JP4900646B2 - Calcium phosphate composite material and method for producing the same - Google Patents

Calcium phosphate composite material and method for producing the same Download PDF

Info

Publication number
JP4900646B2
JP4900646B2 JP2005267864A JP2005267864A JP4900646B2 JP 4900646 B2 JP4900646 B2 JP 4900646B2 JP 2005267864 A JP2005267864 A JP 2005267864A JP 2005267864 A JP2005267864 A JP 2005267864A JP 4900646 B2 JP4900646 B2 JP 4900646B2
Authority
JP
Japan
Prior art keywords
calcium
hydroxyapatite
phosphate
solution
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005267864A
Other languages
Japanese (ja)
Other versions
JP2007075391A (en
Inventor
正浩 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005267864A priority Critical patent/JP4900646B2/en
Publication of JP2007075391A publication Critical patent/JP2007075391A/en
Application granted granted Critical
Publication of JP4900646B2 publication Critical patent/JP4900646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、リン酸カルシウム複合材料およびその製造方法に関する。   The present invention relates to a calcium phosphate composite material and a method for producing the same.

ハイドロキシアパタイト等のリン酸カルシウム類は、人体の歯や骨の主成分であり、生体適合性も高い、最も重要な生体無機材料である。生物の骨類は、このリン酸カルシウムと蛋白質等の複合体であるが、そのような材料を人工的に合成することは、歯科、整形外科、再生医療等の医学・薬学分野において、特に重要である。近年活発になされている化合物との複合化の研究では、蛋白質等とのミクロなレベルでの複合化が重要であるとされている。また、リン酸カルシウムは生体適合性が高いため、種々の材料の表面上に析出させて、材料の生体適合性を向上させる事も試みられている。 Calcium phosphates such as hydroxyapatite are the main components of human teeth and bones, and are the most important bioinorganic materials with high biocompatibility. Bone such organism is a complex of the calcium phosphate and protein, etc., can be artificially synthesizing such materials, dental, orthopedic, in the medical and pharmaceutical fields such as regenerative medicine, it is particularly important . In recent years, researches on compounding with compounds that have been actively conducted are considered to be important for compounding with proteins and the like at a micro level. In addition, since calcium phosphate has high biocompatibility, attempts have been made to improve the biocompatibility of materials by depositing it on the surface of various materials.

リン酸カルシウム類と他の化合物との複合体の合成には、様々な方法がある。最も簡便な方法は、化合物を取り込める空間を持つハイドロキシアパタイト類をあらかじめ独自に製造し、この出来上がったハイドロキシアパタイト類にタンパク質等の化合物を添加や担持する方法がある。例えば、特許文献1は、多孔性ハイドロキシアパタイト微粒子に薬物を充填している。また、特許文献2は水蒸気処理で針状結晶のハイドロキシアパタイトを合成して、その空孔にタンパク質を充填する方法を報告している。核酸をできあがった多孔性のハイドロキシアパタイトに担持させる方法(特許文献3、特許文献4)も報告されている。ハイドロキシアパタイトのa面を特に成長させた板状ハイドロキシアパタイトを合成しての混合例もある(特許文献5)。また、特許文献6〜11も、一度多孔性のハイドロキシアパタイトを合成しておき、それにタンパク質等の化合物を充填・混練させる方法である。その他の混合方法としては、微細なハイドロゲルと蛋白質を混合して固化させる方法(特許文献12)や、特許文献13〜15に報告される方法もある。   There are various methods for synthesizing complexes of calcium phosphates with other compounds. The simplest method includes a method in which a hydroxyapatite having a space for taking in a compound is produced in advance, and a compound such as a protein is added to or supported on the hydroxyapatite thus produced. For example, in Patent Document 1, porous hydroxyapatite fine particles are filled with a drug. Patent Document 2 reports a method of synthesizing needle-shaped crystalline hydroxyapatite by steam treatment and filling the pores with protein. A method (Patent Document 3 and Patent Document 4) for supporting a nucleic acid on a finished porous hydroxyapatite has also been reported. There is also an example of mixing by synthesizing plate-like hydroxyapatite in which the a-plane of hydroxyapatite is grown (Patent Document 5). Patent Documents 6 to 11 are also methods in which porous hydroxyapatite is once synthesized, and a compound such as protein is filled and kneaded therein. Other mixing methods include a method in which fine hydrogel and protein are mixed and solidified (Patent Document 12), and a method reported in Patent Documents 13 to 15.

ハイドロキシアパタイト類を溶液から形成させて、複合体を製造する代表的方法としては、複合させる材料を疑似体液(SBF:Simulated Body Fluid)に浸漬させ、その表面に疑似体液中のイオンからハイドロキシアパタイト等の相を析出させる方法がある。代表的例として、非特許文献1、非特許文献2、特許文献16をあげることができる。通常この方法では、材料を疑似体液(SBF)に浸漬させる時間は、数週間以上になる。また、疑似体液(SBF)の調製はさほど難しくはないが、共存イオン量を微妙に調整しなくてはならず、溶液の長期保存もできない。すなわち、煩雑な原料調製と長期の合成時間を必要とする。一方、特許文献17や非特許文献3、非特許文献4等に報告されているのが、表面が親水化された材料をカルシウムイオンの溶液とリン酸溶液とに交互に浸漬させて、材料表面にハイドロキシアパタイトを生成させて固定させる方法である。この方法では、疑似体液(SBF)を用いる場合と比べ合成時間は1日程度とかなり短縮されている。しかしながら、材料を取り出してのカルシウムイオン溶液およびリン酸溶液への浸漬という煩雑な操作が必要となる。さらに、球状の生体内分解性高分子や高分子ビーズの表面上にリン酸カルシウムを被覆させるという方法もあるが(特許文献18、特許文献19)、溶液中で球状化した分解性ポリマー上に相対的に少量のリン酸カルシウムを析出させるというものであり、リン酸カルシウムは主成分ではない。核酸を含んだリン酸カルシウムに関しては、核酸を含んだ溶液中からリン酸カルシウムの沈殿を生成させる方法が良く知られており、これを用いてのトランスフェクションの例もある(特許文献20、特許文献21)が、リン酸カルシウム中に導入できる核酸の量には限界がある。   A typical method for producing a composite by forming hydroxyapatites from a solution is to immerse the composite material in a simulated body fluid (SBF) and from the ions in the simulated body fluid to the surface, hydroxyapatite, etc. There is a method of precipitating the phases. As typical examples, Non-Patent Document 1, Non-Patent Document 2, and Patent Document 16 can be cited. Usually, in this method, the time for immersing the material in the simulated body fluid (SBF) is several weeks or more. Moreover, although preparation of a pseudo body fluid (SBF) is not so difficult, the amount of coexisting ions must be finely adjusted, and the solution cannot be stored for a long time. That is, complicated raw material preparation and a long synthesis time are required. On the other hand, as reported in Patent Document 17, Non-Patent Document 3, Non-Patent Document 4, etc., the surface of the material is obtained by alternately immersing a material having a hydrophilic surface in a calcium ion solution and a phosphoric acid solution. In this method, hydroxyapatite is produced and fixed. In this method, the synthesis time is considerably shortened to about one day compared with the case of using simulated body fluid (SBF). However, a complicated operation of taking out the material and immersing it in a calcium ion solution and a phosphoric acid solution is required. Furthermore, there is a method in which calcium phosphate is coated on the surface of a spherical biodegradable polymer or polymer bead (Patent Document 18, Patent Document 19). A small amount of calcium phosphate is precipitated on the surface, and calcium phosphate is not the main component. Regarding calcium phosphate containing nucleic acid, a method for producing a precipitate of calcium phosphate from a solution containing nucleic acid is well known, and there are also examples of transfection using this (Patent Document 20, Patent Document 21). There is a limit to the amount of nucleic acid that can be introduced into calcium phosphate.

一方、リン酸カルシウムの過飽和溶液を用いて、これにタンパク質等の化合物を加えて
、共沈させる方法(特許文献22〜24)も知られている。この方法においても、リン酸カルシウムの過飽和溶液という正確な調製条件の伴う溶液を用いなくてはならない。一般にリン酸カルシウムはリン酸を含む溶液をカルシウムイオンを含む溶液に混合することにより得られるが、例えばハイドロキシアパタイトの場合は、水酸化カルシウムとリン酸(あるいは塩)をリンとカルシウムとの比を調整して反応させることで容易に得られる。この際、リン酸の溶液にコラーゲン等のタンパク質を共存させておいてハイドロキシアパタイトを沈殿させれば、コラーゲン等もハイドロキシアパタイト内に包含されると考えられるが、溶液の混合条件、反応温度やpH等を最適化しなければ、ハイドロキシアパタイト内にコラーゲンが包含されないことが報告されている(非特許文献5)。このように、リン酸カルシウム、特にハイドロキシアパタイトと他の化合物との複合体を、簡便な方法で短時間に製造できる、内包させる化合物の特性にさほど影響されない一般性・汎用性の高い方法は知られていなかった。
特開2004-075662 特開2004-073401 特開2004-154431 特開2004-123610 特開平10-45405 特開2001-133459 特開平11-347112 特開2004-154431 特開2004-123610 特開2004-330113 特開平06-298621 特開2004-141359 特開平04-244014 特開平04-244013 特開平02-041171 特開平06-335520 特開2000-327314 特開2002-241312 特開2000-336174 特表2002-533131 特表平10-508462 特開2004-168739 特開2004-173795 特開2005-021208 K. Onuma et al., Chem. Mater. vol-10, p-3346 (1998) K. Onuma et al., J. Phys. Chem. B, vol-102, p-7833 (1998) T. Taguchi et al., Biomaterials, vol-22, p-53 (2001) T. Serizawa et al., J. Biomater. Sci. Polym. Edn. Vol-12, p-1293 (2001) M. Kikuchi et al., Composites Science and Technology, 64, 819 (2004)
On the other hand, a method of coprecipitation using a supersaturated solution of calcium phosphate and adding a compound such as protein to this is also known (Patent Documents 22 to 24). In this method as well, a solution with precise preparation conditions such as a supersaturated solution of calcium phosphate must be used. In general, calcium phosphate is obtained by mixing a solution containing phosphoric acid with a solution containing calcium ions. For example, in the case of hydroxyapatite, the ratio of calcium hydroxide and phosphoric acid (or salt) is adjusted to the ratio of phosphorus to calcium. It can be easily obtained by reacting. At this time, if a protein such as collagen coexists in a solution of phosphoric acid to precipitate hydroxyapatite, it is considered that collagen and the like are also included in the hydroxyapatite, but the mixing conditions of the solution, reaction temperature and pH It has been reported that collagen is not included in hydroxyapatite unless the above is optimized (Non-patent Document 5). As described above, there is known a general and versatile method that can produce a complex of calcium phosphate, particularly hydroxyapatite and other compounds in a short time by a simple method and is not greatly affected by the characteristics of the compound to be included. There wasn't.
JP2004-075662 JP2004-073401 JP2004-154431 JP2004-123610 JP 10-45405 JP2001-133459 JP-A-11-347112 JP2004-154431 JP2004-123610 JP2004-330113 JP 06-298621 JP2004-141359 JP 04-244014 JP 04-244013 JP 02-041171 JP 06-335520 JP2000-327314 JP2002-241312 JP2000-336174 Special Table 2002-533131 Special table flat 10-508462 JP2004-168739 JP2004-173795 JP2005-021208 K. Onuma et al., Chem. Mater.vol-10, p-3346 (1998) K. Onuma et al., J. Phys. Chem. B, vol-102, p-7833 (1998) T. Taguchi et al., Biomaterials, vol-22, p-53 (2001) T. Serizawa et al., J. Biomater. Sci. Polym. Edn. Vol-12, p-1293 (2001) M. Kikuchi et al., Composites Science and Technology, 64, 819 (2004)

本発明は、リン酸カルシウムから構成されるシェル(殻)内に種々のコア化合物(即ちコア部分に内包される化合物)を内包させる技術、およびそのようにして合成された材料に関する技術を提供するものである。   The present invention provides a technique for encapsulating various core compounds (ie, compounds encapsulated in the core part) in a shell composed of calcium phosphate, and a technique relating to the material synthesized in this way. is there.

本発明者は、種々のコア化合物のリン酸カルシウム粒子内への直接内包化について検討した結果、リン酸(あるいはリン酸塩)を含む内水相(水相1)に溶解ないし分散可能な化合物をエマルジョンを安定化させる界面活性剤を含んだ油相に加えW/Oエマルジョンを形成させ、これをカルシウム化合物が存在する水相2に適切な撹拌条件の下加えることで、化合物を直接内包化させたリン酸カルシウム粒子を合成することに成功し、本発明に至った(概念図を図1に示す)。 As a result of studying the direct encapsulation of various core compounds into calcium phosphate particles, the present inventors have found that an emulsion of a compound that can be dissolved or dispersed in an inner aqueous phase (aqueous phase 1) containing phosphoric acid (or phosphate). The compound was directly encapsulated by adding a W / O emulsion to an oil phase containing a surfactant that stabilizes water and adding it to the aqueous phase 2 in which a calcium compound is present under appropriate stirring conditions. The present inventors have succeeded in synthesizing calcium phosphate particles and have arrived at the present invention (conceptual diagram is shown in FIG. 1).

本発明は、以下のマイクロカプセル及びその製造方法に関する。
1. リン酸カルシウム材料から構成される殻(シェル)にコア化合物を内包したリン酸カルシウム複合材料。
2. 前記コア化合物が生理活性物質である項1に記載の複合材料。
3. 前記複合材料がマイクロカプセルである、項1又は2に記載の複合材料。
4. リン酸イオンもしくはカルシウムイオンとコア化合物を含む第1水相粒子を油相中に分散してなるW/Oエマルジョンにカルシウムイオンもしくはリン酸イオンを含む水溶液を作用させることを特徴とする、コア化合物をリン酸カルシウム材料から構成される殻に内包してなるリン酸カルシウム複合材料の製造方法。
The present invention relates to the following microcapsules and methods for producing the same.
1. A calcium phosphate composite material in which a core compound is encapsulated in a shell made of a calcium phosphate material.
2. Item 2. The composite material according to Item 1, wherein the core compound is a physiologically active substance.
3. Item 3. The composite material according to Item 1 or 2, wherein the composite material is a microcapsule.
4). A core compound characterized in that an aqueous solution containing calcium ions or phosphate ions is allowed to act on a W / O emulsion obtained by dispersing first aqueous phase particles containing phosphate ions or calcium ions and a core compound in an oil phase. A method for producing a calcium phosphate composite material in which is encapsulated in a shell composed of a calcium phosphate material.

なお、図1では、水相1がリン酸化合物(リン酸、リン酸塩などの水溶液中でリン酸イオンを供給できる化合物)、水相2がカルシウム化合物(カルシウム塩などの水溶液中でカルシウムイオンを供給できる化合物)の例が示されているが、水相2がリン酸化合物、水相1がカルシウム化合物であっても同様にリン酸カルシウム複合材料を得ることができる。   In FIG. 1, the aqueous phase 1 is a phosphate compound (a compound capable of supplying phosphate ions in an aqueous solution such as phosphoric acid and phosphate), and the aqueous phase 2 is a calcium compound (calcium ions in an aqueous solution such as a calcium salt). An example of a compound capable of supplying a calcium phosphate composite material can be obtained in the same manner even when the aqueous phase 2 is a phosphate compound and the aqueous phase 1 is a calcium compound.

本発明は、種々の化合物を簡便な方法でリン酸カルシウム粒子内に内包化させる方法で、種々のコア化合物とリン酸カルシウム材料との複合化により、歯科治療、整形外科治療、再生医療、ドラッグデリバリーシステム、ジーンデリバリー、化粧品、食品添加物の利用等に寄与できる材料を提供できる。リン酸カルシウム類、特にハイドロキシアパタイトは生体適合性の高い、毒性の無い材料として知られており、実用化への可能性は特に高いと考えられる。   The present invention is a method for encapsulating various compounds in calcium phosphate particles by a simple method. By combining various core compounds and calcium phosphate materials, dental treatment, orthopedic treatment, regenerative medicine, drug delivery system, gene Materials that can contribute to delivery, cosmetics, use of food additives, and the like can be provided. Calcium phosphates, particularly hydroxyapatite, are known as highly biocompatible and non-toxic materials, and are considered to have a particularly high potential for practical use.

本明細書において、「リン酸カルシウム材料」とは、カルシウムとリンが主成分である化合物の総称である。また、「コア化合物」とは、コア部分(リン酸カルシウム材料から構成される殻(シェル)に囲まれる部分)に内包される化合物を意味する。   In the present specification, the “calcium phosphate material” is a general term for compounds mainly composed of calcium and phosphorus. The “core compound” means a compound included in a core portion (a portion surrounded by a shell made of a calcium phosphate material).

リン酸化合物とは、リン酸イオンを供給できる化合物を意味し、例えばリン酸、リン酸塩が挙げられる。
コア化合物を内包したリン酸カルシウム複合材料は、既存のマイクロカプセル合成の方法を改良することで製造することができる。先述のシリカ等の粒子の場合は、中空の球状粒子を合成することができるが、リン酸カルシウムの場合は、先行技術の方法では球状粒子を得ることはできず、粒子径がミクロンサイズの不定形の粉体粒子のリン酸カルシウムが得られる。リン酸カルシウム材料としては、ハイドロキシアパタイト、リン酸水素カルシウム(ダイカルシウムホスフェート・ダイハイドレート、DCPD)、リン酸三カルシウム(トリカルシウムホスフェート)、リン酸二水素カルシウム、オクタカルシウムホスフェート、テトラカルシウムホスフェート等がある。このリン酸カルシウムの作り分けは、原料のリンとカルシウムの比により制御することができる。また、ナトリウム、カリウム、フッ素等の他のイオンも、リン酸カルシウム材料の特性に悪影響を及ぼさない範囲で混入していても良い。
図1の水相1または2に用いられるリン酸イオンの原料(水溶液中でリン酸イオンを供給できる化合物)としては、リン酸、リン酸塩(リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム等)をあげることができる。図1の水相2または1に用いられるカルシウムイオンの原料(水溶液中でカルシウムイオンを供給できる化合物)としては、水酸化カルシウム、酸化カルシウム、炭酸カルシウム、ハロゲン化カルシウム、硝酸カルシウム、硫酸カルシウム等をあげることができる。
A phosphoric acid compound means the compound which can supply a phosphate ion, for example, phosphoric acid and a phosphate are mentioned.
The calcium phosphate composite material including the core compound can be produced by improving an existing method for synthesizing microcapsules. In the case of particles such as silica as described above, hollow spherical particles can be synthesized, but in the case of calcium phosphate, spherical particles cannot be obtained by the prior art method, and the particle size is an irregular shape with a micron size. Powdered calcium phosphate is obtained. Calcium phosphate materials include hydroxyapatite, calcium hydrogen phosphate (dicalcium phosphate / die hydrate, DCPD), tricalcium phosphate (tricalcium phosphate), calcium dihydrogen phosphate, octacalcium phosphate, tetracalcium phosphate, etc. . The formation of this calcium phosphate can be controlled by the ratio of the raw material phosphorus and calcium. Further, other ions such as sodium, potassium, and fluorine may be mixed in a range that does not adversely affect the properties of the calcium phosphate material.
Examples of phosphate ion raw materials (compounds capable of supplying phosphate ions in an aqueous solution) used in the aqueous phase 1 or 2 of FIG. 1 include phosphoric acid, phosphates (ammonium dihydrogen phosphate, diammonium hydrogen phosphate, And sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and the like. Examples of calcium ion raw materials (compounds that can supply calcium ions in an aqueous solution) used in the aqueous phase 2 or 1 in FIG. 1 include calcium hydroxide, calcium oxide, calcium carbonate, calcium halide, calcium nitrate, calcium sulfate, and the like. I can give you.

この際のリン酸類の溶解した溶液の濃度・容量、カルシウム類の混入した溶液の濃度・容量、界面活性剤の溶解した有機溶液の濃度・体積は特に限定されないが、リン酸あるいはリン酸塩の水溶液の濃度は0.5〜20Mがよく、1〜5Mが特によい。界面活性剤は、エマ
ルションが安定である限り特に使用する必要はないが、例えば界面活性剤の総重量の濃度は5〜50g/Lが好ましく使用され、特に10〜30g/Lが良い。カルシウム化合物の濃度は、溶
解あるいは懸濁の場合ともに、0.1〜5Mがよく、0.2〜2Mが特によい。用いる水溶液(水相1、2)と油相との体積比は、油相/水相1の体積比で、0.3〜20が良く、特に0.5〜10が良い。また水相2/水相1の体積比では、1〜20が良く、特に3〜12が良い。
リン酸カルシウム材料から構成される殻に内包化できる化合物としては、無機粉体、有機ポリマー、生体分子、核酸、薬物等の生理活性物質がある。無機粉体としては、種々の金属酸化物、種々の金属炭酸塩、リン酸塩、金属粉ないし非金属粉等がある。金属酸化物としては、アルミナ、チタニア、ジルコニア、酸化銅、酸化鉄、酸化亜鉛等をあげることができる。金属炭酸塩としては、炭酸カルシウム、炭酸マグネシウム、炭酸コバルト、炭酸ストロンチウム、炭酸鉄、炭酸銅等をあげることができる。リン酸塩としては、リン酸カルシウム、リン酸鉄、リン酸アルミニウム等をあげることができる。金属粉ないし非金属粉としては、炭素、鉄粉、銅粉等をあげることができる。有機ポリマーとしては、ポリアクリルアミド、ポリアクリル酸ナトリウム、ポリメタクリル酸ナトリウム等の水に可溶、あるいは水に不溶であっても親水性のポリマーをあげることができる。内包できる生体分子、核酸、薬物等の生理活性物質の具体例としては、タンパク質、DNA、ホルモン類、糖質、各種医薬品等をあげることができる。これら生体分子は特に限定されないが、上述のリン酸あるいはリン酸塩溶液中に比較的安定に存在できるものが好ましい。内包させる生理活性物質をリン酸あるいはリン酸塩水溶液中に混入させておく最低の時間は、水相と油相とのエマルジョンを形成させる時間であり、数分程度と見込まれる。核酸も特に限定されないが、酸性水溶液中での安定性のため、デオキシリボ核酸・DNAが良いと考えられる。このDNAに関しては、塩基配列や分子量に関して特に限定はされない。この際、用いるリン酸の水溶液を適切に選択する必要がある。内包させる化合物のリン酸カルシウムに対する相対量は、溶解あるいは十分に分散できる範囲であれば特に限定されない。用いるリン酸の溶液はpH値が1程度の強酸であり、リン酸二水素アンモニウムの溶液はpH値が4程度、リン酸水素二アンモニウムの溶液はpH値が8程度であり、共存させる化合物と反応しない溶液を適宜選択する必要がある。
At this time, the concentration / volume of the solution in which phosphoric acid is dissolved, the concentration / volume of the solution in which calcium is mixed, and the concentration / volume of the organic solution in which the surfactant is dissolved are not particularly limited. The concentration of the aqueous solution is preferably 0.5 to 20M, particularly 1 to 5M. The surfactant is not particularly required as long as the emulsion is stable. For example, the total weight concentration of the surfactant is preferably 5 to 50 g / L, and particularly preferably 10 to 30 g / L. The concentration of the calcium compound is preferably 0.1 to 5M and particularly preferably 0.2 to 2M in both cases of dissolution or suspension. The volume ratio of the aqueous solution (water phases 1 and 2) to be used and the oil phase is the volume ratio of the oil phase / water phase 1 and is preferably 0.3 to 20, particularly 0.5 to 10. In addition, the volume ratio of aqueous phase 2 / aqueous phase 1 is preferably 1 to 20, particularly 3 to 12.
Examples of compounds that can be encapsulated in a shell composed of a calcium phosphate material include physiologically active substances such as inorganic powders, organic polymers, biomolecules, nucleic acids, and drugs. Examples of the inorganic powder include various metal oxides, various metal carbonates, phosphates, metal powders and nonmetal powders. Examples of the metal oxide include alumina, titania, zirconia, copper oxide, iron oxide, and zinc oxide. Examples of the metal carbonate include calcium carbonate, magnesium carbonate, cobalt carbonate, strontium carbonate, iron carbonate, and copper carbonate. Examples of the phosphate include calcium phosphate, iron phosphate, and aluminum phosphate. Examples of the metal powder or non-metal powder include carbon, iron powder, and copper powder. Examples of the organic polymer include hydrophilic polymers such as polyacrylamide, sodium polyacrylate, and sodium polymethacrylate that are soluble in water or insoluble in water. Specific examples of bioactive substances such as biomolecules, nucleic acids, and drugs that can be encapsulated include proteins, DNA, hormones, carbohydrates, and various pharmaceuticals. These biomolecules are not particularly limited, but those that can exist relatively stably in the above-described phosphoric acid or phosphate solution are preferable. The minimum time for mixing the physiologically active substance to be included in the phosphoric acid or phosphate aqueous solution is the time for forming an emulsion of the aqueous phase and the oil phase, and is expected to be about several minutes. The nucleic acid is not particularly limited, but deoxyribonucleic acid / DNA is considered good because of its stability in an acidic aqueous solution. The DNA is not particularly limited with respect to the base sequence and molecular weight. At this time, it is necessary to appropriately select an aqueous solution of phosphoric acid to be used. The relative amount of the compound to be encapsulated with respect to calcium phosphate is not particularly limited as long as it can be dissolved or sufficiently dispersed. The phosphoric acid solution to be used is a strong acid having a pH value of about 1, the ammonium dihydrogen phosphate solution has a pH value of about 4, the diammonium hydrogen phosphate solution has a pH value of about 8, It is necessary to appropriately select a solution that does not react.

内包化させる化合物を含有したリン酸あるいはリン酸塩が溶解した水相1を、エマルジョンを安定化させる非イオン系界面活性剤を含んだ油相に加え、乳化させる。この際に用いる非イオン系界面活性剤は、乳化エマルジョンを安定化できるものならば特に限定されないが、例えば、Tween80やSpan80などのようなTween類やSpan類をあげることができる。油相としては、n-ヘキサン、n-ペンタン、n-ヘプタン、シクロヘキサンなどの炭化水素類、ベンゼン、トルエンなどの芳香族炭化水素類、クロロホルム、塩化メチレン、四塩化炭素などのハロゲン化炭化水素類、酢酸エチルなどのエステル類、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類等の水への溶解度の低い溶媒が挙げられ、好ましい油相は、n−ヘキサン、ベンゼンなどから構成される。   The aqueous phase 1 in which the phosphoric acid or phosphate containing the compound to be encapsulated is dissolved is added to the oil phase containing a nonionic surfactant that stabilizes the emulsion and emulsified. The nonionic surfactant used in this case is not particularly limited as long as it can stabilize the emulsion, and examples thereof include Tweens and Spans such as Tween80 and Span80. The oil phase includes hydrocarbons such as n-hexane, n-pentane, n-heptane and cyclohexane, aromatic hydrocarbons such as benzene and toluene, and halogenated hydrocarbons such as chloroform, methylene chloride and carbon tetrachloride. And solvents having low solubility in water, such as esters such as ethyl acetate and ethers such as diethyl ether and diisopropyl ether, and a preferable oil phase is composed of n-hexane, benzene and the like.

乳化の方法は特に限定されないが、ホモジュナイザー等を用い十分にエマルジョンを形
成させればよい。内包させる化合物をエマルジョン形成時に混入させることもできる。この乳化液を、上述のカルシウム化合物が溶解あるいは懸濁した水相2(図1における水相2)に加え、リン酸カルシウム粒子を得る。この際、水相1に内包させる化合物を共存させなければ、内包物のないリン酸カルシウム粒子を合成することができる。こうして得られたリン酸カルシウム粒子は、粉末X線回折により分析、同定することができる。また化合物の内包化は、赤外線スペクトル、紫外線スペクトル等により確認することができる。混合された化合物が実際に、リン酸カルシウム内に内包されていることに関しては、以下の方法で確認した。水溶性の化合物に関しては、高い水溶性を持つアルブミンに関して、合成されたアルブミン内包ハイドロキシアパタイトを十分量の水で洗浄の後も、ほとんどアルブミンは脱離していないことを確認した(実施例7参照)。また、水に不溶な化合物に関しては、酸化鉄あるいは酸化銅内包ハイドロキシアパタイト、および酸化鉄あるいは酸化銅内包DCPCの透過光による光学顕微鏡像より、粉末がハイドロキシアパタイトおよびDCPDの粒子内に埋め込まれていることを確認した(実施例10〜13参照)。
The emulsification method is not particularly limited, but a sufficient emulsion may be formed using a homogenizer or the like. The compound to be encapsulated can also be mixed during the formation of the emulsion. This emulsion is added to the aqueous phase 2 in which the above-mentioned calcium compound is dissolved or suspended (aqueous phase 2 in FIG. 1) to obtain calcium phosphate particles. At this time, if the compound to be encapsulated in the aqueous phase 1 does not coexist, calcium phosphate particles having no inclusion can be synthesized. The calcium phosphate particles thus obtained can be analyzed and identified by powder X-ray diffraction. The encapsulation of the compound can be confirmed by an infrared spectrum, an ultraviolet spectrum or the like. The fact that the mixed compound was actually encapsulated in calcium phosphate was confirmed by the following method. Regarding the water-soluble compound, it was confirmed that albumin having a high water-solubility was hardly detached even after washing the synthesized albumin-containing hydroxyapatite with a sufficient amount of water (see Example 7). . In addition, with respect to compounds insoluble in water, the powder is embedded in the particles of hydroxyapatite and DCPD from the optical microscopic image of the transmitted light of iron oxide or copper oxide encapsulated hydroxyapatite and iron oxide or copper oxide encapsulated DCPC. This was confirmed (see Examples 10 to 13).

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
実施例1:界面反応法によるハイドロキシアパタイトの合成−1
リン酸(8.28g、84.5mmol)を水に溶かし全体積を36mlとした溶液(図1の水相1)に、Tween80(1.01g:モル数は混合物につき不明)とSpan80(0.50g:モル数は混合物
につき不明)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を1分行った
のち、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ
全体積を250mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:約400回転)の後、ろ別により生成した沈殿を得た(12.25g)。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
Example 1 Synthesis of Hydroxyapatite by Interfacial Reaction Method-1
A solution of phosphoric acid (8.28 g, 84.5 mmol) dissolved in water to make a total volume of 36 ml (aqueous phase 1 in FIG. 1), Tween80 (1.01 g: the number of moles is unknown per mixture) and Span80 (0.50 g: number of moles) Was dissolved in n-hexane and mixed with a solution (oil phase in FIG. 1) having a total volume of 72 ml, and emulsified at a rotational speed of about 8300 using a homogenizer. After this emulsification treatment for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) is suspended in water to make a total volume of 250 ml (aqueous phase 2 in FIG. 1). added. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (12.25 g).

得られた粉体の粉末X線回折パターンを図2に示す。ハイドロキシアパタイトが生成し
ていることが確認された。
実施例2:界面反応法によるハイドロキシアパタイトの合成−2
リン酸二水素アンモニウム(9.72g、84.5mmol)を水に溶かし全体積を36mlとした溶液に、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlと
した溶液と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を1分行ったのち、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液に加えた。2時間撹拌(回転数:約400回転)の後、ろ別により生成した沈殿を得た(10.22g)。得られた粉体の粉末X線回折パターンを図3に示す。ハイドロキシアパタイトが生成していることが確認された。
実施例3:界面反応法によるハイドロキシアパタイトの合成−3
リン酸水素二アンモニウム(11.16g、84.5mmol)を水に溶かし全体積を36mlとした
溶液に、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72ml
とした溶液と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を1分行ったのち、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液に加えた。2時間撹拌(回転数:約400回転)の後、ろ別により生成した沈殿を得た(9.52g)。得られた粉体の粉末X線回折パター
ンを図4に示す。ハイドロキシアパタイトが生成していることが確認された。
実施例4:界面反応法によるDCPD(ダイカルシウムホスフェート・ダイハイドレート)の合成
リン酸(16.56g、169.0mmol)を水に溶かし全体積を36mlとした溶液(図1の水相1)に、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlと
した溶液(図1の油相)と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を1分行ったのち、99.9%純度の水酸化カルシウム(和光純薬製;9.2
6g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。
2時間撹拌(回転数:約400回転)の後、ろ別により生成した沈殿を得た(10.26g)。
The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that hydroxyapatite was generated.
Example 2: Synthesis of hydroxyapatite by the interfacial reaction method-2
A solution of ammonium dihydrogen phosphate (9.72 g, 84.5 mmol) dissolved in water to a total volume of 36 ml, a solution of Tween 80 (1.01 g) and Span 80 (0.50 g) in n-hexane to a total volume of 72 ml, The mixture was mixed and emulsified with a homogenizer at a rotational speed of about 8300. After this emulsification treatment for 1 minute, 99.9% purity calcium hydroxide (manufactured by Wako Pure Chemicals; 9.26 g, 125 mmol) was suspended in water and added to a solution having a total volume of 250 ml. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (10.22 g). The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that hydroxyapatite was generated.
Example 3 Synthesis of Hydroxyapatite by Interfacial Reaction Method-3
Dissolve diammonium hydrogen phosphate (11.16 g, 84.5 mmol) in water to a total volume of 36 ml, dissolve Tween80 (1.01 g) and Span80 (0.50 g) in n-hexane, and total volume of 72 ml
The obtained solution was mixed and emulsified at a rotational speed of about 8300 using a homogenizer. After this emulsification treatment for 1 minute, 99.9% purity calcium hydroxide (manufactured by Wako Pure Chemicals; 9.26 g, 125 mmol) was suspended in water and added to a solution having a total volume of 250 ml. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (9.52 g). The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that hydroxyapatite was generated.
Example 4: Synthesis of DCPD (Dicalcium Phosphate Dihydrate) by Interfacial Reaction Method Phosphoric acid (16.56 g, 169.0 mmol) was dissolved in water to make a total volume of 36 ml (aqueous phase 1 in FIG. 1). Tween80 (1.01 g) and Span80 (0.50 g) were dissolved in n-hexane and mixed with a solution having a total volume of 72 ml (oil phase in FIG. 1), and emulsified with a homogenizer at about 8300 revolutions. . After 1 minute of this emulsification treatment, 99.9% pure calcium hydroxide (Wako Pure Chemicals; 9.2
(6 g, 125 mmol) was suspended in water and added to a solution having a total volume of 250 ml (aqueous phase 2 in FIG. 1).
After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (10.26 g).

得られた粉体の粉末X線回折パターンを図5に示す。DCPD(ダイカルシウムホスフ
ェート・ダイハイドレート)が生成していることが確認された。
実施例5:界面反応法によるアルブミン内包ハイドロキシアパタイトの合成
リン酸(8.28g、84.5mmol)を水に溶かし全体積を36mlとした溶液にアルブミン(CALZYME Laboratories社製、Bovine Serum)1gを素早く溶解させ(図1の水相1)、溶解後すぐにTween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlと
した溶液(図1の油相)と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を1分行ったのち、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。
2時間撹拌(回転数:約400回転)の後、ろ別により生成した沈殿を得た(13.48g)。
The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that DCPD (dicalcium phosphate dihydrate) was produced.
Example 5: Synthesis of albumin-encapsulated hydroxyapatite by the interfacial reaction method 1 g of albumin (CALZYME Laboratories, Bovine Serum) was quickly dissolved in a solution in which phosphoric acid (8.28 g, 84.5 mmol) was dissolved in water to make a total volume of 36 ml. (Aqueous phase 1 in Fig. 1) Immediately after dissolution, Tween80 (1.01 g) and Span80 (0.50 g) were dissolved in n-hexane to make a total volume of 72 ml (oil phase in Fig. 1). The mixture was emulsified at a rotational speed of about 8300 using a kneader. After this emulsification treatment for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) is suspended in water to make a total volume of 250 ml (aqueous phase 2 in FIG. 1). added.
After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (13.48 g).

得られた粉体の粉末X線回折パターンを図6に示す。ハイドロキシアパタイトが生成し
ていることが確認された。また、固体の紫外線スペクトル(図7)よりアルブミンに帰属される280nmの吸収が観測され、アルブミンが内包されていることが確認された。
実施例6:界面反応法によるポリアクリルアミド内包ハイドロキシアパタイトの合成
リン酸(8.28g、84.5mmol)を水に溶かし、ポリアクリルアミドの水溶液をポリアクリルアミドの含量が2gになるように加えて全体積を36mlとした溶液に、Tween80(1.01
g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を1分行ったのち、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:
約400回転)の後、ろ別により生成した沈殿を得た(13.08g)。
The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that hydroxyapatite was generated. Further, absorption at 280 nm attributed to albumin was observed from the solid ultraviolet spectrum (FIG. 7), and it was confirmed that albumin was included.
Example 6: Synthesis of polyacrylamide-encapsulated hydroxyapatite by interfacial reaction method Phosphoric acid (8.28 g, 84.5 mmol) was dissolved in water, an aqueous solution of polyacrylamide was added so that the content of polyacrylamide was 2 g, and the total volume was 36 ml. Tween80 (1.01
g) and Span 80 (0.50 g) were dissolved in n-hexane and mixed with a solution (oil phase in FIG. 1) having a total volume of 72 ml, and emulsified at a rotational speed of about 8300 using a homogenizer. After this emulsification treatment for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) is suspended in water to make a total volume of 250 ml (aqueous phase 2 in FIG. 1). added. Stir for 2 hours (rotation speed:
After about 400 revolutions), a precipitate formed by filtration was obtained (13.08 g).

得られた粉体の粉末X線回折パターンを図8に示す。ハイドロキシアパタイトが生成し
ていることが確認された。
実施例7:界面反応法によるアルブミン内包ハイドロキシアパタイトの合成
リン酸(8.28g、84.5mmol)を水に溶かし全体積を36mlとした溶液を、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlとした溶液と混合し、
ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を20秒行った後、アルブミン1gの粉末を素早く加え、さらにホモジュナイザーで1分間乳化の後、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:約400回転)の後、ろ
別により生成した沈殿を得た(13.50g)。
A powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that hydroxyapatite was generated.
Example 7: Synthesis of albumin-encapsulated hydroxyapatite by interfacial reaction method A solution in which phosphoric acid (8.28 g, 84.5 mmol) was dissolved in water to make a total volume of 36 ml was prepared by adding Tween80 (1.01 g) and Span80 (0.50 g) to n- Mixed with a solution of 72 ml in total volume dissolved in hexane,
The emulsion was emulsified at a rotational speed of about 8300 using a homogenizer. After performing this emulsification treatment for 20 seconds, 1 g of albumin powder was quickly added, and after emulsification with a homogenizer for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) was added to water. The suspension was added to a solution (aqueous phase 2 in FIG. 1) having a total volume of 250 ml. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (13.50 g).

得られた粉体の粉末X線回折パターンを図9に示す。ハイドロキシアパタイトが生成し
ていることが確認された。また、固体の紫外線スペクトル(図10)よりアルブミンに帰属される280nmの吸収が観測され、アルブミンが内包されていることが確認された。また、このアルブミンを内包したハイドロキシアパタイト1gを、1.5リットルの水で洗浄した前後の固体の紫外線スペクトル(図11)を比較することにより、ハイドロキシアパタイトに内包されたアルブミンは中性の水ではほとんど放出されないことより、アルブミンはハイドロキシアパタイトの固体内に包含されていることを確認した。
実施例8:界面反応法によるジルコニア内包ハイドロキシアパタイトの合成
リン酸(8.28g、84.5mmol)を水に溶かし全体積を36mlとした溶液を、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlとした溶液と混合し、
ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を20秒行った後、ジルコニア1gの粉末を素早く加え、さらにホモジュナイザーで1分間乳化の後、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250
mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:約400回転)の後、ろ
別により生成した沈殿を得た(12.99g)。
The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that hydroxyapatite was generated. Further, absorption at 280 nm attributed to albumin was observed from the solid ultraviolet spectrum (FIG. 10), and it was confirmed that albumin was included. Moreover, by comparing the ultraviolet spectrum of solids before and after washing 1 g of hydroxyapatite encapsulating albumin with 1.5 liters of water (FIG. 11), albumin encapsulated in hydroxyapatite is not neutral water. Since it was hardly released, it was confirmed that albumin was included in the hydroxyapatite solid.
Example 8: Synthesis of zirconia-encapsulated hydroxyapatite by the interfacial reaction method A solution in which phosphoric acid (8.28 g, 84.5 mmol) was dissolved in water to make the total volume 36 ml, Tween80 (1.01 g) and Span80 (0.50 g) were mixed with n- Mixed with a solution of 72 ml in total volume dissolved in hexane,
The emulsion was emulsified at a rotational speed of about 8300 using a homogenizer. After performing this emulsification treatment for 20 seconds, quickly add 1 g of zirconia powder, and after emulsification with a homogenizer for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) is added to water. Suspend and total volume 250
The solution was added to the ml solution (aqueous phase 2 in FIG. 1). After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (12.99 g).

得られた粉体の粉末X線回折パターンを図12に示す。ハイドロキシアパタイトが生成
していることが確認された。また、固体の紫外線スペクトル(図13)よりジルコニアに帰属される230nmの吸収が観測され、ジルコニアが内包されていることが確認された。実施例9:界面反応法によるアルミナ内包DCPDの合成
リン酸(8.28g、84.5mmol)を水に溶かし全体積を36mlとした溶液を、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlとした溶液と混合し、
ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を20秒行った後、アルミナ1gの粉末を素早く加え、さらにホモジュナイザーで1分間乳化の後、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:約400回転)の後、ろ別
により生成した沈殿を得た(13.70g)。
FIG. 12 shows a powder X-ray diffraction pattern of the obtained powder. It was confirmed that hydroxyapatite was generated. Further, absorption at 230 nm attributed to zirconia was observed from the solid ultraviolet spectrum (FIG. 13), and it was confirmed that zirconia was included. Example 9: Synthesis of alumina-encapsulated DCPD by interfacial reaction method A solution in which phosphoric acid (8.28 g, 84.5 mmol) was dissolved in water to make a total volume of 36 ml was prepared by adding Tween80 (1.01 g) and Span80 (0.50 g) to n-hexane. And mixed with a solution with a total volume of 72 ml,
The emulsion was emulsified at a rotational speed of about 8300 using a homogenizer. After 20 seconds of this emulsification treatment, 1 g of alumina powder was quickly added, and after further emulsification with a homogenizer for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) was added to water. The suspension was added to a solution (aqueous phase 2 in FIG. 1) having a total volume of 250 ml. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (13.70 g).

得られた粉体の粉末X線回折パターンを図14に示す。DCPDが生成していることが
確認された。
実施例10:界面反応法による酸化鉄内包DCPDの合成
リン酸(8.28g、84.5mmol)を水に溶かし全体積を36mlとした溶液を、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlとした溶液と混合し、
ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を20秒行った後、酸化鉄1gの粉末を素早く加え、さらにホモジュナイザーで1分間乳化の後、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:約400回転)の後、ろ別に
より生成した沈殿を得た(14.20g)。
The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that DCPD was generated.
Example 10: Synthesis of iron oxide-encapsulated DCPD by the interfacial reaction method A solution in which phosphoric acid (8.28 g, 84.5 mmol) was dissolved in water to make a total volume of 36 ml, Tween80 (1.01 g) and Span80 (0.50 g) were added to n- Mixed with a solution of 72 ml in total volume dissolved in hexane,
The emulsion was emulsified at a rotational speed of about 8300 using a homogenizer. After 20 seconds of this emulsification treatment, 1 g of iron oxide powder was quickly added, and after 1 minute of emulsification with a homogenizer, 99.9% pure calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) was added to the water. Was added to a solution (the aqueous phase 2 in FIG. 1) having a total volume of 250 ml. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (14.20 g).

得られた粉体の酸化鉄内包DCPDの粉末X線回折パターンを図15に示し、透過光に
よる光学顕微鏡像を図16に示す。酸化鉄粉末(黒い部分)がDCPDの固体内に埋め込まれていることが確認された。
実施例11:界面反応法による酸化銅内包DCPDの合成
リン酸(8.28g、84.5mmol)を水に溶かし全体積を36mlとした溶液を、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlとした溶液と混合し、
ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を20秒行った後、酸化銅1gの粉末を素早く加え、さらにホモジュナイザーで1分間乳化の後、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:約400回転)の後、ろ別に
より生成した沈殿を得た(13.90g)。
FIG. 15 shows a powder X-ray diffraction pattern of the obtained powdered iron oxide-encapsulated DCPD, and FIG. 16 shows an optical microscope image by transmitted light. It was confirmed that the iron oxide powder (black part) was embedded in the solid of DCPD.
Example 11: Synthesis of copper oxide-encapsulated DCPD by the interfacial reaction method A solution in which phosphoric acid (8.28 g, 84.5 mmol) was dissolved in water to make the total volume 36 ml, Tween80 (1.01 g) and Span80 (0.50 g) were added to n- Mixed with a solution of 72 ml in total volume dissolved in hexane,
The emulsion was emulsified at a rotational speed of about 8300 using a homogenizer. After this emulsification treatment for 20 seconds, 1 g of copper oxide powder was quickly added, and after emulsification with a homogenizer for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) was added to water. Was added to a solution (the aqueous phase 2 in FIG. 1) having a total volume of 250 ml. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (13.90 g).

得られた粉体の酸化銅内包DCPDの粉末X線回折パターンを図17に示し、透過光に
よる光学顕微鏡像を図18に示す。酸化銅粉末(黒い部分)がDCPDの固体内に埋め込まれていることが確認された。
実施例12:界面反応法によるDNA内包ハイドロキシアパタイトの合成−1
リン酸二水素アンモニウム(9.72g、84.5mmol)を水に溶かし全体積を36mlとした溶液にDNA(鮭の精巣由来のデオキシリボ核酸ナトリウム塩;和光純薬製)0.1gを溶解
させ(図1の水相1)、溶解後すぐにTween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を1分行ったのち、99.9%純度の水酸化
カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:約400回転)の後、ろ別により生成し
た沈殿を得た(10.58g)。
FIG. 17 shows a powder X-ray diffraction pattern of the obtained powdered copper oxide-encapsulated DCPD, and FIG. 18 shows an optical microscope image by transmitted light. It was confirmed that the copper oxide powder (black part) was embedded in the solid of DCPD.
Example 12: Synthesis of DNA-encapsulated hydroxyapatite by the interfacial reaction method-1
In a solution of ammonium dihydrogen phosphate (9.72 g, 84.5 mmol) dissolved in water to a total volume of 36 ml, 0.1 g of DNA (deoxyribonucleic acid sodium salt derived from shark testis; manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved (see FIG. 1). Aqueous phase 1) Immediately after dissolution, mix Tween80 (1.01 g) and Span80 (0.50 g) in n-hexane to a total volume of 72 ml (oil phase in Fig. 1), and use a homogenizer. The emulsion was emulsified at a rotational speed of about 8300. After this emulsification treatment for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) is suspended in water to make a total volume of 250 ml (aqueous phase 2 in FIG. 1). added. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (10.58 g).

得られた粉体の粉末X線回折パターンを図19に示す。ハイドロキシアパタイトが生成
していることが確認された。また、固体の紫外線スペクトル(図20)よりDNAに帰属される270nmの吸収が観測され、DNAが内包されていることが確認された。
実施例13:界面反応法によるDNA内包ハイドロキシアパタイトの合成−2
リン酸水素二アンモニウム(11.16g、84.5mmol)を水に溶かし全体積を36mlとした
溶液にDNA(鮭の精巣由来のデオキシリボ核酸ナトリウム塩;和光純薬製)0.1gを溶
解させ(図1の水相1)、溶解後すぐにTween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlとした溶液(図1の油相)と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を1分行ったのち、99.9%純度の水酸
化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:約400回転)の後、ろ別により生成
した沈殿を得た(11.75g)。
The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that hydroxyapatite was generated. Further, absorption at 270 nm attributed to DNA was observed from the solid ultraviolet spectrum (FIG. 20), and it was confirmed that DNA was encapsulated.
Example 13: Synthesis of DNA-encapsulated hydroxyapatite by the interfacial reaction method-2
Dissolve 0.1 g of DNA (deoxyribonucleic acid sodium salt derived from testis of shark; manufactured by Wako Pure Chemical Industries, Ltd.) in a solution prepared by dissolving diammonium hydrogen phosphate (11.16 g, 84.5 mmol) in water to a total volume of 36 ml (FIG. 1) Aqueous phase 1) Immediately after dissolution, mix Tween80 (1.01 g) and Span80 (0.50 g) in n-hexane to a total volume of 72 ml (oil phase in Fig. 1), and use a homogenizer. The emulsion was emulsified at about 8300 revolutions. After this emulsification treatment for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) is suspended in water to make a total volume of 250 ml (aqueous phase 2 in FIG. 1). added. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (11.75 g).

得られた粉体の粉末X線回折パターンを図21に示す。ハイドロキシアパタイトが生成
していることが確認された。また、固体の紫外線スペクトル(図22)よりDNAに帰属される270nmの吸収が観測され、DNAが内包されていることが確認された。
実施例14:界面反応法によるコラーゲン内包ハイドロキシアパタイトの合成
リン酸二水素アンモニウム(9.72g、84.5mmol)を水に溶かし全体積を36mlとした溶液を、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72mlと
した溶液と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を20秒行った後、コラーゲン0.2g(シグマ製;タイプI)の粉末を素早く加え、さらにホモジュナイザーで1分間乳化の後、99.9%純度の水酸化カルシウム(和光純薬製;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた
。2時間撹拌(回転数:約400回転)の後、ろ別により生成した沈殿を得た(8.88g)。
FIG. 21 shows a powder X-ray diffraction pattern of the obtained powder. It was confirmed that hydroxyapatite was generated. Further, absorption at 270 nm attributed to DNA was observed from the solid ultraviolet spectrum (FIG. 22), and it was confirmed that DNA was encapsulated.
Example 14: Synthesis of collagen-encapsulated hydroxyapatite by interfacial reaction method A solution of ammonium dihydrogen phosphate (9.72 g, 84.5 mmol) dissolved in water to give a total volume of 36 ml was prepared by adding Tween80 (1.01 g) and Span80 (0.50 g). Was dissolved in n-hexane and mixed with a solution having a total volume of 72 ml, and emulsified at a rotational speed of about 8300 using a homogenizer. After performing this emulsification treatment for 20 seconds, 0.2 g of collagen (Sigma; type I) powder was quickly added, and after further emulsification with a homogenizer for 1 minute, 99.9% purity calcium hydroxide (Wako Pure Chemicals; 9.26 g, 125 mmol) was added to a solution (aqueous phase 2 in FIG. 1) suspended in water to a total volume of 250 ml. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (8.88 g).

得られた粉体の粉末X線回折パターンを図23に示す。ハイドロキシアパタイトが生成
していることが確認された。
実施例15:界面反応法によるコラーゲン内包ハイドロキシアパタイトの合成
リン酸水素二アンモニウム(11.16g、84.5mmol)を水に溶かし全体積を36mlとした
溶液を、Tween80(1.01g)とSpan80(0.50g)をn−ヘキサンに溶かし全体積を72ml
とした溶液と混合し、ホモジュナイザーを用いて回転数約8300回転で乳化させた。この乳化処理を20秒行った後、コラーゲン0.2g(シグマ製、タイプI)の粉末を素早く加え、さらにホモジュナイザーで1分間乳化の後、99.9%純度の水酸化カルシウム(和光純薬製
;9.26g、125mmol)を水に懸濁させ全体積を250mlとした溶液(図1の水相2)に加えた。2時間撹拌(回転数:約400回転)の後、ろ別により生成した沈殿を得た(8.50g)
The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that hydroxyapatite was generated.
Example 15: Synthesis of collagen-encapsulated hydroxyapatite by the interfacial reaction method A solution of diammonium hydrogen phosphate (11.16 g, 84.5 mmol) dissolved in water to make a total volume of 36 ml was obtained by adding Tween80 (1.01 g) and Span80 (0.50 g). Is dissolved in n-hexane and the total volume is 72 ml.
The obtained solution was mixed and emulsified at a rotational speed of about 8300 using a homogenizer. After performing this emulsification treatment for 20 seconds, 0.2 g of collagen (Sigma, Type I) powder was quickly added, and after further emulsification with a homogenizer for 1 minute, 99.9% purity calcium hydroxide (manufactured by Wako Pure Chemical; 9.26 g, 125 mmol) was added to a solution (aqueous phase 2 in FIG. 1) suspended in water to a total volume of 250 ml. After stirring for 2 hours (rotation speed: about 400 rotations), a precipitate formed by filtration was obtained (8.50 g).
.

得られた粉体の粉末X線回折パターンを図24に示す。ハイドロキシアパタイトが生成
していることが確認された。
The powder X-ray diffraction pattern of the obtained powder is shown in FIG. It was confirmed that hydroxyapatite was generated.

本特許で新しく調製され、見いだされた材料の応用は、種々想定されるが、例えば以下のような応用が考えられる。   Various applications of materials newly prepared and found in this patent are envisaged. For example, the following applications are conceivable.

タンパク質や核酸等の生体分子等がリン酸カルシウム内に内包されることより、これら生体分子の徐放技術に応用することが期待される。タンパク質は生体内で多くの役割を果たしているため、それらを利用したドラッグデリバリーシステム、核酸は遺伝子治療等に用いることができるためジーンデリバリーシステムへの応用が特に有望である。また、歯や骨の成分であるリン酸カルシウムと他の化合物の複合体は、歯科、整形外科、再生医療
、化粧品、食品添加物等への応用も期待される。さらに、細胞培養の培地やバイオマーカー用の基板素材への展開も想定される。
Since biomolecules such as proteins and nucleic acids are encapsulated in calcium phosphate, it is expected to be applied to the sustained release technology of these biomolecules. Since proteins play many roles in living bodies, drug delivery systems using them, and nucleic acids can be used for gene therapy and the like, and therefore they are particularly promising for gene delivery systems. In addition, composites of calcium phosphate, which is a component of teeth and bones, and other compounds are expected to be applied to dentistry, orthopedics, regenerative medicine, cosmetics, food additives, and the like. Furthermore, it is envisaged to develop cell culture media and substrate materials for biomarkers.

化合物内包化リン酸カルシウムの合成方法の概念図。The conceptual diagram of the synthesis | combining method of compound-encapsulated calcium phosphate. 界面反応法によるハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of hydroxyapatite by the interfacial reaction method. 界面反応法によるハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of hydroxyapatite by the interfacial reaction method. 界面反応法によるハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of hydroxyapatite by the interfacial reaction method. 界面反応法によるDCPD(ダイカルシウムホスフェート・ダイハイドレート)の粉。DCPD (Dicalcium Phosphate Dye Hydrate) powder by the interfacial reaction method. アルブミン内包ハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of albumin-containing hydroxyapatite. アルブミン内包ハイドロキシアパタイトの拡散反射紫外線スペクトル。Diffuse reflection ultraviolet spectrum of albumin-containing hydroxyapatite. ポリアクリルアミド内包ハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of polyacrylamide-encapsulated hydroxyapatite. アルブミン内包ハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of albumin-containing hydroxyapatite. アルブミン内包ハイドロキシアパタイトの拡散反射紫外線スペクトル。Diffuse reflection ultraviolet spectrum of albumin-containing hydroxyapatite. アルブミン内包ハイドロキシアパタイトの水洗浄によるアルブミンの脱離挙動。Desorption behavior of albumin by water washing of albumin-encapsulated hydroxyapatite. ジルコニア内包ハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of zirconia-encapsulated hydroxyapatite. ジルコニア内包ハイドロキシアパタイトの拡散反射紫外線スペクトル。Diffuse reflection ultraviolet spectrum of zirconia-containing hydroxyapatite. アルミナ内包DCPDの粉末X線回折パターン。X-ray powder diffraction pattern of alumina-encapsulated DCPD. 酸化鉄内包DCPDの粉末X線回折パターン。The powder X-ray-diffraction pattern of iron oxide inclusion DCPD. 酸化鉄内包DCPDの光学顕微鏡像(500倍)Optical microscope image of iron oxide-encapsulated DCPD (500x) 酸化銅内包DCPDの粉末X線回折パターン。The powder X-ray-diffraction pattern of copper oxide inclusion DCPD. 酸化銅内包DCPDの光学顕微鏡像(500倍)。The optical microscope image (500 times) of copper oxide inclusion DCPD. DNA内包ハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of DNA-encapsulated hydroxyapatite. DNA内包ハイドロキシアパタイトの拡散反射紫外線スペクトル。The diffuse reflection ultraviolet spectrum of DNA-encapsulated hydroxyapatite. DNA内包ハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of DNA-encapsulated hydroxyapatite. DNA内包ハイドロキシアパタイトの拡散反射紫外線スペクトル。The diffuse reflection ultraviolet spectrum of DNA-encapsulated hydroxyapatite. コラーゲン内包ハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of hydroxyapatite containing collagen. コラーゲン内包ハイドロキシアパタイトの粉末X線回折パターン。X-ray powder diffraction pattern of hydroxyapatite containing collagen.

Claims (2)

リン酸イオンもしくはカルシウムイオンとタンパク質及びDNAからなる群から選ばれるコア化合物を含む第1水相粒子を油相中に分散してなるW/Oエマルジョンにカルシウムイオンもしくはリン酸イオンを含む懸濁液又は水溶液を作用させることを特徴とし、前記第1水相粒子のカルシウムイオンの原料もしくはW/Oエマルジョンに作用させるカルシウムイオンの原料が水酸化カルシウム、酸化カルシウム及び炭酸カルシウムからなる群から選択され、このカルシウムイオン原料を水に懸濁させて第1水相粒子もしくはW/Oエマルジョンに作用させる懸濁液を構成してなる、タンパク質及びDNAからなる群から選ばれるコア化合物を結晶性リン酸カルシウム材料から構成される殻に内包してなる結晶性リン酸カルシウム複合材料の製造方法。 Suspension containing calcium ions or phosphate ions in a W / O emulsion in which first aqueous phase particles containing a core compound selected from the group consisting of phosphate ions or calcium ions and protein and DNA are dispersed in an oil phase. Or an aqueous solution, wherein the calcium ion raw material of the first aqueous phase particles or the calcium ion raw material to act on the W / O emulsion is selected from the group consisting of calcium hydroxide, calcium oxide and calcium carbonate, A core compound selected from the group consisting of protein and DNA, comprising a suspension in which this calcium ion raw material is suspended in water to act on the first aqueous phase particles or W / O emulsion, is formed from a crystalline calcium phosphate material. Of crystalline calcium phosphate composite material encapsulated in shell Production method. カルシウムイオンの原料が水酸化カルシウムである、請求項1に記載の製造方法。 The manufacturing method of Claim 1 whose raw material of a calcium ion is calcium hydroxide.
JP2005267864A 2005-09-15 2005-09-15 Calcium phosphate composite material and method for producing the same Expired - Fee Related JP4900646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267864A JP4900646B2 (en) 2005-09-15 2005-09-15 Calcium phosphate composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267864A JP4900646B2 (en) 2005-09-15 2005-09-15 Calcium phosphate composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007075391A JP2007075391A (en) 2007-03-29
JP4900646B2 true JP4900646B2 (en) 2012-03-21

Family

ID=37936266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267864A Expired - Fee Related JP4900646B2 (en) 2005-09-15 2005-09-15 Calcium phosphate composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4900646B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339158A (en) * 2017-01-24 2018-07-31 中南民族大学 The method and its application in Bone Defect Repari that one step builds two calcium phosphate phase microcapsules
JP7137816B2 (en) * 2017-04-27 2022-09-15 国立研究開発法人産業技術総合研究所 Adsorbent that selectively adsorbs substances with basic sites

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115751A (en) * 1997-04-24 1999-01-12 Takeda Chem Ind Ltd Apatite-coated solid composition and its production
GB9813906D0 (en) * 1998-06-26 1998-08-26 Isis Innovations Ltd Coatings
JP4506067B2 (en) * 2002-06-28 2010-07-21 国立大学法人京都大学 Capsule comprising calcium phosphates and method for producing the same

Also Published As

Publication number Publication date
JP2007075391A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
Mondal et al. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite
KR100898218B1 (en) Ceramic Particle Group and Method for Production Thereof and Use Thereof
Yang et al. Hydrothermal synthesis of hydroxyapatite with different morphologies: Influence of supersaturation of the reaction system
Schmidt et al. Assembly of aqueous-cored calcium phosphate nanoparticles for drug delivery
Wilson Jr et al. Surface modification of nanophase hydroxyapatite with chitosan
Cai et al. Calcium phosphate nanoparticles in biomineralization and biomaterials
Uskoković et al. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents
JP5051490B2 (en) Inorganic microcapsule encapsulating macro-biomaterial and method for producing the same
Lett et al. Tailoring the morphological features of sol–gel synthesized mesoporous hydroxyapatite using fatty acids as an organic modifier
Sheikh et al. Biomimetic matrix mediated room temperature synthesis and characterization of nano-hydroxyapatite towards targeted drug delivery
He et al. Formation of bone-like nanocrystalline apatite using self-assembled liquid crystals
Sivaraman et al. Porous polysulfone coatings for enhanced drug delivery
Guo et al. Controlled synthesis of hydroxyapatite crystals templated by novel surfactants and their enhanced bioactivity
JP4900646B2 (en) Calcium phosphate composite material and method for producing the same
Barabas et al. Hydroxyapatite-carbon nanotube composites for drug delivery applications
KR102221493B1 (en) Method of synthesizing calcium phosphate nanomaterials using phosphate group in nucleic acid and calcium phosphate nanomaterials using phosphate group in nucleic acid
Latocha et al. Morphology‐controlled precipitation/remodeling of plate and rod‐shaped hydroxyapatite nanoparticles
JP5338016B2 (en) Biologically active substance-containing octacalcium crystal, method for producing the same, and pharmaceutical composition containing the same
JP3686935B2 (en) Method for producing spherical biodegradable polymer coated with calcium phosphate
Konishi et al. Fabrication of chelate‐setting α‐tricalcium phosphate cement using sodium citrate and sodium alginate as mixing solution and its in vivo osteoconductivity
JP4465465B2 (en) Spherical biodegradable polymer / ceramic composite having porous structure inside and method for producing the same
JP4654427B2 (en) Water-soluble protein-calcium phosphate complex for promoting bone formation and method for producing the same
Quadros et al. Implications of Synthesis Methodology on Physicochemical and Biological Properties of Hydroxyapatite
JP5352993B2 (en) Erythropoietin sustained-release preparation and its preparation method
Avram et al. A review on biomimetic hydroxyapatites for biomedical applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees