JP4906985B2 - Thermoplastic resin composition for molding process - Google Patents

Thermoplastic resin composition for molding process Download PDF

Info

Publication number
JP4906985B2
JP4906985B2 JP32479398A JP32479398A JP4906985B2 JP 4906985 B2 JP4906985 B2 JP 4906985B2 JP 32479398 A JP32479398 A JP 32479398A JP 32479398 A JP32479398 A JP 32479398A JP 4906985 B2 JP4906985 B2 JP 4906985B2
Authority
JP
Japan
Prior art keywords
fatty acid
metal salt
acid metal
weight
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32479398A
Other languages
Japanese (ja)
Other versions
JP2000143997A (en
Inventor
康行 宮田
公平 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP32479398A priority Critical patent/JP4906985B2/en
Publication of JP2000143997A publication Critical patent/JP2000143997A/en
Application granted granted Critical
Publication of JP4906985B2 publication Critical patent/JP4906985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術的分野】
本発明は、脂肪酸金属塩を含む成形加工用熱可塑性樹脂組成物に関し、詳しくは成形加工用熱可塑性樹脂組成物の加工性、浮き出し性、顔料の分散性等が著しく改善された成形加工用熱可塑性樹脂組成物に関する。
【0002】
【従来の技術】
従来、熱可塑性樹脂の成形加工に際し、熱安定性および加工性を向上させるためにフェノール系、有機リン系の酸化防止剤と共に脂肪酸金属塩が使用されている。現在使用されている代表的な脂肪酸金属塩としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸リチウム等がある。
しかし、これら従来の脂肪酸金属塩を使用しても熱可塑性樹脂の成形加工の際に生じる押出し成形時の目やに現象、フィルム成形時のフィッシュアイ現象、顔料使用時の分散不良現象、滑性の低下による流動性の低下現象等のトラブルに対していまだ解決できていない。これらは脂肪酸金属塩の粒子径が大きく、かつ不揃いであるため、熱可塑性樹脂への分散が不均一となり、不均一部分での樹脂粘度もしくは脂肪酸金属塩濃度の部分的な上昇などにより、樹脂の性状が変化することが原因である。
【0003】
【発明が解決しようとする課題】
今までこれらの減少を防止するために多くの添加剤が提案されてきたが、いまだ充分には改善されていない。そのため、成型機の運転を一時停止し、トラブルの発生箇所を清掃した後、再運転しているのが現状である。このため、長時間の連続成型加工ができず、作業性及び経済性の低下をもたらしている。また成型品の品質低下にも影響し、これら諸問題の解決が急がれていた。さらに技術の進歩により、現在よりも複雑な形状の射出成型物もしくは樹脂の薄膜などを製造しようとした場合、添加剤の分散不良が発生すると、製造が困難になる。本発明の目的は、成形加工用熱可塑性樹脂組成物の加工性、浮き出し性、顔料の分散性等が著しく改善された成形加工用熱可塑性樹脂組成物を提供することである。
【0004】
【問題を解決するための手段】
すなわち、本発明は、
熱可塑性樹脂100重量部に対し、脂肪酸のアルカリ金属塩もしくはアンモニウム塩0.001〜20重量%を含有する水溶液と無機金属塩0.001〜50重量%を含有する水溶液もしくは分散液とを、生成する脂肪酸金属塩の結晶転移開始温度以下の温度で反応して、脂肪酸金属塩水分散液を調整し、ついでこの分散液を脱水および乾燥処理を行って得られる脂肪酸金属塩であって、平均粒子径が4μm以下であり、かつ粒子径が10μmよりも大きい粒子の全体に対する含有量が4重量%以下である脂肪酸金属塩を、0.01〜5重量部添加した成形加工用熱可塑性樹脂組成物である。
【0005】
【発明の実施の形態】
本発明に使用する熱可塑性樹脂とは熱可塑性を有する樹脂であり、例えばポリ塩化ビニル、塩素化ポリ塩化ビニル、塩素化ポリエチレン、塩化ビニル・酢酸ビニル共重合体およびそれら樹脂と他樹脂との共重合体ならびにポリマーブレンド等の塩素含有樹脂;低密度ポリオレフィン、高密度ポリエチレン、直鎖低密度ポリエチレン、ポリプロピレンおよび樹脂相互、α−オレフィンまたは他樹脂との共重合体ならびにポリマーブレンド等のポリオレフィン樹脂;ポリスチレン、耐衝撃性ポリスチレン、ABS樹脂および他樹脂との共重合体ならびにポリマーブレンド等のスチレン樹脂;ポリエステルおよび他樹脂との共重合体ならびにポリマーブレンド等のポリエステル樹脂;ポリアセタールおよび他樹脂との共重合体ならびにポリマーブレンド等のポリアセタール樹脂;その他各種のエンジニアリングプラスチック等が挙げられる。
【0006】
本発明の脂肪酸金属塩を構成する脂肪酸としては、炭素数4〜30の天然油脂由来もしくは合成脂肪酸の1種または2種以上であり、飽和、不飽和のいずれであっても良く、また直鎖状、分岐状のいずれであっても良く、構造中に水酸基、アルデヒド基、エポキシ基等があっても良い。この様な脂肪酸の例としては、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストオレイン酸、パルミチン酸、パルミトオレイン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキン酸、ベヘニン酸、エルカ酸、ヒドロキシステアリン酸、モンタン酸、イソステアリン酸、エポキシステアリン酸等が挙げられる。また、その一部を脂肪族カルボン酸もしくはジカルボン酸に置き換えても良い。
【0007】
脂肪酸金属塩を構成する金属としては、マグネシウム、カルシウム、バリウムなどのアルカリ土類金属、チタン、亜鉛、鉄、マンガン、カドミウム、水銀、ジルコニウム、鉛、銅、コバルト、ニッケル、銀、リチウムなどを挙げる事ができる。これらの金属の1種また2種以上を組み合わせて使用しても良い。
熱可塑性樹脂100重量部に対する脂肪酸金属塩の添加量は、0.01〜5重量部で、好ましくは0.05〜3重量部である。0.01重量部未満であると成形加工性が低減し、5重量部より多いと脂肪酸塩が樹脂より浮き出し、トラブルの原因となる。
【0008】
本発明における脂肪酸金属塩の粒度とは、脂肪酸金属塩の代表的長さを持って定義される。
測定方法としては、例えば、気相沈降法、液相沈降法、光透過法、顕微鏡法、光走査法、レーザー回折散乱法などが挙げられる。その中で精度よく測定が可能である光走査法、レーザー回折散乱法等が好適に使用される。
【0009】
脂肪酸金属塩の平均粒子径は4μm以下であり、かつ10μmよりも大きい粒子の含有量が4重量%以下であり、好ましくは平均粒子径が3.5μmであり、かつ10μmよりも大きい粒子の含有量が3.5重量%以下である。平均粒子径が4μmより大きいか、もしくは10μmよりも大きい粒子の含有量が4重量%を越えると、熱可塑性樹脂への分散速度の低下、および熱可塑性樹脂中での脂肪酸金属塩の偏在などの原因となる。
ここで、30%粒径RA、50%粒径RB、70%粒径RCおよび95%粒径RDは、図1に示す一般的なステアリン酸亜鉛において、粒子の累積値がそれぞれ30、50、70、95重量%となる粒子径を示している。なお、図1における30%粒径RA、50%粒径RB、70%粒径RC、95%粒径RDは、それぞれ4.2、6.7、10.4、19.3μmとなる。従ってRC−RAおよびRD−RBは、それぞれ6.2、12.6μmとなる。RC−RAおよびRD−RBの各々の値が低いほど、脂肪酸金属塩の粒度の範囲が狭く、シャープになる。本発明に使用する脂肪酸金属塩の粒度は、RC−RAが3μm以下またはRD−RBが6μm以下であることが好ましく、RC−RAが3μm以下かつRD−RBが6μm以下であることがより好ましい。
【0010】
使用する脂肪酸金属塩は、脂肪酸と金属の酸化物もしくは水酸化物を直接反応するか、もしくは脂肪酸のナトリウム塩と金属の塩化物、硫酸塩、硝酸塩とを反応して、得られた生成物を衝撃式粉砕機、気流式粉砕機、媒体ミル、湿式粉砕機等を使用して、その平均粒径を4μmにする方法もあるが、粉砕時に得られる10μm以下の粒子の含有率が低くため、分級によって得られる粒子の歩留りが低く、生産性が悪い上、粉砕による破断面が生じ、熱可塑性樹脂への分級不良の原因と成る場合がある。
【0011】
製造方法として、好ましくは脂肪酸のアルカリ金属塩もしくはアンモニウム塩0.001〜20重量%を含有する水溶液(A)と無機金属塩0.001〜50重量%を含有する水溶液もしくは分散液とを、生成する脂肪酸金属塩の結晶転移開始温度以下の温度で反応して、脂肪酸金属塩水分散液を調整し、ついでこの分散液を脂肪酸金属塩の結晶転移開始温度以下の温度で脱水および乾燥処理を行い、目的とする粒度の製品を得ることによって、粉砕による破断面のない、熱可塑性樹脂もしくは顔料等に良好に分散する脂肪酸金属塩を効率的に得ることができる。
【0012】
ここで、脂肪酸金属塩の結晶転移開始温度とは、脂肪酸の結晶構造が転移を開始する温度で、示差熱分析装置を使用して求めることができる。例えば図2の一般的なステアリン酸亜鉛の場合では、結晶転移による吸熱前の勾配の延長線Cと、吸熱開始後の勾配の延長線Dとの交点Eの温度を結晶転移開始温度とする。この場合、ステアリン酸亜鉛の結晶転移開始温度は102℃、図3の一般的なステアリン酸カルシウムの結晶転移開始温度Hは80℃、図4の一般的なステアリン酸マグネシウムの結晶転移開始温度Kは73℃となる。実際の混合時の温度は、得られる脂肪酸金属塩の脂肪酸および金属によって異なるが、例えばステアリン酸カルシウムの場合では60℃〜80℃、好ましくは70℃〜80℃である。 60℃未満で反応を行うと、脂肪酸のアルカリ金属もしくはアンモニウム塩の溶解度が低下し、目標物質は得られるが、最終的に得られる脂肪酸金属塩の量が反応に使用する液に対して低く、生産効率が低下する。
また、80℃を超える温度で反応を行うと、脂肪酸金属塩同士が熱によって融着し、平均粒子径が大きくなる。
同様に、ステアリン酸亜鉛の場合では60℃〜90℃、好ましくは70℃〜90℃、ステアリン酸マグネシウムの場合は60℃〜75℃、好ましくは65〜70℃である。
【0013】
脂肪酸アルカリ金属もしくはアンモニウム塩溶液と金属の硫酸塩、塩化物、硝酸塩との反応は、反応機中で回分式の反応を行ってもよく、また、配管中にスタティックミキサ、インラインミキサ、もしくはそれに類する撹拌混合装置を用いて連続的に反応を行ってもよい。好ましくは配管中に連続的に混合できる混合装置を取付け、反応物を連続的に生成させることによって目的とする粒度の製品を連続的に得ることができる。
得られた脂肪酸金属塩分散体は、遠心脱水機、フィルタープレス、真空回転ろ過機などを使用して、脂肪酸金属塩と溶媒とをろ別し、必要であれば洗浄を行い、副生する無機塩を除去する。この場合、洗浄に使用する水もしくはその他の溶媒の温度は、得られる脂肪酸金属塩の結晶転移開始温度より低いことが好ましい。
【0014】
脱水された脂肪酸金属塩、または脂肪酸金属塩分散体そのものは、回転乾燥装置、気流乾燥装置、通気式乾燥装置、噴霧式乾燥装置、流動層型乾燥装置などを使用して連続または回分式で常圧または真空下で乾燥を行う。この場合、乾燥する雰囲気の温度は脂肪酸金属塩の結晶転移開始温度以下であることが好ましい。結晶転移開始温度以上の雰囲気で乾燥を行った場合、粒子同士が融着し粒子径が大きくなる場合がある。あるいは、低沸点溶剤などで脂肪酸金属塩脱水物を洗浄し、溶剤を置換した後に乾燥操作を行ってもよい。この場合に使用される低沸点溶剤としては、脂肪酸金属塩脱水物から水を効率よく除去できるものが好ましく、例えばメタノール、エタノール、イソプロピルアルコール、アセトンなどが挙げられる。また、必要であれば、乾燥した粉末を粉砕機を用いて粉砕し、さらに気流式分級機もしくは、篩機などを使用して凝集した粒子を除去してもよい。
【0015】
本発明の成形加工用熱可塑性樹脂組成物は、本発明の脂肪酸金属塩以外の添加剤、例えば可塑剤、充填剤、安定剤、フェノール系、有機リン系等の酸化防止剤、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等の紫外線吸収剤、β−ジケトン化合物、β−ジケトン金属塩等の初期着色防止剤、顔料、滑剤、帯電防止剤、難燃剤、抗菌剤、防カビ剤、発泡剤、エポキシ化合物、加工助剤等を適宜添加してもよい。
【0016】
本発明の脂肪酸金属塩を添加した成形加工用熱可塑性樹脂は、顔料の分散性、成形加工性に優れに極めて優れており、装置の清掃等を行う事なく、連続した運転が可能となり、樹脂加工のコストダウンに大きく貢献できる。
【0017】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明する。
熱可塑性樹脂に添加する脂肪酸金属塩を以下の製造例にしたがって調製した。
【0018】
製造例1
硝子製ビーカー中で直径6cmのタービン羽根を350r.p.mで回転し、反応容器とした。ここに80℃に調節した5%ステアリン酸ナトリウム水溶液750部および1%塩化カルシウム水溶液658部を同時に投入し、80℃で10分間撹拌を継続した。その後、吸引ろ過を行い、1Lの水で2回洗浄を行った。得られたステアリン酸カルシウム脱水物を送風乾燥機で80℃、24時間乾燥した。
【0019】
製造例2
硝子製ビーカー中で直径6cmのタービン羽根を350r.p.mで回転し、反応容器とした。ここに90℃に調節した5%ステアリン酸ナトリウム水溶液750部および1%塩化亜鉛水溶液809部を同時に投入し、90℃で10分間撹拌を継続した。その後、吸引ろ過を行い、1Lの水で2回洗浄を行った。得られたステアリン酸亜鉛脱水物を送風乾燥機で80℃、24時間乾燥した。
【0020】
製造例3
直径6cmのタービン羽根を有する攪拌装置付きの2リットルの反応槽を用意し、タービン羽根を350rpmで回転させた。この反応槽に、75℃に調節した2%ステアリン酸ナトリウム水溶液を100ml/分、75℃に調節した0.5%塩化カルシウム水溶液を70ml/分で同時に投入した。反応槽からオーバーフローしたものを吸引ろ過し、ステアリン酸カルシウム脱水物を得た。得られた脱水物100部を再度1000部の精製水中に分散し、ろ過することで洗浄工程とした。この際得られたステアリン酸カルシウム脱水物を送風乾燥機中で75℃、24時間乾燥した。
【0021】
製造例4
直径6cmのタービン羽根を有する攪拌装置付きの2リットルの反応槽を用意し、タービン羽根を350rpmで回転させた。この反応槽に、70℃に調節した2%ステアリン酸ナトリウム水溶液を100ml/分、70℃に調節した0.5%硫酸マグネシウム水溶液を155ml/分で同時に投入した。反応槽からオーバーフローしたものを吸引ろ過し、ステアリン酸マグネシウム脱水物を得た。得られた脱水物100部を再度500部の精製水とメタノール500部の混合溶媒中に分散し、ろ過することで洗浄工程とした。この際得られたステアリン酸マグネシウム脱水物を送風乾燥機中で60℃、24時間乾燥した。
【0022】
製造例5
ステアリン酸カルシウム(商品名カルシウムステアレートGP 日本油脂株式会社製)を、気流式粉砕装置を使用して粉砕を行い、空気分級機で分級を行って、10μm以上の粒子を除去した。この時、仕込量に対する10μm以下の粒子の歩留まりは12%であった。
製造例1〜5で得られた脂肪酸金属塩、および比較例として使用した比較脂肪酸金属塩1〜2の組成、結晶転移開始温度、および粒度分布を表1に示す。
【0023】
【表1】

Figure 0004906985
【0024】
実施例1
下記の配合物をタンブラーミキサーで10分間混合した後、射出成形機にかけ、ノズル温度230℃、金型温度40℃で所定の試験片を作成し、評価を行った。その結果を表2に示した。顔料の分散性の評価は下記に示す基準で行った。
<配合物の組成>
ABS樹脂 100重量部
酸化チタン 2重量部
フタロシアニン系顔料 0.2重量部
脂肪酸金属塩 0.5重量部
<顔料の分酸性の基準>
○:分散不良が認められない。
△:分散不良が少し認められる。
×:分散不良が認められる。
【0025】
【表2】
Figure 0004906985
【0026】
実施例2
下記配合物をタンブラーミキサーで10分間混合し、230℃に加熱した、スクリュー径が20mmφ、L/D 16.5の単軸押出機にかけ、75μmのスクリーンを通過した後に、5mmダイスより12時間連続押し出しを行い、金型への目やにの付着量、およびスクリーンへの目詰まり量を目測し、その結果を表3に示した。目やに量と目詰まり量の評価は以下の基準で行った。
<配合物の組成>
未安定化高密度ポリエチレン樹脂 100重量部
フェノール系酸化防止剤 0.1重量部
リン系酸化防止剤 0.1重量部
脂肪酸金属塩 0.2重量部
<目やに量および目詰まり量の評価基準>
○:なし
△:やや多い
×:多い
【0027】
【表3】
Figure 0004906985
【0028】
実施例3
下記配合物をタンブラーミキサーで10分間混合し、26mmφ、L/D16.5の単軸押出機(シリンダー温度C1 150℃、C2 210℃、ダイス230℃、回転数40r.p.m、スクリーン200メッシュ、T型ダイス30mm幅、1mm厚) で16時間連続押し出しを行い、さらに延伸を行って50μmのフィルムを成型し、T型ダイスでの目やに量及びフィルムのフィッシュアイ量を計測し、その結果を表4に示した。T型ダイスでの目やに量及びフィッシュアイ量の評価は以下の基準で行った。
<配合物の組成>
未安定化ポリプロピレン 100重量部
フェノール系酸化防止剤 0.1重量部
リン系酸化防止剤 0.1重量部
脂肪酸金属塩 0.2重量部
<目やに量の評価基準>
◎:なし
○:少ない
△:やや多い
×:多い
<フィッシュアイ量の評価基準>
◎:確認されない
○:少ない
△:やや多い
×:多い
【0029】
【表4】
Figure 0004906985
【0030】
実施例1〜3より本発明の脂肪酸金属塩を添加した成形加工用熱可塑性樹脂組成物は、顔料の分散性、成形加工性に極めて優れていることが分かる。比較脂肪酸金属塩1〜2を用いた成形加工用熱可塑性樹脂組成物では、脂肪酸金属塩の粒子が大きく、またその粒子形状が不揃いであるため、分散時にムラが生じ、顔料の分散性、成形加工性に劣っている。
【図面の簡単な説明】
【図1】一般的なステアリン酸亜鉛の粒径の頻度および累積を示す。
【図2】一般的なステアリン酸亜鉛の結晶転移開始温度の示差熱分析による測定結果を示す。
【図3】一般的なステアリン酸カルシウムの結晶転移開始温度の示差熱分析による測定結果を示す。
【図4】一般的なステアリン酸マグネシウムの結晶転移開始温度の示差熱分析による測定結果を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molded thermoplastic resin composition containing a fatty acid metal salt, in particular the processing of the molding thermoplastic resin composition, embossed resistance, molding heat dispersion and the like of the pigment is significantly improved The present invention relates to a plastic resin composition.
[0002]
[Prior art]
Conventionally, fatty acid metal salts have been used together with phenolic and organic phosphorus antioxidants in order to improve thermal stability and processability in the molding of thermoplastic resins. Typical fatty acid metal salts currently used include magnesium stearate, calcium stearate, zinc stearate, aluminum stearate, lithium stearate and the like.
However, even if these conventional fatty acid metal salts are used, the phenomenon of eye-compression during extrusion molding, the fish-eye phenomenon during film molding, the poor dispersion phenomenon when using pigments, and the decrease in lubricity occur during the molding process of thermoplastic resins. It has not been solved yet for troubles such as fluidity deterioration due to Since the fatty acid metal salt has a large particle size and is not uniform, the dispersion in the thermoplastic resin becomes non-uniform, and the resin viscosity or fatty acid metal salt concentration in the non-uniform part partially increases. This is because the properties change.
[0003]
[Problems to be solved by the invention]
To date, many additives have been proposed to prevent these reductions, but they have not been improved sufficiently. Therefore, the current situation is that the operation of the molding machine is temporarily stopped and the trouble occurrence part is cleaned and then restarted. For this reason, continuous molding processing for a long time cannot be performed, and workability and economical efficiency are reduced. In addition, the quality of molded products was affected, and there was an urgent need to solve these problems. Furthermore, when an attempt is made to produce an injection molded product or a resin thin film having a more complicated shape than the present due to technological advances, if the additive is poorly dispersed, the production becomes difficult. An object of the present invention is to provide a thermoplastic resin composition for molding process in which the processability, embossing property, pigment dispersibility, etc. of the thermoplastic resin composition for molding process are remarkably improved.
[0004]
[Means for solving problems]
That is, the present invention
An aqueous solution containing 0.001 to 20% by weight of an alkali metal salt or ammonium salt of a fatty acid and an aqueous solution or dispersion containing 0.001 to 50% by weight of an inorganic metal salt are produced with respect to 100 parts by weight of a thermoplastic resin. A fatty acid metal salt obtained by reacting at a temperature not higher than the crystal transition start temperature of the fatty acid metal salt to prepare a fatty acid metal salt aqueous dispersion, and then subjecting this dispersion to dehydration and drying treatment, and having an average particle size There is a 4μm or less, and a fatty acid metal salt content of Ru der 4 wt% or less to the total particle diameter of the particles larger than 10 [mu] m, a thermoplastic resin for molding was added 0.01 to 5 parts by weight It is a composition.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The thermoplastic resin used in the present invention is a thermoplastic resin. For example, polyvinyl chloride, chlorinated polyvinyl chloride, chlorinated polyethylene, vinyl chloride / vinyl acetate copolymers, and copolymers of these resins with other resins. Chlorine-containing resins such as polymers and polymer blends; polyolefin resins such as low density polyolefins, high density polyethylene, linear low density polyethylene, polypropylene and resins, copolymers with α-olefins or other resins, and polymer blends; polystyrene Styrene resins such as high impact polystyrene, ABS resin and other resins, and polymer blends; polyester resins such as polyester and other resins and polymer blends; copolymers with polyacetal and other resins As well as polymer blur Polyacetal resins such as de; other various engineering plastics and the like.
[0006]
The fatty acid constituting the fatty acid metal salt of the present invention is one or more of natural fatty acids having 4 to 30 carbon atoms or synthetic fatty acids, which may be saturated or unsaturated, and linear. The structure may be either branched or branched, and may have a hydroxyl group, an aldehyde group, an epoxy group or the like in the structure. Examples of such fatty acids are caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, myristoleic acid, palmitic acid, palmitooleic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachin Examples include acids, behenic acid, erucic acid, hydroxystearic acid, montanic acid, isostearic acid, and epoxy stearic acid. Moreover, you may replace the one part with aliphatic carboxylic acid or dicarboxylic acid.
[0007]
Examples of the metal constituting the fatty acid metal salt include alkaline earth metals such as magnesium, calcium and barium, titanium, zinc, iron, manganese, cadmium, mercury, zirconium, lead, copper, cobalt, nickel, silver and lithium. I can do things. One or more of these metals may be used in combination.
The addition amount of the fatty acid metal salt with respect to 100 parts by weight of the thermoplastic resin is 0.01 to 5 parts by weight, preferably 0.05 to 3 parts by weight. If it is less than 0.01 part by weight, the moldability is reduced, and if it exceeds 5 parts by weight, the fatty acid salt is raised from the resin, causing trouble.
[0008]
The particle size of the fatty acid metal salt in the present invention is defined with a representative length of the fatty acid metal salt.
Examples of the measuring method include gas phase precipitation method, liquid phase precipitation method, light transmission method, microscope method, light scanning method, laser diffraction scattering method and the like. Among them, an optical scanning method, a laser diffraction scattering method, and the like that can be measured with high accuracy are preferably used.
[0009]
The average particle size of the fatty acid metal salt is 4 μm or less and the content of particles larger than 10 μm is 4% by weight or less, preferably the average particle size is 3.5 μm and the content of particles larger than 10 μm The amount is not more than 3.5% by weight. When the average particle size is larger than 4 μm or the content of particles larger than 10 μm exceeds 4% by weight, the dispersion rate in the thermoplastic resin is reduced and the fatty acid metal salt is unevenly distributed in the thermoplastic resin. Cause.
Here, the 30% particle size R A , 50% particle size R B , 70% particle size R C, and 95% particle size R D are respectively the cumulative values of particles in the general zinc stearate shown in FIG. The particle diameters are 30, 50, 70, and 95% by weight. In FIG. 1, 30% particle size R A , 50% particle size R B , 70% particle size R C , and 95% particle size R D are 4.2, 6.7, 10.4, and 19.3 μm, respectively. It becomes. Therefore, R C -R A and R D -R B are 6.2 and 12.6 μm, respectively. As the value of each of R C -R A and R D -R B is low, narrow range of particle size of the fatty acid metal salt, becomes sharp. The particle size of the fatty acid metal salt used in the present invention is preferably R C -R A is 3μm or less, or R D -R B is 6μm or less, R C -R A is 3μm or less and R D -R B More preferably, it is 6 μm or less.
[0010]
The fatty acid metal salt used is obtained by directly reacting a fatty acid with a metal oxide or hydroxide, or reacting a sodium salt of a fatty acid with a metal chloride, sulfate or nitrate, There is also a method of using an impact pulverizer, an airflow pulverizer, a media mill, a wet pulverizer, etc. to make the average particle size 4 μm, but because the content of particles of 10 μm or less obtained at the time of pulverization is low, The yield of particles obtained by classification is low, the productivity is poor, and a fracture surface is generated by pulverization, which may cause poor classification to a thermoplastic resin.
[0011]
As the production method, an aqueous solution (A) preferably containing 0.001 to 20% by weight of an alkali metal salt or ammonium salt of a fatty acid and an aqueous solution or dispersion containing 0.001 to 50% by weight of an inorganic metal salt are produced. The fatty acid metal salt aqueous dispersion is reacted at a temperature not higher than the crystal transition start temperature of the fatty acid metal salt, and then the dispersion is subjected to dehydration and drying at a temperature not higher than the crystal transition start temperature of the fatty acid metal salt. By obtaining a product having a desired particle size, a fatty acid metal salt that is well dispersed in a thermoplastic resin or pigment or the like that does not have a fracture surface due to pulverization can be efficiently obtained.
[0012]
Here, the crystal transition start temperature of the fatty acid metal salt is a temperature at which the crystal structure of the fatty acid starts to transition, and can be determined using a differential thermal analyzer. For example, in the case of the general zinc stearate in FIG. 2, the temperature of the intersection E between the extension line C of the gradient before endotherm due to crystal transition and the extension line D of the gradient after start of endotherm is taken as the crystal transition start temperature. In this case, the crystal transition start temperature of zinc stearate is 102 ° C., the crystal transition start temperature H of general calcium stearate in FIG. 3 is 80 ° C., and the crystal transition start temperature K of general magnesium stearate in FIG. It becomes ℃. The actual mixing temperature varies depending on the fatty acid and metal of the obtained fatty acid metal salt, but is, for example, 60 to 80 ° C., preferably 70 to 80 ° C. in the case of calcium stearate. When the reaction is carried out at a temperature lower than 60 ° C., the solubility of the alkali metal or ammonium salt of the fatty acid is reduced and the target substance is obtained, but the amount of the fatty acid metal salt finally obtained is low relative to the liquid used in the reaction, Production efficiency decreases.
Moreover, when it reacts at the temperature exceeding 80 degreeC, fatty acid metal salt will fuse | melt with heat and an average particle diameter will become large.
Similarly, in the case of zinc stearate, it is 60 ° C to 90 ° C, preferably 70 ° C to 90 ° C, and in the case of magnesium stearate, it is 60 ° C to 75 ° C, preferably 65 ° C to 70 ° C.
[0013]
The reaction between the fatty acid alkali metal or ammonium salt solution and the metal sulfate, chloride or nitrate may be carried out batchwise in the reactor, and the static mixer, in-line mixer or the like in the pipe You may react continuously using a stirring and mixing apparatus. Preferably, a product having a desired particle size can be continuously obtained by attaching a mixing device capable of continuous mixing in the pipe and continuously producing the reaction product.
The resulting fatty acid metal salt dispersion is separated from the fatty acid metal salt and the solvent using a centrifugal dehydrator, filter press, vacuum rotary filter, etc., washed if necessary, and by-produced inorganic Remove salt. In this case, the temperature of water or other solvent used for washing is preferably lower than the crystal transition start temperature of the fatty acid metal salt to be obtained.
[0014]
The dehydrated fatty acid metal salt or the fatty acid metal salt dispersion itself is usually continuously or batch-wise using a rotary dryer, airflow dryer, aeration dryer, spray dryer, fluidized bed dryer, or the like. Dry under pressure or vacuum. In this case, the temperature of the drying atmosphere is preferably equal to or lower than the crystal transition start temperature of the fatty acid metal salt. When drying is performed in an atmosphere at a crystal transition start temperature or higher, the particles may be fused to increase the particle size. Alternatively, the drying operation may be performed after washing the fatty acid metal salt dehydrate with a low boiling point solvent or the like and replacing the solvent. The low boiling point solvent used in this case is preferably a solvent that can efficiently remove water from the fatty acid metal salt dehydrate, and examples thereof include methanol, ethanol, isopropyl alcohol, and acetone. Further, if necessary, the dried powder may be pulverized using a pulverizer, and the aggregated particles may be removed using an airflow classifier or a sieve.
[0015]
The thermoplastic resin composition for molding processing according to the present invention includes additives other than the fatty acid metal salt according to the present invention, such as plasticizers, fillers, stabilizers, phenol-based, organic phosphorus-based antioxidants, benzotriazole-based, UV absorbers such as benzophenone and hindered amines, initial colorants such as β-diketone compounds and β-diketone metal salts, pigments, lubricants, antistatic agents, flame retardants, antibacterial agents, fungicides, foaming agents, epoxies You may add a compound, a processing aid, etc. suitably.
[0016]
The thermoplastic resin for molding process to which the fatty acid metal salt of the present invention is added is extremely excellent in dispersibility of pigment and molding processability, and can be continuously operated without cleaning the apparatus. It can greatly contribute to the cost reduction of processing.
[0017]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
The fatty acid metal salt to be added to the thermoplastic resin was prepared according to the following production example.
[0018]
Production Example 1
A turbine blade having a diameter of 6 cm is placed in a glass beaker at 350 r. p. The reaction vessel was rotated at m. 750 parts of 5% sodium stearate aqueous solution adjusted to 80 ° C. and 658 parts of 1% calcium chloride aqueous solution were simultaneously added thereto, and stirring was continued at 80 ° C. for 10 minutes. Thereafter, suction filtration was performed, and washing was performed twice with 1 L of water. The obtained calcium stearate dehydrate was dried with an air dryer at 80 ° C. for 24 hours.
[0019]
Production Example 2
A turbine blade having a diameter of 6 cm is placed in a glass beaker at 350 r. p. The reaction vessel was rotated at m. 750 parts of 5% sodium stearate aqueous solution adjusted to 90 ° C. and 809 parts of 1% zinc chloride aqueous solution were simultaneously added thereto, and stirring was continued at 90 ° C. for 10 minutes. Thereafter, suction filtration was performed, and washing was performed twice with 1 L of water. The obtained zinc stearate dehydrated product was dried with an air dryer at 80 ° C. for 24 hours.
[0020]
Production Example 3
A 2 liter reaction vessel with a stirring device having a turbine blade having a diameter of 6 cm was prepared, and the turbine blade was rotated at 350 rpm. To this reaction vessel, a 2% aqueous sodium stearate solution adjusted to 75 ° C. was added at a rate of 100 ml / min, and a 0.5% calcium chloride aqueous solution adjusted to 75 ° C. at a rate of 70 ml / min. What overflowed from the reaction tank was subjected to suction filtration to obtain a calcium stearate dehydrate. 100 parts of the obtained dehydrated product was again dispersed in 1000 parts of purified water and filtered to form a washing step. The calcium stearate dehydrate obtained at this time was dried at 75 ° C. for 24 hours in an air dryer.
[0021]
Production Example 4
A 2 liter reaction vessel with a stirring device having a turbine blade having a diameter of 6 cm was prepared, and the turbine blade was rotated at 350 rpm. To this reaction vessel, a 2% aqueous sodium stearate solution adjusted to 70 ° C. was added at a rate of 100 ml / min and a 0.5% aqueous magnesium sulfate solution adjusted to 70 ° C. at a rate of 155 ml / min. What overflowed from the reaction vessel was suction filtered to obtain a magnesium stearate dehydrate. 100 parts of the dehydrated product thus obtained was again dispersed in a mixed solvent of 500 parts of purified water and 500 parts of methanol and filtered to form a washing step. The magnesium stearate dehydrate obtained at this time was dried in an air dryer at 60 ° C. for 24 hours.
[0022]
Production Example 5
Calcium stearate (trade name: Calcium stearate GP, manufactured by Nippon Oil & Fats Co., Ltd.) was pulverized using an airflow pulverizer and classified with an air classifier to remove particles of 10 μm or more. At this time, the yield of particles of 10 μm or less relative to the charged amount was 12%.
Table 1 shows the compositions, crystal transition start temperatures, and particle size distributions of the fatty acid metal salts obtained in Production Examples 1 to 5 and the comparative fatty acid metal salts 1 and 2 used as comparative examples.
[0023]
[Table 1]
Figure 0004906985
[0024]
Example 1
The following blends were mixed for 10 minutes with a tumbler mixer, then applied to an injection molding machine, and predetermined test pieces were prepared at a nozzle temperature of 230 ° C. and a mold temperature of 40 ° C. for evaluation. The results are shown in Table 2. Evaluation of the dispersibility of the pigment was performed according to the following criteria.
<Composition of formulation>
ABS resin 100 parts by weight Titanium oxide 2 parts by weight Phthalocyanine pigment 0.2 parts by weight Fatty acid metal salt 0.5 parts by weight <Standard of acidity of pigment>
○: Dispersion failure is not recognized.
Δ: Some dispersion failure is observed.
X: Dispersion failure is recognized.
[0025]
[Table 2]
Figure 0004906985
[0026]
Example 2
The following formulation was mixed for 10 minutes with a tumbler mixer, heated to 230 ° C., passed through a single screw extruder with a screw diameter of 20 mmφ and L / D 16.5, passed through a 75 μm screen, and continuously from a 5 mm die for 12 hours. Extrusion was performed to measure the amount of adhesion to the eyes and the clogging to the mold, and the results are shown in Table 3. The amount of clogging and clogging was evaluated according to the following criteria.
<Composition of formulation>
Unstabilized high-density polyethylene resin 100 parts by weight Phenolic antioxidant 0.1 part by weight Phosphorous antioxidant 0.1 part by weight Fatty acid metal salt 0.2 part by weight <Evaluation criteria for amount of clogging and clogging>
○: None △: Slightly many ×: Many [0027]
[Table 3]
Figure 0004906985
[0028]
Example 3
The following blend was mixed for 10 minutes with a tumbler mixer, and a single screw extruder (cylinder temperature C1 150 ° C., C2 210 ° C., die 230 ° C., rotation speed 40 rpm), screen 200 mesh, 26 mmφ, L / D 16.5. , T-type die 30mm wide, 1mm thickness) for 16 hours, and further stretched to form a 50μm film, and measured the amount of eyes and the amount of fish eyes in the T-type die. It is shown in Table 4. Evaluation of the amount of eyes and the amount of fish eyes with a T-shaped die was performed according to the following criteria.
<Composition of formulation>
Unstabilized polypropylene 100 parts by weight Phenolic antioxidant 0.1 part by weight Phosphorous antioxidant 0.1 part by weight Fatty acid metal salt 0.2 part by weight <Evaluation criteria for eye amount>
◎: None ○: Low △: Slightly high ×: High <Fisheye amount evaluation criteria>
◎: Not confirmed ○: Less △: Slightly more ×: More [0029]
[Table 4]
Figure 0004906985
[0030]
It can be seen from Examples 1 to 3 that the thermoplastic resin composition for molding process to which the fatty acid metal salt of the present invention is added is extremely excellent in pigment dispersibility and molding processability. In the thermoplastic resin composition for molding using the comparative fatty acid metal salts 1 and 2, the fatty acid metal salt particles are large and the particle shape is uneven, so that unevenness occurs during dispersion, dispersibility of the pigment, molding It is inferior in workability.
[Brief description of the drawings]
FIG. 1 shows the frequency and accumulation of particle size of common zinc stearate.
FIG. 2 shows the results of differential thermal analysis of the crystal transition start temperature of general zinc stearate.
FIG. 3 shows the result of differential thermal analysis of the crystal transition start temperature of general calcium stearate.
FIG. 4 shows the results of differential thermal analysis measurement of the crystal transition start temperature of general magnesium stearate.

Claims (1)

熱可塑性樹脂100重量部に対し、脂肪酸のアルカリ金属塩もしくはアンモニウム塩0.001〜20重量%を含有する水溶液と無機金属塩0.001〜50重量%を含有する水溶液もしくは分散液とを、生成する脂肪酸金属塩の結晶転移開始温度以下の温度で反応して、脂肪酸金属塩水分散液を調整し、ついでこの分散液を脱水および乾燥処理を行って得られる脂肪酸金属塩であって、平均粒子径が4μm以下であり、かつ粒子径が10μmよりも大きい粒子の全体に対する含有量が4重量%以下である脂肪酸金属塩を、0.01〜5重量部添加した成形加工用熱可塑性樹脂組成物。 An aqueous solution containing 0.001 to 20% by weight of an alkali metal salt or ammonium salt of a fatty acid and an aqueous solution or dispersion containing 0.001 to 50% by weight of an inorganic metal salt are produced with respect to 100 parts by weight of a thermoplastic resin. A fatty acid metal salt obtained by reacting at a temperature not higher than the crystal transition start temperature of the fatty acid metal salt to prepare a fatty acid metal salt aqueous dispersion, and then subjecting this dispersion to dehydration and drying treatment, and having an average particle size There is a 4μm or less, and a fatty acid metal salt content of Ru der 4 wt% or less to the total particle diameter of the particles larger than 10 [mu] m, a thermoplastic resin for molding was added 0.01 to 5 parts by weight Composition.
JP32479398A 1998-11-16 1998-11-16 Thermoplastic resin composition for molding process Expired - Lifetime JP4906985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32479398A JP4906985B2 (en) 1998-11-16 1998-11-16 Thermoplastic resin composition for molding process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32479398A JP4906985B2 (en) 1998-11-16 1998-11-16 Thermoplastic resin composition for molding process

Publications (2)

Publication Number Publication Date
JP2000143997A JP2000143997A (en) 2000-05-26
JP4906985B2 true JP4906985B2 (en) 2012-03-28

Family

ID=18169754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32479398A Expired - Lifetime JP4906985B2 (en) 1998-11-16 1998-11-16 Thermoplastic resin composition for molding process

Country Status (1)

Country Link
JP (1) JP4906985B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797846B2 (en) 2001-03-14 2004-09-28 National Institute Of Advanced Industrial Science And Technology Fibrous crystal aggregates, preparation method thereof and use thereof
JP3953742B2 (en) 2001-03-14 2007-08-08 独立行政法人産業技術総合研究所 Gas hydrocarbon immobilization material, its use and hydrocarbon solidification method
JP4720277B2 (en) * 2004-09-30 2011-07-13 ぺんてる株式会社 Solid drawing material

Also Published As

Publication number Publication date
JP2000143997A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
US5198484A (en) Polyolefin composition containing ultrafine sorbitol and xylitol acetals
EP3272794B1 (en) Nanoscale ss nucleating agents for polypropylene
EP1505108B1 (en) Laser-sinterable polyamide powder containing a metal salt and a fat acid derivative, process of preparation and molded articles therefrom
DE102006027915B4 (en) Process for the preparation of Mg (OH) 2 nanoparticles
EP2134652B1 (en) Spherical calcium carbonate particles
JP6779208B2 (en) Polymer compositions and methods comprising basic additives and articles comprising said polymer compositions.
DE2639864B2 (en) Process for processing a mixture from high polymer waste
EP1844101A1 (en) Moulding mass made from vinyl chloride polymer or polyvinylchloride film produced from said moulding mass and method for production of a film or film web
US20160090345A1 (en) Fatty acid metal salt for forming ultrafine metal particles
JPWO2011030822A1 (en) Method for producing phosphonic acid metal salt and thermoplastic resin composition containing phosphonic acid metal salt
JP2008266050A (en) Surface-modified zinc oxide ultrafine particles and method for producing the same
JP4906985B2 (en) Thermoplastic resin composition for molding process
US3427298A (en) Polyvinyl alcohol materials and compositions
WO2017141938A1 (en) Cellulose acetate composition
JP2003320528A (en) Thermoplastic resin pellet
US20130093119A1 (en) Processes for producing thermostable polyhydroxyalkanoate and products produced therefrom
EP2441793B1 (en) Highly active beta-nucleation additive for polypropylene
JP4406197B2 (en) Colorant for polyolefin resin and use thereof
KR101824189B1 (en) Manufacturing method of hydrate of zinc carboxylate, hydrate of zinc carboxylate manufactured therefrom and material for antimicrobial plastic comprising the hydrate of zinc carboxylate
JP6957377B2 (en) Modeling materials for 3D printers, how to use them, and modeling methods
WO2009122673A1 (en) Resin composition
EP0552680B1 (en) Thermoplastic resin moulding matter
JP2736545B2 (en) Magnesium hydroxide particles
WO2007066825A1 (en) Method for producing a cellelose ester resin film
WO1993003903A1 (en) Use of aminoalkanolamide esters as auxiliaries in the processing of thermoplastics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090109

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term