JP4904133B2 - Charge monitoring device and ion generation device performance evaluation method - Google Patents

Charge monitoring device and ion generation device performance evaluation method Download PDF

Info

Publication number
JP4904133B2
JP4904133B2 JP2006320692A JP2006320692A JP4904133B2 JP 4904133 B2 JP4904133 B2 JP 4904133B2 JP 2006320692 A JP2006320692 A JP 2006320692A JP 2006320692 A JP2006320692 A JP 2006320692A JP 4904133 B2 JP4904133 B2 JP 4904133B2
Authority
JP
Japan
Prior art keywords
conductor
charge
conductor member
axis direction
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006320692A
Other languages
Japanese (ja)
Other versions
JP2008112707A (en
Inventor
憲雄 村▲崎▼
健吉 和泉
秀海 永田
洋介 榎本
功 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shishido Electrostatic Ltd
Original Assignee
Shishido Electrostatic Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishido Electrostatic Ltd filed Critical Shishido Electrostatic Ltd
Priority to JP2006320692A priority Critical patent/JP4904133B2/en
Publication of JP2008112707A publication Critical patent/JP2008112707A/en
Application granted granted Critical
Publication of JP4904133B2 publication Critical patent/JP4904133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Elimination Of Static Electricity (AREA)

Description

本発明は、帯電物の除電に使用されるイオン生成装置の性能を評価するための帯電モニタ装置に関する。さらに、本発明はこの帯電モニタ装置を使用してイオン生成装置の性能を評価する方法に関する。   The present invention relates to a charge monitoring device for evaluating the performance of an ion generating device used for static elimination of a charged object. Furthermore, the present invention relates to a method for evaluating the performance of an ion generation device using this charge monitoring device.

イオン生成装置(いわゆるイオナイザ)は、一般に、放電針とこれに対向する対向電極との間に高電圧を印加することにより、放電針からコロナ放電を発生させる。そして、このコロナ放電によって、空気をイオン化して、正および負の空気イオンを生成する。この種のイオン生成装置は、生成した正および負の空気イオンによって、帯電物の電荷を中和できることから、通常、帯電物の除電を行なう除電装置として使用される。   In general, an ion generation device (so-called ionizer) generates a corona discharge from a discharge needle by applying a high voltage between the discharge needle and a counter electrode facing the discharge needle. And by this corona discharge, air is ionized and positive and negative air ions are generated. This type of ion generation device can neutralize the charge of the charged material by the generated positive and negative air ions, and thus is normally used as a charge removal device that neutralizes the charged material.

この種のイオン生成装置の除電特性やイオンバランスなどを評価するための装置として、IEC 61340−5−1や、JIS TR C 0027−1で規格化された帯電プレートモニタと言われる装置(例えば非特許文献1、2を参照)が用いられている。図9は、この帯電プレートモニタ装置の概略構成を示す図である。   As an apparatus for evaluating the static elimination characteristics, ion balance, and the like of this type of ion generation apparatus, an apparatus called a charged plate monitor standardized by IEC 61340-5-1 or JIS TR C0027-1 (for example, a non-existing apparatus). Patent Documents 1 and 2) are used. FIG. 9 is a diagram showing a schematic configuration of the charging plate monitor device.

図示の如く、この帯電プレートモニタ装置は、帯電プレート100と、この帯電プレート100にスイッチ101を介して正または負の直流高電圧を印加する高圧電源102と、帯電プレート100の電位を非接触センサ103を介して測定する表面電位測定装置104と、帯電プレート100の電位の減衰時間を測定するタイマ105とを備えている。   As shown in the figure, this charging plate monitoring device includes a charging plate 100, a high voltage power source 102 for applying a positive or negative DC high voltage to the charging plate 100 via a switch 101, and a potential of the charging plate 100 as a non-contact sensor. The surface potential measuring device 104 that measures the voltage via the 103 and the timer 105 that measures the decay time of the potential of the charging plate 100 are provided.

帯電プレート100は、150mm角の金属製のプレート(方形板状の導体)であり、接地された金属板106に絶縁物107を介して取り付けられている。この帯電プレート100が、擬似的な帯電物として機能するものである。   The charging plate 100 is a 150 mm square metal plate (rectangular plate-like conductor), and is attached to a grounded metal plate 106 via an insulator 107. The charging plate 100 functions as a pseudo charged object.

このような帯電プレートモニタ装置を使用して、イオン生成装置の性能評価を行なう場合、高圧電源102から帯電プレート100に+1000Vあるいは−1000Vの直流高電圧が印加され、該帯電プレート100が帯電される。そして、この帯電状態で、帯電プレート100に対向配置したイオン生成装置を動作させ、帯電プレート100の電荷を中和させる(帯電プレート100の除電を行なう)。   When evaluating the performance of the ion generating apparatus using such a charged plate monitor device, a DC high voltage of +1000 V or −1000 V is applied from the high voltage power source 102 to the charging plate 100, and the charging plate 100 is charged. . Then, in this charged state, the ion generating device disposed opposite to the charging plate 100 is operated to neutralize the charge on the charging plate 100 (to eliminate the charge on the charging plate 100).

このとき、帯電プレート100の電位が、+1000Vから+100Vまで、あるいは−1000Vから−100Vまで減衰するのに要する減衰時間がタイマ105で計測される。また、帯電プレータ100の電位の減衰後の定常状態における帯電プレート100の電位(該電位の定常値)がオフセット電圧として、表面電位測定装置104で測定される。これらの減衰時間およびオフセット電圧が、イオン生成装置の性能評価の指標として使用される。すなわち、減衰時間は、イオン生成装置による帯電物の除電に要する時間に相当するので、該減衰時間が短いほど、短時間で帯電物の除電を行なうことが可能であることを意味する。また、オフセット電圧は、イオン生成装置で発生する正負の空気イオン量のバランス(イオンバランス)の指標となり、該オフセット電圧が0に近いほど、イオンバランスの偏りが小さいことを意味する。
IEC 61340-5-1(1998)の技術報告/“Technical Report : Protection of electronic device from electrostatic Phenomena - General requirments” JIS TR C 0027-1(2002)/「静電気現象からの電子デバイスの保護−一般的要求事項−」の付属書A.6「イオナイザの試験方法と装置」
At this time, the timer 105 measures the decay time required for the potential of the charging plate 100 to decay from +1000 V to +100 V or from −1000 V to −100 V. Further, the surface potential measuring device 104 measures the potential of the charging plate 100 in a steady state after the potential of the charging plater 100 is attenuated (steady value of the potential) as an offset voltage. These decay times and offset voltages are used as indicators for evaluating the performance of the ion generator. That is, the decay time corresponds to the time required for charge removal of the charged object by the ion generating device. Therefore, as the decay time is shorter, it means that charge removal of the charged object can be performed in a shorter time. The offset voltage is an indicator of the balance between the positive and negative air ions generated in the ion generator (ion balance), and the closer the offset voltage is to 0, the smaller the ion balance bias.
Technical report of IEC 61340-5-1 (1998) / “Technical Report: Protection of electronic device from electrostatic Phenomena-General requirments” Appendix A. JIS TR C 0027-1 (2002) / "Protection of electronic devices from electrostatic phenomena-General requirements" 6 “Ionizer Test Method and Equipment”

ところで、イオン生成装置の除電対象とする帯電物は、通常、絶縁物であるか、もしくは、絶縁物と導体とが混在する物体であるので、その帯電時の電荷分布は一般には、均一的にならない。例えば帯電物の1つもしくは複数の局所に正または負の電荷が集中するような電荷分布となる場合が多々ある。また、正の電荷で帯電する局所と負の電荷で帯電する局所とが混在するような場合もある。   By the way, the charged object to be neutralized by the ion generator is usually an insulator or an object in which an insulator and a conductor are mixed, so that the charge distribution during charging is generally uniform. Don't be. For example, there are many cases where the charge distribution is such that positive or negative charges are concentrated on one or a plurality of local parts of the charged object. In some cases, a local area charged with a positive charge and a local area charged with a negative charge are mixed.

一方、イオン生成装置の性能を評価するための前記した従来の帯電プレートモニタ装置では、擬似的な帯電物としての帯電プレート100が導体であるので、これを帯電させると、正または負のいずれかの電荷によって等電位面が形成される。従って、従来の帯電プレートモニタ装置における擬似的な帯電物としての帯電プレート100は、イオン生成装置により実際に除電しようとする帯電物で生じるような種々様々の不均一な電荷分布(正および負の電荷が混在するような電荷分布を含む)を実現することができない。   On the other hand, in the above-described conventional charged plate monitor device for evaluating the performance of the ion generating device, the charged plate 100 as a pseudo charged substance is a conductor, and therefore, when charged, it is either positive or negative. An equipotential surface is formed by the charges. Therefore, the charged plate 100 as a pseudo charged substance in the conventional charged plate monitor apparatus has a variety of non-uniform charge distributions (positive and negative) that occur in the charged substance that is actually neutralized by the ion generator. (Including a charge distribution in which charges are mixed) cannot be realized.

また、帯電物の帯電の仕方によって、帯電物とイオン生成装置との間や、帯電物の局所間で形成される電界のパターンが相違し、ひいては、帯電物の局所毎にイオン生成装置による除電特性が一般には異なるものとなる。このため、擬似的な導体帯電物としての帯電プレートに対するイオン生成装置の除電性能が要求を満たすものであっても、不均一な電荷分布で帯電する実際の帯電物に対するイオン生成装置の除電性能が要求を満たすとは限らない。例えば、実際の帯電物では、十分な除電に要する時間が局所的に長くなり過ぎたり、あるいは、該帯電物の全体の除電が不均一なものとなる(局所的に除電が不十分なものとなる)場合がある。従って、従来の帯電プレートモニタ装置では、不均一な電荷分布で帯電するような帯電物を除電対象とするイオン生成装置の性能の評価を適切に行なうことができないものとなっていた。   In addition, the pattern of the electric field formed between the charged object and the ion generation device or between the charged object regions varies depending on the charging method of the charged object. The characteristics are generally different. For this reason, even if the neutralization performance of the ion generation device with respect to the charging plate as a pseudo conductor charged material satisfies the requirements, the neutralization performance of the ion generation device with respect to the actual charged material charged with a non-uniform charge distribution It does not always meet the requirements. For example, in an actual charged object, the time required for sufficient charge removal becomes too long locally, or the charge removal of the entire charged object becomes uneven (local charge removal is insufficient. There is a case. Therefore, in the conventional charged plate monitor device, it has been impossible to appropriately evaluate the performance of an ion generating device that uses a charged object that is charged with a non-uniform charge distribution as a charge removal target.

なお、帯電プレートの全体を絶縁物により構成しても、該帯電プレートを再現性のある所望の形態で帯電させることは一般には、困難である。   Even if the entire charging plate is made of an insulating material, it is generally difficult to charge the charging plate in a reproducible desired form.

本発明はかかる背景に鑑みてなされたものであり、種々様々の電荷分布を有する擬似的な帯電物を実現でき、イオン生成装置の除電対象とする種々様々の帯電物の除電に関する該イオン生成装置の性能評価を可能とする帯電モニタ装置を提供することを目的とする。また、該帯電モニタ装置を使用して、イオン生成装置の評価を適切に行なうことができる性能評価方法を提供することを目的とする。   The present invention has been made in view of such a background, and can realize a pseudo-charged material having various charge distributions, and the ion generation device related to charge removal of various charged objects to be neutralized by the ion generation device. It is an object of the present invention to provide a charge monitor device that can evaluate the performance of the battery. It is another object of the present invention to provide a performance evaluation method capable of appropriately evaluating an ion generation device using the charge monitoring device.

本発明の帯電モニタ装置は、かかる目的を達成するために、帯電物を除電するための空気イオンを生成するイオン生成装置の性能を評価するための帯電モニタ装置であって、電圧の印加により正極性または負極性にそれぞれ帯電可能な互いに絶縁された複数の導体部材を擬似的な帯電物として備えると共に、各導体部材の電位または電荷量に応じた出力を発生するセンサを備え、前記複数の導体部材は、X軸、Y軸およびZ軸を互いに直交する3軸とする直交座標系のZ軸方向で見たとき、離散的に分布するように配置され、各導体部材の外表面のうちの少なくとも一部が前記イオン生成装置から放出される空気イオンの供給を受ける部分として露出されており、前記複数の導体部材のうちの少なくとも2つ以上の導体部材は、前記Z軸方向での位置が互いに異なるように設けられていることを特徴とする。 In order to achieve the above object, a charge monitoring device of the present invention is a charge monitoring device for evaluating the performance of an ion generating device that generates air ions for neutralizing a charged object. A plurality of conductor members insulated from each other that can be electrically charged or negatively charged as pseudo-charged materials, and sensors that generate an output corresponding to the potential or charge amount of each conductor member. The members are arranged so as to be distributed discretely when viewed in the Z-axis direction of an orthogonal coordinate system in which the X-axis, the Y-axis, and the Z-axis are orthogonal to each other. Of the outer surfaces of the conductor members, is exposed as a portion at least partially supplied with air ions emitted from the ion generating device, at least two conductors member of the plurality of conductors member, the Z-axis direction Wherein the position of the is provided to be different from each other.

かかる本発明に帯電モニタ装置では、前記複数の導体部材のそれぞれが互いに絶縁されているので、それぞれの導体部材を個別に帯電させることができる。すなわち、各導体部材を、各別の大きさまたは極性の電圧で帯電させることができる。そして、これらの複数の導体部材は、Z軸方向で見たときに離散的に分布するように配置されているので、該複数の導体部材の全体によって、少なくとも1次元的または2次元的に変化するような電荷分布(例えば、X軸方向およびY軸方向のうちの一方、または両者の方向で変化するような電荷分布)を有する擬似的な帯電物を実現できることとなる。この場合、各導体部材に印加する電圧の大きさや極性は任意で良いので、種々様々の所望の電荷分布を実現できる。   In the charge monitoring apparatus according to the present invention, since each of the plurality of conductor members is insulated from each other, each conductor member can be charged individually. That is, each conductor member can be charged with a voltage having a different size or polarity. Since the plurality of conductor members are arranged so as to be distributed discretely when viewed in the Z-axis direction, they change at least one-dimensionally or two-dimensionally depending on the whole of the plurality of conductor members. Thus, a pseudo-charged material having such a charge distribution (for example, a charge distribution that changes in one or both of the X-axis direction and the Y-axis direction) can be realized. In this case, since the magnitude | size and polarity of the voltage applied to each conductor member may be arbitrary, various desired electric charge distribution is realizable.

そして、各導体部材の外表面のうちの少なくとも一部が露出されているので、各導体部材を帯電させた後に、複数の導体部材の全体に前記イオン生成装置から空気イオンを供給することによって、各導体部材の除電を行なうことができる。さらに、このとき、前記センサの出力によって、各導体部材毎に、その除電の形態を観測することができる。換言すれば、前記複数の導体部材の全体における、各導体部材の位置に相当する局所毎にイオン生成装置による除電の形態を観測できる。   And since at least a part of the outer surface of each conductor member is exposed, after charging each conductor member, by supplying air ions from the ion generator to the whole of the plurality of conductor members, Each conductor member can be neutralized. Furthermore, at this time, the form of charge removal can be observed for each conductor member by the output of the sensor. In other words, it is possible to observe the mode of charge removal by the ion generating device for each region corresponding to the position of each conductor member in the whole of the plurality of conductor members.

このように、本発明の帯電モニタ装置によれば、前記複数の導体部材の全体によって、種々様々な電荷分布を有する擬似的な帯電物を実現することができると共に、それを除電するようにイオン生成装置を作動させながら、該擬似的な帯電物の局所毎に(各導体部材毎に)除電の形態を観測できるので、種々様々の帯電物の除電に関する該イオン生成装置の性能評価を行なうことが可能となる。   As described above, according to the charge monitoring device of the present invention, pseudo-charged materials having various charge distributions can be realized by the entirety of the plurality of conductor members, and ions can be removed so as to remove charges. Since the form of static elimination can be observed locally (for each conductor member) of the pseudo charged object while operating the generating apparatus, the performance evaluation of the ion generating apparatus regarding the neutralization of various charged objects should be performed. Is possible.

また、本発明の帯電モニタ装置では、前記複数の導体部材のうちの少なくとも2つ以上の導体部材、前記Z軸方向での位置が互いに異なるように設けられている Moreover, the charging monitor device of the present invention, at least two conductors member of the plurality of conductors member is positioned in the Z-axis direction are provided to be different from each other.

このようにすることによって、Z軸方向で見たときに1次元的または2次元的に変化する電荷分布だけでなく、さらにZ軸方向にも変化する電荷分布を前記複数の導体部材の全体によって実現することができる。特に、Z軸方向で見たときの導体部材の配置を2次元的に離散的に分布する配置とすると共に、2つ以上の導体部材のZ軸方向の位置を互いに異ならせるようにした場合には、前記複数の導体部材の全体によって、3次元的な電荷分布を実現できることとなる。   In this way, not only the charge distribution that changes one-dimensionally or two-dimensionally when viewed in the Z-axis direction, but also the charge distribution that also changes in the Z-axis direction is caused by the entirety of the plurality of conductor members. Can be realized. In particular, when the arrangement of the conductor members when viewed in the Z-axis direction is an arrangement that is two-dimensionally discretely distributed, and the positions of two or more conductor members in the Z-axis direction are different from each other. The three-dimensional charge distribution can be realized by the entirety of the plurality of conductor members.

また、本発明の帯電モニタ装置では、前記複数の導体部材は、前記Z軸方向で見たとき、X軸方向およびY軸方向にマトリクス状に配置されていることが好ましい。   In the charge monitoring device of the present invention, it is preferable that the plurality of conductor members are arranged in a matrix in the X-axis direction and the Y-axis direction when viewed in the Z-axis direction.

これによれば、イオン生成装置が除電対象とする帯電物の帯電時の電荷分布の形態によらずに、その電荷分布を擬似する帯電物を前記複数の導体部材の全体によって容易に実現できる。   According to this, the charged material that simulates the charge distribution can be easily realized by the whole of the plurality of conductor members regardless of the form of the charge distribution at the time of charging the charged material to be neutralized by the ion generating device.

次に、本発明のイオン生成装置の性能評価方法は、前記した本発明の帯電モニタ装置を使用して、前記イオン生成装置の性能を評価する方法であって、前記帯電モニタ装置の複数の導体部材のうちの1つ以上の導体部材を、当該1つ以上の導体部材のそれぞれに対応してあらかじめ定めた設定値の電圧の一時的な印加によって正極性または負極性に帯電させ、且つ、前記イオン生成装置から前記各導体部材の外表面の露出部分に前記空気イオンが供給されるように該イオン生成装置を各導体部材から前記Z軸方向に間隔を存して配置した状態で、該イオン生成装置を作動させるステップと、該イオン生成装置の作動中に、前記各導体部材の電位もしくは電荷量の経時変化を該導体部材に対応する前記センサの出力を基に観測するステップとを備えたことを特徴とする。   Next, a method for evaluating the performance of the ion generation apparatus according to the present invention is a method for evaluating the performance of the ion generation apparatus using the above-described charge monitoring apparatus according to the present invention, and a plurality of conductors of the charge monitoring apparatus. One or more conductor members of the member are charged positively or negatively by temporary application of a voltage having a predetermined set value corresponding to each of the one or more conductor members; and In a state where the ion generation device is arranged with a space in the Z-axis direction from each conductor member so that the air ions are supplied from the ion generation device to the exposed portion of the outer surface of each conductor member, A step of operating the generation device, and a step of observing a change over time in the potential or charge amount of each conductor member based on the output of the sensor corresponding to the conductor member during the operation of the ion generation device. And said that there were pictures.

かかる性能評価方法によれば、帯電モニタ装置の複数の導体部材のうちの1つ以上の導体部材を、当該1つ以上の導体部材のそれぞれに対応してあらかじめ定めた設定値の電圧によって正極性または負極性に帯電させることによって、複数の導体部材の全体によって、所望の電荷分布を有する擬似的な帯電物が実現される。なお、帯電を必要としない導体部材(前記設定値の電圧を印加する導体部材以外の導体部材)については、例えばそれを一時的に接地することで、非帯電状態にしておけばよい。   According to such a performance evaluation method, one or more conductor members of the plurality of conductor members of the charge monitoring device are positively charged with a voltage having a predetermined value corresponding to each of the one or more conductor members. Alternatively, by charging negatively, a pseudo charged substance having a desired charge distribution is realized by the entirety of the plurality of conductor members. Note that a conductor member that does not require charging (a conductor member other than the conductor member that applies the voltage of the set value) may be placed in an uncharged state by temporarily grounding it, for example.

次いで、上記の如くイオン生成装置を配置した状態で、該イオン生成装置を作動させることによって、各導体部材に空気イオンを供給し、各導体部材の除電を行なう。そして、このイオン生成装置の作動中に、前記各導体部材の電位もしくは電荷量の経時変化を該導体部材に対応する前記センサの出力を基に観測する。例えば、帯電させた各導体部材の電位もしくは電荷量がイオン生成装置の作動開始時の初期値から所定値まで減衰するのに要する時間や、各導体部材の電位もしくは電荷量の最終的な収束値である定常値を前記センサの出力を基に計測する。これにより、各導体部材毎に、その箇所での除電形態を観測することができる。   Next, by operating the ion generating device with the ion generating device arranged as described above, air ions are supplied to each conductor member, and each conductor member is neutralized. Then, during the operation of the ion generating apparatus, a change with time in the potential or the charge amount of each conductor member is observed based on the output of the sensor corresponding to the conductor member. For example, the time required for the potential or charge amount of each charged conductor member to decay from the initial value at the start of operation of the ion generator to a predetermined value, or the final convergence value of the potential or charge amount of each conductor member Is measured based on the output of the sensor. Thereby, the static elimination form in the location can be observed for every conductor member.

この場合、前記複数の導体部材の全体によって、種々様々な電荷分布を実現でき、また、各導体部材の箇所毎に、その電位もしくは電荷量の経時変化を観測できるので、イオン生成装置による実際の帯電物の除電形態と同様の形態での除電形態を観測することができる。従って、その観測結果を基に、イオン生成装置の評価を適切に行なうことができる。   In this case, a wide variety of charge distributions can be realized by the entirety of the plurality of conductor members, and changes in the potential or charge amount over time can be observed at each conductor member location. It is possible to observe a static elimination form similar to that of a charged object. Therefore, the ion generator can be appropriately evaluated based on the observation result.

本発明の第1実施形態を図1〜図3を参照して説明する。図1は、本実施形態におけるの帯電モニタ装置の外観斜視図、図2は該帯電モニタ装置を上方から見た平面図、図3は図2のIII−III線断面図である。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an external perspective view of a charge monitor device according to the present embodiment, FIG. 2 is a plan view of the charge monitor device viewed from above, and FIG. 3 is a cross-sectional view taken along line III-III in FIG.

図1を参照して、本実施形態の帯電モニタ装置1は、基台2と、この基台2上に複数の支柱3を介して支持された基板4と、この基板4の上側に配置された複数(図では49個)の導体部材5を備える。なお、本実施形態の説明は、便宜上、図1に示すようにX軸、Y軸およびZ軸を互いに直交する3軸とする直交座標系Cを想定して行なう。直交座標系Cの各軸の方向は、互いに直交している限り、どのような方向にとってもよいが、本実施形態の説明では、Z軸の方向を上下方向(鉛直方向)、X軸およびY軸の方向を水平方向とする。このことは、後述する他の実施形態でも同様である。   Referring to FIG. 1, a charge monitoring device 1 of the present embodiment is arranged on a base 2, a substrate 4 supported on the base 2 via a plurality of support columns 3, and an upper side of the substrate 4. A plurality of (49 in the figure) conductor members 5 are provided. For the sake of convenience, the present embodiment will be described assuming an orthogonal coordinate system C in which the X axis, the Y axis, and the Z axis are three axes orthogonal to each other, as shown in FIG. The directions of the axes of the orthogonal coordinate system C may be any direction as long as they are orthogonal to each other. However, in the description of the present embodiment, the direction of the Z axis is the vertical direction (vertical direction), the X axis, and the Y axis. The direction of the axis is the horizontal direction. This also applies to other embodiments described later.

基台2は、金属などの導電性材料により平板状に形成され、図示しない接地ケーブルを介して接地されている。なお、基台2は、平板状である必要はなく、例えば箱状のものやテーブル状のものであってもよい。基台2に後述する直流高圧電源10や測定器などを取り付けたり、あるいは、収納するようにしてもよい。   The base 2 is formed in a flat plate shape using a conductive material such as metal and is grounded via a ground cable (not shown). Note that the base 2 does not have to be flat, and may be, for example, a box or a table. A DC high-voltage power supply 10 and a measuring instrument, which will be described later, may be attached to or stored in the base 2.

基板4は、本実施形態では絶縁物からなる方形板状のものであり、基台2の上面と平行な水平姿勢(XY座標平面に平行な姿勢)で基台2の上方に配置されている。そして、該基板4の外周寄りの部分(本実施形態では、基板4の4隅)と基台2との間に介装された複数の支柱3によって、基板4が基台2に支持されている。なお、基板4は方形状である必要ない。   In this embodiment, the substrate 4 has a rectangular plate shape made of an insulator, and is disposed above the base 2 in a horizontal posture parallel to the upper surface of the base 2 (attitude parallel to the XY coordinate plane). . The substrate 4 is supported on the base 2 by a plurality of support columns 3 interposed between portions near the outer periphery of the substrate 4 (four corners of the substrate 4 in this embodiment) and the base 2. Yes. Note that the substrate 4 does not have to be rectangular.

前記複数の導体部材5は、その全体が擬似的な帯電物として機能し、個々の導体部材5が、その擬似的な帯電物の局所部分として機能するものである。各導体部材5は、本実施形態では、互いに同一径および同一の厚さの円板形状に形成され、その材質は例えばステンレスなどの金属である。そして、各導体部材5は、個々の導体部材5に対応して基板4の上面から上方に向かってZ軸方向(基板4の法線方向)に突設された複数の(導体部材5と同数の)円柱状の柱体6のそれぞれの先端面(上端面)に同軸に固着されている。各柱体6は絶縁物から構成されている。また、各導体部材5は、互いに非接触状態で後述する如く配置されている。なお、柱体6は、基板4に接着剤などにより固着してもよいが、基板4と一体に形成してもよい。また、各導体部材5は、接着剤などにより柱体6の先端面に固着してもよいが、該柱体6の先端面に蒸着して形成してもよい。   The plurality of conductor members 5 function as pseudo charged materials as a whole, and the individual conductor members 5 function as local portions of the pseudo charged materials. In this embodiment, each conductor member 5 is formed into a disk shape having the same diameter and the same thickness, and the material thereof is a metal such as stainless steel. Each conductor member 5 has a plurality of (the same number as the conductor members 5) projecting in the Z-axis direction (normal direction of the substrate 4) upward from the upper surface of the substrate 4 corresponding to each conductor member 5. A) are fixed coaxially to the respective front end surfaces (upper end surfaces) of the columnar column 6. Each column 6 is made of an insulator. The conductor members 5 are arranged in a non-contact state as will be described later. The column body 6 may be fixed to the substrate 4 with an adhesive or the like, but may be formed integrally with the substrate 4. Each conductor member 5 may be fixed to the front end surface of the column body 6 with an adhesive or the like, but may be formed by vapor deposition on the front end surface of the column body 6.

上記の如く設けられた複数の導体部材5は、それぞれが固着された柱体6および基板4を介して互いに電気的に絶縁されている。また、各導体部材5の上面および外周面が後述するイオン生成装置から供給される空気イオンを受ける部分として露出されている。   The plurality of conductor members 5 provided as described above are electrically insulated from each other through the column body 6 and the substrate 4 to which the respective conductor members 5 are fixed. Moreover, the upper surface and outer peripheral surface of each conductor member 5 are exposed as a part which receives the air ion supplied from the ion generator mentioned later.

これらの導体部材5の全体は、本実施形態では、次のように離散的に配置されている。すなわち、これらの導体部材5の全体は、それをZ軸方向で見たとき、図2に示すように、X軸方向とY軸方向とにマトリクス状(格子配列状)に並ぶように配置されている。より詳しく言えば、複数の導体部材5の配置をXY座標平面に投影して見たとき、該XY座標平面上で、Y軸方向に間隔を存してX軸と平行に並ぶ複数の直線のそれぞれと、X軸方向に間隔を存してY軸と平行に並ぶ複数の直線のそれぞれとの交点に各導体部材5が位置するように、導体部材5の全体が配置されている。本実施形態では、これらの導体部材5は、互いに接触しないようにX軸方向およびY軸方向にそれぞれ等間隔で配置されている。また、本実施形態では、各導体部材5の基板4からの距離、換言すれば、Z軸方向での各導体部材5の位置は、いずれも同一とされている。従って、導体部材5の全体は、XY座標平面に平行な同一の平面上で離散的に配置されている。   In the present embodiment, the entirety of these conductor members 5 are discretely arranged as follows. That is, the entire conductor members 5 are arranged in a matrix (lattice arrangement) in the X-axis direction and the Y-axis direction as shown in FIG. 2 when viewed in the Z-axis direction. ing. More specifically, when the arrangement of the plurality of conductor members 5 is projected onto the XY coordinate plane, a plurality of straight lines arranged in parallel with the X axis at intervals in the Y axis direction on the XY coordinate plane are viewed. The entire conductor member 5 is disposed so that each conductor member 5 is located at the intersection of each of the plurality of straight lines arranged in parallel with the Y axis at intervals in the X axis direction. In the present embodiment, these conductor members 5 are arranged at equal intervals in the X-axis direction and the Y-axis direction so as not to contact each other. Further, in the present embodiment, the distances of the respective conductor members 5 from the substrate 4, in other words, the positions of the respective conductor members 5 in the Z-axis direction are all the same. Therefore, the entire conductor member 5 is discretely arranged on the same plane parallel to the XY coordinate plane.

図3に示すように、基板4の下面には、各導体部材5の直下の位置で、複数の(導体部材5と同数の)測定用電極部材7がそれぞれ固着されている。各測定用電極部材7は、導電性の円板状のものであり、前記各柱体6の先端面(上端面)と基板4の下面との間で、該柱体6および基板4を該柱体6の軸心方向(Z軸方向)に貫通するように該柱体6および基板4に嵌挿された棒状の導通部材8を介して導体部材5に導通されている。そして、基台2上には、各導体部材5の電位または電荷量に応じた出力をそれぞれ発生する複数のセンサ9が、各導体部材5の直下で、該導体部材5に導通する測定用電極部材7に対向するように固設されている。なお、本実施形態では、各センサ9は、非接触式のセンサであるが、接触式のセンサを使用し、各測定用電極部材7に該センサ9を接触させるようにしてもよい。   As shown in FIG. 3, a plurality of measurement electrode members 7 (the same number as the conductor members 5) are fixed to the lower surface of the substrate 4 at positions immediately below the conductor members 5. Each measurement electrode member 7 is a conductive disk-like member, and the column body 6 and the substrate 4 are connected between the front end surface (upper end surface) of each column body 6 and the lower surface of the substrate 4. The column body 6 is electrically connected to the conductor member 5 via a rod-shaped conduction member 8 fitted and inserted into the column body 6 and the substrate 4 so as to penetrate in the axial direction (Z-axis direction) of the column body 6. On the base 2, a plurality of sensors 9 each generating an output corresponding to the potential or charge amount of each conductor member 5 are electrically connected to the conductor member 5 immediately below each conductor member 5. It is fixed so as to face the member 7. In the present embodiment, each sensor 9 is a non-contact type sensor. However, a contact type sensor may be used so that the sensor 9 is brought into contact with each measurement electrode member 7.

また、本実施形態では、基板4から突設した柱体6の先端面に各導体部材5を固着するようにしたが、各導体部材5を基板4の上面に直接的に固着するようにしてもよい。   In this embodiment, each conductor member 5 is fixed to the front end surface of the column 6 projecting from the substrate 4. However, each conductor member 5 is directly fixed to the upper surface of the substrate 4. Also good.

次に、本実施形態の帯電モニタ装置1を使用して、イオン生成装置の性能を評価する手法を説明する。   Next, a method for evaluating the performance of the ion generation device using the charge monitoring device 1 of the present embodiment will be described.

まず、各導体部材5に帯電させるべき電位の設定値の組(導体部材5の個数分の電位の設定値から成る組)をあらかじめ定めておく。この場合、該電位の設定値の組は、1種類である必要はなく、複数種類でもよい。また、各導体部材5の電位の設定値は、全ての導体部材5に対して同一でもよいが、各導体部材5毎に互いに大きさ(絶対値)もしくは極性が異なる設定値を定めたり、あるいは、導体部材5を複数のグループに分類し、その各グループ毎に、互いに大きさ(絶対値)もしくは極性が異なる設定値を定めてもよい。また、いずれかの導体部材5の電位の設定値を0にしてもよい。   First, a set of potential set values to be charged to each conductor member 5 (a set of potential set values corresponding to the number of conductor members 5) is determined in advance. In this case, the set value of the potential need not be one type, and may be a plurality of types. Further, the set value of the potential of each conductor member 5 may be the same for all the conductor members 5, but each conductor member 5 may have a set value having a different magnitude (absolute value) or polarity, or The conductor members 5 may be classified into a plurality of groups, and set values having different sizes (absolute values) or polarities may be determined for each group. Moreover, the set value of the potential of any conductor member 5 may be set to zero.

このような電位の設定値の組は、評価対象のイオン生成装置に要求される性能、あるいは、イオン生成装置の評価項目、あるいは、該イオン生成装置が除電対象とする帯電物の性状(特に該帯電物の帯電時の電荷分布の傾向)などを考慮して設定すればよい。例えば、特定の帯電物の除電を行なうためのイオン生成装置による該帯電物の除電が適切に行なわれるか否かを評価する場合には、その帯電物で発生し易い電荷の分布(2次元的な分布)に近い分布形態で、各位置の導体部材5の電位の設定値の組を1種類以上、定めることが考えられる。また、例えば、除電対象の種類が特定されない携帯型のイオン生成装置の除電性能を評価する場合には、各導体部材5の電位の設定値の組を任意に複数種類定めることが考えられる。   Such a set of potential set values depends on the performance required for the ion generation device to be evaluated, the evaluation item of the ion generation device, or the property of the charged object to be neutralized by the ion generation device (particularly the It may be set in consideration of the tendency of charge distribution during charging of charged objects). For example, when evaluating whether or not a charged object is appropriately discharged by an ion generator for discharging a specific charged object, a distribution of charges that are likely to be generated by the charged object (two-dimensional It is conceivable that one or more sets of potential set values of the conductor member 5 at each position are determined in a distribution form close to the distribution. Further, for example, when evaluating the charge removal performance of a portable ion generating apparatus in which the type of charge removal target is not specified, it is conceivable to arbitrarily determine a plurality of sets of potential set values for each conductor member 5.

次いで、図3に示すように各導体部材5に直流高圧電源10を接続して、各導体部材5に接地部との間で上記の如く定めた設定値の電圧を一時的に印加し、該導体部材5を帯電させる。なお、その帯電後には、各導体部材5から直流高圧電源10を切り離す。また、電位の設定値が0である導体部材5(帯電させる必要が無い導体部材5)については、それを直流高圧電源10に接続する必要はなく、該導体部材5を一時的に接地することで、該導体部材5を非帯電状態にする。あるいは、直流高圧電源10の出力電圧を0Vに設定可能である場合には、該直流高圧電源10から該導体部材5に0Vの電圧を付与するようにしてもよい。   Next, as shown in FIG. 3, a DC high-voltage power supply 10 is connected to each conductor member 5, and a voltage having a set value determined as described above is temporarily applied to each conductor member 5 between the ground member, The conductor member 5 is charged. Note that the DC high-voltage power supply 10 is disconnected from each conductor member 5 after the charging. Further, it is not necessary to connect the conductor member 5 (the conductor member 5 that does not need to be charged) having a potential setting value of 0 to the DC high-voltage power supply 10, and temporarily ground the conductor member 5. Thus, the conductor member 5 is brought into an uncharged state. Alternatively, when the output voltage of the DC high-voltage power supply 10 can be set to 0 V, a voltage of 0 V may be applied from the DC high-voltage power supply 10 to the conductor member 5.

このように各導体部材5(より正確には、電位の設定値が0Vである導体部材5を除く導体部材5)を帯電させることにより、帯電モニタ装置1に備えた導体部材5の全体によって、種々様々の所望の電荷分布(2次元的な電荷分布)を擬似的に実現できることとなる。例えば、各導体部材5の電位の設定値が全ての導体部材5について同一である場合には、2次元的に均一な電荷分布を擬似的に実現できる。また、例えば、Y軸方向の位置が、ある同一の位置である各導体部材5の電位の設定値が互いに異なるような場合には、そのY軸方向の同一の位置にある導体部材5の列によって、X軸方向に変化する電荷分布を実現できる。   Thus, by charging each conductor member 5 (more precisely, the conductor member 5 excluding the conductor member 5 whose potential setting value is 0 V), the entire conductor member 5 provided in the charge monitoring device 1 is A variety of desired charge distributions (two-dimensional charge distributions) can be realized in a pseudo manner. For example, when the set value of the potential of each conductor member 5 is the same for all the conductor members 5, a two-dimensional uniform charge distribution can be realized in a pseudo manner. Further, for example, when the potential setting values of the conductor members 5 at the same position in the Y-axis direction are different from each other, the row of the conductor members 5 at the same position in the Y-axis direction. Thus, a charge distribution that changes in the X-axis direction can be realized.

補足すると、各導体部材5を帯電させるとき、各導体部材5に導通する測定用電極部材7に直流高圧電源10を接続して、該導体部材5を帯電させてもよい。また、例えば各導体部材5に導通する接続端子を基板4の外周部等に集中させて設けておき、その接続端子を介して直流高圧電源10を各導体部材5に接続するようにしてもよい。さらに、電位の設定値が互いに同一である2つ以上の導体部材5については、それらを互いに接続して導通させた上で、直流高圧電源10に接続して、それらの導体部材5を一括して同電位に帯電させるようにしてもよい。   Supplementally, when each conductor member 5 is charged, the conductor member 5 may be charged by connecting the DC high-voltage power supply 10 to the measurement electrode member 7 conducted to each conductor member 5. Further, for example, connection terminals that are electrically connected to each conductor member 5 may be provided concentrated on the outer periphery of the substrate 4 and the DC high-voltage power supply 10 may be connected to each conductor member 5 via the connection terminals. . Further, for two or more conductor members 5 having the same potential setting value, they are connected to each other and are connected to each other, and then connected to the DC high-voltage power supply 10 so that the conductor members 5 are bundled together. It is also possible to charge the same potential.

上記のように導体部材5を帯電させることに加えて、さらに、図3に仮想線で示すように、評価対象のイオン生成装置Wを、各導体部材5とZ軸方向(上下方向)に所定の間隔を存するようにして、基板4の上方に配置する。このとき、イオン生成装置Wで生成されて放出される空気イオン(正負の空気イオン)が、各導体部材5の露出部分(主に上面)に供給され得るように、該イオン生成装置Wの空気イオン放出部(図示省略)を各導体部材5の上面に臨ませて、該イオン生成装置Wが基板4の上方に配置される。   In addition to charging the conductor member 5 as described above, as shown by a virtual line in FIG. 3, the ion generation device W to be evaluated is predetermined with each conductor member 5 in the Z-axis direction (vertical direction). It arrange | positions above the board | substrate 4 so that this space | interval may exist. At this time, air ions (positive and negative air ions) generated and released by the ion generator W can be supplied to the exposed portions (mainly the upper surface) of each conductor member 5. The ion generating device W is disposed above the substrate 4 with the ion emitting portion (not shown) facing the upper surface of each conductor member 5.

次いで、イオン生成装置Wを作動させ、該イオン生成装置Wから各導体部材5への空気イオン(正負の空気イオン)の供給を開始する。そして、このイオン生成装置Wの作動中に、前記各センサ9の出力を図示しない計測器に取り込んで、各導体部材5の電位または電荷量の経時変化を観測する。より具体的には、例えば、各導体部材5の電位または電荷量が初期値(イオン生成装置Wの作動開始時の値)から、所定値まで減衰するのに要する時間(以下、減衰時間という)や、各導体部材5の電位または電荷量の最終的な収束値である定常値(イオン生成装置Wの作動を開始してから十分な時間が経過した時点での該電位または電荷量の値。以下、オフセット値という)を各センサ9の出力から計測する。なお、各導体部材5の電位の設定値の組を複数種類、定めた場合には、その各組毎に、上記の計測を行なう。そして、これらの計測値を基に、イオン生成装置Wの性能を評価する。   Next, the ion generator W is operated, and supply of air ions (positive and negative air ions) from the ion generator W to each conductor member 5 is started. Then, during the operation of the ion generating apparatus W, the output of each sensor 9 is taken into a measuring instrument (not shown), and a change with time in the potential or charge amount of each conductor member 5 is observed. More specifically, for example, the time required for the potential or charge amount of each conductor member 5 to decay from an initial value (value at the start of operation of the ion generator W) to a predetermined value (hereinafter referred to as decay time). In addition, a steady-state value that is a final convergence value of the potential or charge amount of each conductor member 5 (a value of the potential or charge amount when a sufficient time has elapsed since the operation of the ion generating device W has started). Hereinafter, the offset value is measured from the output of each sensor 9. When a plurality of types of potential set values for each conductor member 5 are determined, the above measurement is performed for each set. And based on these measured values, the performance of the ion production | generation apparatus W is evaluated.

この場合、各導体部材5の電位または電荷量の経時変化を観測することで、各導体部材5の位置(XY座標平面上での2次元的な位置)毎に、イオン生成装置Wによる該導体部材5の除電がどのように行なわれるかを把握することができる。換言すれば、導体部材5の全体における局所毎に、イオン生成装置Wによる除電の形態を把握することができる。例えば、各導体部材5の前記減衰時間の計測値によって、各導体部材5の位置毎に、その位置での除電に要する時間(その位置の導体部材5の電位または電荷量が十分に減衰するまでの時間)が把握される。また、各導体部材5の前記オフセット値の計測値によって、各導体部材5の位置毎に、その位置でのイオンバランスの度合いが判り、ひいては、導体部材5の全体を含む水平面(XY座標平面に平行な面)上での2次元的なイオンバランスの偏りが把握される。   In this case, by observing a change in potential or charge amount of each conductor member 5 with time, the conductor by the ion generator W is provided for each position of the conductor member 5 (two-dimensional position on the XY coordinate plane). It is possible to grasp how the charge removal of the member 5 is performed. In other words, it is possible to grasp the form of charge removal by the ion generator W for each local part of the entire conductor member 5. For example, depending on the measured value of the decay time of each conductor member 5, for each position of each conductor member 5, the time required for static elimination at that position (until the potential or charge amount of the conductor member 5 at that position is sufficiently attenuated) Time). Further, the degree of ion balance at each position of each conductor member 5 can be determined from the measured value of the offset value of each conductor member 5, and as a result, a horizontal plane (in the XY coordinate plane) including the entire conductor member 5 is obtained. The deviation of the two-dimensional ion balance on the parallel plane is grasped.

そして、上記のような各導体部材5の電位または電荷量の経時変化の観測結果から、イオン生成装置Wによる実際の帯電物の除電が適切に行なわれるか否かなど、該イオン生成装置Wの性能評価を行なうことができる。例えば、ある導体部材5の前記減衰時間が、他の導体部材5の減衰時間に比して大幅に長いような場合には、前記の如くあらかじめ定めた電位の設定値の組に対応する電荷分布を生じるような帯電物の除電時間が短すぎると、該帯電物の除電が局所的に不十分となる恐れがあると評価することができる。また、例えば、ある導体部材5の前記オフセット値が他の導体部材5の前記オフセット値よりも比較的大きい場合には、イオンバランスの2次元的な偏り(導体部材5が配置された平面上での偏り)が大きく、帯電物の除電が不均一なものとなる恐れがあると評価することができる。   Then, from the observation result of the change in the potential or charge amount of each conductor member 5 as described above, whether or not the actual charge removal by the ion generator W is appropriately performed, etc. Performance evaluation can be performed. For example, when the decay time of one conductor member 5 is significantly longer than the decay time of another conductor member 5, the charge distribution corresponding to the set of preset potential values as described above is used. It can be evaluated that if the charge removal time of a charged product that causes a shortage is too short, the charge removal of the charged product may be locally insufficient. Further, for example, when the offset value of one conductor member 5 is relatively larger than the offset value of the other conductor member 5, a two-dimensional deviation of ion balance (on the plane on which the conductor member 5 is arranged) It can be evaluated that there is a risk that the charge removal of the charged material may be uneven.

このように、前記帯電モニタ装置1を使用することによって、各導体部材5の位置毎に(導体部材5の全体における局所毎に)、イオン生成装置Wによる除電の形態を観測して、該イオン生成装置Wの性能を評価でき、また、各導体部材5を種々様々な値の電位に帯電させることができる。このため、イオン生成装置Wの除電対象とする帯電物の性状やイオン生成装置Wの要求性能などを考慮しつつ、該イオン生成装置Wの品質管理を適切に行なうことができる。さらに、イオン生成装置Wの据付不良などを発見することもできる。また、イオン生成装置Wの評価結果を基に、除電対象とする帯電物の性状や該イオン生成装置Wの要求性能などを踏まえて、イオン生成装置Wの改良・設計の指針を的確に構築することが可能となる。   In this way, by using the charge monitor device 1, the state of charge removal by the ion generator W is observed for each position of each conductor member 5 (for each local portion of the entire conductor member 5), and the ion The performance of the generator W can be evaluated, and each conductor member 5 can be charged to various potentials. For this reason, quality control of the ion generating device W can be appropriately performed while taking into consideration the properties of the charged object to be removed by the ion generating device W and the required performance of the ion generating device W. Furthermore, it is possible to find out installation failure of the ion generator W or the like. In addition, based on the evaluation results of the ion generator W, a guideline for improving and designing the ion generator W is accurately constructed in consideration of the properties of the charged object to be neutralized and the required performance of the ion generator W. It becomes possible.

次に、本発明の第2実施形態を図4を参照して説明する。図4は本実施形態の帯電モニタ装置の要部の断面図である。なお、本実施形態の説明では、前記第1実施形態と同一の機能部分もしくは同一構成部分については、第1実施形態と同一の参照符号を用い、詳細な説明を省略する。そして、第1実施形態と相違する部分を中心に説明する。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view of the main part of the charge monitoring device of this embodiment. In the description of the present embodiment, the same reference numerals as those in the first embodiment are used for the same functional parts or the same components as those in the first embodiment, and detailed description thereof is omitted. And it demonstrates centering on the part which is different from 1st Embodiment.

前記第1実施形態では、複数の導体部材5の全てをXY座標平面に平行な同一平面上に配置して、それらの導体部材5のZ軸方向の位置を同一にしたが、本実施形態では、それらの導体部材5のうちの2つ以上の導体部材5のZ軸方向の位置を互いに異ならせるようにした。本実施形態は、この点でのみ、前記第1実施形態と相違するものである。   In the first embodiment, all of the plurality of conductor members 5 are arranged on the same plane parallel to the XY coordinate plane, and the positions of the conductor members 5 in the Z-axis direction are the same. The positions in the Z-axis direction of two or more conductor members 5 among the conductor members 5 are made different from each other. The present embodiment is different from the first embodiment only in this point.

図4は、本実施形態で、上記のように2つ以上の導体部材5のZ軸方向の位置を互いに異ならせた例を示す断面図(図2のIII−III線断面図に相当する断面図)である。図示の如く、本実施形態では、複数の柱体6(図示の例ではY軸方向に並ぶ柱体6)の長さが互いに異なるものとされ、それらの各柱体6の先端面(上端面)に、前記第1実施形態と同様に導体部材5が固着されている。これにより、これらの導体部材5のZ軸方向の位置(基板4の上面からの距離)が、互いに異なるものとされている。なお、図4に示した4個の導体部材5以外の導体部材5についても、Z軸方向の位置が互いに異なるようにしてもよい。また、この場合、全ての導体部材5のZ軸方向の位置が互いに異なる必要はなく、その一部の導体部材5のZ軸方向の位置が同一であってもよい。   4 is a cross-sectional view showing an example in which the positions of two or more conductor members 5 in the Z-axis direction are different from each other in the present embodiment (a cross-section corresponding to the cross-sectional view taken along the line III-III in FIG. 2). Figure). As illustrated, in this embodiment, the lengths of the plurality of column bodies 6 (column bodies 6 arranged in the Y-axis direction in the illustrated example) are different from each other, and the front end surfaces (upper end surfaces) of the respective column bodies 6 are illustrated. ), The conductor member 5 is fixed as in the first embodiment. Thereby, the positions of the conductor members 5 in the Z-axis direction (distance from the upper surface of the substrate 4) are different from each other. Note that the conductor members 5 other than the four conductor members 5 shown in FIG. 4 may also have different positions in the Z-axis direction. In this case, the positions of all the conductor members 5 in the Z-axis direction need not be different from each other, and the positions of some of the conductor members 5 in the Z-axis direction may be the same.

本実施形態の帯電モニタ装置の上記以外の構成は、第1実施形態と同じである。また、この帯電モニタ装置によるイオン生成装置の評価の手法も第1実施形態と同じである。   The remaining configuration of the charge monitoring device of this embodiment is the same as that of the first embodiment. Further, the method of evaluating the ion generation device by this charge monitoring device is the same as that of the first embodiment.

上記のように2つ以上の導体部材5のZ軸方向の位置を互いに異ならせた本実施形態の帯電モニタ装置を使用した場合には、各導体部材5を前記第1実施形態と同様に帯電させることによって、空間的(3次元的)な電荷分布を擬似的に実現できることとなる。このため、例えば、半導体デバイスや磁気ヘッドなどの立体構造物の帯電時の電荷分布と同様の形態の電荷分布を導体部材5の全体により擬似的に実現することができる。ひいては、該立体構造物を除電対象とするようなイオン生成装置の性能を好適に評価することが可能となる。   As described above, when the charge monitoring device of this embodiment in which the positions of two or more conductor members 5 are different from each other is used, each conductor member 5 is charged in the same manner as in the first embodiment. By doing so, a spatial (three-dimensional) charge distribution can be realized in a pseudo manner. For this reason, for example, a charge distribution having the same form as the charge distribution at the time of charging a three-dimensional structure such as a semiconductor device or a magnetic head can be realized in a pseudo manner by the entire conductor member 5. As a result, it is possible to suitably evaluate the performance of the ion generating apparatus that uses the three-dimensional structure as a charge removal target.

補足すると、前記第1実施形態では、各導体部材5を帯電させることによって、該導体部材5の全体により実現される電荷分布は2次元的なものとなるので、前記第1実施形態で説明した帯電モニタ装置1は、平面的な帯電面を有する帯電物(例えばガラス板)を除電対象とするイオン生成装置Wの評価に使用することが適している。   Supplementally, in the first embodiment, by charging each conductor member 5, the charge distribution realized by the entire conductor member 5 becomes two-dimensional. Therefore, the first embodiment has been described. The charge monitoring device 1 is suitable for use in the evaluation of the ion generation device W that uses a charged object (for example, a glass plate) having a planar charging surface as a charge removal target.

なお、以上説明した第1実施形態および第2実施形態では、各導体部材5を円板形状に形成したが、多角形状などの他の形状に形成してもよい。また、各導体部材5を、その電位または電荷を個別に測定し得る範囲内で、より小さなものにして、より多くの導体部材5を密集させて配置するようにしてもよい。   In the first and second embodiments described above, each conductor member 5 is formed in a disk shape, but may be formed in another shape such as a polygonal shape. Further, each conductor member 5 may be made smaller within a range in which the potential or charge can be individually measured, and more conductor members 5 may be arranged densely.

次に、本発明の第3実施形態を図5および図6を参照して説明する。図5は本実施形態における帯電モニタ装置11の斜視図、図6は図5のVI−VI線断面図である。なお、本実施形態の説明では、前記第1実施形態と同一の機能部分もしくは同一構成部分については、第1実施形態と同一の参照符号を用い、詳細な説明を省略する。そして、第1実施形態と相違する部分を中心に説明する。   Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a perspective view of the charge monitoring device 11 in the present embodiment, and FIG. 6 is a sectional view taken along the line VI-VI in FIG. In the description of the present embodiment, the same reference numerals as those in the first embodiment are used for the same functional parts or the same components as those in the first embodiment, and detailed description thereof is omitted. And it demonstrates centering on the part which is different from 1st Embodiment.

図5を参照して、本実施形態の帯電モニタ装置11は、前記第1実施形態のものと同様に、基台2に複数の支柱3を介して支持された基板4を備える。そして、帯電モニタ装置11は、この基板4の上面に固着された複数のバー状の導体部材12を備えている。これらの導体部材12の全体が、擬似的な帯電物として機能し、個々の導体部材12がその擬似的な帯電物の局所として機能するものである。この場合、各導体部材12は、図5のX軸方向に延在し、且つ、Y軸方向に等間隔で配置されている。また、各導体部材12のサイズ(厚さ、長さ、幅)および形状は、いずれも同一である。従って、これらの導体部材12は、XY座標平面に平行な同一の水平面上に配置されている。   Referring to FIG. 5, the charge monitor device 11 of the present embodiment includes a substrate 4 supported on a base 2 via a plurality of support columns 3, as in the first embodiment. The charge monitoring device 11 includes a plurality of bar-shaped conductor members 12 fixed to the upper surface of the substrate 4. The entirety of these conductor members 12 functions as a pseudo charged material, and each conductor member 12 functions as a local region of the pseudo charged material. In this case, each conductor member 12 extends in the X-axis direction of FIG. 5 and is arranged at equal intervals in the Y-axis direction. In addition, the size (thickness, length, width) and shape of each conductor member 12 are the same. Therefore, these conductor members 12 are arranged on the same horizontal plane parallel to the XY coordinate plane.

また、図6に示すように、帯電モニタ装置11は、各導体部材12にそれぞれ導通する複数の測定用電極部材13を備えている。本実施形態では、各測定用電極部材13は、棒状に形成され、各導体部材12の長手方向の中央部の下面(基板4の上面)から、基板4の下側まで、該基板4をその法線方向(Z軸方向)に貫通するようにして、該導体部材12の直下で該基板4に嵌挿されている。そして、該測定用電極部材13の上端面が導体部材12に接触されて導通されている。また、測定用電極部材13の下端部は、基板4の下側に若干突出されている。なお、導体部材12と測定用電極部材13とを一体に形成してもよい。また、前記第1実施形態と同様に、測定用電極部材を基板4の下面に固着し、それを導通部材を介して導体部材12に導通させるようにしてもよい。   In addition, as shown in FIG. 6, the charge monitoring device 11 includes a plurality of measurement electrode members 13 that are electrically connected to the respective conductor members 12. In this embodiment, each measurement electrode member 13 is formed in a rod shape, and the substrate 4 is placed from the lower surface (upper surface of the substrate 4) in the longitudinal direction of each conductor member 12 to the lower side of the substrate 4. It is inserted into the substrate 4 directly below the conductor member 12 so as to penetrate in the normal direction (Z-axis direction). The upper end surface of the measurement electrode member 13 is brought into contact with the conductor member 12 to be conductive. Further, the lower end portion of the measurement electrode member 13 is slightly protruded to the lower side of the substrate 4. The conductor member 12 and the measurement electrode member 13 may be integrally formed. Further, similarly to the first embodiment, the measurement electrode member may be fixed to the lower surface of the substrate 4 and may be conducted to the conductor member 12 via the conduction member.

そして、基台2上には、各導体部材12の電位または電荷量に応じた出力をそれぞれ発生する複数の(導体部材5と同数の)センサ9が、各導体部材12の直下で、該導体部材12に導通する測定用電極部材13に対向するように固設されている。なお、センサ9は、前記第1実施形態のものと同じでよい。   On the base 2, a plurality of sensors 9 (the same number as the conductor members 5) that respectively generate outputs corresponding to the potential or charge amount of each conductor member 12 are directly below the conductor members 12. It is fixed so as to face the measurement electrode member 13 that is conducted to the member 12. The sensor 9 may be the same as that of the first embodiment.

かかる本実施形態の帯電モニタ装置11を使用したイオン生成装置の性能評価は、前記第1実施形態と全く同様に行なわれる。   The performance evaluation of the ion generation apparatus using the charge monitor apparatus 11 of the present embodiment is performed in the same manner as in the first embodiment.

この場合、本実施形態では、各導体部材12がX軸方向に延在して、Y軸方向に離散的に配置されているので、2つ以上の導体部材12の電位の設定値を互いに異ならせることによって、Y軸方向で電荷量が変化し、且つX軸方向での電荷量の変化が無いような電荷分布を擬似的に実現できる。このような本実施形態の帯電モニタ装置11は、例えばX軸方向に移送される巻取り式のフィルムや印刷物などの帯電物を除電対象とするイオン生成装置の評価する場合に適している。   In this case, in this embodiment, since each conductor member 12 extends in the X-axis direction and is discretely arranged in the Y-axis direction, the potential setting values of two or more conductor members 12 are different from each other. By doing so, it is possible to realize a pseudo charge distribution in which the charge amount changes in the Y-axis direction and there is no change in the charge amount in the X-axis direction. Such a charge monitoring device 11 according to the present embodiment is suitable for evaluating an ion generation device that uses a charged object such as a take-up film or printed material transferred in the X-axis direction as a charge removal target.

なお、本実施形態では、各導体部材12のZ軸方向の位置(基板4の法線方向での位置)を同一にしたが、前記第2実施形態と同様に、2つ以上の導体部材12のZ軸方向の位置を互いに異ならせるようにしてもよい。また、各導体部材12の幅を、その電位または電荷を測定し得る範囲内で、より小さなものにして、より多くの導体部材12を各導体部材12の幅方向(Y軸方向)に近接させて配置するようにしてもよい。さらに、各導体部材12を図6のY軸方向に延在させるようにして、X軸方向に並列させるようにしてもよい。   In the present embodiment, the positions of the conductor members 12 in the Z-axis direction (positions in the normal direction of the substrate 4) are the same. However, as in the second embodiment, two or more conductor members 12 are used. The positions in the Z-axis direction may be different from each other. Further, the width of each conductor member 12 is made smaller within the range in which the potential or charge can be measured, and more conductor members 12 are brought closer to the width direction (Y-axis direction) of each conductor member 12. May be arranged. Furthermore, each conductor member 12 may extend in the Y-axis direction in FIG. 6 and may be arranged in parallel in the X-axis direction.

以上説明した各実施形態では、各導体部材5,12のサイズや形状を互いに同一にしたが、各導体部材のサイズや形状を、互いに異ならせるようにしてもよい。例えば、図7に示す如く、基板4の上側に、互いにサイズ(面積)や形状が異なる導体部材14を離散的に配置するようにしてもよい。なお、図7は、同図示のX軸およびY軸に直交するZ軸の方向で見たときの平面図(図2と同様の平面図)を示すものである。   In each embodiment described above, the size and shape of the conductor members 5 and 12 are the same, but the size and shape of the conductor members may be different from each other. For example, as shown in FIG. 7, conductor members 14 having different sizes (areas) and shapes may be discretely arranged on the upper side of the substrate 4. 7 shows a plan view (plan view similar to FIG. 2) when viewed in the direction of the Z-axis orthogonal to the X-axis and Y-axis shown in the figure.

この場合、各導体部材14のサイズや形状は、評価しようとするイオン生成装置が除電対象とする帯電物の帯電時の電荷分布を擬似的に実現し得るように形成すればよい。また、図7の各導体部材14の電位または電荷量を計測するためには、例えば前記第1実施形態あるいは第3実施形態と同様に、基板4の下面側に、各導体部材14に導通する複数の(導体部材14と同数の)測定用電極部材を設け、この測定用電極部材のそれぞれに対向する接触式または非接触式のセンサで、各導体部材14の電位または電荷量を計測するようにすればよい。   In this case, the size and shape of each conductor member 14 may be formed so that the ion generation apparatus to be evaluated can artificially realize the charge distribution during charging of the charged object to be neutralized. Further, in order to measure the potential or the charge amount of each conductor member 14 in FIG. 7, for example, similarly to the first embodiment or the third embodiment, the conductor member 14 is electrically connected to the lower surface side of the substrate 4. A plurality of measurement electrode members (the same number as the conductor members 14) are provided, and the potential or charge amount of each conductor member 14 is measured by a contact type or non-contact type sensor facing each of the measurement electrode members. You can do it.

また、導体部材14のうちのいずれかの導体部材14を、水平面(XY座標平面)に対して傾斜させたり、2つ以上の導体部材14のZ軸方向の位置を互いに異ならせるようにしてもよい。   Also, any one of the conductor members 14 may be inclined with respect to the horizontal plane (XY coordinate plane), or the positions of the two or more conductor members 14 in the Z-axis direction may be different from each other. Good.

また、例えば図8に示す如く、基板4の上側に、互いに径が異なると共に同一の中心点を有する円形または円環状の導体部材15を、それらの径方向に離散的に分布させて配置するようにしてもよい。なお、図8は、同図示の同図示のX軸およびY軸に直交するZ軸の方向で見たときの平面図(図2と同様の平面図)を示すものである。そして、この図8では、導体部材15の存在箇所を他の箇所と区別するために、便宜的に、各導体部材15に点描を付している。   Further, for example, as shown in FIG. 8, circular or annular conductor members 15 having different diameters and the same center point are arranged on the upper side of the substrate 4 so as to be discretely distributed in the radial direction. It may be. 8 is a plan view (plan view similar to FIG. 2) when viewed in the direction of the Z axis perpendicular to the X axis and Y axis of the same figure. In FIG. 8, in order to distinguish the location where the conductor member 15 exists from other locations, the conductor members 15 are marked with dots for convenience.

図8の例では、基板4の中心部の導体部材15が円形に形成され、他の導体部材15が円環状に形成されて、中心部の円形の導体部材15を包囲するように設けられている。このように配置された導体部材15を有する帯電モニタ装置は、例えば、帯電物の特定の局所部分の除電を目的とするイオン生成装置の評価に適している。なお、この場合、各導体部材15の電位または電荷量を計測するためには、例えば前記第1実施形態あるいは第3実施形態と同様に、基板4の下面側に、各導体部材15に導通する複数の(導体部材15と同数の)測定用電極部材を設け、この測定用電極部材のそれぞれに対向する接触式または非接触式のセンサで、各導体部材15の電位または電荷量を計測するようにすればよい。また、2つ以上の導体部材15のZ軸方向の位置を互いに異ならせるようにしてもよい。   In the example of FIG. 8, the conductor member 15 in the center of the substrate 4 is formed in a circular shape, and the other conductor members 15 are formed in an annular shape so as to surround the circular conductor member 15 in the center. Yes. The charge monitoring device having the conductor member 15 arranged in this manner is suitable for evaluation of an ion generating device for the purpose of removing static electricity from a specific local portion of a charged object, for example. In this case, in order to measure the potential or charge amount of each conductor member 15, for example, as in the first embodiment or the third embodiment, the conductor member 15 is electrically connected to the lower surface side of the substrate 4. A plurality of measurement electrode members (the same number as the conductor members 15) are provided, and the potential or charge amount of each conductor member 15 is measured by a contact type or non-contact type sensor facing each of the measurement electrode members. You can do it. Further, the positions of the two or more conductor members 15 in the Z-axis direction may be different from each other.

本発明の第1実施形態における帯電モニタ装置の外観斜視図。1 is an external perspective view of a charge monitoring device according to a first embodiment of the present invention. 図1の帯電モニタ装置を上方から見た平面図。The top view which looked at the electrification monitoring device of Drawing 1 from the upper part. 図2のIII−III線断面図。III-III sectional view taken on the line of FIG. 本発明の第2実施形態における帯電モニタ装置の要部の断面図。Sectional drawing of the principal part of the charge monitor apparatus in 2nd Embodiment of this invention. 本発明の第3実施形態における帯電モニタ装置の外観斜視図。The external appearance perspective view of the charge monitor apparatus in 3rd Embodiment of this invention. 図5の帯電モニタ装置のVI−VI線断面図。FIG. 6 is a cross-sectional view taken along line VI-VI of the charge monitoring device of FIG. 5. 実施形態の帯電モニタ装置に備える導体部材の配置パターンの変形態様を示す図。The figure which shows the deformation | transformation aspect of the arrangement pattern of the conductor member with which the charge monitor apparatus of embodiment is equipped. 実施形態の帯電モニタ装置に備える導体部材の配置パターンの他の変形態様を示す図。The figure which shows the other deformation | transformation aspect of the arrangement pattern of the conductor member with which the charge monitor apparatus of embodiment is equipped. 従来の帯電プレートモニタ装置の概略構成を示す斜視図。The perspective view which shows schematic structure of the conventional charging plate monitor apparatus.

符号の説明Explanation of symbols

1,11…帯電モニタ装置、5,12,14,15…導体部材、9…センサ、W…イオン生成装置。   DESCRIPTION OF SYMBOLS 1,11 ... Charge monitor apparatus, 5, 12, 14, 15 ... Conductive member, 9 ... Sensor, W ... Ion generator.

Claims (3)

帯電物を除電するための空気イオンを生成するイオン生成装置の性能を評価するための帯電モニタ装置であって、
電圧の印加により正極性または負極性にそれぞれ帯電可能な互いに絶縁された複数の導体部材を擬似的な帯電物として備えると共に、各導体部材の電位または電荷量に応じた出力を発生するセンサを備え、前記複数の導体部材は、X軸、Y軸およびZ軸を互いに直交する3軸とする直交座標系のZ軸方向で見たとき、離散的に分布するように配置され、各導体部材の外表面のうちの少なくとも一部が前記イオン生成装置から放出される空気イオンの供給を受ける部分として露出されており、
前記複数の導体部材のうちの少なくとも2つ以上の導体部材は、前記Z軸方向での位置が互いに異なるように設けられていることを特徴とする帯電モニタ装置。
A charge monitoring device for evaluating the performance of an ion generation device that generates air ions for neutralizing a charged object,
A plurality of mutually insulated conductor members that can be charged positively or negatively by application of voltage are provided as pseudo-charged materials, and a sensor that generates an output corresponding to the potential or amount of charge of each conductor member is provided. The plurality of conductor members are arranged so as to be distributed discretely when viewed in the Z-axis direction of an orthogonal coordinate system in which the X-axis, Y-axis, and Z-axis are three axes orthogonal to each other. At least a portion of the outer surface is exposed as a portion that receives a supply of air ions emitted from the ion generator ;
At least two or more conductor members of the plurality of conductor members are provided so that positions in the Z-axis direction are different from each other .
前記複数の導体部材は、前記Z軸方向で見たとき、X軸方向およびY軸方向にマトリクス状に配置されていることを特徴とする請求項1記載の帯電モニタ装置。 2. The charge monitor device according to claim 1, wherein the plurality of conductor members are arranged in a matrix in the X-axis direction and the Y-axis direction when viewed in the Z-axis direction. 請求項1又は2記載の帯電モニタ装置を使用して、前記イオン生成装置の性能を評価する方法であって、
前記帯電モニタ装置の複数の導体部材のうちの1つ以上の導体部材を、当該1つ以上の導体部材のそれぞれに対応してあらかじめ定めた設定値の電圧の一時的な印加によって正極性または負極性に帯電させ、且つ、前記イオン生成装置から前記各導体部材の外表面の露出部分に前記空気イオンが供給されるように該イオン生成装置を各導体部材から前記Z軸方向に間隔を存して配置した状態で、該イオン生成装置を作動させるステップと、
該イオン生成装置の作動中に、前記各導体部材の電位もしくは電荷量の経時変化を該導体部材に対応する前記センサの出力を基に観測するステップとを備えたことを特徴とするイオン生成装置の性能評価方法。
A method for evaluating the performance of the ion generation device using the charge monitor device according to claim 1 ,
One or more conductor members of the plurality of conductor members of the charge monitoring device are positively or negatively charged by temporarily applying a voltage having a predetermined set value corresponding to each of the one or more conductor members. The ion generating device is spaced from each conductor member in the Z-axis direction so that the air ions are supplied from the ion generating device to the exposed portion of the outer surface of each conductor member. Operating the ion generating device in a disposed state;
And observing a change with time in the potential or charge amount of each conductor member based on the output of the sensor corresponding to the conductor member during the operation of the ion generator. Performance evaluation method.
JP2006320692A 2006-10-03 2006-11-28 Charge monitoring device and ion generation device performance evaluation method Expired - Fee Related JP4904133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320692A JP4904133B2 (en) 2006-10-03 2006-11-28 Charge monitoring device and ion generation device performance evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006271521 2006-10-03
JP2006271521 2006-10-03
JP2006320692A JP4904133B2 (en) 2006-10-03 2006-11-28 Charge monitoring device and ion generation device performance evaluation method

Publications (2)

Publication Number Publication Date
JP2008112707A JP2008112707A (en) 2008-05-15
JP4904133B2 true JP4904133B2 (en) 2012-03-28

Family

ID=39445098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320692A Expired - Fee Related JP4904133B2 (en) 2006-10-03 2006-11-28 Charge monitoring device and ion generation device performance evaluation method

Country Status (1)

Country Link
JP (1) JP4904133B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103056A (en) * 2010-11-09 2012-05-31 Hugle Electronics Inc Charge plate monitor
KR101629915B1 (en) * 2015-02-17 2016-06-13 (주)동일기연 Charge plate monitoring Apparatus
KR102036009B1 (en) * 2017-12-05 2019-10-24 은성훈 Ion Detecting Device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476069B2 (en) * 1999-10-26 2003-12-10 シャープ株式会社 Ionizer adjustment and evaluation equipment
JP3880945B2 (en) * 2003-04-15 2007-02-14 アルプス電気株式会社 Method and apparatus for evaluating charged potential of object to be measured

Also Published As

Publication number Publication date
JP2008112707A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP5432207B2 (en) Capacitive sensor device
JP4904133B2 (en) Charge monitoring device and ion generation device performance evaluation method
US20120162851A1 (en) Static eliminator
WO2014024714A1 (en) Ion emission device and diselectrification device comprising same
KR101390130B1 (en) Air Ion Measuring Device
Zhang et al. Numerical simulation and experiments on mono-polar negative corona discharge applied in nanocomposites
JP3987855B2 (en) Ion generator
CN107741599A (en) A kind of thruster ion beam current center line laser locating apparatus and method
KR101629915B1 (en) Charge plate monitoring Apparatus
KR20040025832A (en) Charging voltage measuring device for substrate and ion beam irradiating device
JP2001035686A (en) Dc static eliminator
Fotis et al. Measurement of the electric field radiated by electrostatic discharges
JP5510629B2 (en) Charge transfer rate measuring device and method, surface resistance measuring device and method, and program for them
WO2014077075A1 (en) Conductivity testing device
Gao et al. Measurement of the positive streamer charge
JP5463788B2 (en) Ion analyzer and ion analysis method
JPH0845452A (en) Ion balance measuring device and measuring method for the balance
Yoo et al. CPM test limitation study for AC, pulsed AC and high frequency AC ionizers vs. DC based ionizers
JP3476069B2 (en) Ionizer adjustment and evaluation equipment
Fatihou et al. Interpretation of surface potential measurements performed with the vibrating capacitive probe of an electrostatic voltmeter
Fatihou et al. Measurement of the electric potential at the surface of nonuniformly charged polypropylene nonwoven media
Matsumoto et al. Experimental investigation and numerical analysis of surface charge decay on acrylic and glass epoxy multilayer materials in air
Jackson et al. Time Resolved Divergence Mapping and Long Duration Emission Studies of an Ionic Liquid Ferrofluid Electrospray Source
KR101673798B1 (en) Portable ionizer
Abdel-Salam Discharge inception in high-voltage three-electrode systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees