペクトルに顕著な違いは認められなかった。試料x = 0.10と試料x = 0.16の発光スペクトルについて評価した結果を図6に示す。図6に示す評価結果から明らかなように、試料x = 0.10では、蛍光はピークが478 nmで半価幅が93 nmの比較的ブロードなスペクトルを観測し、350 nmから700 nmにわたる幅の比較的広いスペクトルになった。色度座標の値は(0.155、0.235)であり、発光色は緑がかった青に分類された(図7)。すなわち、上記の方法により得られたビスマス賦活の立方晶ナトリウムカルシウムアルミネート系蛍光体は、波長が254 nmの紫外線により励起されて緑がかった青に発光する蛍光体である。   Since both sample x = 0.05 and sample x = 0.10 consisted of only the C phase, no significant difference was observed in their emission spectra. Moreover, since both sample x = 0.16 and sample x = 0.20 are composed of only the O phase, no significant difference was observed in their emission spectra. FIG. 6 shows the results of evaluating the emission spectra of sample x = 0.10 and sample x = 0.16. As is clear from the evaluation results shown in Fig. 6, in sample x = 0.10, the fluorescence observed a relatively broad spectrum with a peak at 478 nm and a half-value width of 93 nm, and a comparison of widths from 350 nm to 700 nm. Wide spectrum. The chromaticity coordinate values were (0.155, 0.235), and the emission color was classified as greenish blue (Fig. 7). That is, the bismuth-activated cubic sodium calcium aluminate phosphor obtained by the above method is a phosphor that emits greenish blue light when excited by ultraviolet light having a wavelength of 254 nm.

試料x = 0.16では、蛍光はピークが537 nmで半価幅が105 nmの比較的ブロードなスペクトルを観測し、350 nmから700 nmにわたる幅の比較的広いスペクトルになった(図6)。色度座標の値は(0.284、0.468)であり、発光色は黄がかった緑に分類された(図7)。すなわち、上記の方法により得られたビスマス賦活の斜方晶ナトリウムカルシウムアルミネート系蛍光体は、波長が254 nmの紫外線により励起されて黄がかった緑に発光する蛍光体である。   In sample x = 0.16, the fluorescence had a relatively broad spectrum with a peak at 537 nm and a half-value width of 105 nm, and a relatively broad spectrum ranging from 350 nm to 700 nm (Fig. 6). The chromaticity coordinate values were (0.284, 0.468), and the emission color was classified as yellowish green (Fig. 7). In other words, the bismuth-activated orthorhombic sodium calcium aluminate phosphor obtained by the above method is a phosphor that emits yellowish green when excited by ultraviolet light having a wavelength of 254 nm.

次に、xの値が0.11≦x≦0.15の範囲をもつ一連の試料の発光スペクトルを観測した(図8)。これらの試料はC相とO相の二相が共存しており、xの値が増加する(Naの濃度が増加する)に従い、発光スペクトルのピーク位置が、484 nmから528 nmまで連続的に増加した。   Next, the emission spectrum of a series of samples having a value of x in the range of 0.11 ≦ x ≦ 0.15 was observed (FIG. 8). In these samples, two phases of C and O phases coexist, and as the value of x increases (Na concentration increases), the peak position of the emission spectrum continuously increases from 484 nm to 528 nm. Increased.

低圧水銀灯から発せられる紫外線を用いて、xの値が0.11≦x≦0.15の範囲をもつ一連の試料の発光色を肉眼で確認したところ、均一な発光色であった。このことから、発光スペクトルの異なる二種類の蛍光体が均一に混合されていることが確認できた。   Using a UV light emitted from a low-pressure mercury lamp, the emission color of a series of samples having a value of x in the range of 0.11 ≦ x ≦ 0.15 was confirmed with the naked eye. From this, it was confirmed that two types of phosphors having different emission spectra were uniformly mixed.

図7に示す色度図から明らかなように、C相とO相の二相が共存している試料の色度座標の位置は、C単一相から成る試料の色度座標(0.155、0.235)と、O単一相から成る試料の色度座標(0.284、0.468)の位置を繋ぐ直線上にある。このことから、上記の方法により得られた平均化学組成が一般式Na2xCa2.97-xBi0.02Al2O6(但し、xは0.11≦x≦0.15の範囲の数である。)で表される蛍光体混合物は、発光スペクトルの異なる二種類の蛍光体が均一に共存しており、xの値を操作することによって発光の色度を色度座標(0.155、0.235)から色度座標(0.284、0.468)の間で、任意に設定することができる。 As is clear from the chromaticity diagram shown in FIG. 7, the position of the chromaticity coordinate of the sample in which two phases of C phase and O phase coexist is the chromaticity coordinate (0.155, 0.235) of the sample consisting of C single phase. ) And the position of the chromaticity coordinates (0.284, 0.468) of the sample consisting of O single phase. From this, the average chemical composition obtained by the above method is represented by the general formula Na 2x Ca 2.97-x Bi 0.02 Al 2 O 6 (where x is a number in the range of 0.11 ≦ x ≦ 0.15). In the phosphor mixture, two types of phosphors with different emission spectra coexist uniformly, and the chromaticity of light emission can be changed from chromaticity coordinates (0.155, 0.235) to chromaticity coordinates (0.284) by manipulating the value of x. , 0.468) can be arbitrarily set.

本発明の蛍光体混合物は、波長200 nmから400 nmの紫外線励起に限った発光材料ではなく、真空紫外光や電子線、電界などの励起によって発光する表示媒体や照明用の蛍光体へ転用が可能であり、液晶ディスプレイやプラズマディスプレイ、電界放射ディスプレイ、フルカラー蛍光表示管、エレクトロルミネッセンスなどに利用可能性である。   The phosphor mixture of the present invention is not a light emitting material limited to excitation of ultraviolet light having a wavelength of 200 nm to 400 nm, but can be diverted to a display medium that emits light by excitation of vacuum ultraviolet light, an electron beam, an electric field, or the like, or a phosphor for illumination. It can be used for liquid crystal displays, plasma displays, field emission displays, full-color fluorescent display tubes, electroluminescence, and the like.

図1は本発明の実施例1に係る試料x = 2.00の励起スペクトルと発光スペクトルを示した図である。FIG. 1 is a diagram showing an excitation spectrum and an emission spectrum of a sample x = 2.00 according to Example 1 of the present invention. 図2は本発明の実施例1に係る試料x = 3.00の励起スペクトルと発光スペクトルを示した図である。FIG. 2 is a diagram showing an excitation spectrum and an emission spectrum of sample x = 3.00 according to Example 1 of the present invention. 図3は本発明の実施例1に係る試料x = 2.00と試料x = 3.00の励起波長365 nmにおける発光スペクトルを示した図である。FIG. 3 is a diagram showing emission spectra at the excitation wavelength of 365 nm of sample x = 2.00 and sample x = 3.00 according to Example 1 of the present invention. 図4は本発明の実施例1に係る色度図を示した図である。FIG. 4 is a diagram illustrating a chromaticity diagram according to the first embodiment of the present invention. 図5は本発明の実施例1に係る試料x = 2.61と試料x = 2.65の励起波長365 nmにおける発光スペクトルを示した図である。FIG. 5 is a graph showing emission spectra at the excitation wavelength of 365 nm of sample x = 2.61 and sample x = 2.65 according to Example 1 of the present invention. 図6は本発明の実施例2に係る試料x = 0.10と試料x = 0.16の励起波長254 nmにおける発光スペクトルを示した図である。FIG. 6 is a graph showing emission spectra at the excitation wavelength of 254 nm of sample x = 0.10 and sample x = 0.16 according to Example 2 of the present invention. 図7は本発明の実施例2に係る色度図を示した図である。FIG. 7 is a diagram illustrating a chromaticity diagram according to the second embodiment of the present invention. 図8は本発明の実施例2に係るxの値が0.10≦x≦0.16の範囲である試料の励起波長254 nmにおける発光スペクトルを示した図である。FIG. 8 is a graph showing an emission spectrum at an excitation wavelength of 254 nm of a sample in which the value of x according to Example 2 of the present invention is in the range of 0.10 ≦ x ≦ 0.16.

Claims (4)

複数の固相が安定に共存する領域で合成される多相混合物からなる蛍光体の母体であって、当該母体の化学組成が、一般式Ca 3−X Sr (PO (ただし、2.31≦X≦2.95)で表わされる蛍光体混合物 It is a matrix of a phosphor composed of a multiphase mixture synthesized in a region where a plurality of solid phases stably coexist, and the matrix has a chemical composition of the general formula Ca 3-X Sr X (PO 4 ) 2 (wherein 2.31 ≦ X ≦ 2.95) . 前記蛍光体混合物が、Euを賦活剤として含む請求項1に記載の蛍光体混合物 The phosphor mixture according to claim 1, wherein the phosphor mixture contains Eu as an activator . 複数の固相が安定に共存する領域で合成される多相混合物からなる蛍光体の母体であって、当該母体の化学組成が、一般式Na 2X Ca 3−X Al (ただし、0.1≦X≦0.15)で表わされる蛍光体混合物 It is a matrix of a phosphor composed of a multiphase mixture synthesized in a region where a plurality of solid phases stably coexist, and the matrix has a chemical composition of the general formula Na 2X Ca 3-X Al 2 O 6 (however, 0 1 ≦ X ≦ 0.15) . 前記蛍光体混合物が、Biを賦活剤として含む請求項3に記載の蛍光体混合物 The phosphor mixture according to claim 3, wherein the phosphor mixture contains Bi as an activator .
JP2007067878A 2007-03-16 2007-03-16 Phosphor mixture Active JP4910151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067878A JP4910151B2 (en) 2007-03-16 2007-03-16 Phosphor mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067878A JP4910151B2 (en) 2007-03-16 2007-03-16 Phosphor mixture

Publications (2)

Publication Number Publication Date
JP2008222989A JP2008222989A (en) 2008-09-25
JP4910151B2 true JP4910151B2 (en) 2012-04-04

Family

ID=39841971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067878A Active JP4910151B2 (en) 2007-03-16 2007-03-16 Phosphor mixture

Country Status (1)

Country Link
JP (1) JP4910151B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222988A (en) * 2007-03-16 2008-09-25 Nagoya Institute Of Technology Broadband light emitting phosphor, method for producing the same and method for selecting parent material
CN102618272A (en) * 2012-03-16 2012-08-01 武汉工程大学 Phosphate red luminescent material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131037B2 (en) * 1973-02-20 1976-09-04
US4249108A (en) * 1979-11-30 1981-02-03 Gte Products Corporation LaMg Aluminate phosphors activated by europium and lamps incorporating same
JPH02105888A (en) * 1988-10-13 1990-04-18 Hitachi Maxell Ltd Phosphor material
JP2992631B1 (en) * 1998-08-12 1999-12-20 工業技術院長 Stress-stimulated luminescent material and manufacturing method thereof
JP2003231881A (en) * 2002-02-12 2003-08-19 Toshiba Corp Phosphor, method for producing phosphor and cathode- ray tube
JP2008222988A (en) * 2007-03-16 2008-09-25 Nagoya Institute Of Technology Broadband light emitting phosphor, method for producing the same and method for selecting parent material

Also Published As

Publication number Publication date
JP2008222989A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
Tian et al. Controlling multi luminescent centers via anionic polyhedron substitution to achieve single Eu2+ activated high-color-rendering white light/tunable emissions in single-phased Ca2 (BO3) 1− x (PO4) xCl phosphors for ultraviolet converted LEDs
JP5234781B2 (en) Phosphor, method for producing the same, and light emitting device
JP5549001B2 (en) Phosphor and production method thereof
JP5224439B2 (en) Phosphor and light emitting device using the same
TWI564368B (en) Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US20060244356A1 (en) Phosphor and manufacturing method for the same, and light emitting device using the phosphor
US20080020236A1 (en) Phosphor for white light-emitting device and white light-emitting device including the same
JP5355613B2 (en) Yellow phosphor having oxyapatite structure, production method and white light emitting diode device thereof
JP2007131843A (en) Silicate-based orange fluorophor
CN107001932B (en) Phosphor composition and lighting device thereof
JP2012062472A (en) Green phosphor, its manufacturing method, and white light emitting device containing the same
JP2005120251A (en) Fluorescent lamp and phosphor for fluorescent lamp
JP4910151B2 (en) Phosphor mixture
Li et al. Control of the photoluminescence in Ba 0.97 Y 2 Si 3 O 10: Eu 2+ phosphors via the intensification effect of the second luminescence centre
JP2000026854A (en) Liminous oxide having stuffed tridymite type or kaliphilite type structure and oxide luminophor
TWI450944B (en) Green-emitting, garnet-based phosphors in general and backlighting applications
KR100793082B1 (en) Blue-emitting phosphors for long-middle ultraviolet ray and their production method
US7517473B2 (en) Method for producing blue phosphor
US7758775B2 (en) Green-emitting phosphors and process for producing the same
KR101531123B1 (en) Method for producing fluorescent substance
US8398893B2 (en) Halophosphate phosphors and method of preparing the same
JP2011202002A (en) Phosphor
JP5820510B1 (en) Method for synthesizing composite fluorescent powder
JP5066104B2 (en) Blue phosphor
CN110003910B (en) Eu (Eu)3+Activated bismuth fluorotellurate red fluorescent powder and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150