JP4905624B2 - Combination therapy of peptide vaccine administration and estramustine treatment - Google Patents

Combination therapy of peptide vaccine administration and estramustine treatment Download PDF

Info

Publication number
JP4905624B2
JP4905624B2 JP2004318161A JP2004318161A JP4905624B2 JP 4905624 B2 JP4905624 B2 JP 4905624B2 JP 2004318161 A JP2004318161 A JP 2004318161A JP 2004318161 A JP2004318161 A JP 2004318161A JP 4905624 B2 JP4905624 B2 JP 4905624B2
Authority
JP
Japan
Prior art keywords
patients
peptide
cancer
estramustine
combination therapy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004318161A
Other languages
Japanese (ja)
Other versions
JP2007051066A5 (en
JP2007051066A (en
Inventor
恭悟 伊東
正典 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurume University
Original Assignee
Kurume University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurume University filed Critical Kurume University
Priority to JP2004318161A priority Critical patent/JP4905624B2/en
Publication of JP2007051066A publication Critical patent/JP2007051066A/en
Publication of JP2007051066A5 publication Critical patent/JP2007051066A5/ja
Application granted granted Critical
Publication of JP4905624B2 publication Critical patent/JP4905624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

発明の詳細な説明Detailed Description of the Invention

[技術分野]
本発明は、癌の免疫療法、具体的にはホルモン不応性前立腺癌の処置に関する。
[Technical field]
The present invention relates to immunotherapy for cancer, specifically the treatment of hormone refractory prostate cancer.

[背景技術]
転移性ホルモン不応性前立腺癌(HRPC)患者の最適な処置は依然として癌研究の代表的目標であり続けている。転移性HRPC患者の生存期間中央値は約12ヶ月である[13]。ミトキサントロン(mitoxantrone)による化学療法には一過性の改善が見られるが[1、2]、生存期間延長が証明された処置はまだない。最近、エストラムスチンまたはタキサンに基づく治療法の第II相臨床試験において、患者の45%〜67%で血清前立腺特異的抗原(PSA)レベルが≧50%低下したことが報告された[48]。しかしながら、これらの併用は、顕著な悪心、下痢、白血球減少、および累積性体液貯留を伴い、血栓性イベントの危険が増大するので、パフォーマンス・ステータスの悪い患者には使用できない。それに加えて、これら治療法ではいずれも生存期間延長が見られず、この研究での患者数は限られている。
[Background technology]
Optimal treatment of patients with metastatic hormone refractory prostate cancer (HRPC) continues to be a typical goal of cancer research. The median survival of patients with metastatic HRPC is about 12 months [13]. Chemotherapy with mitoxantrone shows a transient improvement [1,2], but no treatment has yet been demonstrated to prolong survival. Recently, in a phase II clinical trial of estramustine or taxane-based therapy, it was reported that serum prostate specific antigen (PSA) levels were reduced by ≧ 50% in 45% to 67% of patients [48]. . However, these combinations cannot be used for patients with poor performance status because they involve significant nausea, diarrhea, leukopenia, and cumulative fluid retention and increase the risk of thrombotic events. In addition, none of these treatments have extended survival and the number of patients in this study is limited.

ヒト白血球関連抗原(HLA)クラスI拘束性細胞傷害性Tリンパ球(CTL)が認識する多数の腫瘍抗原が過去十年間に確認され[9、10]、腫瘍ワクチンを用いるHRPCの新処置法が研究されてきた。樹状細胞に基づく免疫療法の第I相/第II相臨床試験が行われ、組換え前立腺特異的膜抗原(PSMA)およびアジュバントを含むワクチンも前立腺癌患者で試験された [11、12]。HRPC患者に施すわれわれの免疫療法の手法は、既報のように[13、14]、CTLを誘導する能力を持つワクチン候補30種に反応する癌患者の循環血中のペプチド特異的CTL前駆体のワクチン投与前測定に続いて、反応性ペプチドのみを投与するもの(患者指向性ペプチドワクチン投与)である。われわれは最近、HRPCについて第I相臨床試験を完了し、これらのペプチドの安全な投与を評価した[15]。この免疫療法の有害事象は通常の治療法のものより軽症であったが、この試験の臨床的応答は限定的であった。細胞毒性物質による免疫系の抑制が最低の場合にペプチドワクチン投与と細胞毒性物質との併用によって相加的抗腫瘍効果が達成できるであろうことが示唆される。   Numerous tumor antigens recognized by human leukocyte associated antigen (HLA) class I-restricted cytotoxic T lymphocytes (CTLs) have been identified in the last decade [9, 10] and a new treatment for HRPC using tumor vaccines has been developed. Have been studied. A phase I / II clinical trial of dendritic cell-based immunotherapy was conducted, and vaccines containing recombinant prostate specific membrane antigen (PSMA) and adjuvant were also tested in prostate cancer patients [11, 12]. Our immunotherapy approach for HRPC patients, as reported previously [13, 14], is the use of peptide-specific CTL precursors in the circulating blood of cancer patients who respond to 30 vaccine candidates capable of inducing CTLs. Following the measurement prior to vaccine administration, only reactive peptides are administered (patient-directed peptide vaccine administration). We recently completed a phase I clinical trial for HRPC and evaluated the safe administration of these peptides [15]. Although the adverse events of this immunotherapy were milder than those of conventional treatments, the clinical response of this trial was limited. It is suggested that an additive anti-tumor effect could be achieved by the combined use of peptide vaccines and cytotoxic agents when the suppression of the immune system by cytotoxic agents is minimal.

エストラムスチンリン酸塩は、エストラジオールとナイトロジェンマスタードとの安定な結合体であって、抗有糸分裂性を示し、微小管形成の崩壊を起す[16]。エストラムスチンリン酸塩は、過去25年間にHRPCの一次的処置のみならず二次的処置として、第II相および第III相臨床試験が何回も行われている。他の細胞毒性薬と比較してエストラムスチンリン酸塩の利点は、投与が容易な点(経口投与)および有効用量で比較的に耐容性がよい点にある。   Estramustine phosphate is a stable conjugate of estradiol and nitrogen mustard that is antimitotic and causes disruption of microtubule formation [16]. Estramustine phosphate has been undergoing a number of Phase II and Phase III clinical trials as a secondary treatment as well as a primary treatment for HRPC over the past 25 years. The advantage of estramustine phosphate compared to other cytotoxic drugs is that it is easy to administer (oral administration) and is relatively well tolerated at effective doses.

免疫療法と細胞毒性薬との併用は新しい概念ではないが[27]、多くの細胞毒性薬の骨髄抑制的な性質により起こり得るマイナスの相互作用が主な注目を集めてきた。細胞毒性薬は、活性化免疫系の特徴として分裂中の細胞を優先的に殺し、それ故に免疫応答を阻害する場合がある。しかしながら、エストラムスチンリン酸塩の毒性としての骨髄抑制は、HRPCを処置した患者では稀にしか報告されていない[16]。エストラムスチンリン酸塩とビンブラスチンとの併用をビンブラスチン単独と比較する第III相臨床試験では、併用法は単独法に比べて好中球減少率が低かった(グレード2、3、4:7%、1%および1%に対して27%、18%および9%)[3]。   Although the combination of immunotherapy and cytotoxic drugs is not a new concept [27], the negative interactions that can occur due to the myelosuppressive nature of many cytotoxic drugs have attracted major attention. Cytotoxic drugs preferentially kill dividing cells as a feature of the activated immune system and may therefore inhibit the immune response. However, myelosuppression as the toxicity of estramustine phosphate has been rarely reported in patients treated with HRPC [16]. In a phase III clinical trial comparing the combination of estramustine phosphate and vinblastine with vinblastine alone, the combination method had a lower neutropenia rate than the single method (grades 2, 3, 4: 7%) 27%, 18% and 9% for 1% and 1%) [3].

[発明の開示]
本発明の目的は、患者指向性ペプチドワクチン投与および経口投与エストラムスチンリン酸塩の併用に対するHRPC患者の臨床的および免疫学的応答を、順次測定した血清PSA、骨代謝マーカー並びに臨床的骨スキャン記録、INF−γ放出検定によるペプチド特異的CTL前駆体、および酵素結合免疫吸着検査法によるペプチド反応性IgGを解析して評価することにある。
[Disclosure of the Invention]
The purpose of the present invention is to determine the clinical and immunological response of HRPC patients to a combination of patient-directed peptide vaccination and oral estramustine phosphate, serum PSA, bone metabolism markers and clinical bone scan It is to analyze and evaluate the recording, peptide-specific CTL precursor by INF-γ release assay, and peptide-reactive IgG by enzyme-linked immunosorbent assay.

即ち、本発明は以下の各項に関する:
(1)前立腺癌を処置するための方法であって、治療上有効量の癌抗原ペプチド関連物質および低用量のエストラムスチンまたはその塩をそれを必要とする患者に投与することを含む方法;
(2)低用量のエストラムスチンまたはその塩の用量が140〜560mg/日である、(1)に記載の方法;
(3)癌抗原ペプチド関連物質が患者指向性である、(1)または(2)に記載の方法;
(4)癌抗原ペプチド関連物質が、癌抗原タンパク質、その癌抗原ペプチド、その遺伝子およびそれらの誘導体より成る群から選択される、(3)に記載の方法;
(5)癌がホルモン不応性前立腺癌である、(1)から(4)のいずれかに記載の方法;
(6)前立腺癌を処置するための医薬組成物であって、低用量のエストラムスチンまたはその塩を含む、癌抗原ペプチド関連物質と一緒に投与される医薬組成物;
(7)低用量のエストラムスチンまたはその塩の用量が140〜560mg/日である、
(6)の医薬組成物;
(8)癌抗原ペプチド関連物質が患者指向性である、(6)または(7)の医薬組成物;
(9)癌抗原ペプチド関連物質が、癌抗原タンパク質、その癌抗原ペプチド、その遺伝子およびそれらの誘導体より成る群から選択される、(8)の医薬組成物;
(10)癌がホルモン不応性前立腺癌である、(6)から(9)のいずれかに記載の医薬組成物;および
(11)前立腺癌を処置するための医薬を製造するためのエストラムスチンまたはその塩の使用であって、該エストラムスチンまたはその塩が低用量であり、かつ該医薬が癌抗原ペプチド関連物質と一緒に投与される使用。
That is, the present invention relates to the following items:
(1) A method for treating prostate cancer, comprising administering to a patient in need thereof a therapeutically effective amount of a cancer antigen peptide-related substance and a low dose of estramustine or a salt thereof;
(2) The method according to (1), wherein the dose of estramustine or a salt thereof at a low dose is 140 to 560 mg / day;
(3) The method according to (1) or (2), wherein the cancer antigen peptide-related substance is patient-oriented;
(4) The method according to (3), wherein the cancer antigen peptide-related substance is selected from the group consisting of a cancer antigen protein, its cancer antigen peptide, its gene and derivatives thereof;
(5) The method according to any one of (1) to (4), wherein the cancer is hormone refractory prostate cancer;
(6) A pharmaceutical composition for treating prostate cancer, which is administered together with a cancer antigen peptide-related substance, comprising a low dose of estramustine or a salt thereof;
(7) The dose of low dose estramustine or a salt thereof is 140 to 560 mg / day,
(6) pharmaceutical composition;
(8) The pharmaceutical composition according to (6) or (7), wherein the cancer antigen peptide-related substance is patient-oriented;
(9) The pharmaceutical composition of (8), wherein the cancer antigen peptide-related substance is selected from the group consisting of a cancer antigen protein, its cancer antigen peptide, its gene and derivatives thereof;
(10) The pharmaceutical composition according to any of (6) to (9), wherein the cancer is hormone refractory prostate cancer; and (11) Estramustine for producing a medicament for treating prostate cancer Or use of a salt thereof, wherein the estramustine or a salt thereof is in a low dose and the medicament is administered together with a cancer antigen peptide-related substance.

[発明を実施するための最良の形態]
本発明によって、我々は、事前のペプチドワクチン投与に応答しなかったヒト白血球抗原(HLA)−A24またはA2陽性転移性ホルモン不応性前立腺癌(HRPC)患者に、ペプチドワクチン投与およびエストラムスチンリン酸塩処置の併用療法を施し、その結果、この併用療法がペプチド特異的CTL前駆体またはペプチド特異的IgGを成功裏に増強すること、および患者の血清PSAレベルを減少させることを見出した。
[Best Mode for Carrying Out the Invention]
In accordance with the present invention, we have provided peptide vaccination and estramustine phosphate to human leukocyte antigen (HLA) -A24 or A2 positive metastatic hormone refractory prostate cancer (HRPC) patients who did not respond to prior peptide vaccine administration. A salt treatment combination therapy was administered, and as a result, this combination therapy was found to successfully enhance peptide-specific CTL precursors or peptide-specific IgG and reduce patient serum PSA levels.

第1の態様において本発明は、前立腺癌を処置するための方法であって、治療上有効量の癌抗原ペプチド関連物質および低用量のエストラムスチンまたはその塩をそれを必要とする患者に投与することを含む方法を提供する。   In a first aspect, the present invention is a method for treating prostate cancer comprising administering a therapeutically effective amount of a cancer antigen peptide-related substance and a low dose of estramustine or a salt thereof to a patient in need thereof Providing a method comprising:

本発明によって処置される前立腺癌には、ホルモン応答性前立腺癌(hormone-responsive prostate cancer)、ホルモン不応性前立腺癌(hormone-refractory prostate cancer)およびホルモン無感応性前立腺癌(hormone-insensitive prostate cancer)を含む。本発明は、好ましくはホルモン不応性前立腺癌、特に転移性ホルモン不応性前立腺癌を処置または予防する。   Prostate cancers treated by the present invention include hormone-responsive prostate cancer, hormone-refractory prostate cancer, and hormone-insensitive prostate cancer. including. The present invention preferably treats or prevents hormone refractory prostate cancer, particularly metastatic hormone refractory prostate cancer.

エストラムスチンは抗新生物薬と呼ばれる医薬群に属し、前立腺癌の症例のいくつかの処置に世界的に使用されている。エストラムスチンはエストラジオールとナイトロジェンマスタードとの組み合わせである。本発明では、エストラムスチンを塩、好ましくはリン酸塩、の形で患者に経口投与できる。   Estramustine belongs to a group of medicines called antineoplastic drugs and is used worldwide for the treatment of several cases of prostate cancer. Estramustine is a combination of estradiol and nitrogen mustard. In the present invention, estramustine can be administered orally to the patient in the form of a salt, preferably a phosphate.

エストラムスチンに関して用いる「低用量」なる用語は、通常の用量よりも低いエストラムスチン用量を意味し、具体的には、140〜560mg/日、好ましくは210〜490mg/日、更に好ましくは210〜420mg/日、なお好ましくは280mg/日を示す。低用量には、特に、100〜150mg/日、100〜200mg/日、100〜250mg/日、120〜170mg/日、120〜220mg/日、120〜270mg/日、140〜190mg/日、140〜240mg/日、140〜290mg/日、160〜210mg/日、160〜260mg/日、180〜230mg/日および180〜280mg/日が含まれる。   The term “low dose” as used with respect to estramustine means an estramustine dose that is lower than the normal dose, specifically 140-560 mg / day, preferably 210-490 mg / day, more preferably 210 -420 mg / day, more preferably 280 mg / day. Low doses include, among others, 100-150 mg / day, 100-200 mg / day, 100-250 mg / day, 120-170 mg / day, 120-220 mg / day, 120-270 mg / day, 140-190 mg / day, 140 -240 mg / day, 140-290 mg / day, 160-210 mg / day, 160-260 mg / day, 180-230 mg / day and 180-280 mg / day.

本明細書で用いる「癌抗原ペプチド関連物質」なる用語は、腫瘍抗原タンパク質並びにその遺伝子、腫瘍抗原タンパク質由来の腫瘍抗原ペプチド並びにその遺伝子、およびそれらの誘導体を意味する。腫瘍抗原ペプチドは、腫瘍に特異的なタンパク質である腫瘍抗原タンパク質の細胞内のプロテアソームによる分解によって作製され、細胞内で合成される。このようにして作製された腫瘍抗原ペプチドは、小胞体にあるMHCクラスI抗原(HLA抗原)に結合して複合体を形成し、この複合体が細胞表面に輸送されることで抗原として提示される。   As used herein, the term “cancer antigen peptide-related substance” means a tumor antigen protein and its gene, a tumor antigen peptide derived from a tumor antigen protein and its gene, and derivatives thereof. A tumor antigen peptide is produced by degradation of a tumor antigen protein, which is a protein specific to a tumor, by intracellular proteasome and synthesized in the cell. The thus produced tumor antigen peptide binds to the MHC class I antigen (HLA antigen) in the endoplasmic reticulum to form a complex, and this complex is transported to the cell surface and presented as an antigen. The

本発明で使用する腫瘍抗原タンパク質は、次のものを含む:すなわちヒトメラノーマ細胞由来のMAGEと命名されたタンパク質(Science, 254: 1643, 1991);メラノソームのタンパク質、たとえばメラニン形成細胞組織特異的タンパク質、gp100(J. Exp. Med., 179: 1005, 1994)、MART−1(Proc. Natl. Acad. Sci. USA, 91: 3515, 1994)、およびチロシナーゼ(J. Exp. Med., 178: 489, 1993);MEGE関連タンパク質(J. Exp. Med., 179: 921, 1994);腫瘍特異的アミノ酸突然変異を有するβ−カテニン(catenin)(J. Exp. Med., 183: 1185, 1996);およびCDK4(Science, 269: 1281, 1995);HER2-neu(J. Exp. Med., 181: 2109, 1995)、p53(変異種)(Proc. Natl. Acad. Sci. USA, 93: 14704, 1996);腫瘍マーカー、たとえばCEA(J. Natl. Cancer Inst., 87: 982, 1995)、PSA(J. Natl. Cancer Inst., 89: 293, 1997);およびウイルスタンパク質、たとえばHPV(J. Immunol., 154: 5934, 1995)およびEBV(Int. Immunol., 7: 653, 1995)。これらの物質の詳細な説明は刊行された総説に記載がある(例えば、Immunol. Today, 18: 267, 1997;J. Exp. Med., 183: 725, 1996;および Curr. Opin. Immunol., 8: 628, 1996)。   Tumor antigen proteins used in the present invention include the following: a protein named MAGE derived from human melanoma cells (Science, 254: 1643, 1991); a melanosomal protein, such as a melanocyte-specific tissue protein , Gp100 (J. Exp. Med., 179: 1005, 1994), MART-1 (Proc. Natl. Acad. Sci. USA, 91: 3515, 1994), and tyrosinase (J. Exp. Med., 178: 489, 1993); MAGE related protein (J. Exp. Med., 179: 921, 1994); β-catenin with tumor-specific amino acid mutation (J. Exp. Med., 183: 1185, 1996) ); And CDK4 (Science, 269: 1281, 1995); HER2-neu (J. Exp. Med., 181: 2109, 1995), p53 (mutant) (Proc. Natl. Acad. Sci. USA, 93: 14704, 1996); tumor markers such as CEA (J. Natl. Cancer Inst., 87: 982, 1995), PSA (J. Natl. Cancer Inst. , 89: 293, 1997); and viral proteins such as HPV (J. Immunol., 154: 5934, 1995) and EBV (Int. Immunol., 7: 653, 1995). Detailed descriptions of these substances are described in published reviews (eg, Immunol. Today, 18: 267, 1997; J. Exp. Med., 183: 725, 1996; and Curr. Opin. Immunol., 8: 628, 1996).

本発明で使用する腫瘍抗原ペプチドの典型的な例は、以下のものを含むが、これらに限定されない: WO97/46676, WO99/29715 および WO99/33977に記載の腫瘍抗原ペプチド;サイクロフィリンB(cyclophilin B)由来の腫瘍抗原ペプチド(WO99/67288);SART−1由来の腫瘍抗原ペプチド(WO00/06595);SART−3由来の腫瘍抗原ペプチド(WO00/12701);ART−1由来の腫瘍抗原ペプチド(WO00/32770);SART−2由来の腫瘍抗原ペプチド(J. Immunol, 164: 2565, 2000);lck由来の腫瘍抗原ペプチド(Eur. J. Immunol., 31: 323, 2001);ART−4由来の腫瘍抗原ペプチド(Cancer Res., 60: 3550, 2000);およびppMAPkk、WHSC2、UBE2V、HNRPL、EIF由来の腫瘍抗原ペプチド(Cancer Res., 61: 2038, 2001)。   Typical examples of tumor antigen peptides for use in the present invention include, but are not limited to, the following: tumor antigen peptides as described in WO97 / 46676, WO99 / 29715 and WO99 / 33977; B) derived tumor antigen peptide (WO99 / 67288); SART-1 derived tumor antigen peptide (WO00 / 06595); SART-3 derived tumor antigen peptide (WO00 / 12701); ART-1 derived tumor antigen peptide ( WO00 / 32770); tumor antigen peptide derived from SART-2 (J. Immunol, 164: 2565, 2000); tumor antigen peptide derived from lck (Eur. J. Immunol., 31: 323, 2001); derived from ART-4 Tumor antigen peptides (Cancer Res., 60: 3550, 2000); and ppMAPkk, WHSC2, UBE2V, HNRPL, EIF derived tumor antigen peptides (Cancer Res., 61: 2038, 2001).

本発明で使用する癌抗原タンパク質および癌抗原ペプチドの遺伝子は、たとえばMolecular Cloning 2nd Edt. Cold Spring Harbor Laboratory Press(1989)に記載の方法のような周知の方法に従い、前記文献を参照して調製することができる。   The gene for cancer antigen protein and cancer antigen peptide used in the present invention is prepared according to well-known methods such as the method described in Molecular Cloning 2nd Edt. Cold Spring Harbor Laboratory Press (1989) with reference to the above-mentioned literature. be able to.

本発明で使用する癌抗原タンパク質、癌抗原ペプチドおよびその遺伝子の誘導体は、その癌抗原タンパク質およびペプチドのアミノ酸配列に基づいて調製される人工のタンパク質およびペプチドおよびその遺伝子を意味する。誘導体の典型的な例には、天然の癌抗原タンパク質およびペプチドのアミノ酸配列に対して少数のアミノ酸残基が置換、欠失および/または付加しているアミノ酸配列を有し、かつその天然の癌抗原タンパク質およびペプチドと同等の免疫応答誘導活性を有する、タンパク質およびペプチドが含まれる。   The cancer antigen protein, cancer antigen peptide and gene derivatives thereof used in the present invention mean artificial proteins and peptides and genes thereof prepared based on the amino acid sequences of the cancer antigen protein and peptide. Typical examples of derivatives have amino acid sequences in which a few amino acid residues are substituted, deleted and / or added to the amino acid sequences of natural cancer antigen proteins and peptides, and the natural cancer Proteins and peptides having an immune response inducing activity equivalent to that of antigenic proteins and peptides are included.

本発明によれば、患者指向性の癌抗原ペプチド関連物質を投与する。例えば、患者指向性癌抗原ペプチドを選択するために、抗原ペプチドを含むワクチン候補を癌患者に投与し、そのワクチン候補がCTLを誘導する能力を常法[13、14]によって測定する。この癌抗原ペプチド関連物質は、通常皮下に投与する。   According to the present invention, a patient-oriented cancer antigen peptide-related substance is administered. For example, to select a patient-oriented cancer antigen peptide, a vaccine candidate containing the antigen peptide is administered to a cancer patient, and the ability of the vaccine candidate to induce CTL is measured by conventional methods [13, 14]. This cancer antigen peptide-related substance is usually administered subcutaneously.

第2の態様において本発明は、前立腺癌を処置するための医薬組成物であって、低用量のエストラムスチンまたはその塩を含み、かつ癌抗原ペプチド関連物質と一緒に投与される医薬組成物を提供する。別の側面において本発明は、前立腺癌を処置するための医薬組成物であって、低用量のエストラムスチンまたはその塩を含み、かつ癌抗原ペプチド関連物質に特異的なCTL前駆体を増加させ、および/または癌抗原ペプチド関連物質に特異的な免疫グロブリンGを増加させる医薬組成物を提供する。「前立腺癌」、「エストラムスチン」、「低用量」、「癌抗原ペプチド関連物質」なる用語の意味は前記した。   In a second aspect, the present invention provides a pharmaceutical composition for treating prostate cancer, comprising a low dose of estramustine or a salt thereof and administered together with a cancer antigen peptide-related substance I will provide a. In another aspect, the present invention provides a pharmaceutical composition for treating prostate cancer, comprising a low dose of estramustine or a salt thereof and increasing a CTL precursor specific for a cancer antigen peptide-related substance. And / or a pharmaceutical composition that increases immunoglobulin G specific to a cancer antigen peptide-related substance. The meanings of the terms “prostate cancer”, “estramustine”, “low dose”, “cancer antigen peptide-related substance” have been described above.

[実施例]
本発明を下記実施例によってさらに説明するが、本発明はいかなる点においてもこれら実施例によって限定されるものではない。
[Example]
The present invention is further illustrated by the following examples, which are not intended to limit the invention in any way.

実施例で使用する略号は以下の用語を意味する:細胞傷害性Tリンパ球(CTL);末梢血単核細胞(PBMC);ヒト白血球抗原(HLA);ホルモン不応性前立腺癌(HRPC);前立腺特異抗原(PSA);骨代謝マーカー(ピリジノリン架橋I型コラーゲンカルボキシ末端テロペプチド:ICTP);酵素結合免疫吸着検査法(ELISA);遅延型過敏症(DHT);コンピュータ断層撮影(CT);完全応答(CR);部分応答(PR);病状増悪(PD);および高度の応答(Ar)。   Abbreviations used in the examples refer to the following terms: cytotoxic T lymphocytes (CTL); peripheral blood mononuclear cells (PBMC); human leukocyte antigen (HLA); hormone refractory prostate cancer (HRPC); prostate Specific antigen (PSA); bone metabolism marker (pyridinoline cross-linked type I collagen carboxy terminal telopeptide: ICTP); enzyme-linked immunosorbent assay (ELISA); delayed hypersensitivity (DHT); computed tomography (CT); complete response (CR); partial response (PR); disease progression (PD); and severe response (Ar).

(実施例1)
患者および方法
患者
2001年2月から2002年9月の間に、ヒト白血球抗原(HLA)A24またはA2陽性転移性HRPC患者20名が第I相試験に参加し、患者にペプチド特異的細胞傷害性Tリンパ球(CTL)前駆体指向性ワクチンを投与した[15]。患者13名は、第I相試験で少なくとも3回のペプチドワクチン投与後に病状が増悪した場合に、ペプチドワクチン投与およびエストラムスチンリン酸塩処置の併用療法に参加した。病状の増悪は、判断基準3種の少なくとも1種によって定義した:すなわち少なくとも2週あけて2回連続してPSAレベルがベースラインから25%以上増大したこと;二次元的に測定可能な軟部組織転移が25%以上増大したこと;および放射性核種骨スキャン上に新病巣が出現したことである。血清PSAレベルは正常範囲を0〜4.0ng/mLとしてタンデム−R(Hybritech Inc., San Diego, CA)検定を用いて測定した。その他の適格性には、イースタン・コオペラティブ・オンコロジー・グループの基準(Eastern Cooperative Oncology Group)のパフォーマンス・ステータス0または1、年齢79才またはそれ以下、顆粒球数3000/mm以上、ヘモグロビン10g/dl以上、血小板10万/mm以上、ビリルビンが施設所定の正常限界に等しいかまたはそれ以下、およびクレアニチン1.4mg/dL以下が含まれた。B型肝炎およびC型肝炎の血清検査の陰性を必須とした。5年以内に重症疾患または活性な二次的悪性腫瘍に罹患した患者は研究参加から除外した。除外基準には、免疫抑制または自己免疫疾患の徴候がある者も含まれた。全患者に施設の指針に従って内容を説明して承認を得た。この研究は、久留米大学医学部倫理委員会の承認を得た。
Example 1
Patients and methods Patients Between February 2001 and September 2002, 20 human leukocyte antigen (HLA) A24 or A2 positive metastatic HRPC patients participated in a phase I study, and they were peptide specific. Cytotoxic cytotoxic T lymphocyte (CTL) precursor directed vaccine was administered [15]. Thirteen patients participated in a combination therapy of peptide vaccine administration and estramustine phosphate treatment if the condition worsened after at least three peptide vaccine administrations in a phase I study. Disease progression was defined by at least one of three criteria: ie, at least 2 consecutive weeks with at least 2 weeks increasing PSA levels by more than 25% from baseline; 2D measurable soft tissue Metastasis increased by more than 25%; and new lesions appeared on radionuclide bone scans. Serum PSA levels were measured using a tandem-R (Hybritech Inc., San Diego, CA) test with a normal range of 0-4.0 ng / mL. Other qualifications include Eastern Cooperative Oncology Group performance status 0 or 1, age 79 or less, granulocyte count 3000 / mm 3 or higher, hemoglobin 10 g / dl As described above, platelets of 100,000 / mm 3 or more, bilirubin was equal to or less than the normal limit set by the institution, and creatinine of 1.4 mg / dL or less were included. A negative serum test for hepatitis B and C was essential. Patients with severe illness or active secondary malignancy within 5 years were excluded from study participation. Exclusion criteria included those with signs of immunosuppression or autoimmune disease. All patients were explained and approved in accordance with institutional guidelines. This study was approved by the Kurume University School of Medicine Ethics Committee.

患者13名中2名の患者は、意図した治療コースが完了せず(ワクチン投与6回)、免疫学的解析用サンプルがなかったことから免疫学的および臨床的評価からはずした。それ故、患者11名を免疫学的および臨床的評価の対象にできた。併用療法で処置した患者11名のベースライン特性を下記表1にまとめた。   Two of the 13 patients were excluded from immunological and clinical evaluation because the intended course of treatment was not completed (6 doses of vaccine) and there were no samples for immunological analysis. Therefore, 11 patients were eligible for immunological and clinical evaluation. The baseline characteristics of 11 patients treated with combination therapy are summarized in Table 1 below.

研究に登録した時点で、骨転移を有する患者のPABS中央値%は6.0(範囲:1.5〜8.4)であった。事前の処置には、ホルモン療法(患者11名)、骨転移に対する放射線療法(患者2名)およびエストラムスチンリン酸塩による化学療法(患者8名:患者5名はエストラムスチン単独で;患者3名はエストラムスチン+エトポシド配合剤ので処置)が含まれていた。患者全11名は、併用療法開始前に3回以上(中央値6回、範囲3回〜23回)ペプチドワクチン投与を受けた。併用療法継続の中央値は13ヶ月であった(範囲6ヶ月〜21ヶ月)。   At the time of enrollment in the study, the median% PABS for patients with bone metastases was 6.0 (range: 1.5-8.4). Prior treatment included hormone therapy (11 patients), radiation therapy for bone metastases (2 patients) and chemotherapy with estramustine phosphate (8 patients: 5 patients with estramustine alone; patients Three patients included estramustine + etoposide combination treatment). All 11 patients received peptide vaccine administration 3 times or more (median 6 times, range 3 to 23 times) before the start of combination therapy. The median duration of combination therapy was 13 months (range 6-21 months).

患者指向性ペプチドワクチン投与
HRPC患者に対する我々の免疫療法の手法は、既報のように[13〜15]、CTLを誘導する能力を有するワクチン候補30種(HLA−A24陽性患者に対するペプチド14種およびHLA−A2陽性患者に対するペプチド16種)に反応する癌患者の循環血中のペプチド特異的CTL前駆体をワクチン投与前に測定し、続いて、反応性ペプチドのみを投与するものである(CTL前駆体指向性ペプチドワクチン)。本研究に使用したペプチドを下記表2に記載する。これらのペプチドは、医薬品の製造管理及び品質管理に関する基準条件下、マルチプルペプチドシステム(Multiple Peptide System, San Diego, CA)によって調製した。これらのペプチドはすべて、癌患者の末梢血単核細胞(PBMC)においてHLA−A24またはHLA−A2拘束性および腫瘍特異的CTL活性を誘導する能力を有する[17〜23]。第1回目のワクチン投与前と6回のワクチン投与毎の投与後7日目とに末梢血30mLを採取し、フィコール−コンレイ密度勾配遠心法によりPBMCを分離した。PBMC中のペプチド特異的CTL前駆体は、既報の培養法[24]を用いて検出した。略述すれば、PBMC(1x10細胞/ウェル)を培養培地200μL中で、各ペプチド10μMとともにU底型96−ウェルマイクロ培養プレート(Nunc, Roskilde, Denmark)上でインキュベーションした。この培養培地は、45%RPMI1640培地、45%AIM−VTM培地(Invitrogen Corp., Carlsbad, CA)、10%FCS、100U/mL−インターロイキン2(IL−2)および0.1mM−MEM非必須アミノ酸溶液(Invitrogen Corp.)を含む。12日まで3日毎に培地の半分を除去し、対応ペプチド(20μM)を含む新しい培地に交換した。培養12日目で最後の刺激から24時間後に、細胞を回収し、3回洗浄し、次に、対応ペプチドまたはネガティブコントロールとしてのHIVペプチド(RYLRQQLLGI)の何れかを事前にロードしたC1R−A2402またはT2細胞に応答してINF−γを産生する能力を、HLA−A24またはHLA−A2PBMCにおいてそれぞれ試験した。標的細胞(C1R−A2402またはT2、1x10/ウェル)を各ペプチド(10μM)で2時間パルスし、次にエフェクター細胞(1x10/ウェル)を各ウェルに加えて最終容量200μLとした。18時間インキュベーション後、上清(100μL)を回収し、酵素結合免疫吸着検査法(ELISA)を用いてINF−γの量を測定した(検出限界:10pg/mL)。全実験を、異なる4ウェル中で2回反復して行った。ペプチド30種(HLA−A24陽性患者に対するペプチド14種、およびHLA−A2陽性患者に対するペプチド16種)に反応するCTL前駆体について、ワクチン投与前PBMCを異なるウェルで各ウェルにつき2回反復してスクリーニングした。各ウェルの結果をp値(両測スチューデントt検定)に従って4群に分類し、INF−γの量(対応ペプチドに対する応答平均値−HIVペプチドに対する応答平均値)は以下の通りであった:
高度の応答(Ar):p≦0.1および500≦純産生量;
A:中程度の応答(A):p≦0.05および50≦純産生量;
B:p≦0.05および25≦純産生量<50;
C:0.05<p≦0.1および50≦純産生量。
ペプチドは4ウェル全ての評価に基づいて前記の順序で選択した。
Patient-Directed Peptide Vaccine Administration Our immunotherapy approach for HRPC patients, as previously reported [13-15], was the 30 vaccine candidates with the ability to induce CTLs (14 peptides and HLA for HLA-A24 positive patients). -Peptide-specific CTL precursors in circulating blood of cancer patients that respond to A2 positive patients) are measured prior to vaccine administration, followed by administration of only reactive peptides (CTL precursors) Directed peptide vaccine). The peptides used in this study are listed in Table 2 below. These peptides were prepared by a multiple peptide system (Multiple Peptide System, San Diego, Calif.) Under standard conditions for pharmaceutical production control and quality control. All of these peptides have the ability to induce HLA-A24 or HLA-A2 restricted and tumor-specific CTL activity in peripheral blood mononuclear cells (PBMC) of cancer patients [17-23]. Thirty milliliters of peripheral blood was collected before the first vaccine administration and on the seventh day after every six vaccine administrations, and PBMCs were separated by Ficoll-Conlay density gradient centrifugation. Peptide-specific CTL precursors in PBMC were detected using a previously reported culture method [24]. Briefly, PBMC (1 × 10 5 cells / well) were incubated in 200 μL culture medium with 10 μM of each peptide on a U-bottom 96-well microculture plate (Nunc, Roskilde, Denmark). This culture medium is 45% RPMI 1640 medium, 45% AIM-V medium (Invitrogen Corp., Carlsbad, Calif.), 10% FCS, 100 U / mL-interleukin 2 (IL-2) and 0.1 mM-MEM non- Contains essential amino acid solution (Invitrogen Corp.). Half of the medium was removed every 3 days up to 12 days and replaced with fresh medium containing the corresponding peptide (20 μM). 24 hours after the last stimulation on day 12 of culture, cells were harvested and washed 3 times, then C1R-A2402 pre-loaded with either the corresponding peptide or HIV peptide (RYLRQQLLGI) as a negative control or The ability to produce INF-γ in response to T2 cells was tested in HLA-A24 or HLA-A2PBMC, respectively. Target cells (C1R-A2402 or T2, 1 × 10 4 / well) were pulsed with each peptide (10 μM) for 2 hours, then effector cells (1 × 10 5 / well) were added to each well to a final volume of 200 μL. After 18 hours of incubation, the supernatant (100 μL) was collected, and the amount of INF-γ was measured using enzyme-linked immunosorbent assay (ELISA) (detection limit: 10 pg / mL). All experiments were performed twice in 4 different wells. For CTL precursors that respond to 30 peptides (14 peptides for HLA-A24 positive patients and 16 peptides for HLA-A2 positive patients), pre-vaccine PBMC were screened twice in each well in different wells. did. The results of each well were classified into 4 groups according to the p-value (both measurements Student's t-test), and the amount of INF-γ (response average for the corresponding peptide-response average for the HIV peptide) was as follows:
High response (Ar): p ≦ 0.1 and 500 ≦ net production;
A: moderate response (A): p ≦ 0.05 and 50 ≦ pure production;
B: p ≦ 0.05 and 25 ≦ pure production <50;
C: 0.05 <p ≦ 0.1 and 50 ≦ pure production.
Peptides were selected in the above order based on the evaluation of all 4 wells.

併用療法
ペプチドワクチン投与計画は以下の通りであった:皮膚試験では、選択したペプチドを各10μgずつ4種まで、27ゲージ注射針を装着したツベルクリン注射器で別個に皮内注射した。皮膚試験20分後および24時間後に、即時型および遅延型過敏症(DHT)反応を測定した。直径>30mmの紅斑および硬結を陽性の皮膚試験反応と定義し、食塩水を過敏症評価のネガティブコントロールに用いた。即時型過敏症が陰性の場合に、ペプチドを注射した。併用療法の前に、各ペプチド3mg/mLを各患者の大腿側方皮下に2週間隔で合計6回注射した。併用療法の間、各ペプチド1mg/mLを4週間隔〜6週間隔で注射した。
Combination therapy The peptide vaccine regimen was as follows: In the skin study, up to four 10 μg of each of the selected peptides were injected intradermally separately with a tuberculin syringe fitted with a 27 gauge needle. Immediate and delayed hypersensitivity (DHT) responses were measured 20 minutes and 24 hours after skin testing. Erythema and induration with diameters> 30 mm were defined as positive skin test reactions, and saline was used as a negative control for hypersensitivity assessment. Peptides were injected when immediate hypersensitivity was negative. Prior to the combination therapy, 3 mg / mL of each peptide was injected subcutaneously in the lateral thigh of each patient at a 2-week interval for a total of 6 injections. During combination therapy, 1 mg / mL of each peptide was injected at 4-6 week intervals.

最初の2症例でははじめ、エストラムスチンリン酸塩を140mgカプセル2カプセルを1日2回、合計日用量560mgで経口投与したが、これらの患者で重度の免疫抑制が観察された。重度の免疫抑制を回避するために、残りの11症例ではエストラムスチンリン酸塩を280mg/日に減量した。   In the first two cases, estramustine phosphate was orally administered in two 140 mg capsules twice daily for a total daily dose of 560 mg. Severe immunosuppression was observed in these patients. To avoid severe immunosuppression, estramustine phosphate was reduced to 280 mg / day in the remaining 11 cases.

免疫学的モニタリング
併用療法中の免疫応答を評価するために、PBMC内のペプチド特異的CTL前駆体およびペプチド特異的抗体の血清濃度をワクチン投与6回毎に測定した。PBMC内のペプチド特異的CTL前駆体は、既報の培養法を使用して検出し[24]、投与ペプチドに特異的な血清IgGレベルは、既報のようにELISAを使用して検出した[13〜15]。これに加えて、エストラムスチン誘導免疫抑制を慎重に測定するため、新しいモニタリングを行った。すなわち、PBMCを2週間毎に回収し、三回反復検定にて、10μMフィトヘマグルチニン(PHA)、HLA−A24または−A2結合モチーフを有する Epstein-Bar ウイルス(EBV)由来ペプチド10ng/mLおよびワクチン投与した2種の異なるペプチド10ng/mLとともに2日間培養した(10細胞/ウェル)。2日間培養後、無細胞上清液中のINF−γ量を三回反復検定で測定し、生存細胞数も計数した。各検定での偏りを回避するために、PBMC全てを一度凍結保存し、4種の相異なるPBMC(健常人より2種、直近のワクチン投与の2週前に回収した患者PBMCより1種および直近のワクチン投与より1種)を実験日の朝に同時に解凍した。PHA、EBV−ペプチドおよびワクチン投与ペプチドに対する応答(INF−γ産生)は、各々休止T細胞、記憶T細胞および活性化T細胞により仲介されると考えられる。
Immunological monitoring To assess immune responses during combination therapy, serum concentrations of peptide-specific CTL precursors and peptide-specific antibodies in PBMC were measured every 6 doses of vaccine. Peptide-specific CTL precursors in PBMC were detected using previously reported culture methods [24], and serum IgG levels specific for the administered peptide were detected using ELISA as previously reported [13- 15]. In addition, a new monitoring was performed to carefully measure estramustine-induced immunosuppression. That is, PBMCs were collected every 2 weeks, and 10 μM phytohemagglutinin (PHA), Epstein-Bar virus (EBV) -derived peptide having 10 ng / mL of HLA-A24 or -A2 binding motif and vaccine administration were performed in triplicate. The two different peptides were cultured for 2 days with 10 ng / mL (10 4 cells / well). After culturing for 2 days, the amount of INF-γ in the cell-free supernatant was measured by three repeated tests, and the number of viable cells was also counted. To avoid bias in each assay, all PBMCs were cryopreserved once and four different PBMCs (two from healthy individuals, one from patients PBMC collected two weeks prior to the most recent vaccine administration, and one more recent) From one vaccine administration) were thawed simultaneously on the morning of the experiment. Responses to PHA, EBV-peptide and vaccinated peptide (INF-γ production) are thought to be mediated by resting T cells, memory T cells and activated T cells, respectively.

臨床的モニタリング
患者を臨床的にモニターして併用療法の効果を評価した。具体的には、本研究に参加した患者を疾患死または不耐容まで、または同意が撤回されるまでモニターした。臨床と実験室での評価は各訪問時に行い、患者から有害事象、その重症度および頻度を聴取した。有害事象の重症度は、米国癌研究所(the National Cancer Institute: NCI)の毒性評価基準に従って評点をつけた。血清PSAおよび骨代謝マーカー(ピリジノリン架橋I型コラーゲンカルボキシ末端テロペプチド:ICTP)レベルを処置の間4週毎に測定した。ICTPの血中濃度は、二抗体ラジオイムノアッセイ(RIA)により、テロペプチドICTPのRIAキット(フィンランド国、Espoo、Orion Diagnostica社製品;日本国、東京、中外提供)を使用して測定した。血清ICTPの正常範囲は1.8〜5.0ng/mLである[25]。骨スキャンおよび腹部のコンピュータ断層撮影(CT)スキャンは、この研究進行中3ヶ月ごとに行った。骨スキャンによる転移の所見は、骨スキャンにおける陽性部分の百分率(%PABS)[26]を用いる疾患の範囲によって評価した。臨床的応答は、PSAレベルの変化と、測定可能な疾患を有する患者における画像研究の変化との両方によって決定した。PSA応答は、少なくとも4週あけた2回の連続測定でのPSAレベルのベースラインからの50%またはそれ以上の低下(PR)またはPSAレベルの正常化(CR)と定義した。PSA増悪の時点は、はじめて2回連続でPSAレベルがベースラインから25%以上増大した時点として登録した。測定可能かつ評価可能な疾患の応答および増悪については標準的定義を用いた。二次元的に測定可能な疾患を有する患者については、完全応答(CR)は、少なくとも4週にわたる全標的病巣の消失と定義した;部分応答(PR)は、二次元的に測定可能な疾患の≧50%の低下と定義し、軽度応答は25%から50%の間の低下と定義した。骨転移の応答については、CRを骨スキャンにおける全陽性範囲の消失と定義した。%PABSでは、PRは50%またはそれ以上の低下であると定義し、増悪(PD)は陽性部位数の増大、既存の病巣の悪化、またはこの2つの同時観察と定義した。
Clinical monitoring Patients were clinically monitored to assess the effects of combination therapy. Specifically, patients who participated in the study were monitored until disease death or intolerance, or consent was withdrawn. Clinical and laboratory evaluations were performed at each visit, and patients were informed of adverse events, their severity and frequency. The severity of adverse events was scored according to the National Cancer Institute (NCI) toxicity assessment criteria. Serum PSA and bone metabolism marker (pyridinoline cross-linked type I collagen carboxy terminal telopeptide: ICTP) levels were measured every 4 weeks during treatment. The blood concentration of ICTP was measured by a two-antibody radioimmunoassay (RIA) using an RIA kit of telopeptide ICTP (product of Espoo, Orion Diagnostica, Finland; provided by Chugai, Japan, Japan). The normal range of serum ICTP is 1.8-5.0 ng / mL [25]. Bone scans and abdominal computed tomography (CT) scans were performed every 3 months during the study. Findings of metastasis from bone scans were assessed by disease extent using percentage of positive parts in bone scan (% PABS) [26]. Clinical response was determined by both changes in PSA levels and changes in imaging studies in patients with measurable disease. A PSA response was defined as a 50% or greater reduction (PR) or normalization (CR) of PSA levels from baseline in PSA levels in two consecutive measurements at least 4 weeks apart. The time of PSA exacerbation was registered as the time when the PSA level increased by 25% or more from baseline for the first time in a row. Standard definitions were used for measurable and evaluable disease responses and exacerbations. For patients with two-dimensionally measurable disease, complete response (CR) was defined as the disappearance of the entire target lesion over at least 4 weeks; partial response (PR) was defined as two-dimensionally measurable disease. A reduction of ≧ 50% was defined, and a mild response was defined as a reduction between 25% and 50%. For bone metastasis response, CR was defined as the disappearance of the full positive range in the bone scan. For% PABS, PR was defined as a 50% or greater reduction, and exacerbation (PD) was defined as an increase in the number of positive sites, deterioration of existing lesions, or simultaneous observation of the two.

統計学的方法
非増悪生存期間は、併用療法の開始時点から、病状が増悪した患者では増悪時点まで、増悪なしに死亡した患者では死亡時点まで、または生存し、増悪しなかった患者では最後の接触時点までの時間と定義した。原因特異的生存期間は、併用療法開始から疾患による死亡までの時間と定義した。カプラン−マイヤー(Kaplan−Meier)法を用いて非増悪生存期間および原因特異的生存期間を評価した。
Statistical methodsNon-exacerbated survival is from the start of combination therapy to the time of exacerbation in patients with worsening disease, to the time of death in patients who die without exacerbation, or last in patients who have survived and have not progressed. It was defined as the time to contact. Cause-specific survival was defined as the time from the start of combination therapy to death due to disease. The Kaplan-Meier method was used to assess non-exacerbated survival and cause-specific survival.

結果
併用療法中の免疫学的応答
併用療法中、ペプチド特異的CTL前駆体およびペプチド特異的抗体を全患者11名について6週間隔で測定した。ワクチン投与ペプチドおよび免疫応答を下記表2にまとめた。併用療法中、免疫応答をモニターした全患者11名は、細胞性応答または液性応答のいずれかが増強された。ペプチド特異的CTL前駆体の増加が患者11名中6名(症例2、5、7、8、10および12)に観察され、一方ペプチド特異的IgGの誘導が患者11名中10名(症例3、4、5、7、8、10、11、12および13)に観察された。図1は、INF−γ産生と、各患者に投与したペプチドに特異的なIgGのレベルとの双方の経時変化を示す。
Results Immunological response during combination therapy During combination therapy, peptide-specific CTL precursors and peptide-specific antibodies were measured at 11-week intervals for all 11 patients. Vaccinated peptides and immune responses are summarized in Table 2 below. During the combination therapy, all 11 patients who monitored the immune response had either a cellular or humoral response enhanced. An increase in peptide-specific CTL precursors was observed in 6 of 11 patients (cases 2, 5, 7, 8, 10, and 12), while induction of peptide-specific IgG was observed in 10 of 11 patients (case 3). 4, 5, 7, 8, 10, 11, 12, and 13). FIG. 1 shows the time course of both INF-γ production and the level of IgG specific for the peptide administered to each patient.

エストラムスチンが誘導した免疫抑制もまた、患者11名中10名で、PHA、EBVペプチドおよびワクチン投与ペプチドに対するINF−γ産生を測定することにより解析した。症例13では、検定するには入手したPBMCが少なすぎたので、免疫モニタリングをしなかった。PHA、EBVペプチドおよびワクチン投与したペプチドに対する応答(INF−γ産生)は、おのおの休止T細胞、記憶T細胞および活性化T細胞によって仲介されることが示唆されている。各症例のモニタリング結果を図2に示す。症例2および症例3は、はじめ全用量(560mg/日)のエストラムスチンリン酸塩と併用して処置したが、免疫学的モニタリングで重度の免疫抑制が示された。この免疫抑制は、エストラムスチンリン酸塩の投与中断によって回復した。ペプチドとエストラムスチンリン酸塩の半用量とを投与した場合には、8症例のいずれにおいても顕著な免疫抑制がなかった(図2)。   Estramustine-induced immunosuppression was also analyzed in 10 out of 11 patients by measuring INF-γ production against PHA, EBV peptide and vaccinated peptide. In case 13, immune monitoring was not performed because too little PBMC was obtained for the assay. It has been suggested that responses to PHA, EBV peptide and vaccinated peptide (INF-γ production) are mediated by resting T cells, memory T cells and activated T cells, respectively. The monitoring results for each case are shown in FIG. Cases 2 and 3 were initially treated in combination with a full dose (560 mg / day) of estramustine phosphate, but immunological monitoring showed severe immunosuppression. This immunosuppression was restored by discontinuation of estramustine phosphate. When the peptide and half dose of estramustine phosphate were administered, there was no significant immunosuppression in any of the 8 cases (FIG. 2).

本研究の結果は、転移性HRPC患者における、ペプチドワクチン投与および低用量エストラムスチンリン酸塩(280mg/日)の併用の利点を示唆する。本研究は、転移性HRPC患者全員において、ペプチドワクチン投与および低用量のエストラムスチンリン酸塩の併用療法の間、細胞性および液性応答が十分維持されることを証明した。本研究の結果、ペプチド特異的CTL前駆体の増加が患者11名中6名で観察され、ペプチド特異的IgGの誘導が患者11名中10名で観察されることが示された。ペプチドと低用量エストラムスチンリン酸塩を投与した場合には、患者11名のいずれにおいても顕著な免疫抑制は見られなかった。この小規模な研究から得た結果を確認するため、比較的多数の患者についての追加的研究が推奨される。   The results of this study suggest the benefits of combined peptide vaccine administration and low-dose estramustine phosphate (280 mg / day) in patients with metastatic HRPC. This study demonstrated that in all patients with metastatic HRPC, cellular and humoral responses were well maintained during peptide vaccine administration and low-dose estramustine phosphate combination therapy. As a result of this study, it was shown that an increase in peptide-specific CTL precursors was observed in 6 of 11 patients, and induction of peptide-specific IgG was observed in 10 of 11 patients. When the peptide and low dose estramustine phosphate were administered, no significant immunosuppression was seen in any of 11 patients. Additional studies on a relatively large number of patients are recommended to confirm the results from this small study.

臨床的応答
ペプチドワクチン投与および経口エストラムスチンリン酸塩の併用に対する臨床的応答を表3にまとめた。患者11名中10名(91%)で、処置後に血清PSAレベルがベースラインから低下し、その中で患者8名(73%)では血清PSAレベルの低下は≧50%に達した。各症例の併用療法期間中におけるPSAレベルの経時変化を図3に示す。事前のエストラムスチンリン酸塩による化学療法には反応しなかった患者8名全員で、PSAの応答が認められた。測定可能な疾患を有する患者2名中1名では、CTでリンパ節転移の44%の減少が見られた(図4)。この患者は現在も≧50%のPSA減少を保ち、生存している(症例12)。患者10名では骨転移があった。骨転移の改善はなかったが、骨転移のある患者10名中1名が、≧50%の血清ICTPレベルの低下を示した。
Clinical Response Table 3 summarizes the clinical response to peptide vaccine administration and oral estramustine phosphate combination. In 10 of 11 patients (91%), serum PSA levels dropped from baseline after treatment, among which 8 patients (73%) had reduced serum PSA levels ≧ 50%. FIG. 3 shows changes with time in the PSA level during the combination therapy period of each case. All eight patients who did not respond to prior estramustine phosphate chemotherapy had a PSA response. In 1 of 2 patients with measurable disease, CT showed a 44% reduction in lymph node metastasis (FIG. 4). The patient is still alive with a PSA reduction of ≧ 50% (case 12). Ten patients had bone metastases. There was no improvement in bone metastases, but 1 out of 10 patients with bone metastases showed a decrease in serum ICTP levels of ≧ 50%.

現在患者3名が死亡したが、死因は全て前立腺癌または転移であった。全患者の追跡調査中央値は14ヶ月、範囲は8ヶ月〜24ヶ月であった。生存率中央値は計算していない。12ヶ月の時点で、患者の64%が生存していた。   Currently 3 patients died, all due to prostate cancer or metastasis. The median follow-up for all patients was 14 months and the range was 8-24 months. Median survival was not calculated. At 12 months, 64% of patients were alive.

全般的応答率(73%)は血清PSAレベルの≧50%の低下と定義したが、これは、既報の免疫療法(たとえばインターフェロン−αおよびインターロイキン−2の併用(31%)[32]または前立腺特異的膜抗原のペプチドで処理した樹状細胞の点滴(27%)[11、12])の第I/II相試験の報告に見られるものよりも明らかに高い。さらに、この値は併用療法に関する化学療法臨床試験(たとえば、エストラムスチンおよびパクリタキセル(53%)[6]、エストラムスチンおよびドセタキセル(62%)[7]、およびエストラムスチン、パクリタキセルおよびカルボプラチンの三剤併用(67%)[8])について最近報告された応答率にも匹敵する。測定可能な疾患については、全般的応答率はこれら化学療法治療計画で報告された値よりもいくらか低いと思われるが、それは本研究の患者はほとんど測定可能な軟部組織疾患を持たなかったことによる。大部分の患者は、骨代謝マーカー(ICTP)(骨転移のある前立腺癌患者で骨転移をモニターするための方法として提案されている[33])が減少したが、骨スキャンでは骨転移の改善は見られなかった。この矛盾点の説明は、骨スキャンが低感度な手段である点、または治療に対してより抵抗性である可能性のある骨中の疾患に影響を与えるには処置期間が短すぎた点にあるかもしれない。   The overall response rate (73%) was defined as a ≧ 50% decrease in serum PSA levels, which was reported in previously reported immunotherapy (eg, interferon-α and interleukin-2 combination (31%) [32] or It is clearly higher than that seen in the Phase I / II report of infusions of dendritic cells (27%) [11, 12]) treated with peptides of prostate specific membrane antigen. In addition, this value is associated with chemotherapy clinical trials for combination therapy (eg, estramustine and paclitaxel (53%) [6], estramustine and docetaxel (62%) [7], and estramustine, paclitaxel and carboplatin). The response rate recently reported for the triple combination (67%) [8]) is comparable. For measurable disease, the overall response rate appears to be somewhat lower than reported in these chemotherapy regimens because the patients in this study had almost no measurable soft tissue disease . Most patients have reduced bone metabolism markers (ICTP), a proposed method for monitoring bone metastases in prostate cancer patients with bone metastases [33], but bone scans improve bone metastases Was not seen. The explanation for this discrepancy is that bone scanning is a less sensitive means, or the treatment period was too short to affect bone diseases that may be more resistant to therapy. might exist.

毒性
全患者13名を毒性評価の対象とした。処置した患者13名で報告された毒性を表4にまとめた。この併用療法は安全かつ良好に耐容され、殆どの症例で重大な副作用はなかったが、グレード3の不整脈と脳梗塞が各症例で観察された。患者1名(症例4)はグレード3の不整脈を起したが、その不整脈はエストラムスチンの中断によって消失した。14ヶ月の併用療法後にグレード3の脳梗塞で入院した患者(症例7)では抗凝固剤での処置に成功し、他に重大な毒性なしに併用療法を継続中である。最も一般的な毒性は、全症例においてワクチン投与の注射局部における皮膚反応であった。全13の皮膚反応は米国癌研究所の通常毒性評価基準によりグレード1または2であると評点された。患者7名は骨痛を訴え、患者4名はグレード2の血尿を発症し、患者3名は疲労を訴えた。血液、肝臓または腎臓の毒性はなかった。
Toxicity All 13 patients were evaluated for toxicity. Toxicity reported in 13 treated patients is summarized in Table 4. This combination therapy was safely and well tolerated and had no significant side effects in most cases, but grade 3 arrhythmias and cerebral infarctions were observed in each case. One patient (case 4) developed a grade 3 arrhythmia that disappeared due to estramustine interruption. Patients hospitalized with grade 3 cerebral infarction after 14 months of combination therapy (Case 7) have been successfully treated with anticoagulants and are continuing combination therapy without any other significant toxicity. The most common toxicity was a skin reaction at the injection site of the vaccine in all cases. All 13 skin reactions were scored as grade 1 or 2 according to the National Cancer Institute's normal toxicity criteria. Seven patients complained of bone pain, four patients developed grade 2 hematuria, and three patients complained of fatigue. There was no blood, liver or kidney toxicity.

ここに報告する本併用療法の毒性は弱く、この処置法は転移性HRPCに罹患した老年男性(年令中央値71才)の処置によいと考えられる。最も一般的な毒性はワクチン注射局部における皮膚反応であった。重要なことは、エストラムスチンに基づく、またはタキサンに基づく化学療法において用量を制限する毒性であると報告されている血液学的毒性も神経障害も[4〜8]なかったことである。エストラムスチン処置の一般的毒性には、悪心、嘔吐、末梢浮腫および脈管系イベントが含まれる[16]。本併用療法は安全であり、良好に耐容されることが見出された。   The toxicity of the combination therapy reported here is weak, and this treatment is considered good for the treatment of elderly men (median age 71 years) with metastatic HRPC. The most common toxicity was a skin reaction in the local injection area. Importantly, there were no hematologic toxicities or neuropathies [4-8] reported to be dose limiting toxicities in estramustine-based or taxane-based chemotherapy. Common toxicities of estramustine treatment include nausea, vomiting, peripheral edema and vascular events [16]. This combination therapy has been found to be safe and well tolerated.

患者指向性のワクチン投与と低用量エストラムスチンリン酸塩との併用では、検討した患者の73%で血清PSAレベルに≧50%の低下が見られ、また主に事前に集中治療を受けた転移性HRPCのある高齢の患者においても低毒性であった。これらの予備的知見に基づき、この併用についてより大規模な第II相臨床試験が認可された。   Combination of patient-directed vaccination with low-dose estramustine phosphate resulted in a ≥50% reduction in serum PSA levels in 73% of patients studied and received mainly prior intensive care It was also less toxic in elderly patients with metastatic HRPC. Based on these preliminary findings, a larger phase II clinical trial was approved for this combination.

(実施例2)
患者および方法
下記の諸点を除き、実施例1と実質的に同様な手法を採用した。
(Example 2)
Patient and Method A method substantially similar to Example 1 was adopted except for the following points.

患者
2002年3月〜2003年1月の間に、HLA−A24陽性転移性HRPC患者16名で第I/II相試験を行った。患者13名において、少なくとも第3回目のペプチドワクチン投与後に病状が増悪した場合に、それに続いてペプチドワクチン投与および低用量エストラムスチンリン酸塩の併用療法を行った。残る患者3名は、病状が急速に増悪して死に至ったのでワクチン療法のみであった。表5に本研究のHRPC患者16名の臨床的特性をまとめた。
Patients Between March 2002 and January 2003, phase I / II trials were conducted on 16 HLA-A24 positive metastatic HRPC patients. In 13 patients, if the condition worsened after at least the third peptide vaccine administration, the peptide vaccine administration and low-dose estramustine phosphate combination therapy were followed. The remaining three patients were only vaccinated because their condition worsened rapidly and resulted in death. Table 5 summarizes the clinical characteristics of 16 HRPC patients in this study.

患者指向性ペプチドワクチン投与法
この研究には、上皮癌関連抗原および前立腺関連抗原に由来する下記のペプチド16種を使用した:すなわち、SART1690−698(EYRGFTQDF)、SART293−101(DYSARWNEI)、SART2161−169(AYDFLYNYL)、SART2899−907(SYTRLFLIL)、SART3109−118(VYDYNCHVDL)、SART3315−323(AYIDFEMKI)、Lck208−216(HYTNASDGL)、Lck486−487(TFDYLRSVL)、Lck488−497(DYLRSVLEDF)、ART1170−179(EYCLKFTKL)、前立腺酸性ホスフェート(PAP)213−221(LYCESVHNF)、PSA152−160(CYASGWGSI)、PSA248−257(HYRKWIKDTI)、前立腺特異的膜抗原(PSMA)624−632(TYSVSFDSL)、多剤耐性関連タンパク質3(MRP3)503−511(LYAWEPSFL)、およびMRP31293−1302(RYLTQETNKV)。これらのペプチドは全て癌患者でPBMCにHLA−A24拘束性および腫瘍特異的CTL活性を誘導する能力を有する(15、19、20、34〜41)。全患者に、ワクチン投与前測定によってペプチド候補16種の中から選択したペプチドを4種までワクチン投与した。
Patient targeting peptide vaccination method This study used the following peptide 16 or derived from epithelial cancer-associated antigen and prostate-associated antigens: That, SART1 690-698 (EYRGFTQDF), SART2 93-101 (DYSARWNEI), SART2 161-169 (AYDFLYNYL), SART2 899-907 (SYTRLFLIL), SART3 109-118 (VYDYNCHVDL), SART3 315-323 (AYIDFEMKI), Lck 208-216 (HYTNASDGL), Lck 486-487 (TFDYLRSVL), Lck 488 -497 (DYLRSVLEDF), ART1 170-179 ( EYCLKFTKL), prostatic acid phosphate (PAP) 213-221 (L CESVHNF), PSA 152-160 (CYASGWGSI) , PSA 248-257 (HYRKWIKDTI), prostate specific membrane antigen (PSMA) 624-632 (TYSVSFDSL), multidrug resistance associated protein 3 (MRP3) 503-511 (LYAWEPSFL) , And MRP3 1293-1302 (RYLTQETNKV). All of these peptides have the ability to induce HLA-A24-restricted and tumor-specific CTL activity in PBMC in cancer patients (15, 19, 20, 34-41). All patients were vaccinated with up to 4 peptides selected from 16 peptide candidates by pre-vaccine measurement.

併用療法
エストラムスチンリン酸塩は140mgカプセルを1カプセルずつ1日2回、合計280mgを経口投与して、併用療法における重度の免疫抑制を回避した。
Combination therapy Estramustine phosphate was administered orally at a dose of 140 mg capsules twice daily, avoiding severe immune suppression in combination therapy.

臨床的モニタリング
この処置の間、日本語版「癌療法の機能的評価」(FACT−P)サブスケール、FACT−P(前立腺癌用)(42)を用いて、患者のQOLをワクチン投与前および第3回目、第6回目および第12回目のワクチン投与の時点で評価した。このFACT−P質問表は身体的健康(7項目)、社会的/家族的健康(8項目)、情動的健康(6項目)、機能的健康(7項目)および前立腺癌スケール(12項目)を含む5因子から構成される。QOLの結果は各スケールの百分率によって別個に評価した。
Clinical monitoring During this treatment, the Japanese version of the “Functional Evaluation of Cancer Therapy” (FACT-P) subscale, FACT-P (for prostate cancer) (42) was used to assess patient QOL before and after vaccination. Evaluation was made at the time of the 3rd, 6th and 12th vaccine administration. This FACT-P questionnaire shows physical health (7 items), social / family health (8 items), emotional health (6 items), functional health (7 items) and prostate cancer scale (12 items). It is composed of five factors. QOL results were assessed separately by percentage of each scale.

結果
併用療法中の免疫学的応答
ペプチドワクチン投与の前にペプチド特異的CTL前駆体を調べたところ、患者16例中14例で検出可能であり、患者当りの陽性数中央値は1.5ペプチド(範囲0〜4ペプチド)であった(表6)。更に、抗ペプチドIgGも患者16例中14例で検出可能であり、患者当りの陽性数中央値は3ペプチド(0〜4ペプチド)であった。最大4ペプチドを選択して各患者に注射し、その選択の結果を表6に示す。最大の頻度で選択したペプチドはPSA248−257(13/16)であり、続いてPAP213−221(11/16)、SART3109−118(11/16)、SART3315−323(6/16)、PSA152−160(5/16)、Lck488−497(5/16)、SART1690−698(3/16)、SART293−101(3/16)、およびLck208−216(3/16)を選択した。PSMA624−628およびSART2161−169は各患者で選択したが、SART2、Lck、ART1およびMRP3に由来する残りのペプチド5種は、これらの患者では選択しなかった。ペプチド特異的CTL前駆体またはペプチド特異的IgGの増加は、12週目(ペプチドワクチン投与単独)に患者14名中10名または患者14名中患者7名で観察され、24週目(併用療法中)には患者8名中6名または患者12名中10名で観察された。PBMC中のペプチド特異的CTL前駆体に関する代表的結果を図5に示す。図6は各患者に投与したペプチドに特異的なIgGレベルの段階的変化を示す。DTH応答は患者16名中4名で観察され、その概要を表6に示す。
Results Immunological response during combination therapy. Peptide-specific CTL precursors were examined prior to peptide vaccine administration and were detectable in 14 of 16 patients, with a median number of positives per patient 1.5 peptides (range 0-4 peptides) (Table 6). Furthermore, anti-peptide IgG was detectable in 14 of 16 patients, and the median positive number per patient was 3 peptides (0-4 peptides). Up to 4 peptides were selected and injected into each patient, and the results of the selection are shown in Table 6. The most frequently selected peptide is PSA 248-257 (13/16), followed by PAP 213-221 (11/16), SART3 109-118 (11/16), SART3 315-323 (6/16). ), PSA 152-160 (5/16), Lck 488-497 (5/16), SART1 690-698 (3/16), SART2 93-101 (3/16), and Lck 208-216 (3 / 16) was selected. PSMA 624-628 and SART2 161-169 were selected in each patient, but the remaining 5 peptides derived from SART2, Lck, ART1 and MRP3 were not selected in these patients. Increases in peptide-specific CTL precursors or peptide-specific IgG were observed in week 12 (peptide vaccine administration alone) in 10 of 14 patients or 7 of 14 patients and in week 24 (during combination therapy) ) Was observed in 6 of 8 patients or 10 of 12 patients. Representative results for peptide specific CTL precursors in PBMC are shown in FIG. FIG. 6 shows the gradual change in IgG levels specific for the peptide administered to each patient. DTH responses were observed in 4 out of 16 patients and are summarized in Table 6.

ペプチドと半量(280mg/日)のエストラムスチンとを投与した場合には、ほとんどの症例で顕著な免疫抑制は認められなかった。   When the peptide and half (280 mg / day) estramustine were administered, no significant immunosuppression was observed in most cases.

臨床的応答
患者16名中患者2名は併用療法の前に腫瘍が急速に増悪し、残りの患者1名はワクチン投与単独で血清PSAレベルが≧50%低下した後に併用療法についての同意を撤回した。残りの患者13名がワクチン投与および低用量エストラムスチンリン酸塩の併用療法を受け、臨床的応答を評価した。全患者13名において、併用療法終了後に血清PSAレベルがベースラインから低下し、患者13名中6名(46%)は、≧50%の血清PSAレベルの低下を中央値7.5ヶ月(範囲3〜13ヶ月)の期間示した。しかし、これらの患者13名は治療に対して他覚的応答を示さなかった。
CLINICAL RESPONSE Two of the 16 patients with whom the tumor rapidly worsened prior to the combination therapy, the other patient withdrew consent for the combination therapy after serum PSA levels dropped ≥50% with vaccine alone did. The remaining 13 patients received vaccine and low-dose estramustine phosphate combination therapy to assess clinical response. In all 13 patients, serum PSA levels decreased from baseline after combination therapy, and 6 of 13 patients (46%) had a median 7.5 month (range) ≥50% decrease in serum PSA levels. 3 to 13 months). However, 13 of these patients showed no objective response to treatment.

疾患の増悪した患者は余命が短く、すぐに治癒する望みがないので、身体的病状の軽減および機能の維持が医学的処置の第一目的となる[43]。この研究では、処置期間内の患者16名のQOLの結果を、ワクチン投与前(患者16名)および第3回目ワクチン投与(患者16名)、第6回目ワクチン投与(患者13名)および第12回目ワクチン投与(患者7名)の時点で、FACT−pの日本語版質問表を用いて評価した。図7は観測点における各因子についてのスケール百分率の平均値を示す。処置期間中、全因子についてQOLの結果は低下しなかった。   Patients with exacerbated disease have a short life expectancy and no hope of immediate healing, so reducing the physical condition and maintaining function are the primary goals of medical treatment [43]. In this study, the QOL results of 16 patients within the treatment period were determined before vaccine administration (16 patients) and the third vaccine administration (16 patients), the sixth vaccine administration (13 patients) and 12 At the time of the second vaccine administration (7 patients), the FACT-p Japanese version questionnaire was used for evaluation. FIG. 7 shows the average value of the scale percentage for each factor at the observation point. During the treatment period, QOL results did not decrease for all factors.

毒性
患者16名全員を一般的毒性について評価し、全体の毒性を表7に示す。ここに報告する併用療法の毒性は耐容可能であり、この処置は大部分の転移性HRPCを処置するために使用可能と考えられる。
Toxicity All 16 patients were evaluated for general toxicity and the overall toxicity is shown in Table 7. The toxicity of the combination therapy reported here is tolerable and this treatment could be used to treat most metastatic HRPCs.

(実施例3)
実施例1に示したように、全用量(560mg/日)のエストラムスチンリン酸塩では重度の免疫抑制が観察された。エストラムスチンリン酸塩の用量からみた本発明による併用療法の結果を、表8にまとめた。エストラムスチンリン酸塩280mg/日(最大非免疫抑制用量)を使用する併用療法においては、ペプチドワクチン投与単独療法では病状の増悪を示したHRPCの患者に、免疫学的応答の増加および臨床的応答の改善が観察された。これらの結果は、低用量エストラムスチンとペプチドワクチン投与との併用が示す有利な効果を裏付ける。
Example 3
As shown in Example 1, severe immunosuppression was observed at all doses (560 mg / day) of estramustine phosphate. The results of the combination therapy according to the present invention as seen from the dose of estramustine phosphate are summarized in Table 8. In combination therapy using estramustine phosphate at 280 mg / day (maximum non-immunosuppressive dose), patients with HRPC who showed an exacerbation of disease with peptide vaccination alone received increased immunological response and clinical An improved response was observed. These results support the beneficial effects of the combination of low dose estramustine and peptide vaccine administration.

(実施例4)
表9もまた、本併用療法がこれまでの治療法と比較して優れた効果を有することを証明する。全症例が事前のエストラムスチンリン酸塩療法には応答せず、その病状はワクチン投与単独後に増悪した(PD)。併用療法により、殆どの症例で臨床的応答がPR(部分応答)またはSD(病状安定)まで改善され、HRPC患者の生存は著しく延長された(生存期間中央値:25ヶ月)。
Example 4
Table 9 also demonstrates that the combination therapy has superior effects compared to previous treatments. All cases did not respond to prior estramustine phosphate therapy and the condition worsened after vaccine administration alone (PD). Combination therapy improved clinical response to PR (partial response) or SD (stable condition) in most cases, and significantly extended the survival of HRPC patients (median survival: 25 months).

[考察]
様々なステージの前立腺癌における腫瘍抗原の発現を明確にすることは、特異的免疫療法の標的を選択するためにきわめて重大な第一段階である[28〜30]。HRPC患者に対する免疫療法における本方法は、癌患者の循環血中にあるペプチド特異的CTL前駆体のワクチン投与前測定に続いて、ワクチン候補のうちワクチン投与前測定で反応したペプチドを4種まで投与するという新戦略を採用した(患者指向性ワクチン投与)。以前に行った第I相試験の結果は、患者指向性ワクチン投与が、実現可能、安全、かつ免疫学的に有効であるが、臨床的応答は一般に限定的であることを示した[15]。近年、細胞の悪性転化がHLAクラスIの発現の変化および/または機能の変化に関連していること、およびこの異常性が免疫認識から逃れる手段を腫瘍細胞に提供することがあることが知られている。良性組織の正常HLAクラスIの発現とは対照的に、原発性前立腺癌細胞の34%およびリンパ節転移した前立腺癌細胞の80%ではHLAクラスI発現の完全な喪失が報告された[31]。それ故、前立腺癌におけるHLAクラスI抗原の発現低下は、悪性腫瘍細胞にT細胞による認識から逃れる機序を提供することにより、T細胞に基づく免疫療法の結果にマイナスの影響を与える可能性がある。T細胞に基づく免疫療法と免疫抑制が最低の細胞毒性物質との併用によって、相加的抗腫瘍効果が達成され得ることが示唆される。本研究では、エストラムスチンリン酸塩またはペプチドワクチン投与の前に病状の増悪を経験した患者にもPSA応答が観察され、この事実は本併用療法が相加的抗腫瘍効果によって機能するという仮説を支持している。しかし、この相互作用の正確な機序はまだ不明である。この機序についてはさらなる研究が必要である。
[Discussion]
Defining the expression of tumor antigens in various stages of prostate cancer is a crucial first step to select specific immunotherapy targets [28-30]. In the immunotherapy for HRPC patients, the method comprises administering up to four peptides among the vaccine candidates that have reacted in the pre-vaccine measurement following the pre-vaccine measurement of peptide-specific CTL precursors in the circulating blood of cancer patients. A new strategy was adopted (patient-directed vaccine administration). The results of previous phase I trials have shown that patient-directed vaccination is feasible, safe and immunologically effective, but the clinical response is generally limited [15] . In recent years it has been known that malignant transformation of cells is associated with altered expression and / or function of HLA class I and that this abnormality may provide tumor cells with a means to escape immune recognition. ing. In contrast to normal HLA class I expression in benign tissue, complete loss of HLA class I expression was reported in 34% of primary prostate cancer cells and 80% of prostate cancer cells with lymph node metastasis [31]. . Therefore, reduced expression of HLA class I antigens in prostate cancer may negatively affect the outcome of T cell-based immunotherapy by providing malignant tumor cells with a mechanism to escape recognition by T cells. is there. It is suggested that an additive anti-tumor effect can be achieved by the combined use of T cell-based immunotherapy and cytotoxic agents with minimal immunosuppression. In this study, PSA responses were also observed in patients who experienced exacerbations of disease prior to estramustine phosphate or peptide vaccine administration, a hypothesis that this combination therapy works with additive antitumor effects Support. However, the exact mechanism of this interaction is still unclear. Further research is needed on this mechanism.

[文献]
1. Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin CM, Murphy KC. Chemotherapy with mitxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: A Canadian randomized trial with palliative end points. J Clin Oncol 1996; 14: 1756-1764.
2. Kantoff PW, Halabi S, Conaway M, Picus J, Kirshner J, Hars V, Trump D, Winer EP, Vogelzang NJ. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: Results of the cancer and leukemia group B 9182 study. J Clin Oncol 1999; 17: 2506-2513.
3. Hudes G, Einhorn L, Ross E, Balsham A, Loehrer P, Ramsey H, Sprandio J, Entmacher M, Dugan W, Ansari R, Monaco F, Hanna M, Roth B. Vinblastine versus vinblastine plus oral estramustine phosphate for patients with hormone-refractory prostate cancer: a Hoosier Oncology Group and Fox Chase Network phase III trial. J Clin Oncol 1999; 17: 3160-3166.
4. Smith DC, Esper P, Strawderman M, Redman B, Pienta KJ. Phase II trial of oral estramustine, oral etoposide, and intravenous paclitaxel in hormone-refractory prostate cancer. J Clin Oncol 1999; 17: 1664-1671.
5. Beer TM, Pierce WC, Lowe BA, Henner WD. Phase II study of weekly docetaxel in symptomatic androgen-independent prostate cancer. Ann Oncol 2001; 12: 1273-1279.
6. Hudes GR, Nathan F, Khater C, Haas N, Cornfield M, Giantonio B, Greenberg R, Gomella L, Litwin S, Ross E, Roethke S, McAleer C. Phase II trial of 96-hour paclitaxel plus oral estramustine phosphate in metastatic hormone-refractory prostate cancer. J Clin Oncol 1997; 15: 3156-3163.
7. Ellerhorst JA, Tu SM, Amato RJ, Finn L, Millikan RE, Pagliaro LC, Jackson A, Logothetis CJ. et al: Phase II trial of alternating weekly chemohormonal therapy for patients with androgen-independent prostate cancer. Clin Cancer Res 1997; 3: 2371-2376.
8. Kelly WK, Curley T, Slovin S, Heller G, McCaffrey J, Bajorin D, Ciolino A, Regan K, Schwartz M, Kantoff P, George D, Oh W, Smith M, Kaufman D, Small EJ, Schwartz L, Larson S, Tong W, Scher H. Paclitaxel, estramustine phosphate, and carboplatin in patients with advanced prostate cancer. J Clin Oncol 2001; 19: 44-53.
9. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254: 16431647.
10. Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180: 347-352.
11. Tjoa BA, Simmons SJ, Bowes VA, Ragde H, Rogers M, Elgamal A, Kenny GM, Cobb OE, Ireton RC, Troychak MJ, Salgaller ML, Boynton AL, Murphy GP. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate 1998; 36: 39-44.
12. Salgaller ML, Lodge PA, McLean JG, Tjoa BA, Loftus DJ, Ragde H, Kenny GM, Rogers M, Boynton AL, Murphy GP. Report of immune monitoring of prostate cancer patients undergoing T-cell therapy using dendritic cells pulsed with HLA-A2-specific peptides from prostate-specific membrane antigen (PSMA). Prostate 1998; 35: 144-151.
13. Mine T, Gouhara R, Hida N, Imai N, Azuma K, Rikimaru T, Katagiri K, Nishikori Misa, Sukehiro A, Nakagawa M, Yamada A, Aizawa H, Shirozu K, Itoh K, and Yamana H. Immunological evaluation of CTL precursor-oriented vaccine for advanced lung cancer patients. Cancer Sci 2003; 94: 548-556.
14. Tanaka S, Harada M, Mine T, Noguchi M, Gohara R, Azuma K, Yamada A, Morinaga A, Nishikori M, Katagiri K, , Itoh K, Yamana H and Hashimoto T.: Peptide vaccination for patients with melanoma and other types of cancers based on pre-existing peptide-specific cytotoxic T lymphocyte precursors in periphery. J Immunother (in press)
15. Noguchi M, Kobayashi K, Suetugu N, Tomiyasu K, Suekane S, Yamada A, Itoh K, Noda S. Induction of cellular and humoral immune responses to tumor cells and peptides in HLA-A24 positive hormone-refractory prostate cancer patients by peptide vaccination. Prostate (in press)
16. Perry CA and McTavish D. Estramustine phosphate sodium. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in prostate cancer. Drugs and Aging 1995; 7: 49-74.
17. Shichijo S, Nakao M, Imai Y, Takasu H, Kawamoto M, Niiya F, Yang D, Toh Y, Yamana H, Itoh K. A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocytes. J Exp Med 1998; 187: 277-288.
18. Nakao M, Shichijo S, Imaizumi T, Inoue Y, Matsunaga K, Yamada A, Kikuchi M, Tsuda N, Ohta K, Takamori S, Yamana H, Fujita H, Itoh K. Identification of gene coding for a new squamous cell carcinoma antigen recognized by the CTLs. J Immunol 2000; 164: 2565-2574.
19. Yang D, Nakao M, Shichijo S, Sasatomi T, Takasu H, Matsumoto H, Mori K, Hayashi A, Yamana H, Shirouzu K, Itoh K. Identification of a gene coding for a protein possessing shared tumor epitopes capable of inducing HLA-A24-restructed cytotoxic T lymphocytes in cancer patients. Cancer Res 1999; 59: 4056-4063.
20. Gomi S, Nakao M, Niiya F, Imamura Y, Kawano K, Nishizaka S, Hayashi A, Sobao Y, Oizumi K, Itoh K. A cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumor-specific cytotoxic T lymphocytes. J Immunol 1999; 163: 4994-5004.
21. Maeda Y, Ito M, Harashima N, Nakatsura T, Hida N, Imai N, Sato Y, Shichijo S, Todo S, Itoh K. Cleavage and polyadenylation specificity factor (CPSF)-derived peptides can induce HLA-A2-restricted and tumor-specific CTLs in the majority of gastrointestinal cancer patients. Int J Cancer 2002; 99: 409-417.
22. Suzuki N, Maeda Y, Tanaka S, Hida N, Mine T, Yamamoto K, Oka M, Itoh K. Detection of peptide-specific cytotoxic T lymphocyte precursors used for specific immunotherapy of pancreatic cancer. Int J Cancer 2002; 98: 45-50.
23. Miyagi Y, Imai N, Sasatomi T, Yamada A, Mine T, Katagiri K, Nakagawa M, Muto A, Okouchi S, Isomoto H, Shirouzu K, Yamana H, Itoh K. Induction of cellular immune response to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin Cancer Res 2001; 7: 3950-3962.
24. Hida N, Maeda Y, Katagiri K, Takasu H, Harada M, Itoh K. A simple culture protocol to detect peptide-specific cytotoxic T lymphocyte precursors in circulation. Cancer Immunol Immunotherapy 2002; 51: 219-228.
25. Noguchi M and Noda S: Pyridinoline cross-linked carboxyterminal telopeptide of type I collagen as a useful marker for monitoring metastatic bone activity in men with prostate cancer. J Urol 2001; 166: 1106-1110.
26. Noguchi M, Kikuchi H, Ishibashi M, Noda S. Percentage of the positive area of bone metastasis is an independent predictor of thedisease death in advanced prostate cancer. Br J Cancer 2003; 88: 195-201.
27. Mitcell MS. Chemotherapy in combination with biomodulation: a 5 year experience with cyclophosphamide and IL-2. Semin Oncol 1992; 19 (suppl 2): 80-87.
28. Zhang S, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, Lloyd KO, and Livingston PO. Selection of tumor antigens as targets for immune attack using immunohistochemistry. I. Focus on gangliosides. Int J Cancer 1997; 73: 42-49.
29. Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO, and Livingston PO. Selection of tumor antigens as targets for immune attack using immunohistochemistry. II. Blood group-related antigens. Int J Cancer 1997; 73: 50-56.
30. Zhang S, Zhang HS, Reuter VE, Slovin SF, Scher HI, Livingston PO. Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. Clin Cancer Res 1998; 4: 295-302.
31. Blades RA, Keating PJ, McWilliam LJ, George NJ, Stern PL. Loss of HLA class I expression in prostate cancer: implications for immunotherapy. Urology 1995; 46: 681-687.
32. Maffezzini M, Simonato A, Fortis C. Salvage immunotherapy with subcutaneous recombination interleukin 2 (rIL-2) and alpha-interferon (A-INF) for stage D3 prostate carcinoma failing second-line hormonal treatment. Prostate 1996; 28: 282-286.
33. Noguchi M, Yahara J, and Noda S: Serum levels of bone turnover markers parallel the results of bone scintigraphy in monitoring bone activity of prostate cancer. Urology 2003; 61: 993-998.
34. Noguchi M, Itoh K, Suekane S, Yao A, Suetsugu N, Katagiri K, Yamada A, Yamana H, and Noda S. Phase I trial of patient-oriented vaccination in HLA-A2 positive patients with metastatic hormone refractory prostate cancer. Cancer Sci 2004;95:77-84.
35. Noguchi M, Itoh K, Suekane S, Morinaga A, Sukehiro A, Suetsugu N, Katagiri K, Yamada A, and Noda S. Immunological Monitoring during Combination of Patient-Oriented Peptide Vaccination and Estramustine Phosphate in Patients with Metastatic Hormone Refractory Prostate Cancer. Prostate 2004;60:32-45.
36. Inoue Y, Takaue Y, Takei M, Kato K, Kanai S, Harada Y, Tobisu K, Noguchi M, Kakizoe T, Itoh K, and Wakasugi H. Induction of tumor specific cytotoxic T lymphocytes in prostate cancer using prostatic acid phosphatase derived HLA-A2402 binding peptide. J Urol 2001;166:1508 -1513.
37. Harada M, Kobayashi K, Matsueda S, Nakagawa M, Noguchi M, and Itoh K. Prostate-specific antigen-derived epitopes capable of inducing cellular and humoral responses in HLA-A24+ prostate cancer patients. Prostate 2003;57:152-159.
38. Kobayashi K, Noguchi M, Itoh K, and Harada M. Identification of a prostate-specific membrane antigen-derived peptide capable of eliciting both cellular and humoral immune responses in HLA-A24+ prostate cancer patients. Cancer Sci 2003;94:622-627.
39. Harada M, Noguchi M, Itoh K. Target molecules in specific immunotherapy against prostate cancer. Int J Clin Oncol 2003;8:193-199.
40. Harashima N, Tanaka K, Sasatomi T, Shimizu K, Miyagi Y, Yamada A, Tamura M, Yamana H, Itoh K, and Shichijo S. Recognition of the Lck tyrosine kinase as a tumor antigen by cytotoxic T lymphocytes of cancer patients with distant metastases. Eur J Immunol 2000;31:323-332.
41. Kawano K, Gomi S, Tanaka K, Tsuda N, Kamura T, Itoh K, and Yamada A. Identification of a new endoplasmic reticulum-resident proteine recognized by HLA-A-24 restricted tumor infiltrating lymphocytes of lung cancer. Cancer Res 2000;60:3550-3558.
42. Esper PMoF, Chodak G., Sinner M, Cella D, and Pienta KJ. Measuring quality of life in men with prostate cancer using the functional assessment of cancer therapy-prostate instrument. Urology 1997;50:920-928.
43. Coons SJ, Kaplan RM. Assessing health-related quality-of-life: application to drug therapy. Clin Ther 1992;14:850-858.
[Literature]
1. Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin CM, Murphy KC. Chemotherapy with mitxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer : A Canadian randomized trial with palliative end points. J Clin Oncol 1996; 14: 1756-1764.
2. Kantoff PW, Halabi S, Conaway M, Picus J, Kirshner J, Hars V, Trump D, Winer EP, Vogelzang NJ. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: Results of the cancer and leukemia group B 9182 study. J Clin Oncol 1999; 17: 2506-2513.
3. Hudes G, Einhorn L, Ross E, Balsham A, Loehrer P, Ramsey H, Sprandio J, Entmacher M, Dugan W, Ansari R, Monaco F, Hanna M, Roth B. Vinblastine versus vinblastine plus oral estramustine phosphate for patients with hormone-refractory prostate cancer: a Hoosier Oncology Group and Fox Chase Network phase III trial.J Clin Oncol 1999; 17: 3160-3166.
4. Smith DC, Esper P, Strawderman M, Redman B, Pienta KJ.Phase II trial of oral estramustine, oral etoposide, and intravenous paclitaxel in hormone-refractory prostate cancer.J Clin Oncol 1999; 17: 1664-1671.
5. Beer TM, Pierce WC, Lowe BA, Henner WD. Phase II study of weekly docetaxel in symptomatic androgen-independent prostate cancer. Ann Oncol 2001; 12: 1273-1279.
6. Hudes GR, Nathan F, Khater C, Haas N, Cornfield M, Giantonio B, Greenberg R, Gomella L, Litwin S, Ross E, Roethke S, McAleer C. Phase II trial of 96-hour paclitaxel plus oral estramustine phosphate in metastatic hormone-refractory prostate cancer. J Clin Oncol 1997; 15: 3156-3163.
7. Ellerhorst JA, Tu SM, Amato RJ, Finn L, Millikan RE, Pagliaro LC, Jackson A, Logothetis CJ. Et al: Phase II trial of alternating weekly chemohormonal therapy for patients with androgen-independent prostate cancer.Clin Cancer Res 1997 ; 3: 2371-2376.
8.Kelly WK, Curley T, Slovin S, Heller G, McCaffrey J, Bajorin D, Ciolino A, Regan K, Schwartz M, Kantoff P, George D, Oh W, Smith M, Kaufman D, Small EJ, Schwartz L, Larson S, Tong W, Scher H. Paclitaxel, estramustine phosphate, and carboplatin in patients with advanced prostate cancer.J Clin Oncol 2001; 19: 44-53.
9.van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254 : 16431647.
10. Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA.Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180: 347-352.
11. Tjoa BA, Simmons SJ, Bowes VA, Ragde H, Rogers M, Elgamal A, Kenny GM, Cobb OE, Ireton RC, Troychak MJ, Salgaller ML, Boynton AL, Murphy GP.Evaluation of phase I / II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate 1998; 36: 39-44.
12. Salgaller ML, Lodge PA, McLean JG, Tjoa BA, Loftus DJ, Ragde H, Kenny GM, Rogers M, Boynton AL, Murphy GP. Report of immune monitoring of prostate cancer patients undergoing T-cell therapy using dendritic cells pulsed with HLA-A2-specific peptides from prostate-specific membrane antigen (PSMA). Prostate 1998; 35: 144-151.
13. Mine T, Gouhara R, Hida N, Imai N, Azuma K, Rikimaru T, Katagiri K, Nishikori Misa, Sukehiro A, Nakagawa M, Yamada A, Aizawa H, Shirozu K, Itoh K, and Yamana H. Immunological evaluation of CTL precursor-oriented vaccine for advanced lung cancer patients.Cancer Sci 2003; 94: 548-556.
14. Tanaka S, Harada M, Mine T, Noguchi M, Gohara R, Azuma K, Yamada A, Morinaga A, Nishikori M, Katagiri K,, Itoh K, Yamana H and Hashimoto T .: Peptide vaccination for patients with melanoma and other types of cancers based on pre-existing peptide-specific cytotoxic T lymphocyte precursors in periphery.J Immunother (in press)
15.Noguchi M, Kobayashi K, Suetugu N, Tomiyasu K, Suekane S, Yamada A, Itoh K, Noda S. Induction of cellular and humoral immune responses to tumor cells and peptides in HLA-A24 positive hormone-refractory prostate cancer patients by peptide vaccination. Prostate (in press)
16. Perry CA and McTavish D. Estramustine phosphate sodium.A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in prostate cancer.Drugs and Aging 1995; 7: 49-74.
17. Shichijo S, Nakao M, Imai Y, Takasu H, Kawamoto M, Niiya F, Yang D, Toh Y, Yamana H, Itoh K. A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocytes. Med 1998; 187: 277-288.
18. Nakao M, Shichijo S, Imaizumi T, Inoue Y, Matsunaga K, Yamada A, Kikuchi M, Tsuda N, Ohta K, Takamori S, Yamana H, Fujita H, Itoh K. Identification of gene coding for a new squamous cell carcinoma antigen recognized by the CTLs. J Immunol 2000; 164: 2565-2574.
19. Yang D, Nakao M, Shichijo S, Sasatomi T, Takasu H, Matsumoto H, Mori K, Hayashi A, Yamana H, Shirouzu K, Itoh K. Identification of a gene coding for a protein possessing shared tumor epitopes capable of inducing HLA-A24-restructed cytotoxic T lymphocytes in cancer patients.Cancer Res 1999; 59: 4056-4063.
20. Gomi S, Nakao M, Niiya F, Imamura Y, Kawano K, Nishizaka S, Hayashi A, Sobao Y, Oizumi K, Itoh K. A cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumor-specific cytotoxic T lymphocytes. J Immunol 1999; 163: 4994-5004.
21. Maeda Y, Ito M, Harashima N, Nakatsura T, Hida N, Imai N, Sato Y, Shichijo S, Todo S, Itoh K. Cleavage and polyadenylation specificity factor (CPSF) -derived peptides can induce HLA-A2-restricted and tumor-specific CTLs in the majority of gastrointestinal cancer patients.Int J Cancer 2002; 99: 409-417.
22. Suzuki N, Maeda Y, Tanaka S, Hida N, Mine T, Yamamoto K, Oka M, Itoh K. Detection of peptide-specific cytotoxic T lymphocyte precursors used for specific immunotherapy of pancreatic cancer.Int J Cancer 2002; 98: 45-50.
23. Miyagi Y, Imai N, Sasatomi T, Yamada A, Mine T, Katagiri K, Nakagawa M, Muto A, Okouchi S, Isomoto H, Shirouzu K, Yamana H, Itoh K. Induction of cellular immune response to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin Cancer Res 2001; 7: 3950-3962.
24. Hida N, Maeda Y, Katagiri K, Takasu H, Harada M, Itoh K. A simple culture protocol to detect peptide-specific cytotoxic T lymphocyte precursors in circulation.Cancer Immunol Immunotherapy 2002; 51: 219-228.
25.Noguchi M and Noda S: Pyridinoline cross-linked carboxyterminal telopeptide of type I collagen as a useful marker for monitoring metastatic bone activity in men with prostate cancer.J Urol 2001; 166: 1106-1110.
26.Noguchi M, Kikuchi H, Ishibashi M, Noda S. Percentage of the positive area of bone metastasis is an independent predictor of thedisease death in advanced prostate cancer.Br J Cancer 2003; 88: 195-201.
27. Mitcell MS. Chemotherapy in combination with biomodulation: a 5 year experience with cyclophosphamide and IL-2.Semin Oncol 1992; 19 (suppl 2): 80-87.
28. Zhang S, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, Lloyd KO, and Livingston PO. Selection of tumor antigens as targets for immune attack using immunohistochemistry. I. Focus on gangliosides. Int J Cancer 1997; 73: 42-49.
29. Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO, and Livingston PO. Selection of tumor antigens as targets for immune attack using immunohistochemistry. II. Blood group-related antigens. Int J Cancer 1997 ; 73: 50-56.
30. Zhang S, Zhang HS, Reuter VE, Slovin SF, Scher HI, Livingston PO. Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers.Clin Cancer Res 1998; 4: 295-302.
31. Blades RA, Keating PJ, McWilliam LJ, George NJ, Stern PL. Loss of HLA class I expression in prostate cancer: implications for immunotherapy. Urology 1995; 46: 681-687.
32.Maffezzini M, Simonato A, Fortis C. Salvage immunotherapy with subcutaneous recombination interleukin 2 (rIL-2) and alpha-interferon (A-INF) for stage D3 prostate carcinoma failing second-line hormonal treatment.Prostate 1996; 28: 282 -286.
33.Noguchi M, Yahara J, and Noda S: Serum levels of bone turnover markers parallel the results of bone scintigraphy in monitoring bone activity of prostate cancer. Urology 2003; 61: 993-998.
34.Noguchi M, Itoh K, Suekane S, Yao A, Suetsugu N, Katagiri K, Yamada A, Yamana H, and Noda S. Phase I trial of patient-oriented vaccination in HLA-A2 positive patients with metastatic hormone refractory prostate cancer Cancer Sci 2004; 95: 77-84.
35.Noguchi M, Itoh K, Suekane S, Morinaga A, Sukehiro A, Suetsugu N, Katagiri K, Yamada A, and Noda S. Immunological Monitoring during Combination of Patient-Oriented Peptide Vaccination and Estramustine Phosphate in Patients with Metastatic Hormone Refractory Prostate Cancer. Prostate 2004; 60: 32-45.
36. Inoue Y, Takaue Y, Takei M, Kato K, Kanai S, Harada Y, Tobisu K, Noguchi M, Kakizoe T, Itoh K, and Wakasugi H. Induction of tumor specific cytotoxic T lymphocytes in prostate cancer using prostatic acid phosphatase derived HLA-A2402 binding peptide. J Urol 2001; 166: 1508 -1513.
37. Harada M, Kobayashi K, Matsueda S, Nakagawa M, Noguchi M, and Itoh K. Prostate-specific antigen-derived epitopes capable of inducing cellular and humoral responses in HLA-A24 + prostate cancer patients.Prostate 2003; 57: 152- 159.
38. Kobayashi K, Noguchi M, Itoh K, and Harada M. Identification of a prostate-specific membrane antigen-derived peptide capable of eliciting both cellular and humoral immune responses in HLA-A24 + prostate cancer patients.Cancer Sci 2003; 94: 622 -627.
39. Harada M, Noguchi M, Itoh K. Target molecules in specific immunotherapy against prostate cancer.Int J Clin Oncol 2003; 8: 193-199.
40. Harashima N, Tanaka K, Sasatomi T, Shimizu K, Miyagi Y, Yamada A, Tamura M, Yamana H, Itoh K, and Shichijo S. Recognition of the Lck tyrosine kinase as a tumor antigen by cytotoxic T lymphocytes of cancer patients with distant metastases. Eur J Immunol 2000; 31: 323-332.
41. Kawano K, Gomi S, Tanaka K, Tsuda N, Kamura T, Itoh K, and Yamada A. Identification of a new endoplasmic reticulum-resident proteine recognized by HLA-A-24 restricted tumor infiltrating lymphocytes of lung cancer. 2000; 60: 3550-3558.
42. Esper PMoF, Chodak G., Sinner M, Cella D, and Pienta KJ. Measuring quality of life in men with prostate cancer using the functional assessment of cancer therapy-prostate instrument. Urology 1997; 50: 920-928.
43. Coons SJ, Kaplan RM. Assessing health-related quality-of-life: application to drug therapy. Clin Ther 1992; 14: 850-858.

Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624
Figure 0004905624

図1Aから図1Jは、各症例で投与したペプチドに特異的なINF−γ産生およびIgGレベルの経時変化を示すグラフである。症例2、5、7、8、10および12ではペプチド特異的CTL前駆体の増加が観察され、症例3、4、5、7、8、10、11、12および13ではペプチド特異的IgGの誘導が観察された。FIG. 1A to FIG. 1J are graphs showing changes in INF-γ production specific to peptides administered in each case and IgG levels over time. In cases 2, 5, 7, 8, 10, and 12, an increase in peptide-specific CTL precursors was observed, and in cases 3, 4, 5, 7, 8, 10, 11, 12, and 13, induction of peptide-specific IgG Was observed. 図2Aから図2Jは、処置が誘導した免疫抑制のモニタリング結果を示すグラフである。症例2および症例3は重度の免疫抑制を示し、その免疫抑制はエストラムスチンリン酸塩全用量投与(560mg/日)を中止することによって回復した。ペプチドおよび低用量のエストラムスチンリン酸塩(280mg/日)を投与した8症例では免疫抑制はなかった。2A to 2J are graphs showing the monitoring results of treatment-induced immunosuppression. Cases 2 and 3 showed severe immunosuppression, which was recovered by discontinuing estramustine phosphate full dose administration (560 mg / day). There was no immunosuppression in 8 cases receiving peptide and low dose estramustine phosphate (280 mg / day). 図3Aから図3Kは、患者11名における本研究中のPSAレベルの経時変化を示すグラフである。患者11名中10名(94%)の患者は、併用療法の間に血清PSAレベルがベースラインから低下した。3A to 3K are graphs showing the time course of PSA levels during the study in 11 patients. Ten of the 11 patients (94%) had decreased serum PSA levels from baseline during combination therapy. 図4は、症例12のCT画像を示す。A:併用療法の開始時点でCTスキャンに大動脈周囲リンパ節転移(矢印)が認められた。B:併用療法8ヵ月後の再度のCTスキャンでは、リンパ節転移のサイズが44%減少した(矢印)。FIG. 4 shows a CT image of case 12. A: Peraortic lymph node metastasis (arrow) was observed on the CT scan at the start of combination therapy. B: Recurrent CT scan 8 months after combination therapy reduced the size of lymph node metastasis by 44% (arrow). 図5Aから図5Gは、ワクチン投与前およびワクチン投与後のPBMCにおけるペプチド特異的CTL前駆体の代表的結果を示すグラフである。ペプチド特異的CTL前駆体の増加が、ペプチドワクチン投与単独および併用療法で観察された。 高度の応答(Ar):p≦0.01および500≦純産生量(対応ペプチドに応答したINF−γレベル−HIVペプチドに応答したINF−γレベル); A:中程度の応答(A):p≦0.05および50≦純産生量; B:p≦0.05および25≦純産生量<50; C:0.05<p≦0.1および50≦純産生量。FIGS. 5A-5G are graphs showing representative results of peptide-specific CTL precursors in PBMC before and after vaccine administration. An increase in peptide-specific CTL precursors was observed with peptide vaccine administration alone and in combination therapy. High response (Ar): p ≦ 0.01 and 500 ≦ pure production (INF-γ level in response to corresponding peptide-INF-γ level in response to HIV peptide); A: Moderate response (A): p ≦ 0.05 and 50 ≦ pure production amount; B: p ≦ 0.05 and 25 ≦ pure production amount <50; C: 0.05 <p ≦ 0.1 and 50 ≦ pure production amount. 図6Aから図6Jは、投与ペプチド特異的IgGレベルの段階的変化を示すグラフである。垂直の線はODを示し、水平の線は血清の希釈を示す。ペプチド特異的IgGの増加が、ペプチドワクチン投与単独および併用療法で観察された。Sc:皮下注射。FIGS. 6A to 6J are graphs showing step changes in administered peptide-specific IgG levels. The vertical line indicates OD and the horizontal line indicates serum dilution. An increase in peptide-specific IgG was observed with peptide vaccine administration alone and in combination therapy. Sc: Subcutaneous injection. 図7Aから図7Eは、ワクチン投与の間の%QOLスケール評価を示すグラフである。n.s.:非有意。全因子についてQOLは処置の間に悪化しなかった。Figures 7A through 7E are graphs showing the% QOL scale assessment during vaccine administration. n. s. : Not significant. QOL for all factors did not worsen during treatment.

Claims (5)

前立腺癌患者に対し、該患者のHLAクラスI抗原に結合し、患者特異的なCTL誘導能を有する癌抗原ペプチドと共に投与されるための、140−560mg/日投与されるエストラムスチンまたはその塩を含む前立腺癌を処置するための医薬組成物。 140-560 mg / day estramustine or a salt thereof to be administered to a prostate cancer patient together with a cancer antigen peptide that binds to the patient's HLA class I antigen and has a patient-specific CTL inducing ability A pharmaceutical composition for treating prostate cancer. 前立腺癌がホルモン不応性前立腺癌である、請求項1記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the prostate cancer is hormone refractory prostate cancer. 患者が、エストラムスチン単独治療に応答性でない患者である、請求項1または2に記載の医薬組成物。 The pharmaceutical composition according to claim 1 or 2, wherein the patient is a patient who is not responsive to estramustine monotherapy. 患者が癌抗原ペプチド単独治療に応答性でない患者である、請求項1〜3いずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 3, wherein the patient is a patient who is not responsive to cancer antigen peptide monotherapy. エストラムスチンまたはその塩が、エストラムスチンリン酸塩である請求項1〜4いずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 4, wherein the estramustine or a salt thereof is estramustine phosphate.
JP2004318161A 2003-10-31 2004-11-01 Combination therapy of peptide vaccine administration and estramustine treatment Active JP4905624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318161A JP4905624B2 (en) 2003-10-31 2004-11-01 Combination therapy of peptide vaccine administration and estramustine treatment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005510143 2003-10-31
JP2005510143 2003-10-31
JP2004318161A JP4905624B2 (en) 2003-10-31 2004-11-01 Combination therapy of peptide vaccine administration and estramustine treatment

Publications (3)

Publication Number Publication Date
JP2007051066A JP2007051066A (en) 2007-03-01
JP2007051066A5 JP2007051066A5 (en) 2007-12-20
JP4905624B2 true JP4905624B2 (en) 2012-03-28

Family

ID=37915765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318161A Active JP4905624B2 (en) 2003-10-31 2004-11-01 Combination therapy of peptide vaccine administration and estramustine treatment

Country Status (1)

Country Link
JP (1) JP4905624B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597830A (en) * 1994-12-20 1997-01-28 Warner-Lambert Company Combination chemotherapy
WO2001000238A1 (en) * 1999-06-25 2001-01-04 Genentech, Inc. TREATING PROSTATE CANCER WITH ANTI-ErbB2 ANTIBODIES
AU2002228648A1 (en) * 2000-11-16 2002-05-27 Pharmacia And Upjohn Company Combined therapy against tumors comprising estramustine phosphate and lhrh agonists or antagonists
JP2002308799A (en) * 2001-01-29 2002-10-23 Takeda Chem Ind Ltd Anticancer agent
JP2003104906A (en) * 2001-06-15 2003-04-09 Takeda Chem Ind Ltd Anticancer agent

Also Published As

Publication number Publication date
JP2007051066A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
Miyazawa et al. Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer
Wang et al. Phase I trial of a MART-1 peptide vaccine with incomplete Freund’s adjuvant for resected high-risk melanoma
Noguchi et al. Induction of cellular and humoral immune responses to tumor cells and peptides in HLA‐A24 positive hormone‐refractory prostate cancer patients by peptide vaccination
US20230355732A1 (en) Tumor Antigens for Determining Cancer Therapy
Wallack et al. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial
Jie et al. Clinical application of a dendritic cell vaccine raised against heat-shocked glioblastoma
BR112012029066A2 (en) compositions and processes for the identification of tumor-specific neoantigens.
WO2015014375A1 (en) Tumor antigens for determining cancer therapy
Noguchi et al. Immunological evaluation of individualized peptide vaccination with a low dose of estramustine for HLA‐A24+ HRPC patients
CN109803674A (en) CALR and JAK2 vaccine composition
US7718614B2 (en) Combination therapy of peptide vaccination and estramustine treatment
Noguchi et al. Immunological monitoring during combination of patient‐oriented peptide vaccination and estramustine phosphate in patients with metastatic hormone refractory prostate cancer
Parmiani et al. A pilot Phase I study combining peptide-based vaccination and NGR-hTNF vessel targeting therapy in metastatic melanoma
Yoshimoto et al. Anti-tumor immune responses induced by radiotherapy: A review
Kamigaki et al. Prospective evaluation of safety of immune-cell therapy for patients with various types of advanced cancer
Kuryk et al. Novel insights into mesothelioma therapy: emerging avenues and future prospects
EP3027203A1 (en) Tumor antigens for determining cancer therapy
Sangha et al. L-BLP25: a MUC1-targeted peptide vaccine therapy in prostate cancer
Tait HLA class I expression on human cancer cells: implications for effective immunotherapy
EP1782827A1 (en) Peptide vaccine for cancer therapy
Robinson et al. Sera from patients with malignant mesothelioma can contain autoantibodies
CN114222583A (en) HLA class I and II tumor antigen peptides for the treatment of breast cancer/breast cancer
US11709165B2 (en) Examination method for prediction of effect of treatment of cancer based on detection of cancer/testis antibodies
JP4905624B2 (en) Combination therapy of peptide vaccine administration and estramustine treatment
Chung et al. Current state of treatment for primary cutaneous melanoma

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250