JP4902845B2 - Killed lactic acid bacteria preparation with enhanced immune function and method for producing the same - Google Patents

Killed lactic acid bacteria preparation with enhanced immune function and method for producing the same Download PDF

Info

Publication number
JP4902845B2
JP4902845B2 JP2006012977A JP2006012977A JP4902845B2 JP 4902845 B2 JP4902845 B2 JP 4902845B2 JP 2006012977 A JP2006012977 A JP 2006012977A JP 2006012977 A JP2006012977 A JP 2006012977A JP 4902845 B2 JP4902845 B2 JP 4902845B2
Authority
JP
Japan
Prior art keywords
lactic acid
acid bacteria
culture
protein
pgsa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006012977A
Other languages
Japanese (ja)
Other versions
JP2007131610A (en
Inventor
ムンヒ スン
スンピョ ホン
ジョンス イ
イルハン イ
ユンホ チェ
ヒョンブン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BioLeaders Corp
Original Assignee
BioLeaders Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BioLeaders Corp filed Critical BioLeaders Corp
Publication of JP2007131610A publication Critical patent/JP2007131610A/en
Application granted granted Critical
Publication of JP4902845B2 publication Critical patent/JP4902845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/005Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor after treatment of microbial biomass not covered by C12N1/02 - C12N1/08
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/02Preparation of hybrid cells by fusion of two or more cells, e.g. protoplast fusion
    • C12N15/03Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/521Bacterial cells; Fungal cells; Protozoal cells inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • A61K2039/55594Adjuvants of undefined constitution from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Description

本発明は、免疫機能が強化された死菌化乳酸菌製剤及びその製造方法に係り、より詳しくは、乳酸菌を界面活性剤及び炭酸塩を含有する培養培地において培養した後、死菌化させることを特徴とする、免疫機能が強化された死菌化乳酸菌製剤及びその製造方法に関する。   The present invention relates to a killed lactic acid bacterium preparation with enhanced immune function and a method for producing the same, and more specifically, the lactic acid bacterium is cultured in a culture medium containing a surfactant and a carbonate and then killed. The present invention relates to a killed lactic acid bacteria preparation with enhanced immune function and a method for producing the same.

微生物の細胞表面に所望のタンパク質を付着して発現させる技術を細胞表面発現(cell surface display)技術と呼んでいる。この細胞表面発現技術は、バクテリアや酵母などの微生物の表面タンパク質を表面発現母体(surface anchoring motif)としてターゲットタンパク質を表面に発現させる技術であり、組換え生ワクチンの生産、ペプチド/抗体ライブラリの製作及びスクリーニング、全細胞吸着剤(whole cell absorbent)、全細胞生物転換触媒(whole cell biocatalyst)などの広い応用範囲を有している技術である。この技術は、細胞表面に発現させるタンパク質の種類に応じてその応用範囲が極めて広いため、産業的な応用潜在力は極めて高いと言える。   A technique for attaching and expressing a desired protein on the cell surface of a microorganism is called a cell surface display technique. This cell surface expression technology is a technology for expressing a target protein on the surface using surface proteins of microorganisms such as bacteria and yeast as a surface anchoring motif, producing a recombinant live vaccine, and producing a peptide / antibody library. And a technique having a wide range of applications such as screening, whole cell absorbent, and whole cell biocatalyst. Since this technology has a very wide range of applications depending on the type of protein expressed on the cell surface, it can be said that the potential for industrial application is extremely high.

成功的な細胞表面の発現技術のためには、表面発現母体が最も重要である。効果的にターゲットタンパク質を細胞表面に発現できる母体を選定して開発することが、この技術の核となる。下記の如き性質を有する表面発現母体が好適に用いられる。先ず第一に、ターゲットタンパク質を細胞表面まで送るために、細胞内膜を通過可能にする分泌信号があること、第二に、細胞外膜の表面に安定的にターゲットタンパク質を付着可能にする標識信号があること、第三に、細胞の表面に多量にて発現するが、細胞の成長にほとんど影響しないこと、第四に、タンパク質の大小によらずに、ターゲットタンパク質の3次元構造の変化を起こすことなく安定的に発現できること、などである。しかしながら、上記の条件をいずれも満足する表面発現母体は、未だ開発されていないのが現状である。   For successful cell surface expression techniques, the surface expression matrix is most important. The core of this technology is to select and develop a matrix that can effectively express the target protein on the cell surface. A surface-expressing matrix having the following properties is preferably used. First, there is a secretory signal that allows passage through the inner membrane to send the target protein to the cell surface, and second, a label that allows the target protein to be stably attached to the surface of the outer membrane. Third, it is expressed in a large amount on the cell surface but has little effect on cell growth. Fourth, it can change the three-dimensional structure of the target protein regardless of the size of the protein. It can be expressed stably without waking up. However, at present, a surface-expressing matrix that satisfies all of the above conditions has not yet been developed.

これまで知られて用いられている表面発現母体としては、大きく細胞外膜タンパク質、リポタンパク質(lipoprotein)、分泌タンパク質(secretory protein)、鞭毛タンパク質などの表面機関タンパク質などの4種類がある。グラム陰性菌(Gram negative bacteria)に表面発現する場合、LamB、PhoE(Charbit et al.,J.Immunol.,139:1658,1987;Agterberg et al.,Vaccine,8:85,1990)、OmpAなどの細胞外膜に存在するタンパク質が主として用いられ、リポタンパク質となるTraT(Felici et al.,J.Mol.Biol.,222:301,1991),PAL(peptidoglycan associated lipoprotein)(Fuchs et al.,Bio/Technology,9:1369,1991)及びLpp(Francisco et al.,Proc.Natl.Acad.Sci.USA,489:2713,1992)もまた用いられている。さらに、FimAや1型線毛(fimbriae)のFimH接着因子(adhesin)などの線毛タンパク質(Hedegaard et al.,Gene,85:115,1989)、PapAピル(pilu)サブユニットなどのピリ(pili)タンパク質などが細胞表面発現母体として用いられている。   There are four types of surface-expressing matrixes known and used so far, such as surface engineered proteins such as extracellular membrane proteins, lipoproteins, secretory proteins, and flagellar proteins. In the case of surface expression in Gram negative bacteria, LamB, PhoE (Charbit et al., J. Immunol., 139: 1658, 1987; Agterberg et al., Vaccine, 8:85, 1990), OmpA, etc. The proteins present in the extracellular membrane of the protein are mainly used to become lipoproteins, TraT (Felici et al., J. Mol. Biol., 222: 301, 1991), PAL (peptidoglycan associated lipoprotein) (Fuchs et al.,). Bio / Technology, 9: 1369, 1991) and Lpp (Francisco et al., Proc. Natl. Acad. Sci. US A, 489: 2713, 1992) has also been used. Furthermore, pilis such as FimA and fimbriae FimH adhesion factor (adhesin) and other pili proteins (Hedegaard et al., Gene, 85: 115, 1989), PapA pill subunits and the like. ) Proteins and the like are used as cell surface expressed matrixes.

これらの他に、氷核活性タンパク質(ice nucleation protein)(Jung et al.,Nat.Biotechnol.,16:576,1998;Jung et al.,Enzyme Microb.Technol.,22:348,1998;Lee et al.,Nat.Biotechnol.,18:645,2000)、クレブシエラ・オキシトカ(Klebsiela oxytoca)のプルラナーゼ(pullulanase)(Kornacker et al.,Mol.Microl.,4:1101,1990)、ナイセリア(Neiseria)のIgAプロテアーゼ(Klauser et al.,EMBO J.,9:1991,1990)、大腸菌の接着因子であるAIDA−1、赤痢菌のVirGタンパク質、LppとOmpAとの融合タンパク質などが表面発現母体として用いられているという報告がある。   Other than these, ice nucleation protein (Jung et al., Nat. Biotechnol., 16: 576, 1998; Jung et al., Enzyme Microb. Technol., 22: 348, 1998; Lee et. al., Nat. Biotechnol., 18: 645, 2000), Klebsiella oxytoca pullulanase (Kornacker et al., Mol. Microl., 4: 1101, 1990), Neiseria (Neisa). IgA protease (Klauser et al., EMBO J., 9: 1991, 1990), AID which is an adhesion factor of Escherichia coli -1, there is a report that VirG protein Shigella, such as a fusion protein of Lpp and OmpA are used as a surface anchoring motif.

グラム陽性菌(Gram positive bacteria)を用いる場合には、黄色ブドウ球菌(Staphylococcus aureus)由来のプロテインA及びFnBPBタンパク質、乳酸バクテリアの表面コートタンパク質、化膿連鎖球菌(Streptococcus pyogenes)由来のM6タンパク質(Medaglini, D et al.,Proc.Natl.Acad.Sci.USA.,92:6868,1995)、炭疽菌(Bacillus anthracis)のSレイヤータンパク質EA1、枯草菌(Bacillus subtilis)のCotBなどが表面発現母体として用いられている。   When Gram positive bacteria are used, protein A and FnBPB proteins derived from Staphylococcus aureus, surface coat proteins of lactic acid bacteria, and Ml protein derived from Streptococcus pyogenes D et al., Proc. Natl. Acad. Sci. USA., 92: 6868, 1995), S layer protein EA1 of Bacillus anthracis, CotB of Bacillus subtilis, etc. are used as surface expression matrixes. It has been.

本発明者らは、バチルス属菌株由来のポリγ−グルタミン酸の合成複合体遺伝子(pgsBCA)を新たな表面発現母体として用い、ターゲットタンパク質を微生物の表面に効率よく発現する新規なベクターと、前記ベクターに形質転換された微生物の表面にターゲットタンパク質を多量発現する方法を開発している(大韓民国特許登録第0469800号)。前記特許に記載されている表面発現母体を用いて病原体の抗原または抗原決定基を遺伝工学的な方法を用い、量産可能な細菌において安定的に発現しようとする研究が試みられている。特に、非病原性の細菌の表面にターゲット免疫源を発現して経口投与する場合、従来の弱毒化した病原性の細菌やウィルスを用いたワクチンよりも一層持続的でかつ強力な免疫反応を引き起こすことができるということが報告されている。   The present inventors have used a novel complex expression gene (pgsBCA) derived from poly (γ-glutamic acid) derived from a Bacillus genus strain as a new surface expression matrix, a novel vector that efficiently expresses a target protein on the surface of a microorganism, and the vector Has developed a method for expressing a large amount of target protein on the surface of microorganisms transformed in Korea (Korea Patent Registration No. 0469800). Studies have been attempted to stably express pathogen antigens or antigenic determinants in a mass-produceable bacterium using genetic engineering methods using the surface-expressed matrix described in the patent. In particular, when the target immunogen is expressed on the surface of non-pathogenic bacteria and administered orally, it causes a more sustained and stronger immune response than vaccines using traditional attenuated pathogenic bacteria and viruses It has been reported that it can.

本発明において表面発現の宿主細胞として用いられている乳酸菌は、昔から我々の食生活と深い関連性を有しながら、発酵食品などの製造に重要な役割を果たしている安全な(GRAS:generally recognized as safe)菌であり、農産物から動物の身体に至るまで自然界に広く分布している。この種の乳酸菌は、腸内有害菌の抑制作用及び浄腸作用、血中コレステロールの減少機能、栄養学的な価値の増進、病原体の感染抑制の作用、肝硬変(liver cirrhosis)の改善作用、抗ガン作用、老化抑制作用、免疫増強作用(マクロファージの活性化を通じた免疫増強作用)などの効能を有しており、その活用分野が広くなりつつある。乳酸菌が有する安全性と発酵食品に用いられる点で、ワクチン伝達体(vehicle)としての応用が試みられており、細胞が含有する多量の構成成分である非メチル化CpG DNA、リポタイコ酸、ペプチドグリカンなどが免疫補強剤(adjuvant)としての役割を果たすことから、その有用性が一層高く評価されている。さらに、乳酸菌は胆汁酸及び胃酸に抵抗性を示し、腸までの抗原が伝達可能であることから、腸内の粘膜免疫を誘起できるという点で多くの長所を有している(Trends Biotechnol.,20:508,2002)。   Lactic acid bacteria used as surface-expressing host cells in the present invention are safe (GRAS: generally recognized) that have played an important role in the production of fermented foods, etc., while having a deep relationship with our diet since ancient times. as safe) and widely distributed in nature from agricultural products to animal bodies. This type of lactic acid bacterium has an inhibitory action against intestinal harmful bacteria and a cleansing action, a function of reducing blood cholesterol, an increase in nutritional value, an action of suppressing infection of pathogens, an action of improving cirrhosis of liver, It has effects such as cancer action, anti-aging action, and immunopotentiating action (immunity enhancing action through macrophage activation), and its application fields are becoming widespread. It has been tried to be used as a vaccine vehicle in terms of the safety of lactic acid bacteria and used in fermented foods. Unmethylated CpG DNA, lipoteichoic acid, peptidoglycan, etc., which are abundant constituents contained in cells Plays a role as an immune enhancer, and its usefulness is highly appreciated. Furthermore, lactic acid bacteria are resistant to bile acids and gastric acids and can transmit antigens up to the intestine, and thus have many advantages in that they can induce mucosal immunity in the intestine (Trends Biotechnol.,). 20: 508, 2002).

上述の如く、特定のターゲットタンパク質が表面発現された乳酸菌の各種の応用分野への用途開発と学問的な研究は盛んに行われているが、産業化に必要な量産のための培養工程及び製剤化工程などに対する技術開発は極めて不足しているのが現状である。特に、タンパク質が表面発現された乳酸菌の場合、細胞膜にターゲットタンパク質が多量発現して挿入されることに起因すると見られる成長率の低下現象が現れており、最大培養時の菌体の収率も一般の乳酸菌に比べて一段と低くなるという短所を有する。さらに、カゼイン(casein)の分解と関連して良く知られている乳酸菌が有するタンパク質分解酵素システム(proteolytic system)により表面発現されたタンパク質が分解されることがある。実際に、培養中期を経てからは、表面発現されたタンパク質の量が持続的に減る傾向にあるため、製品化に向けた量産工程において必ず解決すべき問題として掲げられている(Antonie Van Leeuwenhoek,76:139,1999)。これらの問題の他にも、特定のターゲットタンパク質が表面発現された形質転換乳酸菌の場合、ターゲットタンパク質をコードする組換え遺伝子を有するプラスミドベクターを含有しており、製品化時に発生可能な問題を解決するための工程の導入も望まれているのが現状である。   As described above, lactic acid bacteria on which a specific target protein is surface-expressed have been actively developed for use in various fields of application and academic research, but culture processes and preparations for mass production necessary for industrialization. The current situation is that there is an extremely shortage of technological development for the conversion process. In particular, in the case of lactic acid bacteria in which the protein is expressed on the surface, a phenomenon of a decrease in the growth rate that appears to be caused by the expression and insertion of a large amount of the target protein into the cell membrane appears, and the yield of the cells at the maximum culture also It has the disadvantage that it is much lower than general lactic acid bacteria. Furthermore, the surface-expressed protein may be degraded by a proteolytic system that is well known to lactic acid bacteria in connection with the degradation of casein. In fact, since the amount of surface-expressed protein tends to continuously decrease after the middle stage of culture, it has been listed as a problem that must be solved in the mass production process for commercialization (Antonie Van Leeuwenhoek, 76: 139, 1999). In addition to these problems, transformed lactic acid bacteria whose surface is expressed by a specific target protein contains a plasmid vector having a recombinant gene encoding the target protein, thus solving problems that may occur during commercialization. At present, the introduction of a process for this purpose is also desired.

このため、本発明者らは、前記の如き従来の技術の問題点を解決して乳酸菌製剤の免疫機能を強化するために鋭意努力した結果、乳酸菌の基本培地に界面活性剤及び炭酸塩を加え、培養時に培養液のpHを6.0〜7.0に保持しながら培養した後、死菌化させた乳酸菌製剤が生菌に比べて免疫機能が強化するということを知見し、本発明を完成するに至った。   For this reason, as a result of diligent efforts to solve the problems of the prior art as described above and enhance the immune function of lactic acid bacteria preparations, the inventors added surfactants and carbonates to the basic medium of lactic acid bacteria. And culturing while maintaining the pH of the culture solution at 6.0 to 7.0 during the culture, and discovering that the lactic acid bacterium preparation killed has enhanced immune function compared to viable bacteria. It came to be completed.

そこで、本発明の目的は、免疫機能が強化された死菌化乳酸菌製剤及びその製造方法を提供することにある。   Therefore, an object of the present invention is to provide a killed lactic acid bacteria preparation with enhanced immune function and a method for producing the same.

本発明は、(a)乳酸菌を培養する段階と、(b)前記乳酸菌培養液を熱処理する段階と、を含む免疫機能が強化された死菌化乳酸菌製剤の製造方法を提供する。   The present invention provides a method for producing a killed lactic acid bacteria preparation with enhanced immune function, comprising: (a) culturing lactic acid bacteria; and (b) heat treating the lactic acid bacteria culture solution.

本発明において、前記培養に用いられる培地は、0.1〜1重量%の界面活性剤と0.01〜0.1重量%の炭酸塩をさらに含有することを特徴とし、前記界面活性剤は、ポリソルベート80であることを特徴とする。また、前記(a)段階は、pHを6.0〜7.0に保持しながら行うことを特徴とし、前記熱処理は、80〜120℃において5〜30分間行うことを特徴とする。   In the present invention, the culture medium used for the culture further contains 0.1 to 1% by weight of a surfactant and 0.01 to 0.1% by weight of a carbonate, Polysorbate 80. In addition, the step (a) is performed while maintaining the pH at 6.0 to 7.0, and the heat treatment is performed at 80 to 120 ° C. for 5 to 30 minutes.

本発明において、前記乳酸菌は、PgsA、PgsB及びPgsCよりなる群から選ばれたいずれか1種以上の遺伝子と、ターゲットタンパク質をコードする遺伝子とを含む微生物表面発現用のベクターで形質転換されたものであることを特徴とし、前記ターゲットタンパク質は、抗原、ペプチドあるいは酵素であることが好ましく、抗原であることが一層好ましい。   In the present invention, the lactic acid bacterium is transformed with a microorganism surface expression vector containing any one or more genes selected from the group consisting of PgsA, PgsB and PgsC and a gene encoding the target protein. The target protein is preferably an antigen, peptide or enzyme, and more preferably an antigen.

本発明はまた、前記方法により製造された死菌化乳酸菌製剤を有効成分として含有する免疫製剤を提供する。   The present invention also provides an immunological preparation containing the killed lactic acid bacterium preparation produced by the above method as an active ingredient.

本発明の他の特徴及び具現例は、下記の詳細な説明及び特許請求の範囲から一層明確になる。   Other features and implementations of the invention will become more apparent from the following detailed description and claims.

本発明においては、先ず、PCR技術及びクローニング技術を用い、α−アミラーゼ遺伝子及びPEDS(Porcine Epidemic Diarrhea Virus Spike protein)の一部をコードする遺伝子のそれぞれを含有するベクター(pJT1−PGsA−アミラーゼ及びpJT1−PGsA−PEDSs)を製作した。   In the present invention, first, an α-amylase gene and a vector (pJT1-PGsA-amylase and pJT1) each containing a gene encoding a part of an α-amylase gene and PEDS (Porcine Epidemic Diarhea Virus Spike protein) are used. -PGsA-PEDSs).

このようにして製作したベクターに乳酸菌であるカセイ菌を形質転換させ、界面活性剤(特に、ポリソルベート80)及び炭酸塩含有培地においてpHを6.0〜7.0に保持しながら培養を行った。   The vector thus prepared was transformed with Lactobacillus caustic, and cultured while maintaining the pH at 6.0 to 7.0 in a medium containing surfactant (particularly polysorbate 80) and carbonate. .

乳酸菌の培養後、培養液の生菌数の測定、アミラーゼの活性測定、及びターゲットタンパク質に対するウェスタンブロットを行った結果、界面活性剤及び/または炭酸塩の添加により生菌数及びターゲットタンパク質の表面発現量が増え、pHの補正培養によりターゲットタンパク質の表面発現量及び安定度が増えてきた。   After culturing lactic acid bacteria, the number of viable bacteria in the culture, measurement of amylase activity, and Western blotting of the target protein resulted in the addition of surfactant and / or carbonate to the surface expression of the viable bacteria and target protein. The amount increased and the surface expression level and stability of the target protein increased due to pH-corrected culture.

一方、本発明に従い培養された乳酸菌の熱処理温度及び経時による生存数及び表面発現乳酸菌内の組換え遺伝子含有プラスミドの存否を調べてみた結果、本発明に従い培養された乳酸菌を100℃で20分間熱処理を行う場合、培養液内に存在する生菌が除去され、形質転換乳酸菌の細胞内に存在する組換え遺伝子含有プラスミドが除去され、しかも、死菌化により免疫機能が強化するということが確認できた。   On the other hand, as a result of examining the heat treatment temperature of the lactic acid bacteria cultured according to the present invention, the number of survivors over time, and the presence of the recombinant gene-containing plasmid in the surface-expressed lactic acid bacteria, the lactic acid bacteria cultured according to the present invention were heat treated at 100 ° C. for 20 minutes. It can be confirmed that the viable bacteria present in the culture medium are removed, the recombinant gene-containing plasmid present in the cells of the transformed lactic acid bacteria is removed, and the immune function is enhanced by killing. It was.

すなわち、本発明においては、界面活性剤(特に、ポリソルベート80)と炭酸塩を加えた培養培地を用いてpHを6.0〜7.0に保持しながら、野生型乳酸菌あるいはターゲットタンパク質が表面発現された形質転換乳酸菌を培養した後、100℃、20分間熱処理を行って死菌化させた結果、生菌あるいは菌の内部の組換え遺伝子含有プラスミドが除去され、免疫機能が強化された死菌化乳酸菌製剤を製造することができた。さらに、本発明の培養方法は、乳酸菌の量産だけではなく、ターゲットタンパク質の表面発現量及び安定度を増大させることができた。   That is, in the present invention, wild-type lactic acid bacteria or target proteins are expressed on the surface while maintaining the pH at 6.0 to 7.0 using a culture medium to which a surfactant (particularly polysorbate 80) and carbonate are added. After cultivating the transformed lactic acid bacteria, heat treatment is performed at 100 ° C. for 20 minutes to kill them, resulting in removal of viable bacteria or recombinant gene-containing plasmids inside the bacteria and enhanced immune function It was possible to produce a lactic acid bacteria preparation. Furthermore, the culture method of the present invention was able to increase not only the mass production of lactic acid bacteria but also the surface expression level and stability of the target protein.

実施例
以下、実施例を挙げて本発明を詳述する。これらの実施例は単に本発明を例示するためのものであり、本発明の範囲がこれらの実施例により限定されないということは当業者にとって自明である。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples. Those skilled in the art will appreciate that these examples are merely illustrative of the invention and that the scope of the invention is not limited by these examples.

実施例1:α−アミラーゼ表面発現ベクター及び乳酸菌形質転換体の製作
カセイ菌由来のLDH(lactate dehydrogenase)遺伝子のプロモータ(promoter)である配列番号1に相当する107 bpのldhプロモータ(Sungmin F.Kim et al.Appl.Environ.Microbiol.,57:2413,1991)により発現が行われるように前記プロモータを大腸菌とカセイ菌の両方において複製可能なRepAを複製原点(replication origin)として有するベクターに挿入した後、前記プロモータの下流にバチルス由来の表面発現母体であるpgsAを導入し、pgsAのC末端にターゲット遺伝子が挿入できるBamHI、XbaI制限酵素サイトを加えてpJT1−PgsAベクターを製造した。前記ベクターを保持するための選別マーカーとしては、エリスロマイシン抵抗性遺伝子を含有している(図1)。
Example 1 Production of α-Amylase Surface Expression Vector and Lactic Acid Bacterium Transformant 107 bp ldh promoter (Sungmin F. Kim) corresponding to SEQ ID NO: 1 which is a promoter of LDH (lactate dehydrogenase) gene derived from Lactobacillus casei et al. Appl. Environ. Microbiol., 57: 2413, 1991), the promoter was inserted into a vector having a replication origin, RepA, capable of replicating in both E. coli and causative bacteria. Later, pgsA, a surface expression matrix derived from Bacillus, was introduced downstream of the promoter, and BamHI and XbaI restriction enzyme sites into which the target gene could be inserted were added to the C-terminus of pgsA. The pJT1-PgsA vector was produced. The selection marker for holding the vector contains an erythromycin resistance gene (FIG. 1).

ストレプトコッカス・ボビス(Streptococcus bovis)(ATCC 700410)由来の遺伝子としてゲノムを鋳型として用い、配列番号 2と3のプライマーを用いたPCRを通じてα−アミラーゼ遺伝子含有DNA断片を得た。
配列番号 2: 5’−tct gga tcc gat gaa caa gtg tca atg−3’
配列番号 3: 5’−cag tta tct aga tta ttt tag ccc atc−3’
Using the genome as a template as a gene derived from Streptococcus bovis (ATCC 700410), an α-amylase gene-containing DNA fragment was obtained through PCR using the primers of SEQ ID NOs: 2 and 3.
Sequence number 2: 5'-tct gga tcc gat gaa ca gtg tca atg-3 '
SEQ ID NO: 3: 5′-cag tatta tct aga tta ttt tag ccc atc-3 ′

得られたDNA断片は細胞外α−アミラーゼ(extracellular α−amylase)の分泌シグナル(secretion signal)である39個のN−末端アミノ酸部位を除く残りの703個のアミノ酸をコードする配列を含有し、両末端にBamHIとXbaI制限酵素部位をそれぞれ含む2,130bpのPCR産物である。   The obtained DNA fragment contains a sequence encoding the remaining 703 amino acids excluding the 39 N-terminal amino acid sites that are secretion signals of extracellular α-amylase (extracellular α-amylase), This is a 2,130 bp PCR product containing BamHI and XbaI restriction enzyme sites at both ends.

前記BamHIとXbaI制限酵素部位を用いてα−アミラーゼ遺伝子含有DNA断片をpJT1−PgsAベクターのPgsAのC末端に挿入することにより、乳酸菌宿主においてPgsA−α−アミラーゼ融合タンパク質を表面発現できるベクターpJT1−PgsA−アミラーゼを製造した(図1)。   By inserting the α-amylase gene-containing DNA fragment into the C-terminus of PgsA of the pJT1-PgsA vector using the BamHI and XbaI restriction enzyme sites, a vector pJT1- that can surface-express a PgsA-α-amylase fusion protein in a lactic acid bacterial host. PgsA-amylase was produced (FIG. 1).

乳酸菌としてのカセイ菌(Lactobacillus casei:KCTC 3109)をα−アミラーゼ表面発現用ベクターpJT1−PgsA−アミラーゼに形質転換した後、得られたカセイ菌形質転換体が伝達されたプラスミドを有していることを確認した。表面発現されたα−アミラーゼの量は、活性の測定及びウェスタンブロットの2種類の方法により確認した。   After transforming caustic bacteria (Lactobacillus casei: KCTC 3109) as a lactic acid bacterium into the α-amylase surface expression vector pJT1-PgsA-amylase, the obtained caustic fungus transformant must have a transmitted plasmid. It was confirmed. The amount of surface-expressed α-amylase was confirmed by two methods: activity measurement and Western blot.

実施例2:PEDSc表面発現ベクター及び乳酸菌形質転換体の製作
PEDScは豚流行性の下痢ウィルス(Porcine Epidemic Diarrhea Virus;PEDV)の抗原タンパク質の一つであるスパイクタンパク質(Spike protein;S)の一部である。前記PEDScの遺伝子を合成するために、配列番号4及び配列番号5のプライマーを用いたPCRを行った。前記PCRを通じて、鋳型無しに2プライマーがアニールされた後に増幅され、両末端にBamHI及びXbaI制限酵素部位が挿入されたPEDSc遺伝子含有DNA断片が合成された。
配列番号4: 5’−tct gga tcc tgt ttt tca ggt tgt tgt agg ggt cct aga ctt caa−3’
配列番号5: 5’−tta tct aga tta gac ctt ttc aaa agc ttc gta agg ttg aag tct agg−3’
Example 2 Production of PEDSc Surface Expression Vector and Lactic Acid Bacterium Transformant PEDSc is a part of spike protein (Spike protein; S) which is one of the antigenic proteins of porcine epidemic diarrhea virus (PEDV) It is. In order to synthesize the gene for PEDSc, PCR using primers of SEQ ID NO: 4 and SEQ ID NO: 5 was performed. Through the PCR, two primers were annealed without template and amplified, and a PEDSc gene-containing DNA fragment in which BamHI and XbaI restriction enzyme sites were inserted at both ends was synthesized.
Sequence number 4: 5'-tct gga tcc tgt ttt tca ggt tgt tgt agg ggt cct aga ctt caa-3 '
SEQ ID NO: 5: 5′-tta tct aga tta gac ctt ttt aa aagc ttc gta agg ttt aag tct agg-3 ′

前記BamHIとXbaI制限酵素部位を用いてPEDSc遺伝子含有DNA断片を実施例1に従い製造されたpJT1−PgsAベクターのPgsAのC末端に挿入することにより、乳酸菌宿主においてPgsA−PEDSc融合タンパク質を表面発現できるベクターpJT1−PgsA−PEDScを製造した(図2)。   The PgsA-PEDSc fusion protein can be surface-expressed in a lactic acid bacteria host by inserting a DNA fragment containing PEDSc gene into the C-terminus of PgsA of the pJT1-PgsA vector prepared according to Example 1 using the BamHI and XbaI restriction enzyme sites. The vector pJT1-PgsA-PEDSc was produced (FIG. 2).

カセイ菌をPEDSc表面発現用ベクターpJT1−PgsA−PEDScに形質転換した後、得られたカセイ菌形質転換体が伝達されたプラスミドを有していることを確認した。表面発現されたPgsA−PEDSc融合タンパク質はウェスタンブロット法により確認した。   After transforming caustic fungus into PEDSc surface expression vector pJT1-PgsA-PEDSc, it was confirmed that the obtained caustic fungal transformant had a transferred plasmid. The surface expressed PgsA-PEDSc fusion protein was confirmed by Western blotting.

実施例3:ターゲットタンパク質の発現及び乳酸菌の成長に対する界面活性剤の効果
実施例2の乳酸菌形質転換体(PEDSc表面発現乳酸菌)を界面活性剤ポリソルベート80入り培地において培養した後、生菌数と表面発現タンパク質の発現量の測定実験を行うことにより、界面活性剤が抗原タンパク質表面発現乳酸菌の成長及び最終生菌数と抗原タンパク質の発現量に及ぼす効果を確認した。
Example 3 Effect of Surfactant on Target Protein Expression and Growth of Lactic Acid Bacteria After culturing the lactic acid bacteria transformant (PEDSc surface-expressing lactic acid bacteria) of Example 2 in a medium containing surfactant polysorbate 80, the viable cell count and surface Experiments for measuring the expression level of the expressed protein confirmed the effect of the surfactant on the growth of the lactic acid bacteria expressing the surface of the antigen protein, the final viable cell count, and the expression level of the antigen protein.

カセイ菌の培養に用いられる基本培地(1%カゼイン加水分解物、1.5%酵母エキス、2%ブドウ糖(dextrose)、0.2%クエン酸アンモニウム、0.5%酢酸ナトリウム、0.01%硫酸マグネシウム、0.05%硫酸マンガン及び0.2%リン酸2カリウム)に界面活性剤ポリソルベート80を0.1、0.2、0.5、1.0%ずつ加えた後、121℃、10分間滅菌を行った。   Basic medium used for cultivation of caustic bacteria (1% casein hydrolyzate, 1.5% yeast extract, 2% dextrose, 0.2% ammonium citrate, 0.5% sodium acetate, 0.01% After adding surfactant polysorbate 80 0.1, 0.2, 0.5, 1.0% to magnesium sulfate, 0.05% manganese sulfate and 0.2% dipotassium phosphate), 121 ° C., Sterilization was performed for 10 minutes.

界面活性剤ポリソルベート80が濃度別に加えられている滅菌済み各培地を3L発酵器に2.0L分入れ、5ml、100ml培地の種培養の2段階を経てPEDSc表面発現乳酸菌を5%(v/v)接種した後、30℃、24時間培養した。   Each sterilized medium to which surfactant polysorbate 80 is added according to concentration is placed in a 3 L fermentor in 2.0 L portions, and 5% (v / v) of PEDSc surface-expressing lactic acid bacteria is passed through two stages of seed culture of 5 ml and 100 ml medium ) After inoculation, the cells were cultured at 30 ° C for 24 hours.

24時間の培養時点における生菌数と表面発現タンパク質の発現量を比較した。界面活性剤ポリソルベート80が加えられていない培地において培養したものを対照群として用いた。   The number of viable bacteria and the expression level of the surface expressed protein were compared at the time of culturing for 24 hours. What was cultured in the culture medium which did not add surfactant polysorbate 80 was used as a control group.

表1に示すように、界面活性剤の添加濃度が高くなるほど、培養液内の生菌数は高く観察され、1.0%の界面活性剤が加えられた場合に最大値として対照群に比べて約1.8倍高い生菌数が確認された。1菌体当たり一定量のPgsA−PEDSc融合タンパク質が表面発現されているため、生菌数の増加は融合タンパク質の増加を意味し、これより、界面活性剤の添加により培養液内に表面発現されたPgsA−PEDSc融合タンパク質の量が増えるということを確認することができた。   As shown in Table 1, the higher the concentration of the surfactant added, the higher the number of viable bacteria in the culture solution was observed. When 1.0% of the surfactant was added, the maximum value was compared with the control group. About 1.8 times higher viable count. Since a certain amount of PgsA-PEDSc fusion protein per cell is surface-expressed, an increase in the number of viable bacteria means an increase in the fusion protein, and from this, surface expression is carried out in the culture medium by adding a surfactant. It was confirmed that the amount of PgsA-PEDSc fusion protein increased.

Figure 0004902845
Figure 0004902845

生菌数を測定した24時間の培養時点において菌体を回収してウェスタンブロット法を行うことにより、PgsAと融合されて発現されたPEDScの表面発現量を確認した。   By collecting the bacterial cells at the time of culturing for 24 hours when the number of viable cells was measured and performing Western blotting, the surface expression level of PEDSc expressed by being fused with PgsA was confirmed.

実験群において回収されたPgsA−PEDSc表面発現カセイ菌の全細胞を同じ細胞濃度に調節し、これらのうち一定量を抽出してタンパク質を変性して試料を用意し、これをSDS−ポリアクリルアミドゲル電気泳動により分析した後、分画されたタンパク質をPVDF(polyvinylidene−difluoride membranes;Bio−Rad)メンブレンに移した。タンパク質が移されたPVDFメンブレンをブロッキング緩衝溶液(50mMトリス塩酸、5%スキムミルク(skim milk)、pH8.0)において1時間振ってブロッキングした後、ブロッキング緩衝溶液にPgsAに対するウサギ由来のポリクローン1次抗体を1000倍希釈して12時間反応させた。反応が終わったメンブレンは緩衝溶液により洗浄し、ブロッキング緩衝溶液にビオチンが接合されたウサギに対する2次抗体を1000倍希釈して4時間反応させた。反応が終わったメンブレンは緩衝溶液により洗浄し、アビジン−ビオチン(avidin−biotin)を1時間反応させた後、再び洗浄した。洗浄されたメンブレンに基質(H)と発色試薬(DAB)を加えて発色を行うことにより、PgsAに対する特異抗体と前記融合タンパク質との特異的な結合を確認した(図3)。 All the cells of PgsA-PEDSc surface-expressing bacteria recovered in the experimental group were adjusted to the same cell concentration, and a certain amount was extracted from these to denature the protein to prepare a sample, which was used as an SDS-polyacrylamide gel. After analysis by electrophoresis, the fractionated protein was transferred to a PVDF (polyvinylidene-difluoride membranes; Bio-Rad) membrane. The protein-transferred PVDF membrane was blocked by shaking for 1 hour in a blocking buffer solution (50 mM Tris-HCl, 5% skim milk, pH 8.0), and then the rabbit-derived polyclonal primary against PgsA was blocked in the blocking buffer solution. The antibody was diluted 1000 times and allowed to react for 12 hours. After completion of the reaction, the membrane was washed with a buffer solution, and a secondary antibody against a rabbit conjugated with biotin in a blocking buffer solution was diluted 1000 times and reacted for 4 hours. The membrane after the reaction was washed with a buffer solution, reacted with avidin-biotin for 1 hour, and then washed again. Substrate (H 2 0 2 ) and a coloring reagent (DAB) were added to the washed membrane to develop color, thereby confirming specific binding between the specific antibody against PgsA and the fusion protein (FIG. 3).

その結果、図3に示すように、約45.9kDaのPgsA−PEDSc融合タンパク質が検出され、検出される量は培地に加えられた界面活性剤の濃度に応じて比例的に増えていた。   As a result, as shown in FIG. 3, a PgsA-PEDSc fusion protein of about 45.9 kDa was detected, and the amount detected was proportionally increased according to the concentration of the surfactant added to the medium.

前記結果から、培地に一定濃度の界面活性剤を加える場合、ターゲットタンパク質が表面発現された乳酸菌の最大の成長値と菌体当たりタンパク質の表面発現量が両方とも増えるということが確認できた。   From the above results, it was confirmed that when a constant concentration of a surfactant was added to the medium, both the maximum growth value of the lactic acid bacteria on which the target protein was surface expressed and the surface expression level of the protein per cell increased.

実施例4:ターゲットタンパク質の発現及び乳酸菌の成長に対する炭酸塩の効果
実施例2の乳酸菌形質転換体(PEDSc表面発現乳酸菌)を炭酸塩入り培地において培養した後、生菌数と表面発現タンパク質の発現量の測定実験を行うことにより、炭酸塩が抗原タンパク質の表面発現乳酸菌の成長及び最終生菌数と抗原タンパク質の発現量に及ぼす効果を確認した。
Example 4 Effect of Carbonate on Target Protein Expression and Growth of Lactic Acid Bacteria After culturing the lactic acid bacteria transformant (PEDSc surface-expressing lactic acid bacteria) of Example 2 in a carbonate-containing medium, the number of viable bacteria and expression of surface expressed proteins By carrying out a quantity measurement experiment, the effect of carbonate on the growth of the surface-expressed lactic acid bacteria of the antigen protein and the final viable cell count and the expression level of the antigen protein was confirmed.

カセイ菌の培養に用いられる前記基本培地に0.5%の界面活性剤を加えた培地を基本とし、ここに炭酸塩を0.01、0.05、0.1%をそれぞれ加えた培地において形質転換体を24時間培養した後、最大の成長時点における生菌数と表面発現タンパク質の発現量を前記の如き方法により比較した。炭酸塩が加えられていない培地において培養したものを対照群として用いた。   In a medium in which 0.5% of a surfactant is added to the basic medium used for cultivation of caustic fungi, and 0.01%, 0.05% and 0.1% of carbonate are added to the basic medium. After culturing the transformants for 24 hours, the number of viable bacteria at the maximum growth point and the expression level of the surface expressed protein were compared by the method as described above. Those cultured in a medium without added carbonate were used as a control group.

24時間の培養時点における培養液を回収して培養液内の生菌数を確認した結果、表2に示すように、炭酸塩の添加濃度が高くなるほど、培養液内の生菌数が増え、0.1%の炭酸塩が加えられた場合に最大値として対照群に比べて約8.1倍高い生菌数を得ることができた。さらに、炭酸塩の添加により培養液内に表面発現されたPgsA−PEDSc融合タンパク質の量が増えるということも確認することができた(表2)。   As a result of collecting the culture solution at the time of culturing for 24 hours and confirming the number of viable bacteria in the culture solution, as shown in Table 2, the higher the concentration of carbonate added, the more viable bacteria in the culture solution, When 0.1% of carbonate was added, the maximum viable cell count was about 8.1 times higher than that of the control group. Furthermore, it was also confirmed that the amount of PgsA-PEDSc fusion protein surface-expressed in the culture medium increased by the addition of carbonate (Table 2).

Figure 0004902845
Figure 0004902845

図4に示すように、PgsAに対する抗体により特異的に検出されるPgsA−PEDSc融合タンパク質の量は、培地に加えられた炭酸塩の濃度に応じて比例的に増えるということを確認した。   As shown in FIG. 4, it was confirmed that the amount of the PgsA-PEDSc fusion protein specifically detected by the antibody against PgsA increases proportionally according to the concentration of the carbonate added to the medium.

前記の結果より、培地に一定濃度の界面活性剤と炭酸塩を加える場合、ターゲットタンパク質が表面発現された乳酸菌の最大成長値及び1菌体当たりタンパク質の表面発現が両方とも増えるということを確認することができた。   From the above results, it is confirmed that when a constant concentration of surfactant and carbonate is added to the medium, both the maximum growth value of the lactic acid bacteria on which the target protein is surface expressed and the surface expression of the protein per cell increase. I was able to.

実施例5:ターゲットタンパク質の安定的な表面発現に対するpH補正培養の効果
乳酸菌の培養中に培養液のpHを6.0〜7.0に保持しながら培養した場合とそうでない場合、表面発現されたタンパク質の発現量に及ぼす影響を確めるために、実施例1によるα−アミラーゼ表面発現乳酸菌の形質転換体を用いて培養中にアミラーゼ活性の測定とウェスタンブロットを行った。
Example 5: Effect of pH-corrected culture on stable surface expression of target protein Surface expression occurs when culturing lactic acid bacteria while maintaining the pH of the culture solution at 6.0 to 7.0 and when not cultivating. In order to confirm the effect on the expression level of the protein, the amylase activity was measured and Western blotting was performed during the culture using the transformant of the α-amylase surface-expressing lactic acid bacterium according to Example 1.

前記培養方法に従い3L発酵器において本格培養を行った。本格培養の開始後、5時間経過時点から4時間おきに培養液を回収し、生菌数、pHの変化、アミラーゼ活性の測定、ウェスタンブロット法を行い、培養培地は基本培地(1%カゼイン加水分解物、1.5%酵母エキス、2%ブドウ糖、0.2%クエン酸アンモニウム、0.5%酢酸ナトリウム、0.01%硫酸マグネシウム、0.05%硫酸マンガン及び0.2%リン酸2カリウム)に0.5%の界面活性剤と0.1%の炭酸塩を加えて用い、抗生剤のエリスロマイシンを最終濃度が16μg/mlになるようにして培養を行った。pH補正にはアンモニア水、KOHあるいはNaOHを用いた。   Full-scale culture was performed in a 3 L fermentor according to the culture method. After the start of full-scale culture, the culture solution is collected every 4 hours from the lapse of 5 hours, and the viable cell count, pH change, amylase activity measurement and Western blotting are performed. The culture medium is a basic medium (1% casein hydrolyzed). Degradation product, 1.5% yeast extract, 2% glucose, 0.2% ammonium citrate, 0.5% sodium acetate, 0.01% magnesium sulfate, 0.05% manganese sulfate and 0.2% phosphoric acid 2 Potassium) was added with 0.5% surfactant and 0.1% carbonate, and the antibiotic erythromycin was cultured to a final concentration of 16 μg / ml. Ammonia water, KOH or NaOH was used for pH correction.

乳酸菌菌体の表面に発現されたアミラーゼの酵素の活性を測定するために活性測定用キット(Kikkoman Co.,Tokyo,Japan)を用いた。基質はN3−G5−β−CNP(2−クロロ−4−ニトロフェニル−65−アジド−65−デオキシ−β−マルトペンタオシド(maltopentaoside))を用いた。   An activity measurement kit (Kikoman Co., Tokyo, Japan) was used to measure the activity of the enzyme of amylase expressed on the surface of lactic acid bacteria. As a substrate, N3-G5-β-CNP (2-chloro-4-nitrophenyl-65-azido-65-deoxy-β-maltopentaside) was used.

培養液を遠心分離して菌体だけを回収し、PBS緩衝溶液により2回洗浄した後、100μlの同じ緩衝溶液により懸濁して400μlの基質含有溶液と37℃、10分間反応させた。次いで、800μlの反応停止溶液を加えて反応を終え、400nmにおける吸光度を測定した。1ユニットの活性とは、37℃、1分間の条件下で、N3−G5−β−CNPから、400nmにおいて吸光度を示すCNP(2−クロロ−4−ニトロフェノール)が1μmole生成されるのに必要な酵素の量として定義した。   The culture solution was centrifuged to recover only the cells, washed twice with PBS buffer solution, suspended in 100 μl of the same buffer solution, and reacted with 400 μl of the substrate-containing solution at 37 ° C. for 10 minutes. Subsequently, 800 μl of a reaction stop solution was added to complete the reaction, and the absorbance at 400 nm was measured. One unit of activity is necessary for producing 1 μmole of CNP (2-chloro-4-nitrophenol) having an absorbance at 400 nm from N3-G5-β-CNP at 37 ° C. for 1 minute. Defined as the amount of enzyme.

図5において、aはpH補正及び非補正培養時のアミラーゼの活性を培養液1ml当たりユニットにて示し、各測定時点における1ml当たり培養液内の全体アミラーゼの活性の変化を比較したものであり、bはアミラーゼの活性を、培養液1ml当たりユニットを測定時点における培養液のOD値で再度割って示すものであり、各測定時点において一定量の菌体が有するアミラーゼの活性の変化を比較したものである。   In FIG. 5, a shows the activity of amylase at the time of pH correction and non-correction culture in units per 1 ml of culture solution, and compares the change in the activity of total amylase in the culture solution per 1 ml at each measurement time point. b shows the activity of amylase by dividing the unit per 1 ml of the culture solution by the OD value of the culture solution at the time of measurement, and comparing the change in the amylase activity of a certain amount of cells at each time of measurement. It is.

図5に示すように、pH非補正の実験群においては、アミラーゼ活性が培養開始後10〜15時間から次第に減るのに対し、pH補正の実験群の場合、培養液の全体としての活性は培養後20時間まで持続的に増加し、一定量の菌体当たりアミラーゼの活性もまた減少せずに少量増える傾向にあり、安定した発現量を示すということが分かった。培養終了時点である25時間の時点において、pH非補正の培養実験群に比べてpH補正の培養の場合、培養液1ml当たり全体としてのアミラーゼの活性は約19.2倍、一定量の菌体当たりアミラーゼの活性は17.7倍高かった。活性が表面発現アミラーゼの量に比例するため、前記結果から、pH補正培養によりタンパク質の表面発現量が増えるということが分かった。   As shown in FIG. 5, in the non-pH-corrected experimental group, the amylase activity gradually decreases from 10 to 15 hours after the start of the culture, whereas in the pH-corrected experimental group, the activity of the whole culture solution is the culture. It was found that it increased continuously up to 20 hours later, and the activity of amylase per certain amount of microbial cells tended to increase in a small amount without decreasing, and showed a stable expression level. At the time of 25 hours, which is the end of the culture, the amylase activity as a whole per ml of culture solution is about 19.2 times higher than that of the non-pH-corrected culture experimental group, and a certain amount of cells. The activity of amylase per hit was 17.7 times higher. Since the activity is proportional to the amount of surface-expressed amylase, it was found from the above results that the surface expression amount of the protein is increased by the pH correction culture.

さらに、各時点ごとに回収された培養液サンプルを用い、上記の方法に従いアミラーゼ特異抗体を用いてウェスタンブロット法を行った(図6)。その結果、図6に示すように、アミラーゼ特異抗体により検出される表面発現されたPgsA−アミラーゼ融合タンパク質の量の変化は、図5に示す活性の測定結果と同じ傾向を示した。pH非補正の培養の場合、培養時間が経過するに伴い、発現量は次第に減り、pH補正の培養の場合、培養時間が経過しても持続的に高い発現量を示すことが確認された。   Furthermore, the western blot method was performed using the culture solution sample collect | recovered for every time point using the amylase specific antibody according to said method (FIG. 6). As a result, as shown in FIG. 6, the change in the amount of the surface-expressed PgsA-amylase fusion protein detected by the amylase-specific antibody showed the same tendency as the activity measurement result shown in FIG. In the case of non-pH-corrected culture, the expression level gradually decreased with the passage of culture time, and in the case of pH-corrected culture, it was confirmed that the expression level was continuously high even when the culture time passed.

前記の結果から、pH補正の培養により菌体表面に発現されたタンパク質の量的な増加だけではなく、安定した保持を成し遂げるということが分かった。   From the above results, it was found that not only a quantitative increase in the protein expressed on the cell surface but also a stable retention was achieved by pH-corrected culture.

実施例6:熱処理を通じた表面発現乳酸菌の死菌化
乳酸菌培養液に対する熱処理温度及び経時による残存生菌数及び表面発現乳酸菌体内の組換え遺伝子含有プラスミドの存否を確認して死菌化条件を確立した。
Example 6: Death of surface-expressed lactic acid bacteria through heat treatment The heat treatment temperature for the lactic acid bacteria culture solution, the number of remaining viable bacteria over time, and the presence or absence of the recombinant gene-containing plasmid in the surface-expressed lactic acid bacteria were confirmed to establish killing conditions did.

生菌数はMRS個体培地に死菌化培養液を塗抹して2〜3日後に確認し、プラスミドの存否は、死菌化培養液の乳酸菌菌体を回収して水により洗浄した後、これを鋳型としてプラスミドに含まれているエリスロマイシン抵抗性の遺伝子の内部部位をN−末端部位の配列番号6とC−末端部位の配列番号7のプライマーを用いてPCRを行い、1,156bp大きさのPCR産物が検出されるかどうかにより確認した。
配列番号6: 5’−gtg tgt tga tag tgc agt atc−3’
配列番号7: 5’−ccg tag gcg cta ggg acc tct tta gc−3’
The number of viable bacteria is confirmed 2-3 days after smearing the killed culture solution on the MRS solid medium, and the presence or absence of the plasmid is determined after recovering the lactic acid bacteria of the killed culture solution and washing with water. PCR was performed using the primers of SEQ ID NO: 6 at the N-terminal site and SEQ ID NO: 7 at the C-terminal site of the internal site of the erythromycin resistance gene contained in the plasmid using This was confirmed by whether a PCR product was detected.
SEQ ID NO: 6: 5′-gtg tgt tga tag tgc agt atc-3 ′
SEQ ID NO: 7: 5′-ccg tag gcg cta ggg acc tct tatta gc-3 ′

熱処理により表面発現されたタンパク質及び菌体に変性が起こり、目的とする効能が消滅することを防止できる範囲内における処理温度及び処理時間の検討を通じて、乳酸菌培養液を100℃、20分間熱処理を行った結果、培養液内に存在する生菌が除去されていることを確認することができた。なお、形質転換乳酸菌内に含有されていた組換え遺伝子含有プラスミドが検出されなかった(図7)。   The lactic acid bacteria culture solution is heat-treated at 100 ° C. for 20 minutes through the examination of the treatment temperature and treatment time within a range in which denaturation occurs on the surface-expressed proteins and bacterial cells by the heat treatment and the intended efficacy can be prevented from disappearing. As a result, it was confirmed that viable bacteria present in the culture solution were removed. In addition, the recombinant gene containing plasmid contained in the transformed lactic acid bacteria was not detected (FIG. 7).

実施例7:死菌化乳酸菌の免疫増強効果
死菌化過程を経た乳酸菌と死菌化過程を経ていない生存乳酸菌の免疫増強効果は、樹状細胞(dendritic cell)の刺激(成熟)を通じて樹状細胞から分泌されるサイトカインIL−10及びIL−12 p70のそれぞれに対するELISAキット(ヒトIL−10 Duoset ELISA Development system,ヒトIL−12 p70 Duoset ELISA Development system,R&D systems)を用いて測定した。
Example 7: Immunity-enhancing effect of killed lactic acid bacteria The immune-enhancing effect of lactic acid bacteria that had undergone the process of killing bacteria and viable lactic acid bacteria that had not undergone the process of killing sterilization was expressed through dendritic cell stimulation (maturation). ELISA kits for cytokines IL-10 and IL-12 p70 secreted from cells (measured using human IL-10 Duose ELISA development system, human IL-12 p70 Duoset ELISA system, R & D systems).

実験室的に樹状細胞の刺激実験を行うためにヒトの血液サンプルから樹状細胞を得た。ヒトの血液サンプルから単核球(monocyte)をフィコール−ヒパーク(Ficoll−Hypaque)勾配分離(d=1.077g/ml)により分離を行い、1%w/v組織−培養等級の牛血清アルブミン(Bovine Serum Albumin)が加えられたRPMI 1640培地を加えて37℃のCO培養器において一日中培養し、付着されていた細胞を除去した。前記過程により付着されていない細胞を選別した後、GM−CSF 100ng/ml及びIL−4 10ng/mlが加えられた細胞培養液を入れた後、同様に6日間CO培養器において培養して未成熟の樹状細胞を用意した。 Dendritic cells were obtained from human blood samples for laboratory stimulation of dendritic cells. Mononuclear cells were separated from human blood samples by Ficoll-Hypaque gradient separation (d = 1.077 g / ml) and 1% w / v tissue-culture grade bovine serum albumin ( RPMI 1640 medium supplemented with Bovine Serum Albumin) was added and cultured in a CO 2 incubator at 37 ° C. for one day to remove the attached cells. After selecting the non-adherent cells by the above process, the cell culture solution to which 100 ng / ml of GM-CSF and 10 ng / ml of IL-4 were added was added, and then cultured in a CO 2 incubator in the same manner for 6 days. Immature dendritic cells were prepared.

このようにして用意された未成熟の樹状細胞を24ウェルプレートに5×10細胞/ウェルずつ入れた後、陰性対照群として樹状細胞だけを培養した群、陽性対照群として既知のリポ多糖体(LPS)を100ng/mlの濃度にて加えた群、1×10のカセイ菌の生菌を加えた群、死菌化工程後の1×10カセイ菌を加えた群、1×10のPEDSc表面発現カセイ菌の生菌を加えた群、死菌化工程後の1×10PEDSc表面発現カセイ菌を加えた群などを3日間同じ条件下で培養させた。培養後、それぞれの試料により処理した培養上澄み液を回収し、培養上澄み液に分泌されて存在するヒトIL−10及びヒトIL−12 p70の分泌誘導能をELISAキットを用いて測定した。 After immature dendritic cells prepared in this manner were placed in a 24-well plate at 5 × 10 4 cells / well, a group in which only dendritic cells were cultured as a negative control group, a known lipo group as a positive control group A group to which polysaccharide (LPS) was added at a concentration of 100 ng / ml, a group to which 1 × 10 3 viable bacteria were added, a group to which 1 × 10 3 caustic bacteria after the killing process were added, 1 A group to which × 10 3 living bacteria of PEDSc surface-expressing caustic bacteria were added, a group to which 1 × 10 3 PEDSc surface-expressing caustic bacteria after the killing step were added, were cultured under the same conditions for 3 days. After the culture, the culture supernatant treated with each sample was collected, and the secretion induction ability of human IL-10 and human IL-12 p70 secreted in the culture supernatant was measured using an ELISA kit.

(1)ヒトIL−10 ELISA
用意された96ウェル(抗ヒトIL−10モノクローナル抗体により予備コートされている)にIL−10標準溶液50μl(標準溶液)と培養上澄み液50μlを入れ、常温において2時間反応させた。その後、洗浄緩衝液(300μl/ウェル)により5回洗浄した後、第1次抗体であるビオチンが結合された抗ヒトIL−10ポリクローナル抗体100μlを加えて1時間常温において反応させ、洗浄緩衝液(300μl/ウェル)により5回洗浄した。次いで、第2次抗体であるアビジン−ホースラディシュ・ペルオキシダーゼ複合体を100μl入れて常温において30分間反応させ、7回洗浄した後、TMB発色溶液により30分間反応させた。次いで、50μlの反応終結溶液により発色を止めた。そして、450nmにおいてELISA読み取り器により測定してIL−10の分泌量を測定した。
(1) Human IL-10 ELISA
In 96 wells prepared (preliminarily coated with anti-human IL-10 monoclonal antibody), 50 μl of IL-10 standard solution (standard solution) and 50 μl of culture supernatant were added and reacted at room temperature for 2 hours. Then, after washing 5 times with a washing buffer solution (300 μl / well), 100 μl of anti-human IL-10 polyclonal antibody to which biotin as the primary antibody was bound was added and reacted at room temperature for 1 hour, and the washing buffer solution ( 300 μl / well). Next, 100 μl of the secondary antibody, avidin-horseradish peroxidase complex, was added and reacted at room temperature for 30 minutes, washed 7 times, and then reacted with TMB coloring solution for 30 minutes. The color development was then stopped with 50 μl of reaction termination solution. Then, the amount of IL-10 secreted was measured at 450 nm using an ELISA reader.

(2)ヒトIL−12 p70 ELISA
用意された96ウェル(抗ヒトIL−12 p70モノクローナル抗体により予備コートされている)にIL−10 p70標準溶液50μl(標準溶液)と培養上澄み液50μlを入れ常温において2時間反応させた。その後、洗浄緩衝液(300μl/ウェル)により5回洗浄した後、第1次抗体であるビオチンが結合された抗ヒトIL−12 p70ポリクローナル抗体100μlを加えて1時間常温において反応させ、洗浄緩衝液(300μl/ウェル)により5回洗浄した。次いで、第2次抗体であるアビジン−ホースラディシュ・ペルオキシダーゼ複合体を100μl入れ、常温において30分間反応させた後に7回洗浄し、TMB発色溶液により30分間反応させた。次いで、50μlの反応終結溶液により発色を止めた。そして、450nmにおいてELISA読み取り器により測定してIL−12 p70の分泌量を分析した。
(2) Human IL-12 p70 ELISA
In 96 wells prepared (pre-coated with anti-human IL-12 p70 monoclonal antibody), 50 μl of IL-10 p70 standard solution (standard solution) and 50 μl of the culture supernatant were added and allowed to react at room temperature for 2 hours. Subsequently, after washing 5 times with a washing buffer (300 μl / well), 100 μl of anti-human IL-12 p70 polyclonal antibody to which biotin as the primary antibody was bound was added and reacted at room temperature for 1 hour. Wash 5 times with (300 μl / well). Next, 100 μl of the secondary antibody, avidin-horseradish peroxidase complex, was added, reacted at room temperature for 30 minutes, washed 7 times, and reacted with TMB coloring solution for 30 minutes. The color development was then stopped with 50 μl of reaction termination solution. Then, the amount of IL-12 p70 secretion was analyzed by measurement with an ELISA reader at 450 nm.

その結果、図8に示すように、死菌化させたカセイ菌添加群と死菌化させたPEDSc表面発現カセイ菌添加群は他の群と比較して樹状細胞から高い数値のIL−10及びIL−12 p70分泌を誘導するということを確認することができた。この結果より、死菌化乳酸菌が生存乳酸菌よりも免疫増強、特に樹状細胞の成熟誘導の面において一層優れた効果を有するということが分かった。   As a result, as shown in FIG. 8, the killed bacteria-added group and the killed PEDSc surface-expressed bacteria-added group had higher IL-10 values from dendritic cells than the other groups. And induction of IL-12 p70 secretion. From this result, it was found that killed lactic acid bacteria had a better effect than alive lactic acid bacteria in terms of immune enhancement, especially in the induction of dendritic cell maturation.

以上、本発明の内容の特定の部分を詳述したが、当業界における通常の知識を有する者にとって、これらの具体的な記述は単なる好適な実施の様態に過ぎず、これにより本発明の範囲が制限されるものではないということは自明であろう。よって、本発明の実質的な範囲は特許請求の範囲とこれらの等価物により定義されると言えるであろう。   Although specific portions of the contents of the present invention have been described in detail above, these specific descriptions are merely preferred embodiments for those having ordinary skill in the art, and thus the scope of the present invention. It is self-evident that is not limited. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

本発明は乳酸菌培養液を熱処理する段階を含む、免疫機能が強化された死菌化乳酸菌製剤及びその製造方法を提供する効果がある。本発明によれば、表面発現されたターゲットタンパク質の機能的な損傷の防止効果だけではなく、増強された免疫増強効果を有する乳酸菌製剤の製造が可能になる。本発明の方法に従い製造された死菌化乳酸菌は、生菌に比べて改善された免疫増強効果を示し、しかも量産が可能であることから、飼料添加剤、動物薬品あるいはワクチンなどに有効である。   The present invention has the effect of providing a killed lactic acid bacteria preparation with enhanced immune function and a method for producing the same, including a step of heat-treating a lactic acid bacteria culture solution. According to the present invention, it is possible to produce a lactic acid bacteria preparation having not only an effect of preventing functional damage of a surface-expressed target protein but also an enhanced immune enhancing effect. A killed lactic acid bacterium produced according to the method of the present invention exhibits an improved immune enhancing effect compared to a living bacterium and is mass-produced, and is therefore effective for feed additives, veterinary drugs or vaccines. .

図1は、α−アミラーゼタンパク質を表面発現する伝達ベクターであるpJT1−PgsA−アミラーゼの遺伝子マップである。FIG. 1 is a gene map of pJT1-PgsA-amylase, which is a transfer vector that surface-expresses α-amylase protein. 図2は、PEDScタンパク質を表面発現する伝達ベクターであるpJT1−PgsA−PEDScの遺伝子マップである。FIG. 2 is a gene map of pJT1-PgsA-PEDSc, which is a transfer vector that surface-expresses PEDSc protein. 図3は、界面活性剤入り培地において培養されたPEDSc表面発現乳酸菌において発現されたPgsA−PEDSc融合タンパク質の量をPgsAに対する特異抗体を用いたウェスタンブロット(western blot)法により確認した結果を示す図である。FIG. 3 shows the results of confirming the amount of PgsA-PEDSc fusion protein expressed in PEDSc surface-expressing lactic acid bacteria cultured in a surfactant-containing medium by a Western blot method using a specific antibody against PgsA. It is. 図4は、炭酸塩入り培地において培養されたPEDSc表面発現乳酸菌において発現されたPgsA−PEDSc融合タンパク質の量をPgsAに対する特異抗体を用いたウェスタンブロット法により確認した結果を示す図である。FIG. 4 is a diagram showing the results of confirming the amount of PgsA-PEDSc fusion protein expressed in PEDSc surface-expressing lactic acid bacteria cultured in a carbonate-containing medium by Western blotting using a specific antibody against PgsA. 図5は、pH補正及び非補正培養時におけるアミラーゼ表面発現乳酸菌の成長とアミラーゼ酵素活性(ユニット/ml)の変化を比較して示す図である。FIG. 5 is a diagram comparing the growth of amylase surface-expressing lactic acid bacteria and the change in amylase enzyme activity (unit / ml) during pH-corrected and non-corrected cultures. 図6は、pH補正及び非補正培養時におけるアミラーゼ表面発現乳酸菌において発現されたPgsA−アミラーゼ融合タンパク質の量をPgsAに対する特異抗体を用いたウェスタンブロット法により確認した結果を示す図である。FIG. 6 is a diagram showing the results of confirming the amount of PgsA-amylase fusion protein expressed in amylase surface-expressing lactic acid bacteria during pH correction and non-correction culture by Western blotting using a specific antibody against PgsA. 図7は、本発明に係る死菌化処理群と非処理群において表面発現ベクターに形質転換された乳酸菌中における組換え遺伝子含有プラスミドの存否を確認したアガロースゲル写真である。FIG. 7 is an agarose gel photograph in which the presence or absence of a recombinant gene-containing plasmid in lactic acid bacteria transformed with a surface expression vector in the killed and untreated group according to the present invention was confirmed. 図8は、野生型乳酸菌群と表面発現ベクターに形質転換された乳酸菌群において、死菌化処理の有無によるヒト樹状細胞の刺激効果(樹状細胞の成熟)を樹状細胞の刺激により分泌されるサイトカインの量から確認した結果を示す図である。FIG. 8 shows the effect of stimulating human dendritic cells (maturation of dendritic cells) by the stimulation of dendritic cells in the wild type lactic acid bacteria group and the lactic acid bacteria group transformed into the surface expression vector. It is a figure which shows the result confirmed from the quantity of the cytokine made.

Claims (2)

(a)PgsA、PgsB及びPgsCからなる群から選ばれたいずれか1種以上の遺伝子と、抗原、ペプチド及び酵素からなる群から選ばれたいずれか1種のターゲットタンパク質をコードする遺伝子とを含む微生物表面発現用のベクターで形質転換された乳酸菌を0.1〜1重量%のポリソルベート80と0.01〜0.1重量%の炭酸塩を含有する培地でpHを6.0〜7.0に保持しながら培養し、抗原、ペプチド又は酵素が表面発現された乳酸菌を製造する段階;及び(b)前記抗原、ペプチド又は酵素が表面発現された乳酸菌培養液を80〜120℃において5〜30分間熱処理する段階と、を含む免疫機能が強化された死菌化乳酸菌製剤の製造方法。 (A) including at least one gene selected from the group consisting of PgsA, PgsB and PgsC, and a gene encoding any one target protein selected from the group consisting of an antigen, a peptide and an enzyme A lactic acid bacterium transformed with a vector for expression on a microorganism surface was adjusted to a pH of 6.0 to 7.0 in a medium containing 0.1 to 1% by weight of polysorbate 80 and 0.01 to 0.1% by weight of carbonate. And (b) producing a lactic acid bacteria culture solution on which the antigen, peptide or enzyme is surface-expressed at 80 to 120 ° C. at 5 to 30. A method of producing a killed lactic acid bacteria preparation with enhanced immune function, comprising a step of heat-treating for minutes . 前記乳酸菌は、豚流行性の下痢ウィルスのスパイクタンパク質(PEDSc)とPgsAを含む微生物表面発現用のベクターで形質転換されたものである請求項1に記載の方法。 The method according to claim 1, wherein the lactic acid bacterium is transformed with a vector for expression on the surface of a microorganism comprising a porcine epidemic diarrhea virus spike protein (PEDSc) and PgsA .
JP2006012977A 2005-11-11 2006-01-20 Killed lactic acid bacteria preparation with enhanced immune function and method for producing the same Expired - Fee Related JP4902845B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050107860A KR100578395B1 (en) 2005-11-11 2005-11-11 A killed lactic acid bacteria preparation with enhanced immunity and method for preparing the same
KR10-2005-0107860 2005-11-11

Publications (2)

Publication Number Publication Date
JP2007131610A JP2007131610A (en) 2007-05-31
JP4902845B2 true JP4902845B2 (en) 2012-03-21

Family

ID=37181274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012977A Expired - Fee Related JP4902845B2 (en) 2005-11-11 2006-01-20 Killed lactic acid bacteria preparation with enhanced immune function and method for producing the same

Country Status (3)

Country Link
JP (1) JP4902845B2 (en)
KR (1) KR100578395B1 (en)
WO (1) WO2007055437A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171546A1 (en) 2013-04-19 2014-10-23 アンジェスМg株式会社 Oral vaccine having improved cellular immunity induction potency

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078995A (en) * 2007-09-26 2009-04-16 Genolac Bl:Kk Immuno-vaccine for periodontal disease
EP2251022A1 (en) * 2009-05-11 2010-11-17 Nestec S.A. Non-replicating micro-organisms and their immune boosting effect
EP2251020A1 (en) * 2009-05-11 2010-11-17 Nestec S.A. Short-time high temperature treatment generates microbial preparations with anti-inflammatory profiles
WO2012060579A2 (en) 2010-11-04 2012-05-10 주식회사 쎌바이오텍 Dead lactobacillus biomass for antimicrobial use and a production method therefor
CN102989010A (en) * 2012-12-04 2013-03-27 山东信得科技股份有限公司 Porcine epidemic diarrhea virus genetic engineering subunit oral vaccine
WO2019022463A2 (en) 2017-07-24 2019-01-31 (주)제이비바이오텍 Immunogenic system and animal vaccine comprising same
KR101915949B1 (en) * 2018-01-09 2018-11-07 주식회사 쎌바이오텍 Gene expression cassette and expression vector comprising the same
CN111575223B (en) * 2020-05-20 2022-04-15 江南大学 Method for reducing secretion of surface substances of lactobacillus rhamnosus
CN112760336A (en) * 2020-12-30 2021-05-07 广州辉园苑医药科技有限公司 Expression system and surface display system of epitope peptide and construction method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100218233B1 (en) * 1997-06-25 1999-10-01 박종헌 Medium for high concentration culture of bifidus
JP3993322B2 (en) * 1998-09-30 2007-10-17 雪印乳業株式会社 Lactic acid bacteria growth promoter and use thereof
JP3472804B2 (en) * 2000-05-24 2003-12-02 独立行政法人食品総合研究所 Novel bacteriocin and method for producing the same
CN1311082C (en) * 2001-08-10 2007-04-18 生物领先公司 Surface expression vectors having pgs BCA the gene coding poly-gamma-glutamate synthetase, and method for expression of target protein at the surface of microorganism using the vector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171546A1 (en) 2013-04-19 2014-10-23 アンジェスМg株式会社 Oral vaccine having improved cellular immunity induction potency

Also Published As

Publication number Publication date
WO2007055437A1 (en) 2007-05-18
KR100578395B1 (en) 2006-05-10
JP2007131610A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4902845B2 (en) Killed lactic acid bacteria preparation with enhanced immune function and method for producing the same
KR102377396B1 (en) Compositions and methods for induction of TH17 cells
US7871816B2 (en) Vector for anti-HPV vaccine and transformed microorganism by the vector
RU2332457C2 (en) Vector enabling sars virus antigen expression at cell surface, and microbes transformed by this vector
CN108728473B (en) Recombinant vector and recombinant strain for expressing helicobacter pylori NapA protein, and preparation method and application thereof
US11066638B2 (en) Method of preparing bacterial ghosts from gram-positive bacteria by hydrochloric acid treatment
CN115725002B (en) Coli specific antigen fusion protein and recombinant lactococcus lactis thereof
US20130236948A1 (en) Recombinant microorganisms and uses thereof
CN116396974B (en) African swine fever virus antigen protein recombinant expression vector, recombinant plant lactobacillus, and preparation method and application thereof
CN116333957A (en) Recombinant bacillus for displaying streptococcus suis prophage lyase, construction method and application thereof
CN107474142A (en) Promote polypeptide and its relevant biological material and the application of destination protein secretion
KR100782332B1 (en) Cell Surface Expression Vector for WSSV Antigen and Microorganism Transformed by the Same
Havenith et al. Gut-associated lactobacilli for oral immunisation
CN117431200A (en) Recombinant bacillus subtilis for displaying Newcastle disease virus HN protein on spore surface, construction method and application
CN107446872A (en) A kind of recombinant lactic acid bacteria vaccine strain of constitutive expression rabbit hemorrhagic disease virus VP60 albumen and its production and use
KR100720755B1 (en) Cell Surface Expression Vector of Parvovirus Antigen and Microorganisms Transformed Thereof
KR100457879B1 (en) Plasmid originated from Bifidobacterium, recombinant expression vector using the plasmid and transformation method
CN101368167A (en) Recombinant lactobacillus casei for co-expression of swine fever virus T cell epitope and pig parvoviral VP2 protein, and method of producing the same
CN109504643B (en) Probiotic clone strain integrating four-copy functional F18 pilus operon gene, construction method and application
JP6412865B2 (en) Bifidobacterium breve strain specific gene
EP1148064A1 (en) Lactobacillus johnsonii bacteriocin, active against Helicobacter pylori
CN101008014A (en) Lactic acid galactococcus vector of food grade
CN115927129B (en) Recombinant bacillus subtilis for displaying porcine circovirus 2 Cap protein on spore surface, construction method and application
CN111773384B (en) Brucella and foot-and-mouth disease bivalent vaccine as well as preparation method and application thereof
CN105087626A (en) Lactobacillus bacterial strain capable of expressing and secreting human interferon Alpha2b and application thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110608

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110708

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110713

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110808

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111229

R150 Certificate of patent or registration of utility model

Ref document number: 4902845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees