JP4908957B2 - X-ray CT system - Google Patents

X-ray CT system Download PDF

Info

Publication number
JP4908957B2
JP4908957B2 JP2006198329A JP2006198329A JP4908957B2 JP 4908957 B2 JP4908957 B2 JP 4908957B2 JP 2006198329 A JP2006198329 A JP 2006198329A JP 2006198329 A JP2006198329 A JP 2006198329A JP 4908957 B2 JP4908957 B2 JP 4908957B2
Authority
JP
Japan
Prior art keywords
measurement
ray
data
air
tilt angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006198329A
Other languages
Japanese (ja)
Other versions
JP2008023039A5 (en
JP2008023039A (en
Inventor
亮 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2006198329A priority Critical patent/JP4908957B2/en
Publication of JP2008023039A publication Critical patent/JP2008023039A/en
Publication of JP2008023039A5 publication Critical patent/JP2008023039A5/ja
Application granted granted Critical
Publication of JP4908957B2 publication Critical patent/JP4908957B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、投影データの補正処理にエア補正を含むX線CT装置に関連し、特にスキャナのチルト角度と回転速度とによる出力変動を含めたX線検出器感度に関するエア補正を行い、スキャナのチルト角度や回転速度に依るCT値のずれやアーチファクトが少ない画像を得るX線CT装置に関する。   The present invention relates to an X-ray CT apparatus that includes air correction in projection data correction processing, and in particular, performs air correction related to X-ray detector sensitivity including output fluctuations due to the tilt angle and rotation speed of the scanner. The present invention relates to an X-ray CT apparatus that obtains an image with little CT value deviation and artifacts depending on tilt angle and rotational speed.

X線CT装置は、被写体(被検体)を挟むようにX線管とX線検出器を対向配置し、X線管とX線検出器の位置関係を保ったまま被写体の周りを回転し、X線を被写体に向けて曝射する。被写体を透過したX線を角度方向に複数回計測し、計測された複数の投影データから被写体の断面像を得ることが可能な装置である。特に医療の分野においては人体の断面像を容易に得られることで診断に広く利用されている。
従来例には特許文献1、2がある。
特開平9−248301 特開2003−61948
The X-ray CT apparatus has an X-ray tube and an X-ray detector facing each other so as to sandwich the subject (subject), and rotates around the subject while maintaining the positional relationship between the X-ray tube and the X-ray detector. X-rays are exposed to the subject. This is an apparatus capable of measuring X-rays transmitted through a subject a plurality of times in the angle direction and obtaining a cross-sectional image of the subject from a plurality of measured projection data. Particularly in the medical field, it is widely used for diagnosis by easily obtaining a cross-sectional image of the human body.
There exist patent document 1, 2 in a prior art example.
JP-A-9-248301 JP 2003-61948 A

特許文献1はキャリブレーションスキャンを行って補正データを得る例であるが、スキャナの回転速度を実回転速度に一致させて補正データを得、これを感度補正に利用する。しかしチルト角度をパラメータの1つとしてキャリブレーションスキャンを行う記載はない。   Patent Document 1 is an example in which correction data is obtained by performing a calibration scan. Correction data is obtained by making the rotation speed of the scanner coincide with the actual rotation speed, and this is used for sensitivity correction. However, there is no description of performing a calibration scan with the tilt angle as one of the parameters.

特許文献2は、チルト角による検出器別の移動の補正に関するものであり、収集した投影データにその移動補正を行わせるものである。従って、チルト角によるエア補正データの収集と蓄積及びその利用についての記載はない。   Patent Document 2 relates to correction of movement for each detector by the tilt angle, and causes the collected projection data to be corrected for movement. Therefore, there is no description about the collection and accumulation of air correction data based on the tilt angle and its use.

X線CT装置に使用される様々な補正の中にX線検出素子の感度特性ばらつきを補正するエア補正がある。エア補正のフローについて図2を用いて説明する。被写体を撮影する本計測Aを行う前に、被写体がスキャナ内に入っていない状態Bで空気を計測する。この計測をエア計測と言い、データ収集回路1で収集したその投影データに、処理回路2内にて各種補正3(オフセット補正、対数変換など)を施し、メモリ4にエア補正データとして記憶しておく。本計測Aで得られた投影データは上記各種補正を施した後に、記憶したエア補正データを減算するエア補正5が施される。エア補正後は各種補正6を施して画像再構成部7にて画像再構成処理を行う。エア計測中はスキャナを回転させるために、X線ビーム位置の回転中の変動による出力変動が計測データに含まれる。X線ビーム位置が計測中に変動する要因として以下のような点が挙げられる。
(1)スキャナの回転速度やX線管の位置によるX線管内部の陽極軸にかかる遠心力や重力の影響
(2)連続曝射や曝射休止に伴う陽極軸方向の熱による伸縮
(2)に関しては、X線検出器などの検出手段を用いて常にビーム位置を検出し、正規の位置になるようにX線管もしくは、コリメータなどを移動させる手法が用いられている。
Among various corrections used in the X-ray CT apparatus, there is air correction for correcting variations in sensitivity characteristics of the X-ray detection elements. The flow of air correction will be described with reference to FIG. Before performing the main measurement A for photographing the subject, air is measured in a state B where the subject is not in the scanner. This measurement is called air measurement, and the projection data collected by the data collection circuit 1 is subjected to various corrections 3 (offset correction, logarithmic conversion, etc.) in the processing circuit 2 and stored in the memory 4 as air correction data. deep. The projection data obtained in the main measurement A is subjected to the above various corrections, and then subjected to air correction 5 for subtracting the stored air correction data. After the air correction, various corrections 6 are performed, and the image reconstruction unit 7 performs image reconstruction processing. In order to rotate the scanner during air measurement, output fluctuation due to fluctuation during rotation of the X-ray beam position is included in the measurement data. The following points can be cited as factors that cause the X-ray beam position to fluctuate during measurement.
(1) Effects of centrifugal force and gravity on the anode axis inside the X-ray tube depending on the rotation speed of the scanner and the position of the X-ray tube (2) Expansion and contraction due to heat in the direction of the anode axis due to continuous exposure and exposure suspension (2 ), A method is used in which a beam position is always detected using a detection means such as an X-ray detector, and an X-ray tube or a collimator is moved so as to be a normal position.

前記手法によると体軸方向のX線ビーム位置ずれのみを調整しているため、得られるエア補正データはチャネル方向や遠心力方向のX線ビーム位置ずれによる出力変動を含んでいる。図3に複数あるX線検出器素子の内、任意のnチャネルにおけるエアを計測したデータの一例を示す。横軸を計測角度θ(計測時の管球位置)、縦軸を投影データとし、1回転分のデータの変動を示している。点線の曲線がスキャナ回転速度Si、チルト角度Aiにおけるエア計測データ(Air1(θ, Si, Ai))、一点鎖線の曲線が上記条件とは異なる計測条件(スキャナ回転速度Sj、チルト角度Aj)で計測したエア計測データ(Air2(θ, Sj, Aj))である。図中の曲線は一例であり、種々の形態がある。このように一回転中のデータの変動が両者で異なっており、全チャネルにおいてエア補正を行って画像再構成するとCT値のずれやアーチファクトが発生する可能性がある。 Since only the X-ray beam position deviation in the body axis direction is adjusted according to the above method, the obtained air correction data includes output fluctuations due to the X-ray beam position deviation in the channel direction and the centrifugal force direction. FIG. 3 shows an example of data obtained by measuring air in an arbitrary n channel among a plurality of X-ray detector elements. The horizontal axis represents the measurement angle θ (tube position at the time of measurement), and the vertical axis represents the projection data. The dotted curve is the scanner rotation speed S i , the air measurement data at the tilt angle A i (Air1 (θ, S i , A i )), and the alternate long and short dash line curve is the measurement condition (scanner rotation speed S j , This is air measurement data (Air2 (θ, S j , A j )) measured at a tilt angle A j ). The curve in the figure is an example, and there are various forms. As described above, the fluctuation of data during one rotation is different between the two, and if the image is reconstructed by performing air correction in all channels, there is a possibility that a CT value shift or an artifact occurs.

この両者のデータ変動差の原因について図4を用いて説明する。図4上段図(a)がスキャナ回転速度Si、チルト角度Aiの条件において上記エア補正データAir1(θ, Si, Ai)を計測した場合、図4下段図(b)がスキャナ回転速Sj 、チルト角度Aj の条件においてAir2(θ,Sj, Aj)を計測した場合とし、それぞれのX線管に位置によって陽極にかかる重力と遠心力の方向を正面と側面から示している。図4下段図(b)のようにスキャナを図4上段図(a)と比べて(Aj-Ai)°チルトさせた場合、X線管にかかる重力方向が変わることで、回転中のX線ビーム位置変動(出力変動)が図4の上下の図で異なる。また、スキャナの回転速度が図4上段図(a)と比べて速く、もしくは遅くなると陽極にかかる遠心力の大きさが変わり、回転中のX線ビーム位置変動(出力変動)が図4の上下の図で異なる。 The cause of the difference between the two data fluctuations will be described with reference to FIG. When the air correction data Air1 (θ, S i , A i ) is measured under the conditions of the scanner rotation speed S i and the tilt angle A i in the upper diagram (a) of FIG. 4, the lower diagram (b) of FIG. Suppose that Air2 (θ, S j , A j ) is measured under conditions of speed S j and tilt angle A j , and the direction of gravity and centrifugal force applied to the anode depending on the position of each X-ray tube is shown from the front and side ing. When the scanner is tilted at (A j -A i ) ° as compared to the upper diagram (a) of FIG. 4 as shown in the lower diagram (b) of FIG. 4, the direction of gravity applied to the X-ray tube changes, The X-ray beam position fluctuation (output fluctuation) differs between the upper and lower figures in FIG. Further, when the rotation speed of the scanner is faster or slower than the upper diagram (a) in FIG. 4, the magnitude of the centrifugal force applied to the anode changes, and the X-ray beam position fluctuation (output fluctuation) during rotation changes in the vertical direction of FIG. Different in the figure.

こうした相異があるにもかかわらず、エア補正にあっては、基準とするスキャナの回転速度、チルト角度の条件(例えばSi,Ai)で計測したエア補正データを全てのスキャナの回転速度やチルト角度の本計測のデータ対して用いている。従ってエア計測と本計測の間でスキャナの回転速度やチルト角度が異なると出力変動の差が生じ、CT値のずれやアーチファクトの要因となり得る。これはエアを計測したときに限らず、被写体を計測した場合も起こる現象である。上記変動差を補正するためには、単純に必要とするスキャナの回転速度とチルト角度の条件で行われたエア補正データが有ればよい。しかしエア計測は、例えば毎日一回といったように日常的に本計測前の準備として行われるため、エア計測回数の増加はユーザーに対して装置の使用時間を制限することになる。 Despite these differences, in air correction, air correction data measured with reference scanner rotation speed and tilt angle conditions (eg, S i , A i ) is used for all scanner rotation speeds. It is used for the actual measurement data of tilt angle. Therefore, if the rotational speed and tilt angle of the scanner are different between the air measurement and the main measurement, a difference in output fluctuation occurs, which may cause a CT value shift and an artifact. This is a phenomenon that occurs not only when air is measured but also when a subject is measured. In order to correct the fluctuation difference, it is only necessary to have air correction data performed under the conditions of the required scanner rotation speed and tilt angle. However, since the air measurement is performed as a preparation before the main measurement on a daily basis, for example, once a day, an increase in the number of air measurements limits the usage time of the apparatus for the user.

本発明はこのような課題に鑑みてなされたもので、スキャナの回転測度やチルト角度に依らずCT値のずれやアーチファクトが少ない再構成画像を得ることを可能とするX線CT装置の提供を目的とする。   The present invention has been made in view of such a problem, and provides an X-ray CT apparatus that can obtain a reconstructed image with little CT value deviation and artifacts regardless of the rotation measure and tilt angle of the scanner. Objective.

本発明は、X線を被検体に曝射するX線管と、
前記被検体をはさみ前記X線管と対向配置され前記被検体の透過X線を検出するX線検出器と、
前記X線管とX線検出器とを搭載しそれぞれを前記被検体の周囲を回転するスキャナと、
前記X線検出器によって検出された透過X線を投影データとして収集するデータ収集手段と、
このデータ収集手段によって収集された投影データに対しエア補正を含む前処理補正を行う補正手段と、
この補正手段によって補正された投影データから前記被検体の断層画像を再構成する再構成処理部と、を備えたX線CT装置において、
上記補正手段は、パラメータ(計測角度、X線スキャナの設定可能な回転速度、X線スキャナの設定可能なチルト角度)毎に求めたエア補正データをこのパラメータに対応づけて格納する格納手段と、実際の被検体計測で得た被検体投影データに対して、実際の計測パラメータ(計測角度、設定したX線スキャナ回転速度、設定したチルト角度)に対応して前記格納手段から読出されたエア補正データによって、エア補正を行うエア補正手段と、を備えたことを特徴とするX線CT装置を開示する。
The present invention provides an X-ray tube that exposes X-rays to a subject;
An X-ray detector that sandwiches the subject and is opposed to the X-ray tube and detects transmitted X-rays of the subject;
A scanner that mounts the X-ray tube and the X-ray detector and rotates each around the subject;
Data collection means for collecting transmitted X-rays detected by the X-ray detector as projection data;
Correction means for performing preprocessing correction including air correction on the projection data collected by the data collection means;
In an X-ray CT apparatus comprising: a reconstruction processing unit that reconstructs a tomographic image of the subject from the projection data corrected by the correction unit;
The correction means includes storage means for storing air correction data obtained for each parameter (measurement angle, settable rotational speed of the X-ray scanner, settable tilt angle of the X-ray scanner) in association with the parameters; Air correction read from the storage means corresponding to actual measurement parameters (measurement angle, set X-ray scanner rotation speed, set tilt angle) for object projection data obtained by actual object measurement An X-ray CT apparatus including an air correction unit that performs air correction based on data is disclosed.

更に本発明は、上記エア補正データは、基準パラメータ(計測角度、基準回転速度、基準チルト角度)で得たエア計測データを基準にして求めた、他パラメータ(計測角度、回転速度、チルト角度)のエア計測データとの相対値とすることを特徴とするX線CT装置を開示する。   Further, according to the present invention, the air correction data is obtained by using other parameters (measurement angle, rotation speed, tilt angle) obtained based on air measurement data obtained with reference parameters (measurement angle, reference rotation speed, reference tilt angle). An X-ray CT apparatus having a relative value to the air measurement data is disclosed.

更に本発明は、上記エア補正データは、パラメータの1つであるチルト角度にあっては、設定可能なチルト角度の中の間欠的な一部により計測で得た値と、それ以外のチルト角度に対してこの計測で得た値の補間で求めた値と、で算出されたされることを特徴とするX線CT装置を開示する。   Further, according to the present invention, when the air correction data is a tilt angle which is one of the parameters, a value obtained by measurement by an intermittent part of the settable tilt angles, and other tilt angles. An X-ray CT apparatus is disclosed that is calculated by the value obtained by interpolation of the value obtained by this measurement.

本発明によれば、スキャナの各回転速度やチルト角度に適したエア補正データを持つことで、あらゆる条件に対してCT値のずれやアーチファクトが少ない再構成画像の提供が可能となる。   According to the present invention, it is possible to provide a reconstructed image with less CT value deviation and artifacts for all conditions by having air correction data suitable for each rotation speed and tilt angle of the scanner.

チルト角度は、スキャナ(ガントリ)の傾斜角度であり、チルト角駆動機構により、連続的又は離散的に種々の角度設定が可能である。設定すべき角度は、撮影目的、撮影方法、撮影部位の位置・形状並びに構造、X線を照射しにくい部位や他の部位に隠れた部位、とかで定めている。従って、X線CT装置にとって、チルト角度は、極めて重要な制御パラメータである。   The tilt angle is an inclination angle of the scanner (gantry), and various angle settings can be set continuously or discretely by a tilt angle driving mechanism. The angle to be set is determined by an imaging purpose, an imaging method, a position / shape and structure of an imaging part, a part that is difficult to irradiate X-rays, or a part hidden behind another part. Therefore, the tilt angle is a very important control parameter for the X-ray CT apparatus.

スキャナにとってチルト角度と共に重要なパラメータは、回転速度である。最近は高速・中速・低速などの種々の回転速度が、回転速度駆動機構により種々設定可能になっている。   An important parameter along with the tilt angle for the scanner is the rotational speed. Recently, various rotational speeds such as high speed, medium speed, and low speed can be set by a rotational speed driving mechanism.

本発明は、かかるチルト角度、回転速度と共に計測角度(0°〜360°とか、0°〜180°とか)との3つのパラメータに注目しながらエア投影データを随時に計測し、これからエア補正データを得ると共に、経時的なエア補正データの変化に対処すべく、日常的にエア撮影データを得て、補正データの更新を経時的に行わしめるようにするものである。   The present invention measures air projection data at any time while paying attention to the three parameters of the measurement angle (0 ° to 360 °, 0 ° to 180 °, etc.) together with the tilt angle and rotation speed. In addition, in order to cope with the change in the air correction data over time, the air photographing data is obtained on a daily basis, and the correction data is updated over time.

ここで経時的(経年的)なエア補正データの変化について述べる。
スキャナやガントリは数百Kg〜数トンにも達する重さがあり、一日に稼働する回数も多く、且つ回転速度・チルト角度を頻繁に変更しながら撮影を行う。回転速度もチルト角度も駆動機構によって制御しているが、スキャナやガントリの重さのためその機械的な負担は大きい。また、コンピュータによる処理や制御が正確に行われる関係上、駆動機構自体に多少の経年変化があっても、最終的に設定回転速度、チルト角度にすることは可能である。こうした状況の中で、エア補正データが経時変化をしており、それが回転速度とチルト角度の経時変化に対応する。
Here, the change of the air correction data over time will be described.
Scanners and gantry weigh as much as several hundred kilograms to several tons, operate many times a day, and take pictures while frequently changing the rotation speed and tilt angle. Although the rotation speed and tilt angle are controlled by the drive mechanism, the mechanical burden is heavy due to the weight of the scanner and gantry. In addition, because the processing and control by the computer are accurately performed, the set rotational speed and tilt angle can be finally set even if the drive mechanism itself has some aging. Under such circumstances, the air correction data changes with time, which corresponds to changes with time in the rotation speed and tilt angle.

以下、本発明は添付図面に従って実施の形態を説明する。
図5は、一般的なX線CT装置の基本構造を示している。X線を照射するX線管400、X線のビーム幅の決定するコリメータ401、X線を検出して電気信号に変換するX線検出器402、X線検出器402からの投影データを収集するデータ収集回路403、X線管400とコリメータ401とX線検出器402とデータ収集回路403を搭載したスキャナ404、スキャナ404を前後に傾斜させるためのスキャナチルト機構405、被写体を載せる寝台406、データ収集回路403からの信号(投影データ)の補正処理を行う投影データ補正処理装置407、補正処理を施した投影データから断面像を再構成する画像再構成処理装置408、投影データ補正処理装置407と画像再構成処理装置408を搭載した画像処理装置409、画像処理の結果を表示する表示装置410、撮影開始やパラメータの設定,入力を行う入力装置411、X線管400とコリメータ401とX線検出器402を制御する制御装置412、ビーム位置が正規の位置になるようにX線管400やコリメータ401を移動させるビーム位置調整制御・駆動装置413からなる。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 5 shows a basic structure of a general X-ray CT apparatus. Projection data is collected from an X-ray tube 400 that irradiates X-rays, a collimator 401 that determines the beam width of the X-rays, an X-ray detector 402 that detects X-rays and converts them into electrical signals, and an X-ray detector 402 Data acquisition circuit 403, X-ray tube 400, collimator 401, X-ray detector 402, scanner 404 equipped with data acquisition circuit 403, scanner tilt mechanism 405 for tilting the scanner 404 back and forth, bed 406 for placing a subject, data A projection data correction processing device 407 that performs correction processing of a signal (projection data) from the acquisition circuit 403, an image reconstruction processing device 408 that reconstructs a cross-sectional image from the projection data subjected to the correction processing, a projection data correction processing device 407, An image processing device 409 equipped with an image reconstruction processing device 408, a display device 410 that displays the results of image processing, an input device 411 that starts imaging, sets parameters, and inputs, an X-ray tube 400, a collimator 401, and X-ray detection 402 Gosuru controller 412, the beam position becomes a beam position adjustment control and drive unit 413 for moving the X-ray tube 400 and collimator 401 to become a regular position.

本発明は上記構成のX線CT装置において、エア補正データ取得及びそれに伴う更新処理を繰り返し実施するときの処理フローを図1に示す。パラメータであるエア計測の基準とするスキャナの回転速度とチルト角度の条件をS1、A1とし、その他のスキャナのすべての設定可能な回転速度とすべての設定可能なチルト角度の条件をまとめてSm、Am(m=2,3,,,)する。図1の500が非日常的なエア計測と処理のフロー、510が日常的なエア計測と処理のフロー、520が被写体を撮影する本計測と処理のフローをそれぞれ示している。 FIG. 1 shows a processing flow when the air correction data acquisition and the accompanying update processing are repeatedly performed in the X-ray CT apparatus configured as described above. The scanner rotation speed and tilt angle conditions used as the parameters for air measurement are S 1 and A 1, and all the settable rotation speeds and all settable tilt angle conditions for other scanners are summarized. S m and A m (m = 2, 3,...). In FIG. 1, 500 is an unusual air measurement and processing flow, 510 is an everyday air measurement and processing flow, and 520 is a main measurement and processing flow for photographing a subject.

最初に500の計測と処理について説明する。
[S501]に示すS1とA1、SmとAmの条件のエア計測2を、例えば出荷前の検査時、装置の据付時やメンテナンス時といった非日常的なタイミングで行う。ここでエア計測2を行うタイミングは上記に限ったことではない。エア計測2で得られたデータは[S502]で補正1を施され、[S503]でエア補正データ2として記憶する。
First, 500 measurements and processing will be described.
[S501] The S 1 and A 1, S m and A Air Measurement 2 condition of m shown in, for example, at the time of pre-shipment inspection is performed in a non-routine timing such time of installation or during maintenance of the apparatus. Here, the timing of performing the air measurement 2 is not limited to the above. The data obtained by the air measurement 2 is subjected to correction 1 in [S502] and stored as air correction data 2 in [S503].

[S504]でスキャナの回転速度をS1、チルト角度をA1のエア補正データを基準とし、エア計測2で計測した全てのエア補正データに変換するための変換値を算出し、記憶する。S1 とA1自身の変換についても行うが変換値は当然0となる。この算出方法については後述する。 [S504] S 1 a rotational speed of the scanner, the tilt angle with respect to the air correction data A 1, and calculates a conversion value to convert all of the air correction data measured by the air measurement 2, and stores. The conversion of S 1 and A 1 itself is also performed, but the conversion value is naturally zero. This calculation method will be described later.

次に510の計測と処理について説明する。
日常的には510の[S511]に示すように基準条件であるスキャナの回転速度をS1'、チルト角度をA1'(S1'= S1、A1'= A1条件としては同じだが計測タイミングは異なるので、説明上記号を分けることとする)のエア計測1を行い、[S512]で補正1を施した後、[S513]でエア補正データ1を記憶する。[S504]で記憶した変換値を用いて、[S514]で記憶したエア補正データ1から必要とするスキャナの回転速度とチルト角度に対するエア補正データに変換し、記憶する。変換方法については後述する。ここで、日常的とは、休日を除くCT稼働日の朝と昼とか、CT稼働日の3時間おきにとかで、エア計測を行うことを意味する。
Next, 510 measurement and processing will be described.
As shown in [S511] of 510, the scanner rotation speed is S 1 'and the tilt angle is A 1 ' (S 1 '= S 1 , A 1 ' = A 1 However, since the measurement timing is different, the symbols are divided for explanation), air correction 1 is performed, correction 1 is performed in [S512], and air correction data 1 is stored in [S513]. Using the conversion value stored in [S504], the air correction data 1 stored in [S514] is converted into air correction data for the required scanner rotation speed and tilt angle and stored. The conversion method will be described later. Here, “daily” means that air measurement is performed in the morning and noon of CT operation days excluding holidays or every 3 hours of CT operation days.

次に520の計測と処理について説明する。
[S521]で計測した本計測のデータは[S522]で補正1を施され後、[S523]で本計測のスキャナの回転速度とチルト角度条件に対応するエア補正データを読み出してエア補正を行う。エア補正後は[S524]で補正2を行ってから[S525]の画像再構成処理にて画像を作成する。
Next, the measurement and processing of 520 will be described.
The main measurement data measured in [S521] is corrected 1 in [S522], and then in [S523], air correction data corresponding to the rotation speed and tilt angle conditions of the main measurement is read and air correction is performed. . After air correction, correction 2 is performed in [S524], and then an image is created by the image reconstruction process in [S525].

上記に示したように基準条件のエア計測(510)は日常的に行い、変換値を算出するためのエア計測(500)は非日常的に行うことで、エア計測回数を増加すること無くあらゆるスキャナの回転速度とチルト角度に対するエア補正データを持つことが可能となる。   As shown above, the air measurement (510) of the reference condition is performed on a daily basis, and the air measurement (500) for calculating the conversion value is performed on an irregular basis. It is possible to have air correction data for the rotation speed and tilt angle of the scanner.

次に上記で述べたエア補正データの変換値算出手段と変換手段について図6を用いて説明する。最初に変換値算出手段([S504])について説明する。図6(a)はエア計測2で計測されるエア補正データの一例である。点線の曲線がスキャナの回転速度とチルト角度がS1 、A1のエア補正データ(Air1(θ, S1, A1))であり、一点鎖線の曲線がスキャナの回転速度とチルト角度がSm、Amのエア補正データ(Air2(θ, Sm, Am)であり、それぞれnチャネルにおける一回転中のデータ変動を示している。最初に各計測角度θにおける両者の差分値を以下の数式1により算出する。 Next, the air correction data conversion value calculation means and conversion means described above will be described with reference to FIG. First, the conversion value calculation means ([S504]) will be described. FIG. 6A is an example of air correction data measured by the air measurement 2. Air correction data (Air1 (θ, S 1, A 1)) of the dotted curve the rotational speed and the tilt angle of the scanner S 1, A 1 is the rotational speed and tilting angle curve scanners dashed line is S m, air correction data a m (Air2 (θ, S m, a a m), which shows the data fluctuation during one rotation of the n-channel, respectively. the following first difference value between the two at each measurement angle theta It calculates with the numerical formula 1 of these.

〔数1〕Sub(θ, Sm- S1, Am-A1)=Air2(θ, Sm, Am )-Air1(θ, S1, A1)
(図6(b))
[Formula 1] Sub (θ, S m -S 1 , A m -A 1 ) = Air2 (θ, S m , A m ) -Air1 (θ, S 1 , A 1 )
(Fig. 6 (b))

こうして算出したSub(θ, Sm- S1, Am-A1)を変換値とし、記憶する。以上の変換値算出手段を計測したスキャナの回転速度とチルト角度に対して行う。 Sub (θ, S m −S 1 , A m −A 1 ) calculated in this way is stored as a conversion value. The above conversion value calculation means is performed for the measured rotation speed and tilt angle of the scanner.

次に変換手段([S514])について説明する。日常的なエア計測1によりエア補正データ1(Air1'(θ, S1', A1'))は更新される。以下の数式2に示すように、更新されたエア補正データ1(Air1'(θ, S1', A1'))は数式1で算出した変換値を各計測角度で加算することで変換される。 Next, the conversion means ([S514]) will be described. Air correction data 1 by routine air Measurement 1 (Air1 '(θ, S 1', A 1 ')) is updated. As shown in Equation 2 below, the updated air correction data 1 (Air1 '(θ, S 1', A 1 ')) is converted by adding the conversion value calculated by Equation 1 at each measurement angle The

〔数2〕Air2'(θ, Sm', Am')=Air1'(θ, S1', A1')+Sub(θ, Sm- S1, Am-A1)
(図6(c))
数式2によって得られたAir2'(θ, Sm', Am')を記憶し、本計測のエア補正に用いる。以上の変換手段を必要なスキャナの回転速度とチルト角度について行う。
以上の説明では複数あるX線検出器素子の内nチャネルについて述べたが、同様の処理を全チャネルについて行う。また、全計測角度分扱うとデータ点数が多いため、記憶装置の容量に対して大きい場合はデータ点数を縮退させてもよい。
[Equation 2] Air2 '(θ, S m ', A m ') = Air1' (θ, S 1 ', A 1 ') + Sub (θ, S m -S 1 , A m -A 1 )
(Fig. 6 (c))
Air2 ′ (θ, S m ′, A m ′) obtained by Equation 2 is stored and used for air correction in this measurement. The above conversion means is performed for the necessary rotation speed and tilt angle of the scanner.
In the above description, the n channels of the plurality of X-ray detector elements are described, but the same processing is performed for all channels. Further, since the number of data points is large when handled for all measurement angles, the number of data points may be reduced when the capacity of the storage device is large.

X線CT装置のスキャナの回転速度Sは装置によって異なるが、通常数種類に限られている。一方、スキャナのチルト角度Aも装置によって異なるが、例えば正立の状態から±30°チルト可能なX線CT装置があるとする。スキャナの回転速度Sは数種類に限られているため全て計測することは問題にならない。しかし、上記のように±30°チルト可能でチルトピッチが1°だとすると、全てを計測したとすると、61通りとなってしまう。日常的な事例では当然に、またたとえ非日常的な計測とはいえ、これでは計測数が膨大になってしまう。そこでエア計測2のチルト角度に関する計測数を減らす目的で以下の手段を示す。   The rotational speed S of the scanner of the X-ray CT apparatus varies depending on the apparatus, but is usually limited to several types. On the other hand, it is assumed that there is an X-ray CT apparatus capable of tilting ± 30 ° from an upright state, for example, although the tilt angle A of the scanner varies depending on the apparatus. Since the rotation speed S of the scanner is limited to several types, it is not a problem to measure all. However, assuming that ± 30 ° tilt is possible and the tilt pitch is 1 ° as described above, there are 61 ways to measure all. Naturally in everyday cases, and even if it is an extraordinary measurement, this would result in a huge number of measurements. Therefore, the following means are shown for the purpose of reducing the number of measurements related to the tilt angle of the air measurement 2.

第1の手段として例えば上記±30°チルト可能な装置において、図7に示すように0°を挟んで±方向に10°ピッチでエア計測を行う。数式1により各チルト角度に対するSubを算出し、算出したSubは計測チルト角度±5°のSub値として適用する。例として、A1=0、A2=+20の場合を示す。数式1により As a first means, for example, in the apparatus capable of tilting ± 30 °, air measurement is performed at a pitch of 10 ° in the ± direction across 0 ° as shown in FIG. Sub for each tilt angle is calculated by Equation 1, and the calculated Sub is applied as a Sub value of measured tilt angle ± 5 °. As an example, the case of A 1 = 0 and A 2 = + 20 is shown. From Equation 1

〔数3〕Sub(θ,Sm-S1,20-0)=Air2(θ, Sm,+20)- Air1(θ, S1,0)
数式3によって算出されたSub(θ,Sm-S1,20-0)を+15°〜+25°のSub値として扱う。
[Formula 3] Sub (θ, S m -S 1 , 20-0) = Air2 (θ, S m , + 20) -Air1 (θ, S 1 , 0)
Sub (θ, S m -S 1 , 20-0) calculated by Expression 3 is treated as a Sub value of + 15 ° to + 25 °.

第2の手段として、補間等による相対値としての差分の算出による事例がある。例えば、同じく10°ピッチで計測し、数式1により各チルト角度に対するSubを算出し、算出したSub(θ, Sm- S1, Am-A1)の各計測角度θにおいて、チルト角度に対する差分値Subの多項式近似式を算出する。例として、A1=0、A2=±10, ±20の場合を示す。数式1によりSub(θ, Sm-S1,20-0)〜Sub(θ, Sm-S1,-20-0)の5つの差分値を算出する。各計測角度θにおいて5点のSub値を用いて数式4のようなN次の多項近似式App(A)を算出する。 As a second means, there is a case of calculating a difference as a relative value by interpolation or the like. For example, the measurement is similarly performed at a pitch of 10 °, the Sub for each tilt angle is calculated according to Formula 1, and the calculated Sub (θ, S m −S 1 , A m −A 1 ) is measured with respect to the tilt angle at each measurement angle θ. A polynomial approximation formula of the difference value Sub is calculated. As an example, the case of A 1 = 0, A 2 = ± 10, ± 20 is shown. Five difference values from Sub (θ, S m −S 1 , 20-0) to Sub (θ, S m −S 1 , −20-0) are calculated by Equation 1 . An Nth-order polynomial approximate expression App (A) such as Expression 4 is calculated using five Sub values at each measurement angle θ.

〔数4〕 App(A)=CNAN+ CN-1AN-1+…+ C1A+C0
数式4の多項近似式を全計測角度θにおいて算出し、測定したチルトピッチ間のSub値を上記多項近似式から算出する。
[Equation 4] App (A) = C N A N + C N-1 A N-1 +… + C 1 A + C 0
The polynomial approximate expression of Formula 4 is calculated at all measurement angles θ, and the Sub value between the measured tilt pitches is calculated from the polynomial approximate expression.

尚、基準パラメータでのエア投影データと他パラメータでのエア投影データとの差分を補正データとしたが、両者の比率や平均値を補正データとする例もある。   The difference between the air projection data with the reference parameter and the air projection data with the other parameters is used as the correction data. However, there is an example in which the ratio or average value of both is used as the correction data.

以上の2つの手段によってエア計測2のスキャナのチルト角度に対する計測数を減らすことが可能となる。上記に示した可能チルト角度や計測するチルト角度ピッチはこの限りではない。   With the above two means, it is possible to reduce the number of measurements of the air measurement 2 with respect to the tilt angle of the scanner. The possible tilt angle and the tilt angle pitch to be measured are not limited to the above.

本発明の実施例としてのフロー図である。It is a flowchart as an Example of this invention. 一般的な補正処理のフロー図である。It is a flowchart of a general correction process. 計測条件によるエア補正データの変動の違いを示した概略図である。It is the schematic which showed the difference of the fluctuation | variation of the air correction data by measurement conditions. 計測条件によるX線管にかかる重力と遠心力の方向の違いを示した概略図である。It is the schematic which showed the difference of the direction of gravity and the centrifugal force concerning an X-ray tube by measurement conditions. 本発明の一実施形態に係わるX線CT装置の基本構成を示した構成図である。It is the block diagram which showed the basic composition of the X-ray CT apparatus concerning one Embodiment of this invention. 本発明に係わる変換値算出及び変換手段の一例を示した概略図である。It is the schematic which showed an example of the conversion value calculation and conversion means concerning this invention. 本発明に係わるチルト角度に対するエア計測数低減の一例を示した概略図である。It is the schematic which showed an example of the air measurement number reduction with respect to the tilt angle concerning this invention.

符号の説明Explanation of symbols

100 X線管
101 コリメータ
102 X線検出器
102 データ収集回路
103 スキャナ
105 寝台
106 前処理
107 再構成画像処理
108 画像処理装置
109 表示装置
110 入力装置
111 制御装置
112 X線管やコリメータの駆動機構
113 スキャナチルト機構
500 非日常的な処理
501 日常的な処理
DESCRIPTION OF SYMBOLS 100 X-ray tube 101 Collimator 102 X-ray detector 102 Data acquisition circuit 103 Scanner 105 Bed 106 Pre-processing 107 Reconstructed image processing 108 Image processing apparatus 109 Display apparatus 110 Input apparatus 111 Control apparatus 112 X-ray tube and collimator drive mechanism 113 Scanner tilt mechanism 500 Extraordinary processing 501 Daily processing

Claims (3)

X線を被検体に曝射するX線管と、
前記被検体をはさみ前記X線管と対向配置され前記被検体の透過X線を検出するX線検出器と、
前記X線管とX線検出器とを搭載しそれぞれを前記被検体の周囲を回転するスキャナと、
前記X線検出器によって検出された透過X線を投影データとして収集するデータ収集手段と、
このデータ収集手段によって収集された投影データに対しエア補正を含む前処理補正を行う補正手段と、
この補正手段によって補正された投影データから前記被検体の断層画像を再構成する再構成処理部と、を備えたX線CT装置において、
上記補正手段は、
当該X線CT装置の出荷前の検査時又は据付け時又はメンテナンス時を含む非日常時のエア計測で得た、種々の、回転速度S、チルト角度A、計測角度θ対応の変換値(ここで、変換値とは、基準の回転速度S 、チルト角度A 、の計測データとそれ以外のすべての回転速度S 、チルト角度A (m=2,3・・・)の計測データとの計測角度毎の差分値を云う)を記憶する第1のメモリと、
当該X線CT装置の稼動日を含む日常のエア計測で得た、種々の、回転速度S、チルト角度A、計測角度θのエア計測データについて、上記第1のメモリに格納した変換値を、同一の、回転速度とチルト角度と、計測角度対応に加算してエア補正データとして記憶する第2のメモリと、
当該X線CT装置での本計測で得た、本計測の回転速度S、チルト角度A、計測角度θの計測データについて、上記第2のメモリに対応する、同一の、回転速度とチルト角度と計測角度のエア補正データによりエア補正を行うエア補正手段と、
を備えたX線CT装置。
An X-ray tube that exposes X-rays to the subject;
An X-ray detector that sandwiches the subject and is opposed to the X-ray tube and detects transmitted X-rays of the subject;
A scanner that mounts the X-ray tube and the X-ray detector and rotates each around the subject;
Data collection means for collecting transmitted X-rays detected by the X-ray detector as projection data;
Correction means for performing preprocessing correction including air correction on the projection data collected by the data collection means;
In an X-ray CT apparatus comprising: a reconstruction processing unit that reconstructs a tomographic image of the subject from the projection data corrected by the correction unit;
The correction means is
Various converted values corresponding to the rotational speed S, tilt angle A, and measurement angle θ obtained by air measurement at extraordinary times including inspection or installation or maintenance before shipment of the X-ray CT apparatus (here, The conversion value includes measurement data of the reference rotation speed S 1 and tilt angle A 1 and measurement data of all other rotation speeds S m and tilt angles A m (m = 2, 3,...). A first memory for storing a difference value for each measurement angle),
About various air measurement data of rotational speed S, tilt angle A, and measurement angle θ obtained by daily air measurement including the working day of the X-ray CT apparatus, conversion values stored in the first memory are A second memory that stores the same rotation speed, tilt angle, and corresponding measurement angle as air correction data;
For the measurement data of the rotation speed S, tilt angle A, and measurement angle θ of the main measurement obtained in the main measurement with the X-ray CT apparatus, the same rotation speed and tilt angle corresponding to the second memory are obtained. Air correction means for performing air correction based on air correction data of the measurement angle;
X-ray CT apparatus provided with
上記エア補正データは、チルト角度にあっては設定可能なチルト角度の中のその一部により計測で得た値の中から、実際の被検体計測時に設定したチルト角度に近いチルト角度に対応する前記計測で得た値が適用されることを特徴とする請求項1に記載のX線CT装置。The air correction data corresponds to a tilt angle close to the tilt angle set at the time of actual subject measurement from the values obtained by measurement using a part of the tilt angles that can be set. The X-ray CT apparatus according to claim 1, wherein a value obtained by the measurement is applied. 上記エア補正データは、チルト角度にあっては、設定可能なチルト角度の中のその一部により計測で得た値と、それ以外のチルト角度に対してこの計測で得た値の補間で求めた値と、で算出されることを特徴とする請求項1に記載のX線CT装置。For the tilt angle, the air correction data is obtained by interpolation between the values obtained by measurement using a part of the settable tilt angles and the values obtained by this measurement for other tilt angles. The X-ray CT apparatus according to claim 1, wherein the X-ray CT apparatus is calculated by:
JP2006198329A 2006-07-20 2006-07-20 X-ray CT system Expired - Fee Related JP4908957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198329A JP4908957B2 (en) 2006-07-20 2006-07-20 X-ray CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198329A JP4908957B2 (en) 2006-07-20 2006-07-20 X-ray CT system

Publications (3)

Publication Number Publication Date
JP2008023039A JP2008023039A (en) 2008-02-07
JP2008023039A5 JP2008023039A5 (en) 2009-09-03
JP4908957B2 true JP4908957B2 (en) 2012-04-04

Family

ID=39114299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198329A Expired - Fee Related JP4908957B2 (en) 2006-07-20 2006-07-20 X-ray CT system

Country Status (1)

Country Link
JP (1) JP4908957B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584995B2 (en) * 2009-04-15 2014-09-10 株式会社島津製作所 Radiation imaging apparatus and calibration data acquisition method
CN104077758B (en) * 2013-03-28 2018-06-19 上海联影医疗科技有限公司 CT image rebuilding methods
CN105054959B (en) * 2015-08-12 2018-06-15 沈阳东软医疗系统有限公司 Air correction method, apparatus and equipment
CN105496437A (en) * 2015-12-01 2016-04-20 沈阳东软医疗系统有限公司 Air correction method and device
CN108324304B (en) * 2018-01-02 2021-05-07 东软医疗系统股份有限公司 Air correction method, device and system
JP7350527B2 (en) * 2019-06-17 2023-09-26 富士フイルムヘルスケア株式会社 X-ray CT device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991189A (en) * 1990-04-16 1991-02-05 General Electric Company Collimation apparatus for x-ray beam correction
JPH09248301A (en) * 1996-03-15 1997-09-22 Ge Yokogawa Medical Syst Ltd Characteristic improving method for x-ray detector and x-ray ct system
JPH10118058A (en) * 1996-10-23 1998-05-12 Hitachi Medical Corp X-ray ct apparatus
JP4314645B2 (en) * 1998-07-17 2009-08-19 株式会社島津製作所 X-ray CT system
JP4585158B2 (en) * 2000-10-25 2010-11-24 株式会社東芝 X-ray CT scanner

Also Published As

Publication number Publication date
JP2008023039A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4908957B2 (en) X-ray CT system
JP4554046B2 (en) Method and apparatus for calibrating a CT X-ray beam tracking loop
JPWO2009020136A1 (en) X-ray CT system
EP2508133B1 (en) X-ray computed tomographic imaging apparatus and method for same
US10631827B2 (en) Method and apparatus for processing medical image
JPH09266904A (en) Computerized tomograph
JP2012090887A (en) X-ray ct apparatus
JPH10234724A (en) X-ray computed tomograph
JP5310347B2 (en) Tomography equipment
JP2006102299A (en) X-ray dose correcting method and x-ray ct apparatus
US20220319072A1 (en) Medical image processing apparatus and medical image processing method
JPH11188030A (en) X-ray ct device
JP2009000209A (en) Method of controlling medical diagnostic imaging apparatus and cradle driving device
JP4489845B2 (en) Computer tomography for volumetric scanning
JP2001258875A (en) Method and device for optimizing ct image quality by optimization data acquisition
JP5349174B2 (en) Measurement program for measuring the distance between X-ray detection elements of an X-ray CT apparatus and an X-ray detector
CN112617873A (en) Medical image processing apparatus and medical image processing method
JP4423959B2 (en) Tomography equipment
JP7350527B2 (en) X-ray CT device
JP5625258B2 (en) X-ray imaging device
JP2002052019A (en) X-ray ct system, operation console, control method and storage medium
JP2019004920A (en) X-ray CT apparatus and X-ray irradiation condition setting method
US6866419B2 (en) Methods and apparatus for motion correction in imaging systems
US20240144554A1 (en) X-ray ct apparatus and tomographic image generation method
JP2012055606A (en) X-ray ct device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees