JP4904490B2 - Nanoparticle compound, metal ion detection method and removal method using this compound - Google Patents

Nanoparticle compound, metal ion detection method and removal method using this compound Download PDF

Info

Publication number
JP4904490B2
JP4904490B2 JP2006066443A JP2006066443A JP4904490B2 JP 4904490 B2 JP4904490 B2 JP 4904490B2 JP 2006066443 A JP2006066443 A JP 2006066443A JP 2006066443 A JP2006066443 A JP 2006066443A JP 4904490 B2 JP4904490 B2 JP 4904490B2
Authority
JP
Japan
Prior art keywords
compound
aqueous solution
metal ion
metal ions
sph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006066443A
Other languages
Japanese (ja)
Other versions
JP2007238558A (en
Inventor
克明 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2006066443A priority Critical patent/JP4904490B2/en
Publication of JP2007238558A publication Critical patent/JP2007238558A/en
Application granted granted Critical
Publication of JP4904490B2 publication Critical patent/JP4904490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Luminescent Compositions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substance (compound) which interacts with a metal ion to change absorption characteristics in a visible light region, to provide a method for detecting a metal ion with the compound, and to provide a method for separating a metal ion with the compound. <P>SOLUTION: A compound represented by the general formula (1) : M<SB>10</SB>X<SB>4</SB>R<SB>12</SB>is disclosed. Therein, M is Cd or Zn; X is S or Se; R is one of formulas R<SP>1</SP>to R<SP>4</SP>in Fig; n<SB>1</SB>to n<SB>4</SB>in formulas R<SP>1</SP>to R<SP>4</SP>in Fig are each independently an integer of 1 to 10. The method for detecting a metal ion comprises making the above-mentioned compound to coexist in a test aqueous solution, and then detecting the presence or absence and/or concentration of the metal ion contained in the test aqueous solution. The method for separating a metal ion contained in an aqueous solution comprises mixing the aqueous solution with the above-mentioned compound and then separating the compound-metal ion complex formed in the aqueous solution from the aqueous solution. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、ナノ粒子化合物、並びに、このナノ粒子化合物を用いる金属イオンの検出方法及び除去方法に関する。   The present invention relates to a nanoparticle compound, and a method for detecting and removing a metal ion using the nanoparticle compound.

水銀、鉛などの重金属イオンは蛍光灯や自動車バッテリーなど日常生活において多量に使用される反面、少量でも人体や生態系に大きな影響を及ぼすことから、廃棄物からの流出による環境中での動向を調査するために、簡便、迅速かつ感度よく検出できるシステムの開発が必須となってきている。既往の技術では、誘導結合プラズマ(ICP)発光分析など高価な分析装置が用いられるが、脱塩など煩雑な前処理が必要であり、多検体の迅速分析に適さないなどの問題も多く、その観点から、電子吸収、蛍光などの汎用の安価なスペクトル機器や人間の色覚を利用した簡便な化学センサーの開発が強く求められている。   Heavy metal ions such as mercury and lead are used in large amounts in daily life such as fluorescent lamps and automobile batteries, but even a small amount has a great impact on the human body and ecosystem. In order to investigate, it has become essential to develop a system capable of simple, rapid and sensitive detection. In the existing technology, expensive analyzers such as inductively coupled plasma (ICP) emission analysis are used, but complicated pretreatment such as desalting is necessary, and there are many problems such as being unsuitable for rapid analysis of many samples. From the viewpoint, there is a strong demand for the development of general-purpose and inexpensive spectrum equipment such as electron absorption and fluorescence, and simple chemical sensors using human color vision.

本発明者らは、上記簡便な化学センサーの候補として、ナノ粒子化合物に注目した。ナノ粒子化合物としては、発光特性を有するナノ粒子が知られている(特表2002−536285号公報、特許文献1)。このナノ粒子は、例えば、CdSナノ粒子のような半導体粒子とデンドリマーとのコンポジットである。CdSナノ粒子は、蛍光シグナルを発することができ、イムノアッセイ、ELISAアッセイ、DNAのスクリーニング等に利用できることが記載されている。
特表2002−536285号公報
The present inventors have focused on nanoparticle compounds as candidates for the simple chemical sensor. As a nanoparticle compound, a nanoparticle having a luminescent property is known (Japanese Patent Publication No. 2002-536285, Patent Document 1). The nanoparticles are, for example, a composite of semiconductor particles such as CdS nanoparticles and a dendrimer. It is described that CdS nanoparticles can emit fluorescent signals and can be used for immunoassays, ELISA assays, DNA screenings, and the like.
Special table 2002-536285 gazette

上記CdSナノ粒子は、長波長発光の波長が500nm超であることが記載され、可視光領域での検出が可能である。しかし、本発明が目的とする金属イオン、特に、Hg2+, Pb2+等の有害重金属イオンとの相互作用については、特許文献1には記載がなく、CdSナノ粒子をこれら重金属イオンの分析に用いることも記載がない。 The CdS nanoparticles are described as having a long-wavelength emission wavelength of more than 500 nm, and can be detected in the visible light region. However, the interaction with harmful metal ions such as Hg 2+ , Pb 2+, etc., which is the object of the present invention is not described in Patent Document 1, and CdS nanoparticles are analyzed for these heavy metal ions. There is also no description of using it for.

本発明の目的は、人間の視覚による検知が可能な色変化や簡便なスペクトル分光測定により、特別な前処理なしに有害重金属イオンを迅速に検出できる手段を提供することにある。   An object of the present invention is to provide means capable of rapidly detecting harmful heavy metal ions without special pretreatment by color change that can be detected by human vision or simple spectral spectroscopy.

より具体的には、金属イオンと相互作用をして、可視光領域における吸収特性が変化する物質(化合物)、そのような化合物を利用した金属イオンの検出方法及び分離方法を提供することが、本発明の目的である。   More specifically, providing a substance (compound) that interacts with a metal ion to change absorption characteristics in the visible light region, a method for detecting and separating a metal ion using such a compound, It is an object of the present invention.

本発明者は、鍵物質として独特な光特性を示す硫化亜鉛、硫化カドミウムのナノ微粒子に着目した。これらの微粒子は本質的に溶媒に不溶であるが、表面にトリエチレングリコール鎖などを導入することでクロロホルム、ベンゼン、メタノール、アセトニトリルなどの有機溶媒に加え、水中にも均一に分散させることができた。さらに、水溶液、緩衝水溶液、塩水溶液、アセトニトリル中でHg2+, Pb2+, Ag+, Cu2+, Zn2+, Cd2+, Mn2+, Fe3+, Mn2+, Ni2+, Co2+などの金属イオンと混合し、それにともなう応答性を電子吸収スペクトル、色の変化から評価した。 The inventor of the present invention has focused on zinc sulfide and cadmium sulfide nanoparticles that exhibit unique optical properties as key substances. These fine particles are essentially insoluble in solvents, but by introducing a triethylene glycol chain on the surface, they can be dispersed uniformly in water in addition to organic solvents such as chloroform, benzene, methanol, and acetonitrile. It was. In addition, Hg 2+ , Pb 2+ , Ag + , Cu 2+ , Zn 2+ , Cd 2+ , Mn 2+ , Fe 3+ , Mn 2+ , Ni 2 in aqueous solution, buffer solution, salt solution, acetonitrile It mixed with metal ions such as + and Co 2+, and the responsiveness was evaluated from the change of electronic absorption spectrum and color.

その結果、当該ナノ粒子の溶液は単独では無色透明で400 nm以上(可視部)には吸収を持たない。しかし、Hg2+, Pb2+, Ag+, Cu2+に特異的に応答して、可視領域に吸収帯が誘起され、Hg2+, Pb2+, Cu2+に対しては薄茶色〜黄色、Ag+に対しては赤色に着色する。肉眼では10 ppm程度まで、吸収スペクトルでは0.5 ppm程度まで検知可能であった。他の金属イオンに関しては、Fe3+, Co2+など一部のものに対して、紫外領域でのスペクトル変化が観察されたものの、可視領域に大きな変化はなく、上記の重金属イオンに対して選択的に可視部での応答能を示す。また、塩化合物(塩化ナトリウム、緩衝塩)の存在下、有機溶媒(アセトニトリル)中でも同等の応答活性が観察され、脱塩などの前処理も特に必要とされない。また、Hg2+と同族元素で化学的性質が類似しているため、従来のキレート型配位子を用いた比色・蛍光センサーではHg2+と識別困難なCd2+ Zn2+では全くスペクトル変化(溶液色変化)を示さず、Hg2+に対して選択的な応答性を示すことが明らかになった。このような知見に基づいて本発明は完成された。 As a result, the nanoparticle solution alone is colorless and transparent, and has no absorption at 400 nm or more (visible part). However, in response to Hg 2+ , Pb 2+ , Ag + , Cu 2+ specifically, absorption bands are induced in the visible region, and light brown for Hg 2+ , Pb 2+ , Cu 2+ ~ Yellow, Ag + is colored red. It was detectable up to about 10 ppm with the naked eye and up to about 0.5 ppm in the absorption spectrum. Regarding other metal ions, although some spectral changes such as Fe 3+ and Co 2+ were observed in the ultraviolet region, there was no significant change in the visible region. It selectively shows the response ability in the visible region. Further, in the presence of a salt compound (sodium chloride, buffer salt), an equivalent response activity is observed even in an organic solvent (acetonitrile), and pretreatment such as desalting is not particularly required. In addition, since chemical properties are similar to Hg 2+ and its homologous elements, Cd 2+ Zn 2+ , which is difficult to distinguish from Hg 2+ with conventional colorimetric and fluorescent sensors using chelate-type ligands, is completely It was revealed that there was no spectral change (solution color change) and a selective response to Hg 2+ . Based on such knowledge, the present invention has been completed.

[1]一般式(1):M10412で表される化合物。
[式中、MはCdまたはZnであり、
Xは、SまたはSeであり、
Rは、下記R1〜R4で示されるいずれの基である。R1〜R4中、n1〜n4は、独立に、1〜10の整数である。]

Figure 0004904490
[2]n1〜n3は3であり、n4は6である[1]に記載の化合物。
[3]被験水溶液に[1]または[2]に記載の化合物を共存させ、水溶液の色の変化から、被験水溶液に含まれる金属イオンの有無及び/又は濃度を検出することを含む、金属イオンの検出方法。
[4]金属イオンがHg2+, Pb2+, Ag+, またはCu2+である[3]に記載の検出方法。
[5]金属イオンの分析が、金属イオンの定量である[3]または[4]に記載の検出方法。
[6]水溶液の色の変化を350〜450nmの波長範囲の吸光量を測定することで検出する[3]〜[5]のいずれかに記載の検出方法。
[7]水溶液の色の変化を400nmにおける吸光量を測定することで検出する[3]〜[5]のいずれか1項に記載の検出方法。
[8]水溶液に含まれる金属イオンを分離する方法であって、前記水溶液に[1]または[2]に記載の化合物を混合し、水溶液に形成した前記化合物と金属イオンとの錯体を、前記水溶液から分離することを含む、前記方法。
[9]錯体の水溶液からの分離を溶媒抽出により行う[8]に記載の方法。 [1] General formula (1): A compound represented by M 10 X 4 R 12 .
[Wherein M is Cd or Zn;
X is S or Se,
R is any group represented by the following R 1 to R 4 . In R 1 to R 4 , n 1 to n 4 are independently an integer of 1 to 10. ]
Figure 0004904490
[2] The compound according to [1], wherein n 1 to n 3 are 3 and n 4 is 6.
[3] A metal ion comprising detecting the presence and / or concentration of a metal ion contained in a test aqueous solution from a change in the color of the aqueous solution by coexisting the compound according to [1] or [2] in the test aqueous solution Detection method.
[4] The detection method according to [3], wherein the metal ion is Hg 2+ , Pb 2+ , Ag + , or Cu 2+ .
[5] The detection method according to [3] or [4], wherein the analysis of metal ions is a quantification of metal ions.
[6] The detection method according to any one of [3] to [5], wherein a change in the color of the aqueous solution is detected by measuring an absorbance in a wavelength range of 350 to 450 nm.
[7] The detection method according to any one of [3] to [5], wherein a change in the color of the aqueous solution is detected by measuring an absorbance at 400 nm.
[8] A method for separating metal ions contained in an aqueous solution, wherein the compound according to [1] or [2] is mixed in the aqueous solution, and the complex of the compound and metal ions formed in the aqueous solution is Separating the aqueous solution.
[9] The method according to [8], wherein the complex is separated from the aqueous solution by solvent extraction.

本発明によれば、Hg2+, Pb2+, Ag+, Cu2+のような金属イオンを選択的に試験液の色の変化により検出、定量することができる。さらに、本発明によれば、Hg2+, Pb2+, Ag+, Cu2+のような金属イオンを選択的に分離することもできる。 According to the present invention, metal ions such as Hg 2+ , Pb 2+ , Ag + , and Cu 2+ can be selectively detected and quantified by changing the color of the test solution. Furthermore, according to the present invention, metal ions such as Hg 2+ , Pb 2+ , Ag + , and Cu 2+ can be selectively separated.

本発明は、一般式(1):M10412で表される化合物に関する。
式中、MはCdまたはZnである。
Xは、SまたはSeである。
Rは、下記R1〜R4で示されるいずれの基であり、R1〜R4中、n1〜n4は、独立に、1〜10の整数である。
The present invention relates to a compound represented by the general formula (1): M 10 X 4 R 12 .
In the formula, M is Cd or Zn.
X is S or Se.
R is any group represented by the following R 1 to R 4, in R 1 ~R 4, n 1 ~n 4 are independently an integer of 1 to 10.

Figure 0004904490
Figure 0004904490

一般式(1)で表される化合物は、R1〜R4の末端(左端)がチオール(SH)である化合物を、市販の原料から常法により合成し、得られたチオール化合物とCdS、CdSe、ZnS、またはZnSeのフェニルチオ化合物と反応させることで合成できる。フェニルチオ化合物は、例えば、Cd104(SPh)12、Cd10Se4(SPh)12、Zn104(SPh)12、およびZn10Se4(SPh)12を挙げることができる。R1〜R4中、n1〜n4は、独立に、1〜10の整数である。n1〜n3は、好ましくは、独立に、2または3であり、より好ましくは3である。n4は、好ましくは、4〜10、より好ましくは5〜7の整数であり、さらに好ましくは6である。 The compound represented by the general formula (1) is obtained by synthesizing a compound in which the terminals (left end) of R 1 to R 4 are thiol (SH) by a conventional method from commercially available raw materials, and the obtained thiol compound and CdS, It can be synthesized by reacting with a phenylthio compound of CdSe, ZnS, or ZnSe. Examples of the phenylthio compound include Cd 10 S 4 (SPh) 12 , Cd 10 Se 4 (SPh) 12 , Zn 10 S 4 (SPh) 12 , and Zn 10 Se 4 (SPh) 12 . In R 1 to R 4 , n 1 to n 4 are independently an integer of 1 to 10. n 1 to n 3 are preferably independently 2 or 3, and more preferably 3. n 4 is preferably an integer of 4 to 10, more preferably 5 to 7, and further preferably 6.

Figure 0004904490
Figure 0004904490

上記反応スキームはRがR1(n1=3)の例である。この反応スキームを例に本発明の化合物の合成方法を具体的に説明する。化合物2にシュウ酸クロリドを反応させて、酸クロリドとし、次いで2-[2-(2-メトキシエトキシ)エトキシ]エチルアミンを反応させて化合物3を得る。化合物2は、R. S. Senger, V. N. Nemykin, P. Basu, New J. Chem., 2003, 27, 1115-1123に記載の方法に従って合成できる。2-[2-(2-メトキシエトキシ) エトキシ]エチルアミンは、P. Pengo, S. Polizzi, M. Battagliarin, L. Pasquato, Paolo Scrimin, J. Mater. Chem., 2003, 13, 2471-2478に記載の方法に従って合成できる。 The above reaction scheme is an example where R is R 1 (n 1 = 3). The method for synthesizing the compound of the present invention will be specifically described with reference to this reaction scheme. Compound 2 is reacted with oxalic chloride to give acid chloride, and then reacted with 2- [2- (2-methoxyethoxy) ethoxy] ethylamine to give compound 3. Compound 2 can be synthesized according to the method described in RS Senger, VN Nemykin, P. Basu, New J. Chem., 2003, 27, 1115-1123. 2- [2- (2-methoxyethoxy) ethoxy] ethylamine is described in P. Pengo, S. Polizzi, M. Battagliarin, L. Pasquato, Paolo Scrimin, J. Mater. Chem., 2003, 13, 2471-2478. It can be synthesized according to the method described.

化合物3は、NaBH4と反応させて化合物4を得る。有機溶媒、例えば、アセトニトリルに懸濁させたCd10S4(SPh)12に、化合物4を添加することで、目的物質であるCd10S4(SC6H4CONH(CH2CH2O)3CH3)12 (1)が得られる。 Compound 3 is reacted with NaBH 4 to give compound 4. By adding Compound 4 to Cd 10 S 4 (SPh) 12 suspended in an organic solvent, for example, acetonitrile, the target substance Cd 10 S 4 (SC 6 H 4 CONH (CH 2 CH 2 O) 3 CH 3 ) 12 (1) is obtained.

CdSクラスターCd10S4(SPh)12の合成ルート(反応式)は以下のとおりである。
1) Cd(NO3)2 + PhSH + NMe4Cl → [Cd4(SPh)10](NMe4)2
2) [Cd4(SPh)10](NMe4)2 + S → [Cd10S4(SPh)16](NMe4) 4
3) [Cd10S4(SPh)16](NMe4) 4 → (加熱)→[Cd10S4(SPh)12]
The synthesis route (reaction formula) of the CdS cluster Cd 10 S 4 (SPh) 12 is as follows.
1) Cd (NO 3 ) 2 + PhSH + NMe 4 Cl → [Cd 4 (SPh) 10 ] (NMe 4 ) 2
2) [Cd 4 (SPh) 10 ] (NMe 4 ) 2 + S → [Cd 10 S 4 (SPh) 16 ] (NMe 4 ) 4
3) [Cd 10 S 4 (SPh) 16 ] (NMe 4 ) 4 → (Heating) → [Cd 10 S 4 (SPh) 12 ]

Zn10S4(SPh)12は、上記反応において硝酸カドミウムCd(NO3)2に代えて硝酸亜鉛を用いることで合成できる。 Zn 10 S 4 (SPh) 12 can be synthesized by using zinc nitrate instead of cadmium nitrate Cd (NO 3 ) 2 in the above reaction.

CdSeクラスターCd10Se4(SPh)12の合成ルート(反応式)は以下のとおりである。
1) Cd(NO3)2 + PhSH + NMe4Cl → [Cd4(SPh)10](NMe4)2
2) [Cd4(SPh)10](NMe4)2 + Se → [Cd10Se4(SPh)16](NMe4) 4
3) [Cd10Se4(SPh)16](NMe4) 4 → (加熱)→[Cd10Se4(SPh)12]
The synthesis route (reaction formula) of the CdSe cluster Cd 10 Se 4 (SPh) 12 is as follows.
1) Cd (NO 3 ) 2 + PhSH + NMe 4 Cl → [Cd 4 (SPh) 10 ] (NMe 4 ) 2
2) [Cd 4 (SPh) 10 ] (NMe 4 ) 2 + Se → [Cd 10 Se 4 (SPh) 16 ] (NMe 4 ) 4
3) [Cd 10 Se 4 (SPh) 16 ] (NMe 4 ) 4 → (Heating) → [Cd 10 Se 4 (SPh) 12 ]

上記合成ルートにおいて、1)2)は、I. G. Dance, A. Choy, M. L. Scudder, J. Am. Chem. Soc.1984, 106, 6285に記載の方法に従って実施できる。3)はCdSクラスターについては、W. E. Farneth, N. Herron, Y. Wang, Chem. Mater.1992, 4, 916に記載の熱分解法を用いて合成でき、CdSeクラスターも同様に合成できる。   In the above synthesis route, 1) 2) can be carried out according to the method described in I. G. Dance, A. Choy, M. L. Scudder, J. Am. Chem. Soc. 1984, 106, 6285. 3) CdS clusters can be synthesized using the thermal decomposition method described in W. E. Farneth, N. Herron, Y. Wang, Chem. Mater. 1992, 4, 916, and CdSe clusters can be synthesized in the same manner.

本発明の化合物は、クラスター構造を有していると考えられ、その構造を以下に示す。

Figure 0004904490
The compound of the present invention is considered to have a cluster structure, and the structure is shown below.
Figure 0004904490

上記クラスター構造を有する化合物は、コロイド状の硫化カドミウムナノ粒子と類似した半導体的な電子構造をもち、それに由来する独特な吸収・発光特性を有する。尚、コロイド状の硫化カドミウムナノ粒子は、コロイド状のナノ粒子の分子モデルとして注目されており、本発明の上記クラスター構造を有する化合物も、ナノ粒子に分類できる。   The compound having the cluster structure has a semiconducting electronic structure similar to colloidal cadmium sulfide nanoparticles, and has unique absorption and emission characteristics derived therefrom. Colloidal cadmium sulfide nanoparticles are attracting attention as a molecular model of colloidal nanoparticles, and the compounds having the cluster structure of the present invention can also be classified as nanoparticles.

本発明は、上記本発明の化合物を、被験水溶液に共存させ、水溶液の色の変化から、被験水溶液に含まれる金属イオンの有無及び/又は濃度を検出することを含む、金属イオンの検出方法に関する。   The present invention relates to a method for detecting a metal ion, which comprises detecting the presence and / or concentration of a metal ion contained in a test aqueous solution from a change in the color of the aqueous solution by allowing the compound of the present invention to coexist in a test aqueous solution. .

被験水溶液は、例えば、川、湖、海などの環境水であることができる。本発明の方法は、多量の塩が共存しても、分析を妨げないことから、海水の分析には特に有効である。また、土壌、汚泥などは抽出、ろ過をして得た水溶液を被験水溶液とすることができる。   The aqueous test solution can be, for example, environmental water such as a river, a lake, or the sea. The method of the present invention is particularly effective for analysis of seawater because it does not interfere with analysis even when a large amount of salt coexists. Moreover, the aqueous solution obtained by extracting and filtering soil, sludge, etc. can be used as the test aqueous solution.

被験水溶液における本発明の化合物の濃度は、本発明の化合物と被験水溶液中の金属イオンが形成した錯体の吸収を肉眼で判別し、または分光光度計で測定することができる程度に前記錯体が成形するように、調整することが適当である。錯体の種類によっても違いはあるが、分光光度計であれば、5.0 x 10-6 mol/Lあれば十分検出可能であり、肉眼では、その1オーダーくらい上の10-5〜10-4 mol/Lの濃度であれば、十分検出かのうである。 The concentration of the compound of the present invention in the test aqueous solution is determined so that the complex is formed to such an extent that the absorption of the complex formed by the compound of the present invention and the metal ion in the test aqueous solution can be discriminated with the naked eye or measured with a spectrophotometer. It is appropriate to make adjustments. Although there is a difference depending on the type of complex, if it is a spectrophotometer, 5.0 x 10 -6 mol / L can be detected sufficiently, and with the naked eye it is 10 -5 to 10 -4 mol, which is one order higher than that. If the concentration is / L, the detection is sufficient.

従って、分光光度計での測定であれば、被験水溶液における本発明の化合物の濃度は、例えば、5 x 10-6〜2 x 10-5 mol/Lの範囲とすることが適当である。被験水溶液における本発明の化合物の濃度をこの範囲とすることで、数ppmオーダーの重金属イオンの検出が可能である。 Therefore, for measurement with a spectrophotometer, the concentration of the compound of the present invention in the aqueous test solution is suitably in the range of, for example, 5 × 10 −6 to 2 × 10 −5 mol / L. By setting the concentration of the compound of the present invention in the test aqueous solution within this range, heavy metal ions on the order of several ppm can be detected.

本発明の検出方法では、例えば、金属イオンとして、Hg2+, Pb2+, Ag+, Cu2+を検出することができる。 In the detection method of the present invention, for example, Hg 2+ , Pb 2+ , Ag + , and Cu 2+ can be detected as metal ions.

上記本発明の化合物を含む水溶液は、これら化合物単独で水溶液に存在する場合には、無色透明である。それに対して、上記いずれかの金属イオンと上記本発明の化合物を含む水溶液は、350〜450nmの波長範囲において、着色を示す。従って、水溶液の色の変化から、被験水溶液に含まれる金属イオンの有無を検出することができる。さらに、水溶液の色の変化から、被験水溶液に含まれる金属イオン濃度を定量することもできる。この場合、この波長範囲における吸光量を測定することで、金属イオン濃度を定量することができる。より好ましく水溶液の400nmにおける吸光量を測定することで金属イオン濃度を定量するができる。尚、この場合、水溶液中の金属イオン濃度と吸光量との検量線を予め作成しておく。このように、本発明の検出方法では、水溶液中の金属イオンの定量が可能である。   The aqueous solution containing the compound of the present invention is colorless and transparent when these compounds are present alone in the aqueous solution. On the other hand, the aqueous solution containing any of the above metal ions and the compound of the present invention shows coloration in the wavelength range of 350 to 450 nm. Therefore, the presence or absence of metal ions contained in the test aqueous solution can be detected from the change in the color of the aqueous solution. Furthermore, the metal ion concentration contained in the test aqueous solution can be quantified from the change in the color of the aqueous solution. In this case, the metal ion concentration can be quantified by measuring the amount of light absorption in this wavelength range. More preferably, the metal ion concentration can be quantified by measuring the absorbance of the aqueous solution at 400 nm. In this case, a calibration curve between the metal ion concentration in the aqueous solution and the absorbance is prepared in advance. Thus, in the detection method of the present invention, metal ions in an aqueous solution can be quantified.

さらに本発明は、水溶液に含まれる金属イオンを分離する方法を包含する。この方法は、金属イオンを含有する水溶液に、上記本発明の化合物を混合し、水溶液中に含まれる金属イオンと本発明の化合物との錯体を形成する。次いで、形成した錯体を、水溶液から分離する。錯体は、金属イオンを含む水溶液に本発明の化合物を室温で混ぜるだけで形成できる。   Furthermore, this invention includes the method of isolate | separating the metal ion contained in aqueous solution. In this method, the compound of the present invention is mixed with an aqueous solution containing a metal ion to form a complex of the metal ion contained in the aqueous solution and the compound of the present invention. The formed complex is then separated from the aqueous solution. The complex can be formed by simply mixing the compound of the present invention in an aqueous solution containing metal ions at room temperature.

形成した錯体の水溶液からの分離は、例えば、溶媒抽出により行うことができる。例えば、溶媒抽出は、溶媒としてクロロホルムを用いると、溶媒側に錯体は移行する。水溶液中に含まれる金属イオンを捕捉するに十分量の本発明の化合物を用いることで、水溶液中の金属イオンを除去することができる。   Separation of the formed complex from the aqueous solution can be performed, for example, by solvent extraction. For example, in the solvent extraction, when chloroform is used as a solvent, the complex moves to the solvent side. By using a sufficient amount of the compound of the present invention to capture the metal ions contained in the aqueous solution, the metal ions in the aqueous solution can be removed.

以上述べた特性を利用して、本発明の化合物(ナノ粒子)は重金属イオン、特に毒性の高いHg2+, Pb2+の簡便な比色センシングに利用できる。特に1)大掛かりで高価な分析機器を使用しない、2)脱塩などの前処理を必要としない、3)類似の金属イオンに対して選択的に応答する、などの特性は、環境中の水サンプルに含まれる重金属イオンの「その場分析」による迅速なスクリーニングが可能にすると期待できる。 Utilizing the characteristics described above, the compound (nanoparticles) of the present invention can be used for simple colorimetric sensing of heavy metal ions, particularly highly toxic Hg 2+ and Pb 2+ . In particular, characteristics such as 1) not using large and expensive analytical instruments, 2) no pre-treatment such as desalting, 3) selective response to similar metal ions, etc. It can be expected that rapid screening by “in situ analysis” of heavy metal ions contained in a sample will be possible.

より一層の感度向上のため、濃縮パーツ、簡易分光光度計とアセンブル化することもかのうである。これらとの組み合わせにより、専門的な知識を持たなくても利用可能なキットとして利用できる可能性がある。また、先に述べたように本の化合物(クラスター)は水と混和しないクロロホルム、ベンゼンにも溶解し、その場合は水中に溶け込んだPb2+, Hg2+イオンを、これら有機溶媒中に効率的に抽出することができる(モル比で10倍程度までは確認済み)。従って、本クラスターは水中の重金属イオンの除去材料としても利用できる可能性がある。 In order to further improve the sensitivity, it is also possible to assemble with a concentration part and a simple spectrophotometer. In combination with these, there is a possibility that it can be used as a kit that can be used without specialized knowledge. As mentioned earlier, this compound (cluster) is also soluble in chloroform and benzene, which are immiscible with water. In that case, Pb 2+ and Hg 2+ ions dissolved in water are efficiently dissolved in these organic solvents. Can be extracted (confirmed up to about 10 times in molar ratio). Therefore, this cluster may be used as a material for removing heavy metal ions in water.

以下、本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1

Figure 0004904490
Example 1
Figure 0004904490

4,4'-ジチオジ(N-(2-(2-(2-メトキシエトキシ)エトキシ)エチル)ベンズアミド(3)
2-3滴のDMFを含む乾燥THF(10 ml)中に懸濁させた4, 4'-ジチオジベンゾイックアシド[R. S. Senger, V. N. Nemykin, P. Basu, New J. Chem., 2003, 27, 1115-1123] (2, 0.400 g, 1.30 mmol)に、シュウ酸クロリド (1.5 mL, 17 mmol)を0℃窒素下で滴下した。室温で5時間攪拌後、得られた黄色の均一溶液を真空下で乾固して、酸クロリドを粘性の黄色固体として得た。この固体を脱水ジクロロメタン (10 mL) に溶解し、そこに2-[2-(2-メトキシエトキシ)エトキシ]エチルアミン[P. Pengo, S. Polizzi, M. Battagliarin, L. Pasquato, Paolo Scrimin, J. Mater. Chem., 2003, 13, 2471-2478] (0.630 g, 3.86 mmol) の乾燥ジクロロメタン/トリエチルアミン (12 mL、5/1 v/v) 溶液に0℃下で加えたのち、ゆっくりと室温に戻してそのまま一晩撹拌した。揮発成分を減圧で留去した後、粗生成物をシリカゲルカラム(関東化学, Silica Gel 60N, 展開溶媒:クロロホルム/メタノール=10/1)を用いて分離精製し、4,4'-ジチオジ(N-(2-(2-(2-メトキシエトキシ)エトキシ)エチル)ベンズアミド(3) を黄色の油状物質として得た 0.81 g, 100%)。
4,4'-dithiodi (N- (2- (2- (2-methoxyethoxy) ethoxy) ethyl) benzamide (3)
4, 4'-dithiodibenzoic acid suspended in dry THF (10 ml) containing 2-3 drops of DMF [RS Senger, VN Nemykin, P. Basu, New J. Chem., 2003, 27, 1115-1123] (2, 0.400 g, 1.30 mmol) was added dropwise oxalic chloride (1.5 mL, 17 mmol) under nitrogen at 0 ° C. After stirring at room temperature for 5 hours, the resulting yellow homogeneous solution was dried under vacuum to give the acid chloride as a viscous yellow solid. This solid was dissolved in dehydrated dichloromethane (10 mL), and 2- [2- (2-methoxyethoxy) ethoxy] ethylamine [P. Pengo, S. Polizzi, M. Battagliarin, L. Pasquato, Paolo Scrimin, J Mater. Chem., 2003, 13, 2471-2478] (0.630 g, 3.86 mmol) in a solution of dry dichloromethane / triethylamine (12 mL, 5/1 v / v) at 0 ° C. and then slowly at room temperature The mixture was stirred again overnight. After distilling off volatile components under reduced pressure, the crude product was separated and purified using a silica gel column (Kanto Chemical Co., Silica Gel 60N, developing solvent: chloroform / methanol = 10/1), and 4,4′-dithiodi (N -(2- (2- (2-methoxyethoxy) ethoxy) ethyl) benzamide (3) was obtained as a yellow oil (0.81 g, 100%).

1H NMR δ (400 MHz; CDCl3) 7.75 (4H, d, Ar 3-H, 5-H), 7.52 (4H, d, Ar 2-H, 6-H), 6.84 (2H, br, NH), 3.70-3.60 (20H, m, CH2(OC2H4)3), 3.51 (4H, m, NCH2), 3.30 (6H, s, OCH3) 1 H NMR δ (400 MHz; CDCl 3 ) 7.75 (4H, d, Ar 3-H, 5-H), 7.52 (4H, d, Ar 2-H, 6-H), 6.84 (2H, br, NH ), 3.70-3.60 (20H, m, CH 2 (OC 2 H 4 ) 3 ), 3.51 (4H, m, NCH 2 ), 3.30 (6H, s, OCH 3 )

N-(2-(2-(2-メトキシエトキシ)エトキシ)エチル)-4-メルカプトベンズアミド (4)
2 (1.30 mmol) の乾燥THF/EtOH (30/30 mL)溶液に、0℃下で撹拌しながら少量ずつNaBH4 (0.52 g, 14 mmol) を加え、室温で一晩撹拌した。揮発成分を減圧留去して得られた残渣を水(10 mL)に溶解させた後、1N 塩酸で酸性にして酢酸エチルで抽出した。有機相をMgSO4乾燥後、減圧下で溶媒留去することで、N-(2-(2-(2-メトキシエトキシ)エトキシ)エチル)-4-メルカプトベンズアミド (4)を黄色の油状物質として得た(0.74g, 95%)。本物質は特に精製操作を行うことなく、そのまま続く反応に供した。
N- (2- (2- (2-methoxyethoxy) ethoxy) ethyl) -4-mercaptobenzamide (4)
To a solution of 2 (1.30 mmol) in dry THF / EtOH (30/30 mL), NaBH 4 (0.52 g, 14 mmol) was added little by little with stirring at 0 ° C., and the mixture was stirred overnight at room temperature. The residue obtained by distilling off the volatile components under reduced pressure was dissolved in water (10 mL), acidified with 1N hydrochloric acid, and extracted with ethyl acetate. The organic phase was dried over MgSO 4 and evaporated under reduced pressure to give N- (2- (2- (2-methoxyethoxy) ethoxy) ethyl) -4-mercaptobenzamide (4) as a yellow oily substance. Obtained (0.74 g, 95%). This substance was directly subjected to the reaction without further purification.

1H NMR δ(400 MHz; CDCl3) 7.68 (2H, d, Ar 2- and 6-H), 7.28 (2H, d, Ar 3- and 5-H), 6.84 (1H, br, NH), 3.70-3.60 (10H, m, CH2(OC2H4)3), 3.56 (1H, s, SH), 3.53 (2H, m, NCH2), 3.33 (3H, s, OCH3) 1 H NMR δ (400 MHz; CDCl 3 ) 7.68 (2H, d, Ar 2- and 6-H), 7.28 (2H, d, Ar 3- and 5-H), 6.84 (1H, br, NH), 3.70-3.60 (10H, m, CH 2 (OC 2 H 4 ) 3 ), 3.56 (1H, s, SH), 3.53 (2H, m, NCH 2 ), 3.33 (3H, s, OCH 3 )

Cd10S4(SC6H4CONH(CH2CH2O)3CH3)12 (1a):
乾燥アセトニトリル (20 mL) に懸濁させたCd10S4(SPh)12 (200 mg, 0.078 mmol) に、4(1.40g, 4.7 mmol)を加え、室温で20時間攪拌した。得られた均一溶液から揮発成分を減圧下で留去し、残渣をヘキサンで洗浄することで生成したベンゼンチオールを除去後、 さらにジエチルエーテル/テトラヒドロフラン(4/1 v/v) で洗浄することで過剰に仕込んだ4を除去した。得られた固体をベンゼンに溶解させ、凍結乾燥することで、1aを潮解性のある黄色の固体として得た(300mg,80%)。
元素分析: calcd (%) for Cd10S4(C14H20NO4S)12(H2O)6 (C168H252Cd10N12O54S16): C 40.83, H 5.14, N 3.40, S 10.38; found C 40.78, H 4.97, N 3.35, S 10.51.
Cd 10 S 4 (SC 6 H 4 CONH (CH 2 CH 2 O) 3 CH 3 ) 12 (1a):
4 (1.40 g, 4.7 mmol) was added to Cd 10 S 4 (SPh) 12 (200 mg, 0.078 mmol) suspended in dry acetonitrile (20 mL), and the mixture was stirred at room temperature for 20 hours. Volatile components were removed from the obtained homogeneous solution under reduced pressure, and the residue was washed with hexane to remove the benzenethiol produced, and further washed with diethyl ether / tetrahydrofuran (4/1 v / v). Excess charge 4 was removed. The obtained solid was dissolved in benzene and freeze-dried to obtain 1a as a deliquescent yellow solid (300 mg, 80%).
Elemental analysis: calcd (%) for Cd 10 S 4 (C 14 H 20 NO 4 S) 12 (H 2 O) 6 (C 168 H 252 Cd 10 N 12 O 54 S 16 ): C 40.83, H 5.14, N 3.40, S 10.38; found C 40.78, H 4.97, N 3.35, S 10.51.

Cd10Se4(SC6H4CONH(CH2CH2O)3CH3)12 (1b)
1aの合成と同様の手法で、Cd10Se4(SPh)12と7を反応させることによって合成した(yield: 74%)。赤外吸収スペクトルで、Cd10Se4(SPh)12のフェニル基由来の690, 735 cm-1の吸収が消失したのを確認した。
Cd 10 Se 4 (SC 6 H 4 CONH (CH 2 CH 2 O) 3 CH 3 ) 12 (1b)
It was synthesized by reacting Cd 10 Se 4 (SPh) 12 and 7 in the same manner as the synthesis of 1a (yield: 74%). In the infrared absorption spectrum, it was confirmed that absorption at 690,735 cm −1 derived from the phenyl group of Cd 10 Se 4 (SPh) 12 disappeared.

Zn10S4(SC6H4CONH(CH2CH2O)3CH3)12 (1c)
1aの合成と同様の手法で、Zn10S4(SPh)12と7を反応させることによって合成した(yield: 76%)。純度は95%以上であった。赤外吸収スペクトルで、Zn10S4(SPh)12のフェニル基由来の690, 735 cm-1の吸収が消失したのを確認した。
元素分析: calcd(%) for Zn10S4(C14H20NO4S)12 (C168H240Zn10N12O54S16): C 46.25, H 5.54, N 3.85, S 11.76; found C 44.11, H 5.05, N 3.13, S 13.00
Zn 10 S 4 (SC 6 H 4 CONH (CH 2 CH 2 O) 3 CH 3 ) 12 (1c)
It was synthesized by reacting Zn 10 S 4 (SPh) 12 and 7 in the same manner as the synthesis of 1a (yield: 76%). The purity was 95% or more. In the infrared absorption spectrum, it was confirmed that absorption at 690,735 cm −1 derived from the phenyl group of Zn 10 S 4 (SPh) 12 disappeared.
Elemental analysis: calcd (%) for Zn 10 S 4 (C 14 H 20 NO 4 S) 12 (C 168 H 240 Zn 10 N 12 O 54 S 16 ): C 46.25, H 5.54, N 3.85, S 11.76; found C 44.11, H 5.05, N 3.13, S 13.00

実施例2

Figure 0004904490
Example 2
Figure 0004904490

4,4'-ジチオジ(N-(2-(2-(2-メトキシエトキシ)エトキシ)エチル)ベンゾエート(6)
実施例1の化合物3と同様の方法で、2-[2-(2-メトキシエトキシ)エトキシ)エチルアミンの代わりに2-[2-(2-メトキシエトキシ)エトキシ)エタノールを原料に用いて合成を行った (yield: 〜100 %)。
1H NMR δ(400 MHz; CDCl3) 7.98 (4H, d, Ar 3-H, 5-H), 7.52 (4H, d, Ar 2-H, 6-H), 4.45 (4H, t, COOCH2), 3.81 (4H, t, CH2O), 3.75-3.50 (16H, m, CH2(OC2H4)3), 3.35 (6H, s, OCH3)
4,4'-dithiodi (N- (2- (2- (2-methoxyethoxy) ethoxy) ethyl) benzoate (6)
Synthesis was performed in the same manner as in Compound 3 of Example 1, using 2- [2- (2-methoxyethoxy) ethoxy) ethanol as a raw material instead of 2- [2- (2-methoxyethoxy) ethoxy) ethylamine. Went (yield: ~ 100%).
1 H NMR δ (400 MHz; CDCl 3 ) 7.98 (4H, d, Ar 3-H, 5-H), 7.52 (4H, d, Ar 2-H, 6-H), 4.45 (4H, t, COOCH 2 ), 3.81 (4H, t, CH 2 O), 3.75-3.50 (16H, m, CH 2 (OC 2 H 4 ) 3 ), 3.35 (6H, s, OCH 3 )

2-(2-(2-メトキシエトキシ)エトキシ)エチル 4-メルカプトベンゾエート(7)
実施例1の化合物4と同様の手法で化合物(6)をTH/EtOH中で、NaBH4で還元することで合成した (yield: 97 %)。
1H NMR δ(400 MHz; CDCl3) 7.89 (2H, d, Ar 3-H, 5-H), 7.27 (2H, d, Ar 2-H, 6-H), 4.44 (2H, t, COOCH2), 3.81 (2H, t, CH2O), 3.75-3.50 (9H, m, CH2(OC2H4)3, SH), 3.35 (3H, s, OCH3)
2- (2- (2-methoxyethoxy) ethoxy) ethyl 4-mercaptobenzoate (7)
Compound (6) was synthesized by reduction with NaBH 4 in TH / EtOH in the same manner as Compound 4 of Example 1 (yield: 97%).
1 H NMR δ (400 MHz; CDCl 3 ) 7.89 (2H, d, Ar 3-H, 5-H), 7.27 (2H, d, Ar 2-H, 6-H), 4.44 (2H, t, COOCH 2 ), 3.81 (2H, t, CH 2 O), 3.75-3.50 (9H, m, CH 2 (OC 2 H 4 ) 3 , SH), 3.35 (3H, s, OCH 3 )

Cd10S4(SC6H4COO(CH2CH2O)3CH3)12 (5):
1の合成と同様の手法で、Cd10S4(SPh)12と7を反応させることによって合成した(yield: 85%)。純度は95%以上であった。赤外吸収スペクトルで、Cd10S4(SPh)12のフェニル基由来の690, 735 cm-1の吸収が消失したのを確認した。
元素分析: calcd(%) for Cd10S4(C14H19O5S)12 (C168H228Cd10O60S16): C 41.65, H 4.74, S 10.59; found C 40.18, H 4.28, S 12.32
Cd 10 S 4 (SC 6 H 4 COO (CH 2 CH 2 O) 3 CH 3 ) 12 (5):
It was synthesized by reacting Cd 10 S 4 (SPh) 12 and 7 in the same manner as the synthesis of 1 (yield: 85%). The purity was 95% or more. In the infrared absorption spectrum, it was confirmed that absorption at 690,735 cm −1 derived from the phenyl group of Cd 10 S 4 (SPh) 12 disappeared.
Elemental analysis: calcd (%) for Cd 10 S 4 (C 14 H 19 O 5 S) 12 (C 168 H 228 Cd 10 O 60 S 16 ): C 41.65, H 4.74, S 10.59; found C 40.18, H 4.28 , S 12.32

実施例3

Figure 0004904490
Example 3
Figure 0004904490

S-アセチル-1-メルカプト-2-(2-(2-(2-メトキシエトキシ)エトキシ)エチルカルバモイル)エタン(9)
500 mg 2-チオアセチルプロピオン酸(1, 0.500 g, 3.37 mmol), EDC (671 mg, 3.50 mmol), HOBt (54 mg, 0.35 mmol) の脱水CHCl2溶液中に、0℃窒素下で2-[2-(2-メトキシエトキシ)エトキシ)エチルアミン(0.570 g, 3.50 mmol) を滴下した。室温で12時間攪拌後、反応溶液を1N HCl aq. で洗浄した。有機相をMgSO4乾燥後、減圧下で溶媒留去することで、黄色の油状物質4を得た(0.800 g, 81%)。1H NMR δ(400 MHz; CDCl3) 6.18 (1H, br, NH), 3.70-3.42 (12H, m, CH2(OC2H4)3), 3.38 (3H, s, OCH3), 3.15 (2H, t, SCH2), 2.49 (2H, t, CH2CO), 2.32 (3H, t, CH3COS)
S-acetyl-1-mercapto-2- (2- (2- (2-methoxyethoxy) ethoxy) ethylcarbamoyl) ethane (9)
500 mg 2-thioacetylpropionic acid (1, 0.500 g, 3.37 mmol), EDC (671 mg, 3.50 mmol), HOBt (54 mg, 0.35 mmol) in dehydrated CHCl 2 solution at 0 ° C under nitrogen [2- (2-Methoxyethoxy) ethoxy) ethylamine (0.570 g, 3.50 mmol) was added dropwise. After stirring at room temperature for 12 hours, the reaction solution was washed with 1N HCl aq. The organic phase was dried over MgSO 4 and evaporated under reduced pressure to give a yellow oily substance 4 (0.800 g, 81%). 1 H NMR δ (400 MHz; CDCl 3 ) 6.18 (1H, br, NH), 3.70-3.42 (12H, m, CH 2 (OC 2 H 4 ) 3 ), 3.38 (3H, s, OCH 3 ), 3.15 (2H, t, SCH 2 ), 2.49 (2H, t, CH 2 CO), 2.32 (3H, t, CH 3 COS)

N-(2-(2-(2-メトキシエトキシ)エトキシ)エチル) -3-メルカプトプロパンアミド(10)
文献[T. Zheng, M. Burkart, D. E. Richardson, Tetrahedron. Lett., 1999, 40, 603-606]に従って、化合物(9)を アセトン水溶液中でNaOHで処理し脱アセチル化することで合成した(yield:〜100 %)。
1H NMR δ(400 MHz; CDCl3) 6.32 (1H, br, NH), 3.70-3.42 (12H, m, CH2(OC2H4)3), 3.39 (3H, s, OCH3), 2.81 (2H, q, SCH2), 2.50 (2H, t, CH2CO), 1.63 (1H, t, SH)
N- (2- (2- (2-methoxyethoxy) ethoxy) ethyl) -3-mercaptopropanamide (10)
According to the literature [T. Zheng, M. Burkart, DE Richardson, Tetrahedron. Lett., 1999, 40, 603-606], compound (9) was synthesized by treatment with NaOH in acetone solution and deacetylation ( yield: ~ 100%).
1 H NMR δ (400 MHz; CDCl 3 ) 6.32 (1H, br, NH), 3.70-3.42 (12H, m, CH 2 (OC 2 H 4 ) 3 ), 3.39 (3H, s, OCH 3 ), 2.81 (2H, q, SCH 2 ), 2.50 (2H, t, CH 2 CO), 1.63 (1H, t, SH)

Cd10S4(SC2H4CONH(CH2CH2O)3CH3)12 (8):
実施例1の化合物1の合成と同様の手法で、Cd10S4(SPh)12と10を反応させることによって合成した(yield: 78%)
元素分析: calcd (%) for Cd10S4(C10H20NO4S)12 (C120H240Cd10N12O48S16): C 33.86, H 5.68, N 3.95, S 12.05; found C 33.48, H 5.31, N 3.46, S 12.63
Cd 10 S 4 (SC 2 H 4 CONH (CH 2 CH 2 O) 3 CH 3 ) 12 (8):
Synthesized by reacting Cd 10 S 4 (SPh) 12 and 10 in the same manner as the synthesis of compound 1 of Example 1 (yield: 78%)
Elemental analysis: calcd (%) for Cd 10 S 4 (C 10 H 20 NO 4 S) 12 (C 120 H 240 Cd 10 N 12 O 48 S 16 ): C 33.86, H 5.68, N 3.95, S 12.05; found C 33.48, H 5.31, N 3.46, S 12.63

実施例4

Figure 0004904490
Example 4
Figure 0004904490

[CH3(OC2H4)nOC6H4S]2 [T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, science, 2004, 304, 1481-1483] (12)
4, 4'-dihydroxyphenyl disulfide (1.00 g, 3.99 mmol) とCH3(OC2H4)nOTs (nav=7.25, 6.05 g) が入ったDMF (10 mL) 溶液にK2CO3 (2.5 g, 18 mmol) を加え、80 oCに加熱して1晩撹拌した。その後、DMFを加熱減圧下 (〜70℃) で除去し、残渣を水 (50 mL) に溶解してCH2Cl2により抽出を行いった。有機相をNa2SO4乾燥後、揮発成分を減圧で留去してから、粗生成物をシリカゲルカラム(関東化学, Silica Gel 60N, 展開溶媒:クロロホルム/メタノール=10/1)を用いて分離精製することにより、[CH3(OC2H4)nOC6H4S]2を黄色の油状物質として得た (4 g, 〜100%)。
1H NMR δ(400 MHz; CDCl3) 7.36 (4H, d, Ar 3-H, 5-H), 6.84 (4H, d, Ar 2-H, 6-H), 4.10 (4H, t, OCH2), 3.84 (4H, t, CH2O), 3.75-3.50 (60H, m, CH2(OC2H4)n), 3.36 (6H, s, OCH3)
[CH 3 (OC 2 H 4 ) n OC 6 H 4 S] 2 [T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, science, 2004, 304, 1481-1483] (12)
4, 2'-dihydroxyphenyl disulfide (1.00 g, 3.99 mmol) and CH 3 (OC 2 H 4 ) n OTs (n av = 7.25, 6.05 g) in DMF (10 mL) solution with K 2 CO 3 (2.5 g, 18 mmol) was added, heated to 80 ° C. and stirred overnight. Thereafter, DMF was removed under heating under reduced pressure (˜70 ° C.), and the residue was dissolved in water (50 mL) and extracted with CH 2 Cl 2 . After the organic phase is dried over Na 2 SO 4 , volatile components are distilled off under reduced pressure, and then the crude product is separated using a silica gel column (Kanto Chemical, Silica Gel 60N, developing solvent: chloroform / methanol = 10/1). Purification gave [CH 3 (OC 2 H 4 ) n OC 6 H 4 S] 2 as a yellow oil (4 g, ˜100%).
1 H NMR δ (400 MHz; CDCl 3 ) 7.36 (4H, d, Ar 3-H, 5-H), 6.84 (4H, d, Ar 2-H, 6-H), 4.10 (4H, t, OCH 2 ), 3.84 (4H, t, CH 2 O), 3.75-3.50 (60H, m, CH 2 (OC 2 H 4 ) n ), 3.36 (6H, s, OCH 3 )

CH3(OC2H4)nOC6H4SH (13)
4と同様の手法で化合物(12)をTH/EtOH中で、NaBH4で還元することで合成した (yield: 〜100 %)。
1H NMR δ(400 MHz; CDCl3) 7.24 (2H, d, Ar 3-H, 5-H), 6.81 (2H, d, Ar 2-H, 6-H), 4.08 (2H, t, OCH2), 3.84 (2H, t, CH2O), 3.75-3.58 (30H, m, CH2(OC2H4)n), 3.36 (3H, s, OCH3), 3.35 (1H, s, SH)
CH 3 (OC 2 H 4 ) n OC 6 H 4 SH (13)
Compound (12) was synthesized by reduction with NaBH 4 in TH / EtOH (yield: ˜100%) in the same manner as in 4 .
1 H NMR δ (400 MHz; CDCl 3 ) 7.24 (2H, d, Ar 3-H, 5-H), 6.81 (2H, d, Ar 2-H, 6-H), 4.08 (2H, t, OCH 2 ), 3.84 (2H, t, CH 2 O), 3.75-3.58 (30H, m, CH 2 (OC 2 H 4 ) n ), 3.36 (3H, s, OCH 3 ), 3.35 (1H, s, SH )

Cd10S4(SC6H4O(C2H4O)nCH3)12 [nav=6] (11):
1の合成と同様の手法で、Cd10S4(SPh)12と13を反応させることによって合成した(yield: 82%)
元素分析: calcd (%) for C228H372Cd10O99S16 (n=6): C 44.94, H 6.15, S 8.41; found found C 44.74, H 6.02, S 9.17
Cd 10 S 4 (SC 6 H 4 O (C 2 H 4 O) n CH 3 ) 12 [n av = 6] (11):
Synthesized by reacting Cd 10 S 4 (SPh) 12 and 13 in the same way as the synthesis of 1 (yield: 82%)
Elemental analysis: calcd (%) for C 228 H 372 Cd 10 O 99 S 16 (n = 6): C 44.94, H 6.15, S 8.41; found found C 44.74, H 6.02, S 9.17

実施例5
イオン交換水あるいはHEPES緩衝液に溶解したナノ粒子(濃度= 6.7 x 10-6 (mol/L))に、室温で金属塩(塩化物、硝酸塩など)の水溶液を一定量加えて、吸収スペクトルを測定する。ブランクのスペクトルと比較し評価した。
Example 5
To a nanoparticle (concentration = 6.7 x 10-6 (mol / L)) dissolved in ion-exchanged water or HEPES buffer, add a certain amount of an aqueous solution of metal salt (chloride, nitrate, etc.) at room temperature, and obtain an absorption spectrum. taking measurement. Evaluation was made by comparing with a blank spectrum.

<結果と評価>
化合物1aにHgCl2を添加した時の典型的な吸収スペクトル変化を図 1に示す。初めは400nm以上の可視部に吸収がないが、金属イオンの添加とともに長波長(可視領域)側にテーリングがみられるようになり、結果として無色透明から薄い褐色〜黄色に変化した。右上のプロットは、着色の指標として400nmをピックアップし、その吸光度を金属イオン濃度とプロットしたものである。裸眼ではなく機器(分光光度計)を使えば、感度もあがり定量も可能であることを示す。
<Results and evaluation>
FIG. 1 shows a typical change in absorption spectrum when HgCl 2 is added to compound 1a. Initially, there was no absorption in the visible region of 400 nm or more, but with the addition of metal ions, tailing was observed on the long wavelength (visible region) side, resulting in a change from colorless and transparent to light brown to yellow. In the upper right plot, 400 nm is picked up as a coloring index, and the absorbance is plotted against the metal ion concentration. Using an instrument (spectrophotometer) instead of the naked eye indicates that sensitivity can be increased and quantification is possible.

HgCl2に代えて、AgNO3またはCu(NO3)2を添加した場合の結果を図2および3に示す。また、化合物1aを化合物1b、1c、5または8に代えた場合の結果を図4〜8に示す。いずれの場合も、初めは400nm以上の可視部に吸収がないが、金属イオンの添加とともに長波長(可視領域)側にテーリングがみられるようになり、結果として無色透明から薄い褐色〜黄色に変化した。また、各図の右上のプロットは、着色の指標として400nmをピックアップし、その吸光度を金属イオン濃度とプロットしたものである。裸眼ではなく機器(分光光度計)を使えば、感度もあがり定量も可能であることを示す。 The results when AgNO 3 or Cu (NO 3 ) 2 is added instead of HgCl 2 are shown in FIGS. Moreover, the result at the time of replacing the compound 1a with the compound 1b, 1c, 5 or 8 is shown to FIGS. In either case, initially there is no absorption in the visible region of 400 nm or more, but with the addition of metal ions, tailing will be seen on the long wavelength (visible region) side, resulting in a change from colorless and transparent to light brown to yellow did. In addition, the plot in the upper right of each figure is obtained by picking up 400 nm as a coloring index and plotting the absorbance with the metal ion concentration. Using an instrument (spectrophotometer) instead of the naked eye indicates that sensitivity can be increased and quantification is possible.

実施例6
有害重金属イオンの除去方法
HgCl2(14mg)の水溶液(50mL)に化合物1a(50mg)を室温で加え両者を錯形成させ、そこにクロロホルム (50mL)と飽和食塩水(50mL)を加えた。分液ロートで分液すると1a-Hg錯体は水相からクロロホルム相に抽出され、結果として水中から水銀が取り除かれた。
Example 6
How to remove harmful heavy metal ions
Compound 1a (50 mg) was added to an aqueous solution (50 mL) of HgCl 2 (14 mg) at room temperature to form a complex, and chloroform (50 mL) and saturated brine (50 mL) were added thereto. Separation with a separatory funnel extracted the 1a-Hg complex from the aqueous phase to the chloroform phase, resulting in the removal of mercury from the water.

本発明は、化学分析、環境分野等に有用である。   The present invention is useful in chemical analysis, environmental fields, and the like.

化合物1aとHgCl2との吸収スペクトル変化Absorption spectrum change between compound 1a and HgCl 2 化合物1aとAgNO3との吸収スペクトル変化Absorption spectrum change between compound 1a and AgNO 3 化合物1aとCu(NO3)2との吸収スペクトル変化Absorption spectrum change between compound 1a and Cu (NO 3 ) 2 化合物1bとHgCl2との吸収スペクトル変化Absorption spectrum change between compound 1b and HgCl 2 化合物1cとHgCl2との吸収スペクトル変化Absorption spectrum change between compound 1c and HgCl 2 化合物5とHgCl2との吸収スペクトル変化Absorption spectrum change between compound 5 and HgCl 2 化合物5とCu(NO3)2との吸収スペクトル変化Absorption spectrum change between compound 5 and Cu (NO 3 ) 2 化合物8とHgCl2との吸収スペクトル変化Absorption spectrum change between compound 8 and HgCl 2

Claims (9)

一般式(1):M10412で表される化合物。
[式中、MはCdまたはZnであり、
Xは、SまたはSeであり、
Rは、下記R1〜R4で示されるいずれの基である。R1〜R4中、n1〜n4は、独立に、1〜10の整数である。]
Figure 0004904490
Formula (1): M 10 X 4 compound represented by R 12.
[Wherein M is Cd or Zn;
X is S or Se,
R is any group represented by the following R 1 to R 4 . In R 1 to R 4 , n 1 to n 4 are independently an integer of 1 to 10. ]
Figure 0004904490
1〜n3は3であり、n4は6である請求項1に記載の化合物。 The compound according to claim 1, wherein n 1 to n 3 are 3 and n 4 is 6. 被験水溶液に請求項1または2に記載の化合物を共存させ、水溶液の色の変化から、被験水溶液に含まれる金属イオンの有無及び/又は濃度を検出することを含む、金属イオンの検出方法。 A method for detecting a metal ion, comprising: coexisting the compound according to claim 1 or 2 in a test aqueous solution, and detecting the presence and / or concentration of the metal ion contained in the test aqueous solution from a change in the color of the aqueous solution. 金属イオンがHg2+, Pb2+, Ag+, またはCu2+である請求項3に記載の検出方法。 The detection method according to claim 3, wherein the metal ion is Hg 2+ , Pb 2+ , Ag + , or Cu 2+ . 金属イオンの分析が、金属イオンの定量である請求項3または4に記載の検出方法。 The detection method according to claim 3 or 4, wherein the analysis of metal ions is determination of metal ions. 水溶液の色の変化を350〜450nmの波長範囲の吸光量を測定することで検出する請求項3〜5のいずれか1項に記載の検出方法。 The detection method according to any one of claims 3 to 5, wherein a change in the color of the aqueous solution is detected by measuring an absorbance in a wavelength range of 350 to 450 nm. 水溶液の色の変化を400nmにおける吸光量を測定することで検出する請求項3〜5のいずれか1項に記載の検出方法。 The detection method according to any one of claims 3 to 5, wherein a change in the color of the aqueous solution is detected by measuring an absorbance at 400 nm. 水溶液に含まれる金属イオンを分離する方法であって、前記水溶液に請求項1または2に記載の化合物を混合し、水溶液に形成した前記化合物と金属イオンとの錯体を、前記水溶液から分離することを含む、前記方法。 A method for separating metal ions contained in an aqueous solution, wherein the compound according to claim 1 or 2 is mixed with the aqueous solution, and the complex of the compound and metal ions formed in the aqueous solution is separated from the aqueous solution. Said method. 錯体の水溶液からの分離を溶媒抽出により行う請求項8に記載の方法。 The method according to claim 8, wherein the complex is separated from the aqueous solution by solvent extraction.
JP2006066443A 2006-03-10 2006-03-10 Nanoparticle compound, metal ion detection method and removal method using this compound Active JP4904490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066443A JP4904490B2 (en) 2006-03-10 2006-03-10 Nanoparticle compound, metal ion detection method and removal method using this compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066443A JP4904490B2 (en) 2006-03-10 2006-03-10 Nanoparticle compound, metal ion detection method and removal method using this compound

Publications (2)

Publication Number Publication Date
JP2007238558A JP2007238558A (en) 2007-09-20
JP4904490B2 true JP4904490B2 (en) 2012-03-28

Family

ID=38584436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066443A Active JP4904490B2 (en) 2006-03-10 2006-03-10 Nanoparticle compound, metal ion detection method and removal method using this compound

Country Status (1)

Country Link
JP (1) JP4904490B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929548B1 (en) * 2007-12-31 2009-12-03 한국화학연구원 Novel cadmium aminoalkoxide compounds and preparation methods thereof
EP2492259A1 (en) * 2011-02-25 2012-08-29 ecoatech GmbH Thiolates as non-migrating PVC softener
CN102183516B (en) * 2011-03-04 2013-01-16 南京工业大学 Nano gold colorimetric method for simply and cheaply detecting mercury ions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799432B2 (en) * 1996-07-04 1998-09-17 工業技術院長 Reagents for measuring heavy metals and transition metals
US6426513B1 (en) * 1998-09-18 2002-07-30 Massachusetts Institute Of Technology Water-soluble thiol-capped nanocrystals
US6660379B1 (en) * 1999-02-05 2003-12-09 University Of Maryland, Baltimore Luminescence spectral properties of CdS nanoparticles
JP2002121549A (en) * 2000-06-26 2002-04-26 Mitsubishi Chemicals Corp Ultrafine semiconductor particle
JP3835135B2 (en) * 2000-07-27 2006-10-18 三菱化学株式会社 Semiconductor ultrafine particles formed by bonding amino groups
JP2005098760A (en) * 2003-09-22 2005-04-14 National Institute Of Advanced Industrial & Technology Lead ion selective coloring material, and lead ion simplified quantitative determining method using coloring material

Also Published As

Publication number Publication date
JP2007238558A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
Isaad et al. A water soluble fluorescent BODIPY dye with azathia-crown ether functionality for mercury chemosensing in environmental media
Cheung et al. Hg2+ sensing in aqueous solutions: an intramolecular charge transfer emission quenching fluorescent chemosensors
CN108456514B (en) Fluorescein fluorescent probe for detecting mercury ions and preparation method and application thereof
Choi et al. Fluorescence signaling of thiophenol by hydrolysis of dinitrobenzenesulfonamide of 2-(2-aminophenyl) benzothiazole
JP4904490B2 (en) Nanoparticle compound, metal ion detection method and removal method using this compound
Sadhu et al. Cryptand derived fluorescence signaling systems for sensing Hg (II) ion: A comparative study
Jose et al. Sequence-defined oligomer as a modular platform for selective sub-picomolar detection and removal of Hg 2+
KR102051757B1 (en) Novel compounds for the detection of hydrogen sulfide and sensor kit for the detection of hydrogen sulfide using the same
CN108727257B (en) Fluorescent chemical sensor for detecting cadmium ions and preparation method thereof
Kim et al. BODIPY appended crown ethers: selective fluorescence changes for Hg2+ binding
Chaiprasert et al. Fluorescent Janus ring siloxanes for detection of Au (III) and L-cysteine
Maurya et al. Comparative Evaluation of Trace Heavy Metal Ions in Water Sample Using Complexes of Dithioligands by Flame Atomic Absorption Spectrometry.
KR20140006510A (en) Mercury ion selective, ratiometric fluorescent chemosensor derived from amino acid, preparation method thereof and detection method of mercury ion using the same
Zhou et al. A novel highly sensitive and selective fluorescent sensor for imaging mercury (II) in living cells
US8124416B2 (en) Selective and sensitive detection of mercuric ion by novel dansyl-appended calix[4] arene molecules, via fluorescence quenching
KR101079315B1 (en) Novel rhodamine derivative and sensor for detecting mercury ions comprising the same
US8377698B2 (en) 8-hydroxyquinoline acetamide compound, 8-hydroxy quinoline thioamide compound and use thereof
KR20090070860A (en) Acridine derivatives, preparation method thereof and selective detection method of mercury ion and/or cadmium ion using the same
US8034930B2 (en) Boron-dipyrrin compounds comprising thienyl groups, preparation method thereof and chemosensor comprising the same
Sun et al. Highly efficient turn-on fluorescence detection of zinc (II) based on multi-ligand metal chelation
CN111995632B (en) Trimellitamide sensor molecule and synthesis and application thereof
Wang et al. A new “on-off-on” fluorescent sensor for cascade recognition of Hg2+ and S2− ion in aqueous medium
Knoblauch et al. Calix [4] arenes with narrow rim 2-mercaptoethoxy substituents as potential precursor molecules for metallacages and sensors
CN106008354B (en) A kind of compound for detecting mercury ion and its preparation method and application
CN111777575B (en) High-sensitivity fluorescent probe for detecting oxalyl chloride and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150