JP4898493B2 - Weighing device - Google Patents

Weighing device Download PDF

Info

Publication number
JP4898493B2
JP4898493B2 JP2007047561A JP2007047561A JP4898493B2 JP 4898493 B2 JP4898493 B2 JP 4898493B2 JP 2007047561 A JP2007047561 A JP 2007047561A JP 2007047561 A JP2007047561 A JP 2007047561A JP 4898493 B2 JP4898493 B2 JP 4898493B2
Authority
JP
Japan
Prior art keywords
ray
weighed
weighing
generation source
conveying means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007047561A
Other languages
Japanese (ja)
Other versions
JP2008209307A (en
Inventor
修 田中
英治 朝井
信之 若林
Original Assignee
アンリツ産機システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンリツ産機システム株式会社 filed Critical アンリツ産機システム株式会社
Priority to JP2007047561A priority Critical patent/JP4898493B2/en
Publication of JP2008209307A publication Critical patent/JP2008209307A/en
Application granted granted Critical
Publication of JP4898493B2 publication Critical patent/JP4898493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、X線を照射したときのX線透過量から物体の質量を計量する技術を用いて、不定形の塊状となって搬送されている被計量物から所定量ずつ取り分けるための計量装置に関する。   The present invention is a measuring device for separating a predetermined amount from an object to be weighed being transported in an irregular lump using a technique for measuring the mass of an object from the amount of X-ray transmission when irradiated with X-rays. About.

例えば、小麦粉などの粉体、又はコーヒー豆などの粒体状の被計量物を計量する計量装置100は、図8に示すように、フィーダ102と、計量機能を有するホッパ103とを備え、前記粉体又は粒体状の被計量物101をフィーダ102から計量ホッパ103へ供給し、計量ホッパ103による計量値が所定値に達した時にフィーダ102からの供給を停止するとともに、計量ホッパ103から落下させて所定量を取り分けるものである。   For example, as shown in FIG. 8, a weighing device 100 that measures powder such as wheat flour or granular objects such as coffee beans includes a feeder 102 and a hopper 103 having a weighing function. Powder or granular object to be weighed 101 is supplied from the feeder 102 to the weighing hopper 103, and when the measured value by the measuring hopper 103 reaches a predetermined value, the supply from the feeder 102 is stopped and the weighing hopper 103 is dropped. The predetermined amount is separated.

また、下記特許文献1には、自由流動生成物(ばら材料)を搬送しながら重量計測を行うための装置が開示されている。この装置は、計測装置を用いて、ばら材料の連続重量計測を行い、質量流量を決定するための装置である。ここでは、図9に示すように、前記計測装置(計測ベルト秤量供給手段)200は、ばら材料201の重量計測をロードセル202により行っている。
特表2006−518842号公報
Moreover, the following patent document 1 discloses an apparatus for performing weight measurement while conveying a free-flowing product (a bulk material). This device is a device for performing continuous weight measurement of a bulk material using a measuring device and determining a mass flow rate. Here, as shown in FIG. 9, the measuring device (measuring belt weighing supply means) 200 measures the weight of the bulk material 201 by a load cell 202.
JP-T-2006-518842

しかしながら、上述したような従来の計量装置100では、図8に示すように、被計量物101をフィーダ102から計量ホッパ103に供給し、更に計量ホッパ103に被計量物101を溜めながら計量することから、被計量物101を所定量だけ取り分けるために6秒程度の時間を要していた。ところが、これでは時間がかかり過ぎるため、高速化を図るためにも計量装置100を複数台並べる必要があったが、部品点数が増えてコストが嵩むとともに、装置が大型化するという問題があった。   However, in the conventional weighing device 100 as described above, as shown in FIG. 8, the object to be weighed 101 is supplied from the feeder 102 to the weighing hopper 103 and further weighed while accumulating the object to be weighed 101 in the weighing hopper 103. Therefore, it takes about 6 seconds to separate the object 101 by a predetermined amount. However, since this takes too much time, it is necessary to arrange a plurality of weighing devices 100 in order to increase the speed. However, there is a problem that the number of parts increases, the cost increases, and the size of the device increases. .

また、上記特許文献1に開示される計測装置200(図9参照)は、ロードセル202によって重量測定を行うことで、搬送中のばら材料201全体の重量を連続的に測定することができるが、その中から所定量を取り分けることは非常に難しい。   In addition, the measuring device 200 (see FIG. 9) disclosed in Patent Document 1 can continuously measure the weight of the bulk material 201 being conveyed by measuring the weight with the load cell 202, It is very difficult to separate a predetermined amount from among them.

そこで本発明は、上記状況に鑑みてなされたもので、X線透過量から物体の質量を計量する技術を用いて、不定形の塊状となって搬送されている被計量物を計量し、且つ搬送手段を制御することによって所定量を取り分けることで高速化を図り、簡素で小型に構成される計量装置を提供することを目的としている。   Therefore, the present invention has been made in view of the above situation, and uses a technique for measuring the mass of an object from the amount of X-ray transmission, measures an object to be measured that is conveyed in an indeterminate shape, and An object of the present invention is to provide a weighing device that is simple and small in size by speeding up a predetermined amount by controlling the conveying means.

次に、上記の課題を解決するための手段を、実施の形態に対応する図面を参照して説明する。
本発明の請求項1記載の計量装置は、不定形の塊状となった被計量物2を搬送方向Yに一定の速度で搬送する搬送手段3と、
前記搬送手段3により搬送されている前記被計量物2に対して所定のX線照射位置でX線を照射するX線発生源11と、
前記X線発生源11と対向配置され、前記X線発生源11から照射され前記被計量物2を透過したX線を検出するX線センサ12と、
前記X線センサ12によって検出されたX線透過量に基づいて前記被計量物2の質量を連続的に計量し、該計量値が所定値に達したところで前記搬送手段3を停止制御して前記計量後の被計量物2を前記搬送手段3の搬送終端部から落下させ、前記被計量物2から計量後の被計量物2を取り分けた後に前記搬送手段3を逆転制御して該搬送手段3上に残された前記被計量物2の分離端部を前記X線照射位置まで戻す分離手段と、
を具備することを特徴としている。
Next, means for solving the above problems will be described with reference to the drawings corresponding to the embodiments.
The weighing device according to claim 1 of the present invention comprises a conveying means 3 that conveys the object 2 to be weighed in an indeterminate shape in the conveying direction Y at a constant speed,
An X-ray generation source 11 that irradiates X-rays at a predetermined X-ray irradiation position with respect to the object 2 being transported by the transport means 3;
An X-ray sensor 12 which is disposed opposite to the X-ray generation source 11 and detects X-rays irradiated from the X-ray generation source 11 and transmitted through the object 2;
Wherein the mass of the objects to be weighed 2 based on X-ray transmission amount detected by the X-ray sensor 12 continuously metered, the metering value is controlled to stop the transport means 3 was reached a predetermined value The weighing object 2 after the measurement is dropped from the conveyance end portion of the conveying means 3, and the weighing object 2 after the weighing is separated from the weighing object 2, and then the conveying means 3 is reversely controlled to control the conveying means 3. Separating means for returning the separation end of the object 2 left on the top to the X-ray irradiation position ;
It is characterized by comprising.

請求項2記載の計量装置は、前記分離手段は、前記X線センサ12により検出された前記X線透過量と所定の閾値とを比較し、前記透過量が前記閾値よりも小さくなるまで逆転制御することを特徴としている。 The measuring device according to claim 2, wherein the separation unit compares the X-ray transmission amount detected by the X-ray sensor 12 with a predetermined threshold value, and performs reverse rotation control until the transmission amount becomes smaller than the threshold value. It is characterized in that.

請求項記載の計量装置は、前記分離手段は、更に前記被計量物2(20)から所定値に達した前記計量後の被計量物20を取り分けるためのカッター30を備えることを特徴としている。 The weighing device according to claim 3 , wherein the separating unit further includes a cutter 30 for separating the measured object 20 after the measurement that has reached a predetermined value from the object 2 (20). Yes.

請求項記載の計量装置は、前記X線発生源11と前記X線センサ12とは、前記X線センサ12が前記X線発生源11を基準として前記搬送方向Yの下流側に位置して対向配置されることを特徴としている。 The measuring device according to claim 4 , wherein the X-ray generation source 11 and the X-ray sensor 12 are configured such that the X-ray sensor 12 is positioned downstream in the transport direction Y with respect to the X-ray generation source 11. It is characterized by being opposed to each other.

請求項記載の計量装置は、前記請求項1〜記載の計量装置1は、互いに独立した複数の前記搬送手段3と、1つの前記X線発生源11とを備えることを特徴としている。 The weighing device according to a fifth aspect is characterized in that the weighing device 1 according to the first to fourth aspects includes a plurality of the conveying means 3 and one X-ray generation source 11 which are independent from each other.

本発明による計量装置によれば、X線センサを用いて不定形の塊状となって搬送されている被計量物の質量を計量し、且つ搬送手段を搬送制御することで所定量を取り分けることから、被計量物の計量と、計量後に所定量を取り分けることを一連の搬送動作の中で行うことができるようになり、高速処理が可能となる。例えば、従来は被計量物を所定量だけ取り分けるために6秒程度の処理時間が必要だったものが、この計量装置によれば1秒程度に短縮される。また、部品点数が少ないためコストも嵩まず、装置全体を簡素で小型に構成することができる。   According to the weighing device of the present invention, the X-ray sensor is used to measure the mass of the object to be weighed being transported as an indeterminate lump, and the predetermined amount is determined by controlling the transport of the transport means. The weighing of the object to be weighed and the predetermined amount after weighing can be performed in a series of transport operations, and high-speed processing becomes possible. For example, in the past, a processing time of about 6 seconds was required in order to distribute a predetermined amount of objects to be weighed, but this measuring device can shorten the time to about 1 second. Further, since the number of parts is small, the cost is not increased, and the entire apparatus can be configured simply and compactly.

また、例えば、被計量物が小麦粉などの粉体、又はコーヒー豆などの粒体である場合、X線センサによる計量値が所定値に達した時に搬送手段を停止させるだけで搬送中の被計量物から所定量だけ取り分けることができる。   Also, for example, when the object to be weighed is a powder such as wheat flour or a granule such as coffee beans, the object to be weighed during transportation only by stopping the conveying means when the measured value by the X-ray sensor reaches a predetermined value. A predetermined amount can be separated from the object.

その後、搬送手段を逆転させることで搬送手段に残された被計量物がX線照射位置まで戻り、この結果、次の計量を再びゼロから始めることができる。   Thereafter, the object to be weighed left on the conveying means is returned to the X-ray irradiation position by reversing the conveying means, and as a result, the next weighing can be started again from zero.

以下、本発明の実施の形態を図面を参照して具体的に説明する。
図1は本発明による計量装置の第1の実施の形態を示す概略的な斜視図、図2は同実施の形態における被計量物の質量を計量する原理を説明するための平面図、図3(a)〜(d)は同実施の形態の分離手段による分離動作を示す側面図である。
Embodiments of the present invention will be specifically described below with reference to the drawings.
FIG. 1 is a schematic perspective view showing a first embodiment of a weighing device according to the present invention, FIG. 2 is a plan view for explaining the principle of measuring the mass of an object to be weighed in the embodiment, and FIG. (A)-(d) is a side view which shows the isolation | separation operation | movement by the isolation | separation means of the embodiment.

この第1の実施の形態の計量装置は、例えば、小麦粉などの粉体、又はコーヒー豆などの粒体状の被計量物2を所定量ずつ取り分けるために計量する装置であり、図1に示すように、搬送手段3と、X線発生源11と、X線センサ12と、分離手段とを備え、粉体又は粒体状の被計量物2が塊状となって、後述する搬送手段3によって所定の搬送方向Yに一定の速度で搬送される。   The weighing device according to the first embodiment is a device for weighing, for example, powders such as flour or granular objects 2 such as coffee beans so as to be separated by a predetermined amount, and is shown in FIG. As described above, the conveyance means 3, the X-ray generation source 11, the X-ray sensor 12, and the separation means are provided. It is transported at a constant speed in a predetermined transport direction Y.

図1に示すように、前述した搬送手段3には、搬送方向Yに並んで配置された2つのローラ4,4間に搬送ベルト5が掛け回されたコンベア(ベルトコンベア)が採用されている。ベルトコンベア3は、いずれかのローラ4が図示しない駆動モータによって回転されることで、搬送ベルト5を搬送方向Yに一定の速度で進行させる。また、搬送ベルト5は、被計量物2を搬送方向Yに搬送するための搬送面5aを形成している。   As shown in FIG. 1, the conveyor means 3 described above employs a conveyor (belt conveyor) in which a conveyor belt 5 is wound between two rollers 4 and 4 arranged side by side in the conveyance direction Y. . The belt conveyor 3 moves the conveyor belt 5 in the conveyance direction Y at a constant speed by rotating any of the rollers 4 by a drive motor (not shown). Further, the transport belt 5 forms a transport surface 5a for transporting the object 2 to be transported in the transport direction Y.

X線発生源11は、ベルトコンベア3の搬送終端部の上方に設置されている。このようなX線発生源11は、図示しないが、一般的に金属製の箱内にX線を発生させるX線管が絶縁油に浸漬されており、X線を下方(所定のX線照射位置)に向けて照射させる。なお、このX線発生源11から照射されるX線の態様は、ベルトコンベア3の搬送方向Yと直交する面状となり、その面は下向きに広がる略三角形状をなしている。   The X-ray generation source 11 is installed above the conveyance end portion of the belt conveyor 3. Such an X-ray generation source 11 is generally not shown, but an X-ray tube for generating X-rays is generally immersed in insulating oil in a metal box, and the X-rays are directed downward (predetermined X-ray irradiation). Irradiate toward the position. In addition, the aspect of X-rays irradiated from this X-ray generation source 11 becomes a surface shape orthogonal to the conveyance direction Y of the belt conveyor 3, and the surface has comprised the substantially triangular shape extended downward.

X線センサ12は、複数(200個程度)の検出素子13がベルトコンベア3の搬送方向Yと直交する方向に直線状に配列されて形成されている(図2参照)。X線センサ12は、X線発生源11と対向配置されるとともに、本実施の形態では、ベルトコンベア3の搬送面5aの下方に設置されている。また、各検出素子13は、図示しないが、フォトダイオードと、フォトダイオード上に配設されているシンチレータとから構成されている。このX線センサ12は、更に、各検出素子13からの出力信号を増幅し、A/D変換を行うアナログ処理器と、アナログ処理器からの出力信号に基づいて後述する計量演算を行うマイクロコンピュータ(共に不図示)とを備えている。   The X-ray sensor 12 is formed by arranging a plurality (about 200) of detection elements 13 linearly in a direction orthogonal to the conveying direction Y of the belt conveyor 3 (see FIG. 2). The X-ray sensor 12 is disposed opposite to the X-ray generation source 11 and is installed below the transport surface 5a of the belt conveyor 3 in the present embodiment. Each detection element 13 includes a photodiode and a scintillator disposed on the photodiode, although not shown. The X-ray sensor 12 further amplifies the output signal from each detection element 13, performs an A / D conversion, and a microcomputer that performs a later-described measurement operation based on the output signal from the analog processor. (Both not shown).

なお、図示しないが、X線発生源11と、X線センサ12とを含むX線照射位置は、X線の漏洩を防ぐために遮蔽されている。   Although not shown, the X-ray irradiation position including the X-ray generation source 11 and the X-ray sensor 12 is shielded to prevent X-ray leakage.

上述したようなX線発生源11と、X線センサ12とは、ベルトコンベア3の搬送面5a上を搬送されている被計量物2が搬送終端部のX線照射位置に位置すると、被計量物2に対してX線発生源11からX線が照射され、被計量物2を透過したX線はX線センサ12のシンチレータで光に変換され、そして、シンチレータで変換された光はフォトダイオードで受光され、更に電気信号に変換されて出力される。   The X-ray generation source 11 and the X-ray sensor 12 as described above are to be weighed when the object to be weighed 2 being transported on the transport surface 5a of the belt conveyor 3 is positioned at the X-ray irradiation position of the transport end portion. The object 2 is irradiated with X-rays from the X-ray generation source 11, the X-ray transmitted through the object 2 is converted into light by the scintillator of the X-ray sensor 12, and the light converted by the scintillator is a photodiode. Is received, converted into an electrical signal and output.

図2に示すように、例えば、搬送面5a上を搬送されている被計量物2がX線センサ12の上にある場合、X線センサ12の両端の検出素子13a,13cの上には被計量物2は存在しないためX線透過量は大きく、中央付近の検出素子13bの上には被計量物2が存在するためX線透過量は小さい。このとき、検出素子13a,13cのX線検出量は大きく、これに対応するアナログ処理器からの出力は大きい。また、検出素子13bによるX線検出量は小さく、これに対応するアナログ処理器からの出力は小さい。したがって、被計量物2として判別するX線透過量の最大値を閾値として設定し、この閾値よりもX線検出量が小さいときに被計量物2が存在することになる。   As shown in FIG. 2, for example, when an object to be weighed 2 being conveyed on the conveyance surface 5 a is on the X-ray sensor 12, the detection elements 13 a and 13 c at both ends of the X-ray sensor 12 are not covered on the objects to be measured. Since the weighing object 2 does not exist, the X-ray transmission amount is large, and since the measurement object 2 exists on the detection element 13b near the center, the X-ray transmission amount is small. At this time, the X-ray detection amounts of the detection elements 13a and 13c are large, and the output from the corresponding analog processor is large. Further, the amount of X-ray detection by the detection element 13b is small, and the output from the corresponding analog processor is small. Therefore, the maximum value of the X-ray transmission amount determined as the object to be weighed 2 is set as a threshold value, and the object to be weighed 2 exists when the X-ray detection amount is smaller than this threshold value.

また、図2において、検出素子13aはX線透過量が閾値より大きく、検出素子13bはX線透過量が閾値より小さく、さらに、検出素子13cはX線透過量が閾値より大きい。この結果、X線センサ12の各検出素子13a〜13cの出力により、図中の被計量物2の存在箇所を認識することができる。   In FIG. 2, the detection element 13a has an X-ray transmission amount larger than the threshold, the detection element 13b has an X-ray transmission amount smaller than the threshold, and the detection element 13c has an X-ray transmission amount larger than the threshold. As a result, the location of the object to be weighed 2 in the figure can be recognized based on the outputs of the detection elements 13 a to 13 c of the X-ray sensor 12.

以上説明したように、ベルトコンベア3によって一定の速度で搬送されている被計量物2に、連続的にX線センサ12の各検出素子13a〜13cに対応したアナログ処理器からの出力信号をマイクロコンピュータで処理することで、被計量物2の搬送方向Y及び搬送方向Yと直交する方向における連続的な検出素子13ごとの出力信号が得られる。そして、これらの出力信号は、後述する分離手段に設けられた図示しない制御部に送信され、制御部において前記閾値と比較され、被計量物2の形状情報が得られる。さらに、制御部では、これらの値から演算により被計量物2の径や面積などの外観情報が得られ、また、被計量物2の質量をも得ることができる。   As described above, the output signal from the analog processor corresponding to each of the detection elements 13a to 13c of the X-ray sensor 12 is continuously applied to the measurement object 2 being conveyed at a constant speed by the belt conveyor 3. By processing by the computer, output signals for each continuous detection element 13 in the transport direction Y of the object to be weighed 2 and the direction orthogonal to the transport direction Y are obtained. Then, these output signals are transmitted to a control unit (not shown) provided in a separating unit to be described later, and are compared with the threshold value in the control unit to obtain the shape information of the object 2 to be weighed. Further, the control unit can obtain appearance information such as the diameter and area of the object 2 by calculation from these values, and can also obtain the mass of the object 2 to be weighed.

次に、X線透過量に基づいて被計量物2の質量を計量する方法例について説明する。
一般に、X線透過量はX線透過した物体の質量に依存している。ベルトコンベア3の搬送面5a上において、被計量物2が存在しないときのX線透過量をI0 、被計量物2が存在するときのX線透過量をI、質量をMとすると下記式(1)が成立する。
I=I0 exp(−CM)…(1)
(∵Cは透過定数)
Next, an example of a method for measuring the mass of the object 2 to be measured based on the X-ray transmission amount will be described.
In general, the amount of X-ray transmission depends on the mass of an X-ray-transmitted object. On the transport surface 5a of the belt conveyor 3, if the X-ray transmission amount when the object 2 does not exist is I 0 , the X-ray transmission amount when the object 2 exists is I and the mass is M, the following formula (1) is established.
I = I 0 exp (−CM) (1)
(∵C is the transmission constant)

したがって、質量Mは下記式(2)によって得られる。
M=(1/C)log(I0 /I)…(2)
Therefore, the mass M is obtained by the following formula (2).
M = (1 / C) log (I 0 / I) (2)

この結果、上述した外観情報の検出において、被計量物2の位置に対応する全部の出力信号のうち閾値より小さい出力信号からそれぞれの積分値によって被計量物2のX線透過量が得られ、さらに、X線の減衰量(I0 /I)より被計量物2の質量Mが得られる。 As a result, in the above-described detection of the appearance information, the X-ray transmission amount of the object to be measured 2 is obtained from the output signals that are smaller than the threshold among all the output signals corresponding to the position of the object to be measured 2 by the respective integrated values. Further, the mass M of the object 2 is obtained from the attenuation amount (I 0 / I) of X-rays.

また、前述した分離手段は、前記制御部を備えるとともに、前記ベルトコンベア3の搬送制御によって構成されている。以下、図3を参照して本実施の形態における分離手段としてのベルトコンベア3による分離動作を説明する。   Further, the separation means described above includes the control unit and is configured by conveyance control of the belt conveyor 3. Hereinafter, the separation operation by the belt conveyor 3 as the separation means in the present embodiment will be described with reference to FIG.

図3(a)に示すように、ベルトコンベア3は、不定形の塊状となった被計量物2を搬送方向Yに一定の速度で搬送している。このとき、被計量物2はX線照射位置を順次通過する。また、X線照射位置では、X線センサ12による被計量物2の質量計量が連続的に行われる(ダイナミック計量)。   As shown in FIG. 3A, the belt conveyor 3 conveys the object to be weighed 2 in an irregular lump shape in the conveyance direction Y at a constant speed. At this time, the object to be measured 2 sequentially passes through the X-ray irradiation position. At the X-ray irradiation position, the weighing of the object 2 by the X-ray sensor 12 is continuously performed (dynamic weighing).

次に、図3(b)に示すように、ベルトコンベア3は、被計量物2をそのまま搬送方向Yに搬送し、X線照射位置でX線センサ12による計量を終えた被計量物2をコンベア3の搬送終端部から順次落下させる。このとき、被計量物2の落下地点には、例えば収容容器などが設置され、落下してきた被計量物2を収容する。その後、ベルトコンベア3は、X線センサ12による計量値が所定値に達したところで停止制御される。   Next, as shown in FIG.3 (b), the belt conveyor 3 conveys the to-be-measured object 2 in the conveyance direction Y as it is, and the to-be-measured object 2 which finished the measurement by the X-ray sensor 12 in the X-ray irradiation position. The conveyor 3 is sequentially dropped from the conveyance end portion. At this time, for example, a storage container or the like is installed at the dropping point of the weighing object 2 to accommodate the falling weighing object 2. Thereafter, the belt conveyor 3 is controlled to stop when the measured value by the X-ray sensor 12 reaches a predetermined value.

次に、図3(c)に示すように、ベルトコンベア3は、所定量の被計量物2が搬送終端部から落下すると、逆転制御される。これにより、ベルトコンベア3の搬送面5aが搬送方向Yと逆方向に所定量(時間又は距離)だけ移動する。   Next, as shown in FIG. 3C, the belt conveyor 3 is reversely controlled when a predetermined amount of the object to be weighed 2 falls from the conveyance end portion. Thereby, the conveyance surface 5a of the belt conveyor 3 moves by a predetermined amount (time or distance) in the direction opposite to the conveyance direction Y.

そして、図3(d)に示すように、ベルトコンベア3は、再び搬送方向Yに向けて搬送面5a上に残された被計量物2の搬送を始める。
なお、上述したようなベルトコンベア3の搬送動作を連続して行うことにより、被計量物2から所定量ずつを取り分けることができる。
And as shown in FIG.3 (d), the belt conveyor 3 starts conveyance of the to-be-measured object 2 left on the conveyance surface 5a toward the conveyance direction Y again.
In addition, by performing the conveyance operation of the belt conveyor 3 as described above, a predetermined amount can be separated from the object 2 to be weighed.

この第1の実施の形態によれば、X線センサ12を用いて、不定形の塊状となって搬送されている粉体又は粒体状の被計量物2の質量を計量し、且つベルトコンベア3を停止制御することで所定量を取り分けることから、被計量物2の計量と、計量後に所定量を取り分けることを一連の搬送動作の中で行うことができるようになり、高速処理が可能となる。   According to the first embodiment, the X-ray sensor 12 is used to measure the mass of the powder or granular object 2 being conveyed as an irregular lump, and to convey the belt. Since the predetermined amount is divided by controlling the stop 3 to stop, the weighing of the object 2 and the separation of the predetermined amount after weighing can be performed in a series of transport operations, and high-speed processing is possible. Become.

また、所定量を取り分けると、ベルトコンベア3を逆転させて搬送面5a上に残された被計量物2の分離端部がX線照射位置の手前まで戻る。この結果、次の計量を再びゼロから始めることができる。   Further, when the predetermined amount is separated, the belt conveyor 3 is reversed and the separation end of the object 2 left on the transport surface 5a returns to just before the X-ray irradiation position. As a result, the next weighing can be started again from zero.

次に、本発明の第2の実施の形態について説明する。
図4は本発明による計量装置の第2の実施の形態を示す概略的な斜視図、図2(a)〜(d)は同実施の形態の分離手段による分離動作を示す側面図である。
なお、以下で説明する第2の実施の形態において、上述した第1の実施の形態と同等あるいは同一箇所には同一の符号を付し、その説明を省略する。
Next, a second embodiment of the present invention will be described.
FIG. 4 is a schematic perspective view showing a second embodiment of the weighing device according to the present invention, and FIGS. 2A to 2D are side views showing the separating operation by the separating means of the embodiment.
Note that, in the second embodiment described below, the same reference numerals are given to the same or identical portions as those in the first embodiment described above, and the description thereof is omitted.

この第2の実施の形態の計量装置は、例えば、チーズなどの固形塊状の被計量物2(20)を所定量ずつ取り分けるために計量する装置である。   The weighing device according to the second embodiment is a device for weighing, for example, a solid lump-like object to be weighed 2 (20) such as cheese in order to be separated by a predetermined amount.

分離手段は、第1の実施の形態で説明したベルトコンベア3の搬送制御に加えて、カッター30(図4参照)を備えている。以下、図5を参照して分離手段による分離動作を説明する。   The separation means includes a cutter 30 (see FIG. 4) in addition to the conveyance control of the belt conveyor 3 described in the first embodiment. Hereinafter, the separation operation by the separation means will be described with reference to FIG.

図5(a)に示すように、ベルトコンベア3は、搬送方向Yに長い不定形の塊状となった被計量物20を搬送方向Yに一定の速度で搬送している。このとき、被計量物20はX線照射位置を順次通過する。また、X線照射位置では、X線センサ12による被計量物20の質量計量が連続的に行われる(ダイナミック計量)。   As shown in FIG. 5A, the belt conveyor 3 conveys an object to be weighed 20 that is an indeterminate lump shape long in the conveyance direction Y at a constant speed in the conveyance direction Y. At this time, the weighing object 20 sequentially passes through the X-ray irradiation position. At the X-ray irradiation position, the weighing of the object 20 by the X-ray sensor 12 is continuously performed (dynamic weighing).

次に、図5(b)に示すように、ベルトコンベア3は、被計量物20をそのまま搬送方向Yに搬送し、X線照射位置でX線センサ12による計量を終えた被計量物2の計量値が所定値に達したところで停止制御されるとともに、カッター30により切り分けられる。なお、切り分けられた被計量物の落下地点には、例えば収容容器などが設置されている。   Next, as shown in FIG.5 (b), the belt conveyor 3 conveys the to-be-measured object 20 in the conveyance direction Y as it is, and of the to-be-measured object 2 which finished the measurement by the X-ray sensor 12 in the X-ray irradiation position. When the measured value reaches a predetermined value, stop control is performed and the measured value is divided by the cutter 30. Note that, for example, a storage container is installed at the fall point of the cut object to be weighed.

次に、図5(c)に示すように、ベルトコンベア3は、所定量の被計量物20が搬送終端部から落下すると、逆転制御される。これにより、ベルトコンベア3の搬送面5aが搬送方向Yと逆方向に所定量(時間又は距離)だけ移動する。   Next, as shown in FIG. 5 (c), the belt conveyor 3 is reversely controlled when a predetermined amount of the weighing object 20 falls from the conveyance end portion. Thereby, the conveyance surface 5a of the belt conveyor 3 moves by a predetermined amount (time or distance) in the direction opposite to the conveyance direction Y.

そして、図3(d)に示すように、ベルトコンベア3は、再び搬送方向Yに向けて搬送面5a上に残された被計量物20の搬送を始める。
なお、上述したようなベルトコンベア3の搬送動作、及びカッター30による切り分けを連続して行うことにより、被計量物20の塊の中から所定量ずつを取り分けることができる。
And as shown in FIG.3 (d), the belt conveyor 3 starts conveyance of the to-be-measured object 20 left on the conveyance surface 5a toward the conveyance direction Y again.
In addition, a predetermined amount can be separated from the lump of the objects to be weighed 20 by continuously performing the conveying operation of the belt conveyor 3 and the cutting by the cutter 30 as described above.

この第2の実施の形態によれば、X線センサ12を用いて、搬送方向Yに長い不定形の塊状となって搬送されている被計量物20の質量を計量し、且つベルトコンベア3を停止制御すると同時にカッター30で切り分けることで所定量を取り分けることから、上述した第1の実施の形態と同様に、被計量物20の計量と、計量後に所定量を取り分けることを一連の搬送動作の中で行うことができるようになり、高速処理が可能となる。   According to the second embodiment, the X-ray sensor 12 is used to measure the mass of the object 20 being conveyed in the form of an indefinite shape that is long in the conveying direction Y, and the belt conveyor 3 is Since the predetermined amount is separated by cutting with the cutter 30 at the same time as the stop control, as in the first embodiment described above, the weighing of the object 20 and the separation of the predetermined amount after the weighing are performed in a series of transport operations. It can be performed in the middle, and high-speed processing becomes possible.

また、所定量を取り分けると、ベルトコンベア3を逆転させて搬送面5a上に残された被計量物20の分離端部がX線照射位置の手前まで戻る。この結果、次の計量を再びゼロから始めることができる。   Further, when a predetermined amount is separated, the belt conveyor 3 is reversed and the separation end portion of the object 20 left on the transport surface 5a returns to just before the X-ray irradiation position. As a result, the next weighing can be started again from zero.

なお、図6に示すように、本発明の計量装置1(ベルトコンベア3)を搬送方向Yと直交する方向に複数台並べて使用することで、更に高速化を図ることができる。このとき、X線発生源11は1つだけあればよく、互いに独立して動く全部のベルトコンベア3に搬送されている被計量物2に対して過不足なくX線を照射することができ、コストの削減にもなる。   In addition, as shown in FIG. 6, it is possible to further increase the speed by using a plurality of weighing devices 1 (belt conveyors 3) of the present invention side by side in a direction orthogonal to the transport direction Y. At this time, only one X-ray generation source 11 is required, and X-rays can be irradiated to the objects to be weighed 2 conveyed to all the belt conveyors 3 that move independently from each other without excess or deficiency, It also reduces costs.

また、図7に示すように、X線センサ12が、X線発生源11を基準として搬送方向Yにおける下流側に設けられてもよい。この結果、X線発生源11と、X線センサ12とは斜めに対向配置されるようになり、X線発生源11から照射されるX線は垂直よりやや搬送方向Yに傾斜する。これにより、図示のように被計量物2の分離端部の傾斜面に沿ってX線照射することが可能となり、上述したようにベルトコンベア3を逆転制御しなくても、次の計量をゼロから始めることができるようになる。   As shown in FIG. 7, the X-ray sensor 12 may be provided on the downstream side in the transport direction Y with respect to the X-ray generation source 11. As a result, the X-ray generation source 11 and the X-ray sensor 12 are opposed to each other obliquely, and the X-rays emitted from the X-ray generation source 11 are slightly inclined in the transport direction Y from the vertical. As a result, it becomes possible to irradiate X-rays along the inclined surface of the separation end of the object 2 as shown in the figure, and the next weighing is zeroed without the reverse control of the belt conveyor 3 as described above. You can start with.

本発明による計量装置の第1の実施の形態を示す斜視図である。1 is a perspective view showing a first embodiment of a weighing device according to the present invention. 同実施の形態における被計量物を計量する原理を説明するための平面図である。It is a top view for demonstrating the principle which measures the to-be-measured object in the embodiment. (a)〜(d)は同実施の形態の分離手段による分離動作を示す側面図である。(A)-(d) is a side view which shows the isolation | separation operation | movement by the isolation | separation means of the embodiment. 本発明による計量装置の第2の実施の形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the weighing | measuring device by this invention. (a)〜(d)は同実施の形態の分離手段による分離動作を示す側面図である。(A)-(d) is a side view which shows the isolation | separation operation | movement by the isolation | separation means of the embodiment. 他の実施の形態を示す斜視図である。It is a perspective view which shows other embodiment. 他の実施の形態を示す一部側面図である。It is a partial side view which shows other embodiment. 従来の計量装置を示す斜視図である。It is a perspective view which shows the conventional measuring device. 従来の計量装置を示す側面図である。It is a side view which shows the conventional measuring device.

符号の説明Explanation of symbols

1…計量装置
2…被計量物
3…搬送手段としてのベルトコンベア
11…X線発生源
12…X線センサ
30…カッター
Y…搬送方向
DESCRIPTION OF SYMBOLS 1 ... Weighing device 2 ... Object to be measured 3 ... Belt conveyor as conveyance means 11 ... X-ray generation source 12 ... X-ray sensor 30 ... Cutter Y ... Conveyance direction

Claims (5)

不定形の塊状となった被計量物(2)を搬送方向(Y)に一定の速度で搬送する搬送手段(3)と、
前記搬送手段により搬送されている前記被計量物に対して所定のX線照射位置でX線を照射するX線発生源(11)と、
前記X線発生源と対向配置され、前記X線発生源から照射され前記被計量物を透過したX線を検出するX線センサ(12)と、
前記X線センサによって検出されたX線透過量に基づいて前記被計量物の質量を連続的に計量し、該計量値が所定値に達したところで前記搬送手段を停止制御して前記計量後の被計量物を前記搬送手段の搬送終端部から落下させ、前記被計量物から計量後の被計量物を取り分けた後に前記搬送手段を逆転制御して該搬送手段上に残された前記被計量物の分離端部を前記X線照射位置まで戻す分離手段と、
を具備することを特徴とする計量装置。
Transport means (3) for transporting the object to be weighed (2) that has become an indeterminate lump in the transport direction (Y) at a constant speed;
An X-ray generation source (11) for irradiating the object to be measured being conveyed by the conveying means with X-rays at a predetermined X-ray irradiation position ;
An X-ray sensor (12) disposed opposite to the X-ray generation source and detecting X-rays irradiated from the X-ray generation source and transmitted through the object to be measured;
Based on the amount of X-ray transmission detected by the X-ray sensor, the mass of the object to be weighed is continuously measured, and when the measured value reaches a predetermined value, the conveying means is stopped and controlled after the measurement. The object to be weighed left on the conveying means by dropping the object to be weighed from the conveyance end of the conveying means, separating the weighed object from the object to be weighed, and controlling the conveying means in reverse. Separation means for returning the separation end of the X-ray irradiation position to the X-ray irradiation position ;
A weighing apparatus comprising:
前記分離手段は、前記X線センサ(12)により検出された前記X線透過量と所定の閾値とを比較し、前記透過量が前記閾値よりも小さくなるまで逆転制御することを特徴とする請求項1記載の計量装置。 The separation means compares the X-ray transmission amount detected by the X-ray sensor (12) with a predetermined threshold value, and performs reverse control until the transmission amount becomes smaller than the threshold value. Item 1. The weighing device according to item 1. 前記分離手段は、更に、前記被計量物(2)から所定値に達した前記計量後の被計量物を取り分けるためのカッター(30)を備えることを特徴とする請求項1又は2記載の計量装置。 The weighing according to claim 1 or 2 , wherein the separating means further comprises a cutter (30) for separating the weighed object that has reached a predetermined value from the object to be weighed (2). apparatus. 前記X線発生源(11)と前記X線センサ(12)とは、前記X線センサが前記X線発生源を基準として前記搬送方向(Y)の下流側に位置して対向配置されることを特徴とする請求項1〜3の何れか1つに記載の計量装置。 The X-ray generation source (11) and the X-ray sensor (12) are disposed opposite to each other, with the X-ray sensor positioned on the downstream side in the transport direction (Y) with respect to the X-ray generation source. The weighing device according to any one of claims 1 to 3. 前記請求項1〜4記載の計量装置(1)は、互いに独立した複数の前記搬送手段(3)と、1つの前記X線発生源(11)とを備えることを特徴とする計量装置。 The metering device of claim 1, wherein (1) are each an independent plurality of said conveying means (3), weighing devices you anda one of said X-ray source (11) .
JP2007047561A 2007-02-27 2007-02-27 Weighing device Active JP4898493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047561A JP4898493B2 (en) 2007-02-27 2007-02-27 Weighing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047561A JP4898493B2 (en) 2007-02-27 2007-02-27 Weighing device

Publications (2)

Publication Number Publication Date
JP2008209307A JP2008209307A (en) 2008-09-11
JP4898493B2 true JP4898493B2 (en) 2012-03-14

Family

ID=39785729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047561A Active JP4898493B2 (en) 2007-02-27 2007-02-27 Weighing device

Country Status (1)

Country Link
JP (1) JP4898493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504872B2 (en) * 2012-09-21 2022-11-22 Weber Maschinenbau Gmbh Breidenbach Food processing apparatus and method for sequentially scanning food products

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336973B2 (en) * 2009-08-03 2013-11-06 株式会社イシダ X-ray inspection equipment
DE102014106509B4 (en) * 2014-05-08 2016-12-29 Wipotec Wiege- Und Positioniersysteme Gmbh Method of determining the net weight of a product in a single product area
JP2016017855A (en) * 2014-07-09 2016-02-01 株式会社イシダ Cutting position specifying method, x-ray inspection device executing method, and cutting and separating system using device
DE102018113618A1 (en) 2018-06-07 2019-12-12 Weber Maschinenbau Gmbh Breidenbach Apparatus and method for scanning food bars with movable scanning unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101819A (en) * 1979-01-30 1980-08-04 Kiyoutaru:Kk Cooked rice measuring and feeding apparatus
JPS6014128A (en) * 1983-07-06 1985-01-24 Mitsubishi Chem Ind Ltd Measuring device of external appearance information and weight of lump object
JPS6399235A (en) * 1986-06-02 1988-04-30 Toray Ind Inc Photosensitive polyimide composition
JPH01232220A (en) * 1988-03-12 1989-09-18 Fuji Seiki Kk Weighing device for rice, vegitable or the like
JP2002296022A (en) * 2001-03-29 2002-10-09 Anritsu Corp Mass measuring method by x-ray and x-ray mass measuring instrument
JP4531547B2 (en) * 2004-12-14 2010-08-25 アンリツ産機システム株式会社 X-ray foreign object detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504872B2 (en) * 2012-09-21 2022-11-22 Weber Maschinenbau Gmbh Breidenbach Food processing apparatus and method for sequentially scanning food products

Also Published As

Publication number Publication date
JP2008209307A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4898493B2 (en) Weighing device
KR200448886Y1 (en) Weight sorter
US9766107B2 (en) System for and method of measuring flow of bulk solid material
US5226334A (en) Automatic cutting of meat and fish into portions
RU2014112012A (en) METHOD FOR DETERMINING THE AVAILABILITY OF THE SET PROPERTIES OF THE CONTAINER PRODUCT AND THE DEVICE FOR IMPLEMENTING THE INDICATED METHOD
JP5288735B2 (en) Weight sorter
CN107810393B (en) LIM driven roller type weight detecting device
EP2950084B1 (en) Method and apparatus for determining the moisture content of a inhomogeneous bulk material
JP3175930U (en) X-ray inspection equipment
CN113544475B (en) Combination metering system, combination metering method, and combination metering program
JP5546421B2 (en) Weighing and packaging inspection system
JP5823647B1 (en) Conveyance flow measurement system and conveyance flow measurement method
JP6634622B2 (en) Seal inspection equipment
US10121307B2 (en) Speed checking attachment for use with vibratory conveyors
JP5248246B2 (en) Commodity weigher conveying device
JP4218149B2 (en) Fruit and vegetable quality measuring device
JP2004317184A (en) X-ray foreign matter inspection device
JP2017090248A (en) Detection device and detection system of liquid or granule
JP2017533425A (en) Equipment for weighing and packaging agricultural products
JP3189175U (en) X-ray inspection equipment
CN206951600U (en) The quick selecting device of finished product
JP4339271B2 (en) Metal detector
JP6513407B2 (en) Distribution device and inspection distribution system
JP2021089251A (en) Improvement determination system
US11959795B2 (en) Combinational weigher with upstream X-ray weigher, and downstream X-ray inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250