JP4909234B2 - Method for detecting substances to be measured by electrolysis - Google Patents

Method for detecting substances to be measured by electrolysis Download PDF

Info

Publication number
JP4909234B2
JP4909234B2 JP2007273841A JP2007273841A JP4909234B2 JP 4909234 B2 JP4909234 B2 JP 4909234B2 JP 2007273841 A JP2007273841 A JP 2007273841A JP 2007273841 A JP2007273841 A JP 2007273841A JP 4909234 B2 JP4909234 B2 JP 4909234B2
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
working electrode
measured
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007273841A
Other languages
Japanese (ja)
Other versions
JP2009103503A (en
Inventor
和雄 内倉
謙介 本多
郁雄 桜田
Original Assignee
有限会社コメット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社コメット filed Critical 有限会社コメット
Priority to JP2007273841A priority Critical patent/JP4909234B2/en
Publication of JP2009103503A publication Critical patent/JP2009103503A/en
Application granted granted Critical
Publication of JP4909234B2 publication Critical patent/JP4909234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は水溶液の流路に設けられた電解装置により電解を行なって水溶液中の被測定物質成分を検出する方法において、ダイヤモンド電極を使用した特定の構成の電解装置を使用することにより、微量の各種有機化合物等を検出する方法に関するものである。   The present invention provides a method for detecting a component of a substance to be measured in an aqueous solution by performing electrolysis with an electrolytic device provided in a flow path of the aqueous solution. By using an electrolytic device having a specific configuration using a diamond electrode, a trace amount can be obtained. The present invention relates to a method for detecting various organic compounds.

種々の有機化合物などを含有する溶液中の成分を検出する方法の一つとして溶液の電解電流を測定する方法がある。このような電気化学的な検出に使用する電極としては炭素系材料、金属、金属酸化物、半導体などが知られており、特にグラッシーカーボンなどの炭素質の電極は広く使用されている。   One method for detecting components in a solution containing various organic compounds is to measure the electrolytic current of the solution. Carbon-based materials, metals, metal oxides, semiconductors, and the like are known as electrodes used for such electrochemical detection, and particularly carbonaceous electrodes such as glassy carbon are widely used.

さらに特開平11−83799号公報(特許文献1)に示されるように、電解装置の作用電極としてダイヤモンド電極が注目されるようになった。特許文献1においてはダイヤモンド電極としてシリコン単結晶の基板上にプラズマ励起CVDによりダイヤモンド薄膜を形成したものを使用している。なお導電性を付与するために微量の硼素を混入させている。そしてこのようなダイヤモンドによる検出極(引用文献1では作用電極をこのように称している)と対極および参照極とを電解槽中の並べて保持し、電極間に電圧を印加して電解電流を測定している。   Further, as disclosed in Japanese Patent Application Laid-Open No. 11-83799 (Patent Document 1), a diamond electrode has attracted attention as a working electrode of an electrolysis apparatus. In Patent Document 1, a diamond electrode in which a diamond thin film is formed on a silicon single crystal substrate by plasma-excited CVD is used. Note that a small amount of boron is mixed to provide conductivity. Then, such a detection electrode made of diamond (the working electrode is referred to in this way in Cited Document 1), a counter electrode and a reference electrode are held side by side in the electrolytic cell, and a voltage is applied between the electrodes to measure the electrolysis current. is doing.

特許文献1においては、被測定物質により電解が開始する電圧が相違することを利用して複数の成分が混在してしている溶液においてそれぞれの成分の濃度を求めることができるとしている。たとえばダイヤモンド電極上でグルコースの酸化は+2.2Vで開始し、アスコルビン酸の酸化は+0.7Vで開始する。したがってたとえば+1.5Vと+2.5Vで電解を行なってその時の応答電流を求めれば、+1.5Vでの応答電流はアスコルビン酸のみ、+2.5Vの応答電流はアスコルビン酸とグルコースの合計に対応するので、それぞれの濃度を求めることができる。電流としては、グルコース濃度が5mMのとき、+2.5Vにおいて0.5mA/cm2といった値が示されている。 In Patent Document 1, it is assumed that the concentration of each component can be obtained in a solution in which a plurality of components are mixed by utilizing the fact that the voltage at which electrolysis starts depends on the substance to be measured. For example, on a diamond electrode, glucose oxidation begins at + 2.2V and ascorbic acid oxidation begins at + 0.7V. Therefore, for example, if electrolysis is performed at +1.5 V and +2.5 V and the response current at that time is obtained, the response current at +1.5 V corresponds to only ascorbic acid, and the response current of +2.5 V corresponds to the sum of ascorbic acid and glucose. Therefore, the respective concentrations can be obtained. As the current, a value of 0.5 mA / cm 2 is shown at +2.5 V when the glucose concentration is 5 mM.

引用文献1では上記の例のように5mMといった濃度の溶液で電解槽を満たすので、被測定物質の全体量はかなり多くなる。それでも濃度を低くしても測定可能であれば被測定物質が小量で済むが、検出される電流値も低くなって外乱の影響のため測定が困難になる。引用文献1には電解装置として電解槽に電極を挿入するものの他に、参照極、検出極および対極が間に電気絶縁層を挟んで1列に配置されたものが示されている。これにより被測定物質を含んだ電解液が各電極の1面で接触した状態で測定が行なわれるとしているので、前記の電解槽の場合よりも電解液の量が減らせる可能性はあるが、実際に測定した例は示されていない。   In Cited Document 1, since the electrolytic cell is filled with a solution having a concentration of 5 mM as in the above example, the total amount of the substance to be measured is considerably increased. Even if the concentration is low, the amount of the substance to be measured is small if it can be measured. However, the detected current value is also low, and the measurement is difficult due to the influence of disturbance. Cited Document 1 shows an electrolysis apparatus in which an electrode is inserted into an electrolytic cell, and a reference electrode, a detection electrode, and a counter electrode are arranged in a row with an electric insulating layer interposed therebetween. Since the measurement is performed in a state where the electrolyte containing the substance to be measured is in contact with one surface of each electrode, there is a possibility that the amount of the electrolyte can be reduced as compared with the case of the electrolytic cell. Examples of actual measurements are not shown.

一方、特開2001−50924号公報(特許文献2)には、試料溶液を連続的に導入して電解を行なった後に排出する一般にフローセルと称する電解装置において、ダイヤモンド電極を適用した装置が示されている。引用文献2においては、電解装置を示す図面においては四角形の中に対極、作用電極、参照電極をそれぞれ示す3本の線が平行に並んでいるだけで、その構造に関する詳細な説明はないが、そのようなフローセルに緩衝液を連続的に流した状態で試料溶液を間欠的に注入して電解電流を測定するフローインジェクション分析が示されている。   On the other hand, Japanese Patent Laid-Open No. 2001-50924 (Patent Document 2) shows an apparatus to which a diamond electrode is applied in an electrolysis apparatus generally called a flow cell that continuously introduces a sample solution and discharges it after performing electrolysis. ing. In Cited Document 2, in the drawing showing the electrolysis apparatus, only three lines indicating the counter electrode, the working electrode, and the reference electrode are arranged in parallel in a quadrilateral, and there is no detailed explanation about the structure. A flow injection analysis is shown in which an electrolytic current is measured by intermittently injecting a sample solution in a state where a buffer solution is continuously passed through such a flow cell.

たとえば設定電位を1.275V(vs. Ag/AgCl)として、0.1Mの燐酸塩緩衝液を流速1ml/minで流しつつ、1μMないし100μMの範囲の各濃度のヒスタミンを含有する溶液を20μlずつ注入して電解電流を測定している。その結果、注入する度にピーク電流が確認されており、100μMの場合には437.096nAとなっている。そしてこれより濃度が低い溶液においては濃度に比例した低い電流が得られているので、これにより正確な濃度測定が可能であるとしている。
特開平11−83799号公報 特開2001−50924号公報
For example, with a set potential of 1.275 V (vs. Ag / AgCl), a 0.1 M phosphate buffer solution is allowed to flow at a flow rate of 1 ml / min, and 20 μl of a solution containing histamine at each concentration ranging from 1 μM to 100 μM. The electrolytic current is measured by injection. As a result, a peak current was confirmed each time it was injected, and in the case of 100 μM, it was 437.096 nA. In a solution having a lower concentration than this, a low current proportional to the concentration is obtained, so that accurate concentration measurement is possible.
Japanese Patent Laid-Open No. 11-83799 JP 2001-50924 A

引用文献2に示されているフローインジェクション分析のようなフローセルによる電解は、液体クロマトグラフィーと組み合わせれば混合溶液において各成分の分離定量が可能である。しかもダイヤモンド電極は電位窓が広くかなり高い電圧でも水の電解が発生しないので、広い範囲の化合物において電解電流の検出ができる。しかしながら引用文献2の分析方法においては、試料の濃度が100μMでも検出される電流のピーク値は0.4μAといった程度である。引用文献2の説明によれば一般にフローセルを用いた分析では脈動が分析に多大な影響を与えるところ、導電性ダイヤモンド電極においてはバックグラウンド電流が極めて小さいので脈動の影響が極めて少なく、正確な分析が可能であるとしている。しかしながら血液中の微量成分の測定といった測定対象物質の濃度が極く低い場合が多い医学的な検査試料などでは電解電流が微弱になり、引用文献2の測定方法では感度が不十分である。本発明は上記のような問題からダイヤモンド電極を使用した電解装置を使用して分析する場合において、微量の物質を感度良く検出する方法を提供することを目的とする。   Electrolysis using a flow cell such as the flow injection analysis shown in the cited document 2 can separate and quantify each component in a mixed solution when combined with liquid chromatography. Moreover, since the diamond electrode has a wide potential window and water electrolysis does not occur even at a considerably high voltage, the electrolysis current can be detected in a wide range of compounds. However, in the analysis method of the cited document 2, the peak value of the current detected even when the sample concentration is 100 μM is about 0.4 μA. According to the description of the cited document 2, in general, in the analysis using the flow cell, the pulsation greatly influences the analysis. However, in the conductive diamond electrode, the background current is extremely small, so the influence of the pulsation is extremely small, and the accurate analysis is possible. It is possible. However, the electrolysis current is weak in a medical test sample or the like in which the concentration of a measurement target substance such as measurement of a trace component in blood is extremely low, and the sensitivity of the measurement method of the cited document 2 is insufficient. An object of the present invention is to provide a method for detecting a very small amount of a substance with high sensitivity in the case of performing analysis using an electrolysis apparatus using a diamond electrode due to the above problems.

本発明は前記課題を解決するものであって、試料溶液の流路に設けられた電解装置により電解を行なって試料溶液中の被測定物質成分を検出する方法において、電解装置は導電体の電極板の少なくとも片面に導電性のダイヤモンド皮膜が形成された作用電極と、作用電極のダイヤモンド皮膜を有する面と0.05ないし1.0mmの間隔をもって対向する導電体からなる対極と、先端が作用電極と0.05ないし1.0mmの間隔をもって対向する参照電極とを有し、作用電極のダイヤモンド皮膜を有する面のうち、対極および参照電極と対向して試料溶液の流路になっている個所の幅は1.5mm以上4.0mm以下となっているものであって、作用電極と対極および参照電極との間に前記試料溶液を流しつつ作用電極と対極との間に電圧を印加して被測定物質の濃度1μMあたり0.1μA以上の電解電流を発生させ、電解電流を測定することにより被測定物質の濃度を測定することを特徴とする電解による被測定物質の検出方法である。ここにおいて電解電流が分子の原子間の結合の切断によるものであることも特徴とする。 The present invention solves the above-mentioned problem, and in a method for detecting a component to be measured in a sample solution by performing electrolysis with an electrolytic device provided in a flow path of the sample solution, the electrolytic device is an electrode of a conductor. A working electrode having a conductive diamond film formed on at least one surface of the plate, a counter electrode made of a conductor facing the surface having the diamond film of the working electrode with an interval of 0.05 to 1.0 mm, and a working electrode at the tip And a reference electrode facing each other with an interval of 0.05 to 1.0 mm, and a portion of the working electrode having a diamond coating facing the counter electrode and the reference electrode and serving as a flow path for the sample solution width be one which is the 1.5mm or 4.0mm or less, the voltage between the working electrode and the counter electrode while flowing the sample solution between the working electrode and the counter electrode and a reference electrode A method for detecting a substance to be measured by electrolysis, characterized in that the concentration of the substance to be measured is measured by applying and generating an electrolytic current of 0.1 μA or more per 1 μM concentration of the substance to be measured and measuring the electrolytic current. is there. Here, it is also characterized in that the electrolysis current is due to the breakage of the bond between the atoms of the molecule.

本発明の電解による被測定物質の検出方法によれば、電解装置に電位窓の大きな導電性のダイヤモンドを作用電極として使用することにより、電解電圧が高いため水の電気分解が発生して炭素質の電極では検出できない物質の検出が可能となる。さらに作用電極と対極の間隔および作用電極と参照電極の間隔をそれぞれ0.05ないし1.0mmと極めて狭くすることにより、極く微量の成分でも十分測定可能な電解電流を得ることができる。   According to the method for detecting a substance to be measured by electrolysis of the present invention, by using conductive diamond having a large potential window as a working electrode in an electrolysis apparatus, electrolysis of water occurs due to high electrolysis voltage, and carbonaceous matter is generated. This makes it possible to detect a substance that cannot be detected by this electrode. Furthermore, by making the distance between the working electrode and the counter electrode and the distance between the working electrode and the reference electrode as extremely narrow as 0.05 to 1.0 mm, an electrolytic current that can be sufficiently measured even with a very small amount of components can be obtained.

本発明は水溶液の流路に設けられた電解装置により電解を行なって水溶液中の被測定物質成分を検出するものであって、緩衝液などの電解液を流した状態で電解装置の上流において試料溶液を入れるフローインジェクション分析や、液体クロマトグラフから流出する溶離液を電解装置に導入するポストカラム分析などとして適用される。本発明に使用する電解装置は導電性ダイヤモンドを作用電極として使用するものであって、これと対極、参照電極との配置を特別な構成にすることによって微量の成分で大きな電解電流の発生を可能にしている。   In the present invention, electrolysis is performed by an electrolysis apparatus provided in a flow path of an aqueous solution to detect a substance component to be measured in the aqueous solution. The present invention is applied to flow injection analysis in which a solution is put in, post column analysis in which an eluent flowing out from a liquid chromatograph is introduced into an electrolysis apparatus, and the like. The electrolysis apparatus used in the present invention uses conductive diamond as a working electrode, and it is possible to generate a large electrolysis current with a small amount of components by specially arranging the counter electrode and the reference electrode. I have to.

本発明の方法においては、被測定物質を検出する電解装置の作用電極として上記のようにダイヤモンド電極を使用することにより従来より高い電圧を印加して電解することが可能である。すなわち従来の電解装置において作用電極として一般に使用されているグラッシーカーボンなどの炭素質の電極はアノードとしての電位が対標準水素電極(以下「対NHE」と称する)1.2Vを超えると水の電気分解が発生し、成分中の物質による電解電流の測定が困難になる。一方、本発明で使用する電解装置は約2.5V(Ag/AgCl基準電極に対して)まで水の電気分解が発生しない。したがって本発明の被測定物質の検出方法では電解電圧が高かったため従来は検出できなかった物質の検出が可能となる。   In the method of the present invention, by using a diamond electrode as described above as a working electrode of an electrolysis apparatus for detecting a substance to be measured, it is possible to perform electrolysis by applying a higher voltage than before. That is, when a carbonaceous electrode such as glassy carbon generally used as a working electrode in a conventional electrolysis apparatus has an anode potential exceeding 1.2 V with respect to a standard hydrogen electrode (hereinafter referred to as “NHE”), Decomposition occurs, making it difficult to measure the electrolysis current due to the substances in the components. On the other hand, the electrolysis apparatus used in the present invention does not cause electrolysis of water up to about 2.5 V (relative to the Ag / AgCl reference electrode). Therefore, in the method for detecting a substance to be measured according to the present invention, since the electrolysis voltage is high, it is possible to detect a substance that could not be detected conventionally.

図1および図2は本発明に使用する電解装置を示す図であって、図1は軸方向に平行な断面図、図2は図1におけるA−A´矢視断面図である。これらの図において11は作用電極であって(図2では位置関係を2点鎖線で示している)、薄い板状の電導性の基板の少なくとも表側の面、すなわち図2において少なくとも左側の面に導電性のダイヤモンド皮膜が形成されている。また12は弗素樹脂など耐薬品性の電気絶縁体からなるスペーサであって、図2に見るように一つの細長い穴121が開いている。また13はチタンなどの耐蝕性を有する導電体のブロックからなる対極であって、スペーサ12を挟んで作用電極11のダイヤモンドが形成された面と対向している。   1 and 2 are views showing an electrolysis apparatus used in the present invention. FIG. 1 is a cross-sectional view parallel to the axial direction, and FIG. 2 is a cross-sectional view taken along line AA ′ in FIG. In these figures, reference numeral 11 denotes a working electrode (in FIG. 2, the positional relationship is indicated by a two-dot chain line), which is at least on the front surface of the thin plate-like conductive substrate, that is, on at least the left surface in FIG. A conductive diamond film is formed. Reference numeral 12 denotes a spacer made of a chemical-resistant electrical insulator such as fluorine resin, and has one elongated hole 121 as shown in FIG. Reference numeral 13 denotes a counter electrode made of a corrosion-resistant conductor block such as titanium, which faces the surface of the working electrode 11 on which the diamond is formed with the spacer 12 interposed therebetween.

上記の作用電極11は導電性の薄板、たとえば厚さが0.7mm程度の導電性のシリコンの単結晶板を基板として数μmの大きさの微細なダイヤモンドの結晶からなる30μm程度の厚さの皮膜を形成することによって作成される。ダイヤモンド皮膜の形成はアセトンなどの炭素源を含有する水素ガス中でプラズマCVDにより行なえる。なおダイヤモンドに導電性を付与するために酸化硼素などを前記炭素源に溶解することにより硼素をドープする。   The working electrode 11 is a conductive thin plate, for example, a conductive silicon single crystal plate having a thickness of about 0.7 mm, and has a thickness of about 30 μm made of fine diamond crystals of several μm in size. Created by forming a film. The diamond film can be formed by plasma CVD in hydrogen gas containing a carbon source such as acetone. In order to impart conductivity to diamond, boron oxide or the like is doped in boron by dissolving it in the carbon source.

前記スペーサ12の穴121によって形成される一つの空間14にそれぞれ開口して、溶出液の導入口15および排出口16ならびに参照電極30があるが、これらはいずれも対極13のブロックに設けられている。すなわち溶出液の導入口15および排出口16は対極13のブロックに穴をあけることによって形成され、溶出液の導入、排出のための流体継手17、18が対極のブロックにねじ込まれている。また参照電極30も対極のブロックにねじ込んで取り付けられている。なお19は対極13への通電端子である。   There are an elution inlet 15 and an outlet 16 and a reference electrode 30 respectively opened in one space 14 formed by the hole 121 of the spacer 12, all of which are provided in the block of the counter electrode 13. Yes. That is, the eluate inlet 15 and the outlet 16 are formed by making holes in the counter electrode 13 block, and fluid couplings 17 and 18 for introducing and discharging the eluate are screwed into the counter electrode block. The reference electrode 30 is also screwed into the counter electrode block. Reference numeral 19 denotes an energization terminal for the counter electrode 13.

参照電極30はAg−AgCl系の例を示しているが、弗素樹脂のような耐薬品性の容器301の中に飽和KCl溶液をゼラチンによりゲル状にしたものが電解液302として充填されている。さらにこの中に表面をAgClにしたAg線が電極材303として挿入されている。また304は参照電極の電解液302と被測定液体である溶出液とを隔てる多孔質セラミックスなどのフィルターである。   The reference electrode 30 is an example of an Ag-AgCl system. However, a chemical resistant container 301 such as a fluororesin in which a saturated KCl solution is gelatinized with gelatin is filled as an electrolytic solution 302. . Further, an Ag wire having a surface made of AgCl is inserted as an electrode material 303 therein. Reference numeral 304 denotes a filter made of porous ceramic or the like that separates the electrolyte solution 302 of the reference electrode from the eluate that is the liquid to be measured.

また作用電極11の電極板の裏面、すなわち対極13と対向する面の反対側には作用電極への通電板20が設けられ、作用電極11に接触している。21は作用電極11への通電端子である。また22は耐薬品性の電気絶縁体からなる与圧カバーであって、図示しない複数の止めねじによって前記の対極13のブロックと結合されており、Oリング23、24でシールすることにより電解装置の内部を与圧状態に保持する。また前記の通電板20の一部にOリング26を設けてその内側に試料溶液が入らないようにし、液体を介さず直接に通電板を電極板の裏面に電気的接触させる。また27は対極13の金属ブロック全体を覆うプラスチック製の絶縁カバーである。   Further, a current-carrying plate 20 for the working electrode is provided on the back surface of the electrode plate of the working electrode 11, that is, on the opposite side of the surface facing the counter electrode 13, and is in contact with the working electrode 11. Reference numeral 21 denotes an energization terminal for the working electrode 11. Reference numeral 22 denotes a pressurizing cover made of a chemical-resistant electrical insulator, which is coupled to the block of the counter electrode 13 by a plurality of set screws (not shown), and is sealed with O-rings 23 and 24 so as to be electrolyzed. Is kept in a pressurized state. In addition, an O-ring 26 is provided in a part of the energization plate 20 so that the sample solution does not enter inside thereof, and the energization plate is directly brought into electrical contact with the back surface of the electrode plate without a liquid. A plastic insulating cover 27 covers the entire metal block of the counter electrode 13.

上記のように電解装置の内部は与圧状態になっているが、作用電極11の電極板のダイヤモンドが形成されていない裏面および端面や、通電板20の表面での水の電気分解による影響を少なくするためである。すなわち作用電極の電極板の面で液をシールするのは加圧力による電極板の破損の問題から困難であるので、本発明における電解装置は作用電極11の電極板の裏面や端面も試料溶液との接触を許容する構造にしている。このため作用電極の裏面や端面、通電板の表面などで水の電気分解によって気体が発生する。しかし電解装置の内部を加圧すれば発生した気体の膜を安定に維持し、装置を起動させて時間が経過したときにこれらの個所で電気分解を安定に停止状態にできる。したがって分析中に時々水の電解電流が流れて測定値に対する外乱となるのを防止できる。加圧力としては効果の点と装置のシールの問題から、1.0kg/cm2 以上15.0kg/cm2 以下(ゲージ圧)が適当である。 As described above, the inside of the electrolysis apparatus is in a pressurized state, but the influence of electrolysis of water on the back surface and the end surface of the electrode plate of the working electrode 11 where the diamond is not formed and on the surface of the energizing plate 20 is affected. This is to reduce it. That is, since it is difficult to seal the liquid on the surface of the electrode plate of the working electrode due to the problem of damage to the electrode plate due to the applied pressure, the electrolysis apparatus according to the present invention also includes the back surface and the end surface of the electrode plate of the working electrode 11 with the sample solution. It has a structure that allows contact. For this reason, gas is generated by electrolysis of water on the back and end surfaces of the working electrode, the surface of the energizing plate, and the like. However, by pressurizing the inside of the electrolysis apparatus, the generated gas film can be stably maintained, and when the apparatus is started and the time has elapsed, the electrolysis can be stably stopped at these points. Therefore, it is possible to prevent the electrolysis current of water from flowing from time to time during analysis and causing disturbance to the measured value. The applied pressure is suitably 1.0 kg / cm 2 or more and 15.0 kg / cm 2 or less (gauge pressure) in view of the effect and the problem of sealing of the apparatus.

さらに本発明の電解装置においては、作用電極と対極との間隔を0.05ないし1.0mmとする。この間隔はスペーサ12の厚さによって規制されるのでこれの厚さを調節すれば良い。またさらに作用電極と対極との間隔だけでなく、参照電極と対極との間隔もを0.05ないし1.0mmとする。先に述べたように参照電極は対極のブロックにねじ込んで取付けられているので、このときの参照電極の取付け位置と前記の作用電極と対極との間隔とによって、参照電極と対極との間隔が所定の値に維持される。参照電極の先端部を対極の電極面の位置と同じにすれば対極と参照電極の両方とも作用電極と同じ間隔になるが、通常はこのような状態で良い。   Furthermore, in the electrolysis apparatus of the present invention, the distance between the working electrode and the counter electrode is set to 0.05 to 1.0 mm. Since this interval is regulated by the thickness of the spacer 12, the thickness may be adjusted. Furthermore, not only the distance between the working electrode and the counter electrode, but also the distance between the reference electrode and the counter electrode is set to 0.05 to 1.0 mm. Since the reference electrode is screwed and attached to the counter electrode block as described above, the distance between the reference electrode and the counter electrode depends on the reference electrode mounting position and the distance between the working electrode and the counter electrode. It is maintained at a predetermined value. If the tip of the reference electrode is made the same as the position of the electrode surface of the counter electrode, both the counter electrode and the reference electrode have the same spacing as the working electrode, but this is usually the case.

このように作用電極11および参照電極30と対極13の電極面とを狭い間隙をもって対向させることにより微量の成分で極めて大きな電解電流を得ることができる。すなわち作用電極と対極との間隔、参照電極と対極との間隔のいずれかが上記より大きくても電解電流は観測されるが、引用文献2に示されているように濃度が100μMの試料で検出される電流は0.4μAといった程度である。ところが本発明における電解装置においては同じ成分量で100倍以上の電解電流が得られる。したがって本発明における電解装置では、引用文献2の方法よりもはるかに微量の試料でも検出可能な電流が得られる。種々の有機化合物における実験結果を総合すると、本発明においては溶液中の被測定物質の濃度1μM(1pmol/μl)あたり0.1μA以上の電解電流が得られる。したがって1μM程度の濃度があれば電解電流を測定することにより被測定物質の濃度を測定することができる。   In this way, by making the working electrode 11 and the reference electrode 30 and the electrode surface of the counter electrode 13 face each other with a narrow gap, an extremely large electrolysis current can be obtained with a small amount of components. That is, even if either the distance between the working electrode and the counter electrode or the distance between the reference electrode and the counter electrode is larger than the above, an electrolysis current is observed, but as shown in the cited reference 2, it is detected with a sample having a concentration of 100 μM. The applied current is about 0.4 μA. However, in the electrolysis apparatus of the present invention, an electrolysis current 100 times or more can be obtained with the same component amount. Therefore, in the electrolysis apparatus according to the present invention, it is possible to obtain a current that can be detected even by a much smaller amount of sample than in the method of Reference 2. Summing up the experimental results of various organic compounds, in the present invention, an electrolysis current of 0.1 μA or more per 1 μM (1 pmol / μl) concentration of the substance to be measured in the solution is obtained. Therefore, if there is a concentration of about 1 μM, the concentration of the substance to be measured can be measured by measuring the electrolysis current.

上記作用電極および参照電極と対極との間隔は0.05mmより小さいと作用電極や参照電極と対極とが接触するおそれがあり、一方、1.0mmより大きいと微量成分の検出感度が低下することがある。この点でさらに好ましいのは0.5mm以下である。またこのとき作用電極のダイヤモンド皮膜を有する面のうち、対極および参照電極と対向して水溶液の流路になっている個所の幅W(図2)は1.5mm以上4.0mm以下であることが好ましい。すなわち前記のように作用電極などと対極との間隔を狭くしていくと電解電流値のばらつきが大きくなる現象が見られたので、透明なプラスチックで模型を作成して流れの状況を調べた。その結果、作用電極と対極間の流路の幅が広いと流れが筋状に枝分かれし、それが動くことによって電解電流値が変動することが判明した。そこで流路の幅を4.0mm以下にすることによって流れの幅方向の変動を防止したのである。一方、流路の幅を1.5mmより小さくしても上記の効果は増加せず、電解電流が減少するだけなので1.5mm以上が好ましい。   If the distance between the working electrode and the reference electrode and the counter electrode is smaller than 0.05 mm, the working electrode or the reference electrode and the counter electrode may come into contact with each other. There is. More preferable in this respect is 0.5 mm or less. At this time, the width W (FIG. 2) of the surface of the working electrode having the diamond coating facing the counter electrode and the reference electrode and serving as the aqueous solution flow path is 1.5 mm or more and 4.0 mm or less. Is preferred. That is, as described above, when the distance between the working electrode and the counter electrode was narrowed, the variation in the electrolysis current value was observed. Therefore, a model was made of a transparent plastic and the flow condition was examined. As a result, it was found that when the width of the flow path between the working electrode and the counter electrode is wide, the flow branches in a streak shape, and the electrolysis current value fluctuates due to movement. Therefore, the flow width is prevented from changing in the width direction by reducing the width of the flow path to 4.0 mm or less. On the other hand, even if the width of the flow path is smaller than 1.5 mm, the above effect is not increased, and only the electrolytic current is reduced.

引用文献2に示されているような微弱な電解電流は電子の離脱、すなわちイオン化によるものと考えられる。これに対し本発明における電解装置では微量の成分で極めて大きな電解電流が得られる理由は、分子構造の変化、特に分子の原子間の結合の切断によることが判明した。このことは単なる酸化反応ではないということであって、たとえば通常の化学反応においては、エタノールC25OHを酸化するとアセトアルデヒドCH3CHO、 さらに酢酸CH3COOHになり、最終的に二酸化炭素と水になる。ところが本発明の電 解装置においては、エタノールの場合はヒドロキシル基の離脱が生じていることが判明している。 The weak electrolysis current as shown in the cited document 2 is considered to be due to electron detachment, that is, ionization. On the other hand, it was found that the reason why an extremely large electrolysis current can be obtained with a very small amount of components in the electrolysis apparatus according to the present invention is due to a change in molecular structure, in particular, a break in bonds between atoms of molecules. This means that it is not just an oxidation reaction. For example, in a normal chemical reaction, oxidation of ethanol C 2 H 5 OH results in acetaldehyde CH 3 CHO, and further acetic acid CH 3 COOH. Become water. However, in the electrolysis apparatus of the present invention, it has been found that hydroxyl groups are detached in the case of ethanol.

このように分子の原子間の結合が一部分において切断することが他の化合物でも認められた。たとえばアミノ基(−NH2)、カルボキシル基(−COOH)、チオール基(−SH)の切断や、エステル結合、エーテル結合の切断が発生する。またこれら官能基だけでなく、鎖状に結合した原子間においても結合の切断が生ずることが判明した。たとえばエタン、ブタン、プロパンなどの他、ベンゼン、ナフタレンなどの環状結合の有機化合物のおいても分子の結合の切断が発生する。さらにポリ塩化ビフェニールやクロルベンゼンなどの有機ハロゲン化合物においても分子の結合の切断が発生することが確認された。また分子の原子間の結合の切断は必ずしも1個所ではでなく、複雑な化合物においては同時に複数個所で切断が生ずることもある。これらの分子の原子間の結合の切断に伴って発生する電解電流はそれぞれの分子において濃度と比例関係があるので、電流の測定により溶液の成分濃度の測定ができる。 In this way, it was also observed in other compounds that the bond between the atoms of the molecule was partially broken. For example, cleavage of an amino group (—NH 2 ), carboxyl group (—COOH), or thiol group (—SH), or cleavage of an ester bond or ether bond occurs. It has also been found that bond breakage occurs not only between these functional groups but also between chain-bonded atoms. For example, in the case of organic compounds having cyclic bonds such as benzene and naphthalene in addition to ethane, butane, propane, etc., the molecular bond is broken. Furthermore, it was confirmed that molecular bonds were broken in organic halogen compounds such as polychlorinated biphenyls and chlorobenzene. Further, the breakage of the bond between the atoms of the molecule is not necessarily one place, and in a complex compound, the breakage may occur at a plurality of places at the same time. Since the electrolysis current generated with the breakage of the bond between atoms of these molecules is proportional to the concentration in each molecule, the component concentration of the solution can be measured by measuring the current.

上記のような分子の原子間の結合の切断に伴う大きな電解電流が、なぜ作用電極および参照電極と対極とを0.05ないし1.0mmといった狭い間隙をもって対向させた場合にのみ発生するのかは不明である。ただ、現象からみて間隔を狭くすることによる大きな電位傾度とこれによる電気的二重層の構造の変化が関与していることが推定される。しかし参照電極自体は電流が流れないものであり、なぜその先端を作用電極と狭い間隔をもって対向させる必要があるかについては推測できない。   The reason why the large electrolysis current associated with the breaking of the bond between the atoms of the molecule as described above is generated only when the working electrode, the reference electrode, and the counter electrode are opposed to each other with a narrow gap of 0.05 to 1.0 mm. It is unknown. However, in view of the phenomenon, it is estimated that a large potential gradient by narrowing the interval and a change in the structure of the electric double layer due to this are involved. However, since the current does not flow in the reference electrode itself, it cannot be inferred why the tip of the reference electrode needs to face the working electrode with a narrow space.

(実施例1)
図1および図2に示した電解装置により電解を行なって試料溶液中の被測定物質成分の検出を行なった。電解装置はスペーサ11の厚みが異なるものを使用することにより作用電極11と対極13との間隔を0.2mm、0.5mm、1.0mm、2.0mmと変えた。また参照電極30の先端位置をいずれの場合も対極の電極面と同じにしたので、参照電極と対極との間隔も作用電極と対極との間隔と同じになる。なお作用電極の面上の流路の幅はいずれの場合も2.5mmである。また電解装置の作用電極印加電圧は2.2V(Ag/AgCl基準電極に対して、以下同様)に設定したが、電源を投入して定常状態に達した後は水の電解は発生しなかった。
Example 1
Electrolysis was performed with the electrolysis apparatus shown in FIGS. 1 and 2 to detect the component of the substance to be measured in the sample solution. The distance between the working electrode 11 and the counter electrode 13 was changed to 0.2 mm, 0.5 mm, 1.0 mm, and 2.0 mm by using an electrolysis apparatus having spacers 11 having different thicknesses. In addition, since the tip position of the reference electrode 30 is the same as the electrode surface of the counter electrode in any case, the distance between the reference electrode and the counter electrode is also the same as the distance between the working electrode and the counter electrode. The width of the channel on the surface of the working electrode is 2.5 mm in any case. The working electrode applied voltage of the electrolysis apparatus was set to 2.2 V (the same applies to the Ag / AgCl reference electrode), but no water electrolysis occurred after the power was turned on and the steady state was reached. .

上記電解装置に100mM−KH2 PO4 溶液の緩衝液を0.5ml/minの速度で供給している状態で、エタノールが1pmol/μl(濃度1μM)の濃度のサンプルを20μl電解装置の手前の流路に注入したところ、作用電極と対極との間隔が0.2mm、0.5mm、1.0mmの場合にはそれぞれ2.4μA、2.0μA、1.7μAの電解電流のピークが検出された。しかし2.0mmの場合にはわずかな電解電流が認められたもののバックグラウンド電流のため電解電流値は測定が困難であった。 While supplying a buffer solution of 100 mM-KH 2 PO 4 solution to the electrolyzer at a rate of 0.5 ml / min, a sample with a concentration of 1 pmol / μl (concentration 1 μM) of ethanol was placed in front of the 20 μl electrolyzer. When injected into the flow channel, when the distance between the working electrode and the counter electrode is 0.2 mm, 0.5 mm, and 1.0 mm, peaks of electrolytic current of 2.4 μA, 2.0 μA, and 1.7 μA are detected, respectively. It was. However, in the case of 2.0 mm, although a slight electrolysis current was recognized, the electrolysis current value was difficult to measure due to the background current.

さらに作用電極と対極との間隔が0.5mmの場合において、エタノールの濃度を上記の1pmol/μlの他に10pmol/μl、100pmol/μl、1nmol/μlと変えた試料を注入したところ、濃度にほぼ比例した電解電流が得られた。なお注入されたサンプル溶液は流れの進行の前後端位置では緩衝液と混合して稀釈されるが、流れの進行の中心位置では注入された濃度のままで電解装置に達すると考えられる。   Further, in the case where the distance between the working electrode and the counter electrode is 0.5 mm, a sample was injected with the ethanol concentration changed to 10 pmol / μl, 100 pmol / μl, 1 nmol / μl in addition to the above 1 pmol / μl. An approximately proportional electrolysis current was obtained. The injected sample solution is diluted by mixing with the buffer solution at the front and rear end positions of the flow progress, but it is considered that the injected sample solution reaches the electrolysis apparatus at the central position of the flow progress.

(実施例2)
実施例1で使用した電解装置において、参照電極についての条件を変更して電解を行ない試料溶液中の被測定物質成分の検出を行なった。ただし作用電極と対極との間隔は0.5mmで一定にした。条件Aとして、参照電極30の対極13に対する取付け位置を変更して、先端部を対極の電極面より1.5mm後退させた。したがって作用電極と対極との間隔が0.5mmであると、参照電極と対極の間隔は2.0mmとなる。また条件Bとして参照電極の先端部位置は対極の電極面と同じであるが参照電極への電気回路の接続を切り、代わりに電解装置への試料溶液の流入路に別の参照電極を設けてこれに電気回路を接続した。この場合、対極に取付けられた参照電極は単なる絶縁物の壁とみなし得る。
(Example 2)
In the electrolysis apparatus used in Example 1, electrolysis was performed by changing the conditions for the reference electrode, and the component of the substance to be measured in the sample solution was detected. However, the distance between the working electrode and the counter electrode was kept constant at 0.5 mm. As condition A, the attachment position of the reference electrode 30 with respect to the counter electrode 13 was changed, and the tip portion was retracted 1.5 mm from the electrode surface of the counter electrode. Therefore, when the distance between the working electrode and the counter electrode is 0.5 mm, the distance between the reference electrode and the counter electrode is 2.0 mm. As condition B, the position of the tip of the reference electrode is the same as the electrode surface of the counter electrode, but the electrical circuit is disconnected from the reference electrode, and another reference electrode is provided in the inflow path of the sample solution to the electrolyzer instead. An electric circuit was connected to this. In this case, the reference electrode attached to the counter electrode can be regarded as a mere insulator wall.

実施例1と同様に作用電極に2.2Vを印加し、電解装置に100mM−KH2 PO4溶液の緩衝液を0.5ml/minの速度で供給している状態で、エタノールが1pmol/μlの濃度のサンプルを20μl電解装置の手前の流路に注入した。しかしながら条件A、条件Bのどちらの場合も、実施例1のときと同じ測定感度で検出可能な電解電流は検出されなかった。 In the same manner as in Example 1, 2.2 V was applied to the working electrode, and a 100 mM KH 2 PO 4 solution buffer was supplied to the electrolysis apparatus at a rate of 0.5 ml / min, and ethanol was 1 pmol / μl. A sample with a concentration of 20 μl was injected into the flow path in front of the electrolyzer. However, in either case of condition A or condition B, no electrolysis current detectable with the same measurement sensitivity as in Example 1 was detected.

(実施例3)
実施例1で使用した電解装置において、作用電極での流路の幅についての条件を変更して電解を行なった。すなわち作用電極のダイヤモンド皮膜を有する面のうち、対極および参照電極と対向して試料溶液の流路になっている個所の幅を、スペーサ11の穴121の形状を変えて実施例1と同じ2.5mmの他に3.5mm、5.0mmと変えた。なお対極および参照電極と作用電極との間隔はすべて0.2mmとした。
Example 3
In the electrolysis apparatus used in Example 1, electrolysis was performed by changing the conditions regarding the width of the flow path at the working electrode. That is, the width of the portion of the working electrode having the diamond coating facing the counter electrode and the reference electrode and serving as the flow path for the sample solution is the same as that in the first embodiment by changing the shape of the hole 121 of the spacer 11 2. In addition to .5mm, it was changed to 3.5mm and 5.0mm. The intervals between the counter electrode and the reference electrode and the working electrode were all 0.2 mm.

実施例1と同様に作用電極に2.2Vを印加し、電解装置に100mM−KH2 PO4溶液の緩衝液を0.5ml/minの速度で供給している状態で、エタノールが1pmol/μlの濃度のサンプルを20μl電解装置の手前の流路に注入した。これを流路の各条件について20回繰り返したときの電解電流のピーク値の変動幅は、作用電極での流路の幅が2.5mmでは25nA、3.5mmでは31nAで問題の無い値であった。これに対し5.0mmでは260nAであり、実施例1で述べたように電解電流のピーク値は2.4μAであるので、これの10%に達し分析誤差の原因となる。 In the same manner as in Example 1, 2.2 V was applied to the working electrode, and a 100 mM KH 2 PO 4 solution buffer was supplied to the electrolysis apparatus at a rate of 0.5 ml / min, and ethanol was 1 pmol / μl. A sample with a concentration of 20 μl was injected into the flow path in front of the electrolyzer. When this is repeated 20 times for each condition of the flow path, the fluctuation range of the peak value of the electrolysis current is 25 nA when the flow path width at the working electrode is 2.5 mm, and 31 nA when it is 3.5 mm. there were. On the other hand, it is 260 nA at 5.0 mm, and the peak value of the electrolysis current is 2.4 μA as described in Example 1, so that it reaches 10% of this and causes an analysis error.

本発明に使用する電解装置を示す軸方向に平行な断面図Sectional view parallel to the axial direction showing the electrolyzer used in the present invention 図1におけるA−A´矢視断面図AA 'arrow sectional view in FIG.

符号の説明Explanation of symbols

11 作用電極
12 スペーサ
121 穴
13 対極
14 空間
15、16 溶出液の導入口および排出口
17、18 流体継手
19 通電端子
20 通電板
21 通電端子
22 与圧カバー
23、24、26 Oリング
27 絶縁カバー
30 参照電極
301 容器
302 電解液
303 電極材
304 フィルター
DESCRIPTION OF SYMBOLS 11 Working electrode 12 Spacer 121 Hole 13 Counter electrode 14 Space 15, 16 Elution liquid introduction port and discharge port 17, 18 Fluid coupling 19 Current terminal 20 Current plate 21 Current terminal 22 Pressure cover 23, 24, 26 O-ring 27 Insulation cover 30 Reference electrode 301 Container 302 Electrolyte 303 Electrode material 304 Filter

Claims (2)

試料溶液の流路に設けられた電解装置により電解を行なって試料溶液中の被測定物質成分を検出する方法において、電解装置は導電体の電極板の少なくとも片面に導電性のダイヤモンド皮膜が形成された作用電極と、作用電極のダイヤモンド皮膜を有する面と0.05ないし1.0mmの間隔をもって対向する導電体からなる対極と、先端が作用電極と0.05ないし1.0mmの間隔をもって対向する参照電極とを有し、作用電極のダイヤモンド皮膜を有する面のうち、対極および参照電極と対向して試料溶液の流路になっている個所の幅は1.5mm以上4.0mm以下となっているものであって、作用電極と対極および参照電極との間に前記試料溶液を流しつつ作用電極と対極との間に電圧を印加して被測定物質の濃度1μMあたり0.1μA以上の電解電流を発生させ、電解電流を測定することにより被測定物質の濃度を測定することを特徴とする電解による被測定物質の検出方法。 In a method for detecting a component to be measured in a sample solution by performing electrolysis with an electrolysis device provided in a flow path of the sample solution, the electrolysis device has a conductive diamond film formed on at least one surface of a conductive electrode plate. The working electrode, a counter electrode made of a conductor facing the surface of the working electrode having a diamond coating with a spacing of 0.05 to 1.0 mm, and a tip facing the working electrode with a spacing of 0.05 to 1.0 mm The width of the portion of the surface having the diamond electrode coating of the working electrode facing the counter electrode and the reference electrode and serving as the flow path for the sample solution is 1.5 mm or greater and 4.0 mm or less. It is those who are, 0 per concentration 1μM of substance to be measured by applying a voltage between the sample solution working electrode and the counter electrode while flowing between the working electrode and the counter electrode and a reference electrode To generate more electrolytic current 1 .mu.A, the detection method of a measured substance by electrolysis, characterized by measuring the concentration of an analyte by measuring the electrolysis current. 電解電流が分子の原子間の結合の切断によるものであることを特徴とする請求項1に記載の電解による被測定物質の検出方法。 2. The method for detecting a substance to be measured by electrolysis according to claim 1, wherein the electrolysis current is caused by breaking bonds between molecular atoms.
JP2007273841A 2007-10-22 2007-10-22 Method for detecting substances to be measured by electrolysis Expired - Fee Related JP4909234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273841A JP4909234B2 (en) 2007-10-22 2007-10-22 Method for detecting substances to be measured by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273841A JP4909234B2 (en) 2007-10-22 2007-10-22 Method for detecting substances to be measured by electrolysis

Publications (2)

Publication Number Publication Date
JP2009103503A JP2009103503A (en) 2009-05-14
JP4909234B2 true JP4909234B2 (en) 2012-04-04

Family

ID=40705318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273841A Expired - Fee Related JP4909234B2 (en) 2007-10-22 2007-10-22 Method for detecting substances to be measured by electrolysis

Country Status (1)

Country Link
JP (1) JP4909234B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142187A (en) * 1991-07-11 1993-06-08 Tosoh Corp Electrochemical detector
US20030123683A1 (en) * 2000-03-07 2003-07-03 George Raicevich Double-capacitor microphone
JP2005069692A (en) * 2003-08-22 2005-03-17 Tsutomu Nagaoka Amino acid analyzer
JP2005195489A (en) * 2004-01-08 2005-07-21 Kometto:Kk Liquid chromatograph device and method for analyzing alcohol and saccharide thereby
JP4054027B2 (en) * 2005-03-08 2008-02-27 有限会社コメット Liquid chromatograph analyzer and liquid chromatograph analysis method

Also Published As

Publication number Publication date
JP2009103503A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US3098813A (en) Electrode
US20070114137A1 (en) Residual chlorine measuring method and residual chlorine measuring device
GB2490117A (en) Electrochemical pH sensor
CN102834964B (en) Electrochemical detection cell for liquid chromatography system
JP5265803B1 (en) Ozone water concentration measuring device and ozone water concentration measuring method
JPS6363858B2 (en)
WO2013093899A1 (en) Electrochemical sensor for ph measurement
GB1120364A (en) Detection method and apparatus for chromatography
Li et al. In-channel indirect amperometric detection of heavy metal ions for electrophoresis on a poly (dimethylsiloxane) microchip
Gimenes et al. Internal standard in flow injection analysis with amperometric detection
Belal et al. Flow injection analysis of three N-substituted phenothiazine drugs with amperometric detection at a carbon fibre array electrode
CA3003489A1 (en) Pulsed potential gas sensors
JP4909234B2 (en) Method for detecting substances to be measured by electrolysis
JP4054027B2 (en) Liquid chromatograph analyzer and liquid chromatograph analysis method
JP2005069692A (en) Amino acid analyzer
WO2007114252A1 (en) Method for measuring protein
JP2009192265A (en) Electrolytic treatment method for substance in solution
He et al. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products
US10948441B2 (en) High-resolution in situ electrochemical NMR with interdigitated electrodes
Nantaphol et al. Ultrasensitive and Simple Method for Determination of N‐Acetyl‐l‐Cysteine in Drug Formulations Using a Diamond Sensor
JP2005195489A (en) Liquid chromatograph device and method for analyzing alcohol and saccharide thereby
WO2018081228A1 (en) A new method and device for chemical quantification using electrochemical mass spectrometry without the use of standard target compounds
JP2009300342A (en) Biosensor
JP4750873B2 (en) Method for treating waste liquid containing phenols
Hindawe et al. Comparison of the electroanalytical oxidation of ritodrine hydrochloride at carbon paste, zro2 nano particles modified graphite pencil and glassy carbon electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees