JP4898191B2 - Adhesive composition - Google Patents

Adhesive composition Download PDF

Info

Publication number
JP4898191B2
JP4898191B2 JP2005315841A JP2005315841A JP4898191B2 JP 4898191 B2 JP4898191 B2 JP 4898191B2 JP 2005315841 A JP2005315841 A JP 2005315841A JP 2005315841 A JP2005315841 A JP 2005315841A JP 4898191 B2 JP4898191 B2 JP 4898191B2
Authority
JP
Japan
Prior art keywords
adhesive composition
mass
alumina powder
spherical alumina
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005315841A
Other languages
Japanese (ja)
Other versions
JP2007119662A (en
Inventor
啓介 矢内
満 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Co Ltd
Original Assignee
Asahi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Co Ltd filed Critical Asahi Chemical Co Ltd
Priority to JP2005315841A priority Critical patent/JP4898191B2/en
Publication of JP2007119662A publication Critical patent/JP2007119662A/en
Application granted granted Critical
Publication of JP4898191B2 publication Critical patent/JP4898191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Description

本発明は、接着性組成物に関する。 The present invention relates to an adhesive composition.

光源装置などに用いられる電球を構成するガラスバルブを口金、ミラー材料、磁製ベースなどと接着する方法としては、ガラスバルブと口金等との間の隙間に接着性組成物を充填し、硬化させる方法が一般的であり、接着性組成物としては、隙間への充填が容易で、硬化後には十分な接着力を示し、ガラスバルブ内のフィラメントや、これを支えるリード線からの熱を外部に伝えて放熱するための高い熱伝導性を示すことが求められている。 As a method of adhering a glass bulb constituting a light bulb used in a light source device to a base, a mirror material, a magnetic base, etc., an adhesive composition is filled in a gap between the glass bulb and the base and cured. The method is general, and as an adhesive composition, it is easy to fill in the gap and shows sufficient adhesive force after curing, and heat from the filament in the glass bulb and the lead wire that supports it is externally exposed. It is required to exhibit high thermal conductivity to convey and dissipate heat.

このような接着性組成物として、例えば特許文献1〔特開平11−116899号公報〕には、耐火物粉末として窒化アルミニウム粉末を、無機バインダーとして燐酸アルミニウムを含む接着性組成物が開示されている。特許文献2〔特開2001−316638号公報〕には、耐火物粉末として炭化珪素粉末を、無機バインダーとしてコロイダルシリカを含む接着性組成物が開示されている。 As such an adhesive composition, for example, Patent Document 1 (Japanese Patent Laid-Open No. 11-116899) discloses an adhesive composition containing an aluminum nitride powder as a refractory powder and an aluminum phosphate as an inorganic binder. . Patent Document 2 (Japanese Patent Laid-Open No. 2001-316638) discloses an adhesive composition containing silicon carbide powder as a refractory powder and colloidal silica as an inorganic binder.

しかし、特許文献1に記載の接着性組成物は、無機バインダーとして燐酸アルミニウムを用いているため、十分な接着力を示すよう硬化させるには、充填後、24時間、室温で保持した後に加熱する必要があり、実用的ではない。特許文献2に記載の接着性組成物は、高価な炭化硅素粉末を使用するものであり、経済性の点で実用的ではない。 However, since the adhesive composition described in Patent Document 1 uses aluminum phosphate as an inorganic binder, in order to cure it so as to exhibit a sufficient adhesive force, it is heated after being held at room temperature for 24 hours after filling. Needed and not practical. The adhesive composition described in Patent Document 2 uses an expensive silicon carbide powder and is not practical in terms of economy.

このようなことから、隙間へ容易に充填でき、硬化後には十分な接着力と高い熱伝導性を示すとともに、比較的安価な原材料から製造でき、短時間で硬化し得る接着性組成物が求められている。 For this reason, there is a need for an adhesive composition that can be easily filled into the gap, exhibits sufficient adhesive strength and high thermal conductivity after curing, can be manufactured from relatively inexpensive raw materials, and can be cured in a short time. It has been.

特開平11−116899号公報Japanese Patent Laid-Open No. 11-116899 特開2001−316638号公報JP 2001-316638 A

このような状況の下で本発明者は、ガラスバルブと口金等との接着に使用し得る接着性組成物について鋭意検討した結果、本発明に至った。 Under such circumstances, the present inventors have intensively studied an adhesive composition that can be used for adhesion between a glass bulb and a die, etc., and as a result, have reached the present invention.

すなわち本発明は、累積質量百分率50%相当粒子径(D50)が4μm〜90μmであり、該累積質量百分率50%相当粒子径(D50)に対して累積質量百分率10%相当粒子径(D10)が1/20〜1/4倍、累積質量百分率90%相当粒子径(D90)が4倍〜10倍である球状アルミナ粉末、コロイダルシリカ、無機分散剤およびシランカップリング剤を含むことを特徴とする接着性組成物を提供するものである。 That is, in the present invention, the cumulative mass percentage 50% equivalent particle diameter (D50) is 4 μm to 90 μm, and the cumulative mass percentage equivalent particle diameter (D50) is 10% cumulative mass percentage equivalent particle diameter (D10). It includes spherical alumina powder, colloidal silica, an inorganic dispersant, and a silane coupling agent having a particle diameter (D90) equivalent to 1/20 to 1/4 times and a cumulative mass percentage of 90% of 4 times to 10 times. An adhesive composition is provided.

本発明の接着性組成物は、比較的安価な原材料から製造でき、また短時間で硬化し得、硬化後の接着力および熱伝導性に優れているので、電球を構成するガラスバルブと、口金、ミラー材料、磁製ベースなどとを接着するための接着性組成物として有用である。 The adhesive composition of the present invention can be produced from a relatively inexpensive raw material, can be cured in a short time, and is excellent in adhesive strength and thermal conductivity after curing. It is useful as an adhesive composition for bonding a mirror material, a magnetic base, and the like.

本発明の接着性組成物に適用される球状アルミナ粉末は、外形が球状であるアルミナ粒子であって、通常は球状のα−アルミナ粉末が用いられる。球状アルミナ粉末は、十分な接着力を示す点で、最小粒子径が通常0.1μm以上であり、ガラスバルブと口金等との間に充填し易い点で、最大粒子径が通常200μm以下であり、好ましくは160μmを超える粒子の含有量が1質量%以下である。 The spherical alumina powder applied to the adhesive composition of the present invention is an alumina particle having a spherical outer shape, and usually a spherical α-alumina powder is used. Spherical alumina powder has a minimum particle size of usually 0.1 μm or more in terms of sufficient adhesive strength, and a maximum particle size of usually 200 μm or less in terms of easy filling between a glass bulb and a die. The content of particles preferably exceeding 160 μm is 1% by mass or less.

アルミナ粉末の累積質量百分率50%相当粒子径(D50)は、十分な接着力が得られ易く、硬化後の熱伝導性に優れている点で通常4μm以上、好ましくは10μm以上であり、ガラスバルブと口金等との間の隙間に充填しやすい点で、通常90μm以下、好ましくは70μm以下である。 The particle diameter (D50) corresponding to a cumulative mass percentage of 50% of the alumina powder is usually 4 μm or more, preferably 10 μm or more in terms of easy obtaining of sufficient adhesive force and excellent thermal conductivity after curing. The thickness is usually 90 μm or less, preferably 70 μm or less, in that it can be easily filled in the gap between the base and the die.

累積質量百分率10%相当粒子径(D10)は、高い熱伝導性を示す点で、D50の1/20倍以上、D50の1/4倍以下である。累積質量百分率90%相当粒子径(D90)は、高い熱伝導性を示す点で、D50の4倍以上であり、隙間へ充填し易い点で、10倍以下である。 The particle size (D10) corresponding to a cumulative mass percentage of 10% is at least 1/20 of D50 and not more than 1/4 of D50 in that it exhibits high thermal conductivity. The cumulative mass percentage 90% equivalent particle size (D90) is 4 times or more of D50 in view of high thermal conductivity and 10 times or less in terms of easy filling into the gap.

球状アルミナ粉末は、質量基準の粒度分布曲線において粒子径60μm〜110μmの範囲に極大ピークを有するものであることが好ましい。 The spherical alumina powder preferably has a maximum peak in a particle size range of 60 μm to 110 μm in a mass-based particle size distribution curve.

本発明で規定するD50、D10およびD90を示す球状アルミナ粉末は、例えば互いに粒度分布の異なる複数の球状アルミナ粉末を混合することにより調製することができ、具体的にはD50が80μm〜90μmの球状アルミナ粉末、D50が6μm〜10μmの球状アルミナ粉末およびD50が1μm〜5μmの球状アルミナ粉末を適宜混合する方法により調製することができる。 The spherical alumina powder showing D50, D10 and D90 defined in the present invention can be prepared, for example, by mixing a plurality of spherical alumina powders having different particle size distributions. Specifically, the spherical alumina powder having D50 of 80 μm to 90 μm. An alumina powder, a spherical alumina powder having a D50 of 6 μm to 10 μm, and a spherical alumina powder having a D50 of 1 μm to 5 μm can be appropriately prepared.

コロイダルシリカは、シリカ〔SiO2〕の微細な粒子であり、その含有量(SiO2換算)は、アルミナ粉末100質量部あたり、十分な接着力が得られる点で3質量部以上、好ましくは5質量部以上であり、ガラスバルブと口金等との間の隙間に必要量の接着性組成物を保持することが容易である点で、15質量部以下、好ましくは10質量部以下である。 Colloidal silica is a fine particle of silica [SiO 2 ], and its content (in terms of SiO 2 ) is 3 parts by mass or more, preferably 5 in terms of obtaining sufficient adhesive force per 100 parts by mass of alumina powder. The amount is 15 parts by mass or less, preferably 10 parts by mass or less, in that it is easy to hold a necessary amount of the adhesive composition in the gap between the glass bulb and the base.

無機分散剤は、接着性組成物中にアルミナ粉末およびコロイダルシリカを均一に分散させる機能を示す無機化合物であり、例えばモンモリロナイトなどが好ましく用いられ、その使用量は、上記アルミナ粉末100質量部あたり0.1質量部〜1.5質量部、好ましくは0.3質量部〜1質量部である。 The inorganic dispersant is an inorganic compound having a function of uniformly dispersing alumina powder and colloidal silica in the adhesive composition. For example, montmorillonite is preferably used, and the amount used is 0 per 100 parts by mass of the alumina powder. .1 part by mass to 1.5 parts by mass, preferably 0.3 part by mass to 1 part by mass.

シランカップリング剤は、加水分解により分子中に2個以上のシラノール基を生ずる化合物であり、例えばγ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエチルエトキシシラン、γ-アミノプロピルトリメトキシシランなどが挙げられる。シランカップリング剤は、その一部または全部が加水分解されていてもよい。シランカップリング剤の使用量は、上記アルミナ粉末100質量部あたり0.1質量部〜1.5質量部、好ましくは0.2質量部〜1質量部である。 Silane coupling agents are compounds that produce two or more silanol groups in the molecule by hydrolysis, such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethylethoxysilane, γ-aminopropyl. Examples include trimethoxysilane. A part or all of the silane coupling agent may be hydrolyzed. The usage-amount of a silane coupling agent is 0.1 mass part-1.5 mass parts per 100 mass parts of said alumina powders, Preferably they are 0.2 mass part-1 mass part.

本発明の接着性組成物は、通常、水で希釈された状態で用いられる。水の使用量は、接着性組成物を加熱して硬化させた後の固形分に対して、隙間への充填が容易である点で通常0.2質量倍以上であり、充填した後に必要量の接着性組成物を隙間に保持しやすい点で通常0.4質量倍以下である。 The adhesive composition of the present invention is usually used in a state diluted with water. The amount of water used is usually 0.2 mass times or more in terms of easy filling into the gap with respect to the solid content after the adhesive composition is heated and cured, and the necessary amount after filling. The adhesive composition is usually 0.4 mass times or less in that it is easy to hold the adhesive composition in the gap.

本発明の接着性組成物は、例えば球状アルミナ粉末、コロイダルシリカ、無機分散剤およびシランカップリング剤を混合する方法により容易に製造することができる。コロイダルシリカは、通常、水に分散された水分散液として市販されているので、このコロイダルシリカの水分散液に、球状アルミナ粉末、無機分散剤およびシランカップリング剤を加えて混合することにより、本発明の接着性組成物を調製することができ、通常は、無機分散剤およびシランカップリング剤を加え、撹拌して均一に混合した後に、球状アルミナ粉末を加えて撹拌混合することにより調製できる。 The adhesive composition of the present invention can be easily produced by, for example, a method of mixing spherical alumina powder, colloidal silica, an inorganic dispersant, and a silane coupling agent. Colloidal silica is usually marketed as an aqueous dispersion dispersed in water. By adding a spherical alumina powder, an inorganic dispersant and a silane coupling agent to the aqueous dispersion of colloidal silica, the mixture is mixed. The adhesive composition of the present invention can be prepared. Usually, it can be prepared by adding an inorganic dispersant and a silane coupling agent, stirring and mixing uniformly, and then adding a spherical alumina powder and stirring and mixing. .

本発明の接着性組成物を用いて、ガラスバルブと、金属製の口金、金属製のミラー材料または磁製ベースとが接着された電球を製造するには、例えばガラスバルブと、口金、ミラー材料または磁製ベースとの間の隙間に、本発明の接着性組成物を充填し、加熱すればよい。加熱温度は通常150℃〜200℃であり、通常は5℃/分〜30℃/分の昇温速度で昇温する。加熱時間は通常10分〜1時間である。加熱することにより、接着性組成物が硬化して、ガラスバルブと口金等とが、本発明の接着性組成物の加熱硬化物により接着された電球を得ることができる。 In order to manufacture a light bulb in which a glass bulb and a metal base, a metal mirror material, or a magnetic base are bonded using the adhesive composition of the present invention, for example, the glass bulb, the base, and the mirror material Alternatively, the adhesive composition of the present invention may be filled in a gap between the magnetic base and heated. The heating temperature is usually 150 ° C. to 200 ° C., and the temperature is usually raised at a rate of temperature increase of 5 ° C./min to 30 ° C./min. The heating time is usually 10 minutes to 1 hour. By heating, the adhesive composition is cured, and a light bulb in which the glass bulb and the base are bonded by the heat-cured product of the adhesive composition of the present invention can be obtained.

以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

なお、各実施例で用いた粉末および得られた接着性組成物は、以下の方法で評価した。
(1)粒度分布
レーザー回折式粒度分布測定装置〔(株)島津製作所製、「SALD2200」〕を用いて粒子径0.03μmから1000μmの範囲で粒子径を測定し、粒度分布曲線を求めた。また、0.03μmからの累積質量が全質量の50%となる粒子径を累積質量百分率50%相当粒子径(D50)、10%となる粒子径を累積質量百分率10%相当粒子径(D10)、90%となる粒子径を累積質量百分率90%相当粒子径(D90)として、それぞれ求めた。
(2)粘度
粘度計〔リオン(株)製、「ビスコテスターVT−04」〕を用い、同装置に付属のNo.
2号ローターを用いて25℃にて1分後の粘度を測定した。
(3)固形分濃度
各実施例で得た接着性組成物約50g(W)を300mLビーカーに秤取り、加熱して1
0℃/分の昇温速度で150℃まで昇温し、同温度で16時間保持して硬化させた後の加
熱硬化物の質量(W150)から、式(1)
固形分濃度(%)=(W150−W)/W × 100・・・(1)
に従い求めた。
(4)接着力
内径12mmのガラス管内に、外径9mmのガラス製の丸棒を入れ、管と丸棒との間に接着性組成物1.5gを均一に充填し、150℃にて1時間保持して硬化させた。その後、精密万能試験機〔(株)島津製作所製、「オートグラフAGS1000B型」〕にて丸棒をガラス管から押し抜くに要する力(N)を測定して、接着力とした。
(5)自動充填性
ステンレス製ニードルバルブ〔岩下エンジニアリング(株)製、「AV−501」〕およびニードルノズル〔JIS規格に規定の13G型のニードル(内径1.5mm、外径2.0mm、長さ40mm、ステンレス製、電解研磨注射針)〕を備え、コントローラー〔岩下エンジニアリング(株)製、「AD−3000」〕により吐出時間および吐出サイクルを調整可能に構成した定量供給装置を用いて、ニードルノズルから、吐出時間1.2秒、吐出間隔7秒で繰り返し連続して2000ショット、接着性組成物を吐出し、その間の1回あたりの吐出量(g)を測定して自動充填性を評価した。吐出量の振れが小さいほど、自動充填性が良好であることを示す。
In addition, the powder used in each Example and the obtained adhesive composition were evaluated by the following methods.
(1) Particle size distribution A particle size distribution curve was determined by measuring the particle size in the range of 0.03 μm to 1000 μm using a laser diffraction particle size distribution measuring apparatus (manufactured by Shimadzu Corporation, “SALD2200”). In addition, the particle diameter at which the cumulative mass from 0.03 μm becomes 50% of the total mass is equivalent to the cumulative mass percentage 50% equivalent particle size (D50), and the particle size at which the cumulative mass percentage is 10% is equivalent to the cumulative mass percentage 10% particle size (D10). , 90% particle diameter was determined as a cumulative mass percentage equivalent 90% particle diameter (D90).
(2) Using a viscosity viscometer [manufactured by Lion Co., Ltd., “Viscotester VT-04”], No.
The viscosity after 1 minute was measured at 25 ° C. using a No. 2 rotor.
(3) Solid content concentration About 50 g (W) of the adhesive composition obtained in each example was weighed into a 300 mL beaker and heated to 1
From the mass (W150) of the heat-cured product after being heated to 150 ° C. at a rate of temperature increase of 0 ° C./min and held at that temperature for 16 hours to cure, the formula (1)
Solid content concentration (%) = (W150−W) / W × 100 (1)
Sought in accordance with
(4) A glass round bar with an outer diameter of 9 mm is placed in a glass tube with an inner diameter of 12 mm, and 1.5 g of the adhesive composition is uniformly filled between the tube and the round bar. Hold for time to cure. Thereafter, the force (N) required to push out the round bar from the glass tube was measured with a precision universal testing machine [manufactured by Shimadzu Corporation, “Autograph AGS1000B type”] to obtain an adhesive force.
(5) Self-filling stainless steel needle valve (“AV-501” manufactured by Iwashita Engineering Co., Ltd.) and needle nozzle [13G type needle defined by JIS standard (inner diameter 1.5 mm, outer diameter 2.0 mm, long 40 mm, stainless steel, electrolytic polishing needle), and a needle using a quantitative supply device configured to adjust the discharge time and the discharge cycle by a controller (“AD-3000” manufactured by Iwashita Engineering Co., Ltd.) From the nozzle, 2000 shots of the adhesive composition were repeatedly and continuously discharged at a discharge time of 1.2 seconds and a discharge interval of 7 seconds. did. The smaller the fluctuation of the discharge amount, the better the automatic filling property.

実施例1
コロイダルシリカ液〔旭電化(株)製「アデライトAT−40」、SiO2換算含有量40質量%〕360g(SiO2換算144g)に、無機分散剤〔(株)ホージュン製「ベンゲル」、モンモリロナイトの粉末、E2/3Si8(Al10/3Mg2/3)O20・(OH)4、(Eはナトリウム、カリウムなどでイオン交換可能な原子を示す。)〕9.0gおよびシランカップリング剤〔東レダウコーニングシリコーン(株)製「SH6040」、γ−グリシドキシプロピルトリメトキシシラン〕3.6gを加え、3時間、撹拌混合した。
Example 1
To the colloidal silica liquid [Adelite AT-40 manufactured by Asahi Denka Co., Ltd., SiO 2 equivalent content: 40% by mass] 360 g (144 g SiO 2 equivalent), an inorganic dispersant [“Bengel” manufactured by Hojun Co., Ltd., montmorillonite Powder, E 2/3 Si 8 (Al 10/3 Mg 2/3 ) O 20. (OH) 4 (E represents an atom capable of ion exchange with sodium, potassium, etc.)] 9.0 g and silane cup 3.6 g of a ring agent [“SH6040” manufactured by Toray Dow Corning Silicone Co., Ltd., γ-glycidoxypropyltrimethoxysilane] was added and mixed with stirring for 3 hours.

次いで、以下の球状アルミナ粉末(A)、球状アルミナ粉末(B)および球状アルミナ粉末(C)を第1表に示す量だけ加え、30分間、撹拌混合して、接着性組成物を得た。なお、球状アルミナ粉末(A)、球状アルミナ粉末(B)および球状アルミナ粉末(C)を上記と同じ量比で混合した混合物の粒度分布曲線(質量基準)を図1に示す。この混合物は、粒子径分布曲線において粒子径約90μmの位置に極大ピークを示す。また、この粒度分布曲線から求めた累積質量百分率50%相当粒子径(D50)、累積質量百分率10%相当粒子径(D10)および累積質量百分率90%相当粒子径(D90)をそれぞれ第1表に示す。 Next, the following spherical alumina powder (A), spherical alumina powder (B) and spherical alumina powder (C) were added in the amounts shown in Table 1 and stirred and mixed for 30 minutes to obtain an adhesive composition. In addition, the particle size distribution curve (mass standard) of the mixture which mixed spherical alumina powder (A), spherical alumina powder (B), and spherical alumina powder (C) by the same amount ratio as the above is shown in FIG. This mixture shows a maximum peak at a particle size of about 90 μm in the particle size distribution curve. The cumulative mass percentage 50% equivalent particle diameter (D50), the cumulative mass percentage equivalent particle diameter (D10) and the cumulative mass percentage equivalent particle diameter (D90) obtained from this particle size distribution curve are shown in Table 1. Show.

球状アルミナ粉末(A):(株)マイクロン製「AW70−125」、α−アルミナ、
粒子径は50μm〜155μm、D50は87μm
球状アルミナ粉末(B):(株)マイクロン製「AX10−32」、α−アルミナ、
粒子径は0.3μm〜55μm、D50は8μm
球状アルミナ粉末(C):(株)マイクロン製「AX3−32」、α−アルミナ、
粒子径は0.2μm〜45μm、D50は4μm
Spherical alumina powder (A): “AW70-125” manufactured by Micron Corporation, α-alumina,
Particle size is 50μm ~ 155μm, D50 is 87μm
Spherical alumina powder (B): “AX10-32” manufactured by Micron Corporation, α-alumina,
Particle size is 0.3μm to 55μm, D50 is 8μm
Spherical alumina powder (C): “AX3-32” manufactured by Micron Corporation, α-alumina,
Particle size is 0.2μm ~ 45μm, D50 is 4μm

JDRタイプ電球〔定格電圧12V、定格電力150W〕に用いられ、モリブデン製リード線が封止されたガラスバルブの封止部分に、上記で得た接着性組成物により熱電対を取り付け、予め150℃に加熱した炉内に入れて接着性組成物を硬化させることにより、熱電対をガラスバルブに固定した。次いで、このガラスバルブを口金にセットし、口金との間の隙間に上記で得た接着性組成物を充填したのち、150℃で30分間加熱して、電球を得た。このようにして得た電球5個について、それぞれ消費電力150W(電圧は約12V)で点灯させ、JIS C7501に準拠して上記熱電対によりリード線封止部分の温度を測定し、その平均温度を求めた。結果を第1表に示す。 A thermocouple is attached to the sealing portion of a glass bulb used for a JDR type light bulb [rated voltage 12 V, rated power 150 W] and sealed with a molybdenum lead wire by using the adhesive composition obtained above, and 150 ° C. in advance. The thermocouple was fixed to the glass bulb by placing it in a furnace heated to 1 to cure the adhesive composition. Next, this glass bulb was set in a base, and the adhesive composition obtained above was filled in a gap between the base and the base, and then heated at 150 ° C. for 30 minutes to obtain a light bulb. The five light bulbs thus obtained were each lit at a power consumption of 150 W (voltage is about 12 V), the temperature of the lead wire sealed portion was measured by the thermocouple in accordance with JIS C7501, and the average temperature was determined. Asked. The results are shown in Table 1.

実施例2
コロイダルシリカ液〔アデライトAT−40〕、無機分散剤〔ベンゲル〕、シランカップリング剤、球状アルミナ粉末(A)、球状アルミナ粉末(B)および球状アルミナ粉末(C)の使用量を第1表のとおりとする以外は実施例1と同様に操作して接着性組成物を得た。結果を第1表に示す。















Example 2
The amount of colloidal silica liquid [Adelite AT-40], inorganic dispersant [Bengel], silane coupling agent, spherical alumina powder (A), spherical alumina powder (B) and spherical alumina powder (C) is shown in Table 1. An adhesive composition was obtained by operating in the same manner as in Example 1 except that it was as described above. The results are shown in Table 1.















第 1 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
例 実施例1 実施例2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
球状アルミナ粉末(A) [g] 900 720
球状アルミナ粉末(B) [g] 540 720
球状アルミナ粉末(C) [g] 360 360
D50 [μm] 25.3 16.2
D10 [μm] 1.51 1.27
D90 [μm]108.3 103.2
極大ピークの位置 [μm] 90 90
───────────────────────────────
コロイダルシリカ(SiO2算) [g] 144 102
無機分散剤 [g] 9.0 6.4
シランカップリング剤 [g] 3.6 2.6
───────────────────────────────
粘度 [cP]20000 20000
固形分濃度 [%] 89.8 91.5
接着力 [N] 300 300
吐出量 [g] 0.5±0.1 −
封止部分の温度 [℃] 259 259
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example Example 1 Example 2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Spherical alumina powder (A) [g] 900 720
Spherical alumina powder (B) [g] 540 720
Spherical alumina powder (C) [g] 360 360
D50 [μm] 25.3 16.2
D10 [μm] 1.51 1.27
D90 [μm] 108.3 103.2
Maximum peak position [μm] 90 90
───────────────────────────────
Colloidal silica (SiO 2 count) [g] 144 102
Inorganic dispersant [g] 9.0 6.4
Silane coupling agent [g] 3.6 2.6
───────────────────────────────
Viscosity [cP] 20000 20000
Solid content concentration [%] 89.8 91.5
Adhesive strength [N] 300 300
Discharge amount [g] 0.5 ± 0.1 −
Temperature of sealed portion [° C.] 259 259
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

比較例1〜比較例3
コロイダルシリカ液〔アデライトAT−40〕、無機分散剤〔ベンゲル〕、シランカップリング剤、球状アルミナ粉末(A)、球状アルミナ粉末(B)および球状アルミナ粉末(C)の使用量を第2表のとおりとする以外は実施例1と同様に操作して接着性組成物を得た。結果を第2表に示す。




















Comparative Examples 1 to 3
The amount of colloidal silica liquid [Adelite AT-40], inorganic dispersant [Bengel], silane coupling agent, spherical alumina powder (A), spherical alumina powder (B) and spherical alumina powder (C) is shown in Table 2. An adhesive composition was obtained by operating in the same manner as in Example 1 except that it was as described above. The results are shown in Table 2.




















第 2 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
例 比較例1 比較例2 比較例3
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
球状アルミナ粉末(A) [g]1800 0 0
球状アルミナ粉末(B) [g] 0 1800 0
球状アルミナ粉末(C) [g] 0 0 1800
D50 [μm] 86.7 8.2 4.1
D10 [μm] 65.7 2.9 0.8
D90 [μm]117.9 24.1 10.9
───────────────────────────────────────
コロイダルシリカ(SiO2算)[g] 194 180 216
無機分散剤 [g] 12.1 11.3 13.5
シランカップリング剤 [g] 4.9 4.5 5.4
───────────────────────────────────────
粘度 [cP]21000 20000 20000
固形分濃度 [%] 87.2 88.0 86.2
接着力 [N] 200 250 200
吐出量 [g] 0.5±0.1 − −
封止部分の温度 [℃] 283 280 292
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example Comparative Example 1 Comparative Example 2 Comparative Example 3
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Spherical alumina powder (A) [g] 1800 0 0
Spherical alumina powder (B) [g] 0 1800 0
Spherical alumina powder (C) [g] 0 0 1800
D50 [μm] 86.7 8.2 4.1
D10 [μm] 65.7 2.9 0.8
D90 [μm] 117.9 24.1 10.9
───────────────────────────────────────
Colloidal silica (SiO 2 count) [g] 194 180 216
Inorganic dispersant [g] 12.1 11.3 13.5
Silane coupling agent [g] 4.9 4.5 5.4
───────────────────────────────────────
Viscosity [cP] 21000 20000 20000
Solid content concentration [%] 87.2 88.0 86.2
Adhesive strength [N] 200 250 200
Discharge amount [g] 0.5 ± 0.1 − −
Temperature of sealed portion [° C.] 283 280 292
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

球状アルミナ粉末(A)、球状アルミナ粉末(B)および球状アルミナ粉末(C)を実施例1と同じ質量比で混合した混合物の粒度分布曲線(質量基準)である。2 is a particle size distribution curve (mass basis) of a mixture obtained by mixing spherical alumina powder (A), spherical alumina powder (B) and spherical alumina powder (C) at the same mass ratio as in Example 1. FIG. 球状アルミナ粉末(A)、球状アルミナ粉末(B)および球状アルミナ粉末(C)を実施例2と同じ質量比で混合した混合物の粒度分布曲線(質量基準)である。2 is a particle size distribution curve (mass basis) of a mixture obtained by mixing spherical alumina powder (A), spherical alumina powder (B) and spherical alumina powder (C) at the same mass ratio as in Example 2. FIG.

Claims (5)

累積質量百分率50%相当粒子径(D50)が4μm〜90μmであり、該累積質量百分率50%相当粒子径(D50)に対して累積質量百分率10%相当粒子径(D10)が1/20〜1/4倍、累積質量百分率90%相当粒子径(D90)が4倍〜10倍である球状アルミナ粉末、コロイダルシリカ、無機分散剤およびシランカップリング剤を含むことを特徴とする接着性組成物。 The cumulative mass percentage 50% equivalent particle diameter (D50) is 4 μm to 90 μm, and the cumulative mass percentage equivalent particle diameter (D50) is 10% cumulative mass percentage equivalent particle diameter (D10) of 1 / 20-1 An adhesive composition comprising spherical alumina powder, colloidal silica, an inorganic dispersant, and a silane coupling agent having a particle size (D90) equivalent to / 4 times and a cumulative mass percentage of 90%. 球状アルミナ粉末が、質量基準の粒度分布曲線において粒子径60μm〜110μmの範囲に極大ピークを有するものである請求項1に記載の接着性組成物。 The adhesive composition according to claim 1, wherein the spherical alumina powder has a maximum peak in a particle size range of 60 μm to 110 μm in a mass-based particle size distribution curve. 球状アルミナ粉末100質量部あたり、コロイダルシリカをSiO2換算で3質量部〜15質量部、無機分散剤を0.1質量部〜1.5質量部およびシランカップリング剤を0.1質量部〜1.5質量部含む請求項1または請求項2に記載の接着性組成物。 Colloidal silica 3 to 15 parts by mass in terms of SiO 2 , 0.1 to 1.5 parts by mass of the inorganic dispersant and 0.1 part by mass of the silane coupling agent per 100 parts by mass of the spherical alumina powder The adhesive composition according to claim 1 or 2, comprising 1.5 parts by mass. ガラスバルブ、口金と接着されてなる電球の製造方法であり、前記ガラスバルブと、前記口金との間の隙間に、請求項1〜請求項3のいずれかに記載の接着性組成物を充填し、加熱して硬化させることを特徴とする前記電球の製造方法。 Glass bulb, a method for producing a bulb formed by die and contact wear, and the glass bulb, the gap between the mouth gold, adhesive composition according to any one of claims 1 to 3 The method for manufacturing the light bulb is characterized in that it is cured by heating. ガラスバルブ、口金と、請求項1〜請求項3のいずれかに記載の接着性組成物の加熱硬化物により接着されてなることを特徴とする電球。 Bulb to a glass bulb, a ferrule, characterized by comprising adhered by heating the cured product of the adhesive composition according to any one of claims 1 to 3.
JP2005315841A 2005-10-31 2005-10-31 Adhesive composition Active JP4898191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315841A JP4898191B2 (en) 2005-10-31 2005-10-31 Adhesive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315841A JP4898191B2 (en) 2005-10-31 2005-10-31 Adhesive composition

Publications (2)

Publication Number Publication Date
JP2007119662A JP2007119662A (en) 2007-05-17
JP4898191B2 true JP4898191B2 (en) 2012-03-14

Family

ID=38143836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315841A Active JP4898191B2 (en) 2005-10-31 2005-10-31 Adhesive composition

Country Status (1)

Country Link
JP (1) JP4898191B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663726B2 (en) 2008-10-23 2015-02-04 独立行政法人森林総合研究所 Hot press device with anti-puncture function and method for manufacturing woody material
CN113242893A (en) * 2018-12-13 2021-08-10 日东电工株式会社 Adhesive composition and adhesive sheet
WO2022210260A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Spherical inorganic powder and liquid sealing material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399239A (en) * 1977-02-14 1978-08-30 Sumitomo Chem Co Ltd Inorganic adhesive and sealing compound
JP2639081B2 (en) * 1989-03-29 1997-08-06 東芝ライテック株式会社 Tube ball
JPH03232757A (en) * 1990-02-06 1991-10-16 Nissan Chem Ind Ltd Highly electrical insulating inorganic composition
JP2897270B2 (en) * 1989-08-14 1999-05-31 日産化学工業株式会社 High strength inorganic adhesive
JPH0582109A (en) * 1991-09-25 1993-04-02 Toshiba Lighting & Technol Corp Halogen lamp and downlight
JPH0841426A (en) * 1994-07-26 1996-02-13 Kyoei Kogyosho:Kk Refractory adhesive

Also Published As

Publication number Publication date
JP2007119662A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
CN104789186B (en) A kind of one-component does not go out oil type LED filament thixotrope and preparation method thereof
JP4582095B2 (en) Light converting structure and light emitting device using the same
TW201841834A (en) Spherical crystalline silica particles and method for producing same
TWI738917B (en) Inorganic nano phosphor particle composite and wavelength conversion member
AU619485B2 (en) Aluminium phosphate cement compositions and lamp assemblies containing same
JPWO2014199650A1 (en) Thermosetting resin composition, method for producing thermal conductive sheet, and power module
JP2011176024A (en) Thermosetting resin composition, b-stage heat conductive sheet, and power module
JP4898191B2 (en) Adhesive composition
US11578264B2 (en) Phosphor wheel with inorganic binder
CN109735790A (en) A kind of LED light composite radiating ceramic coating and preparation method thereof
WO2008041566A1 (en) Ceramic composite for phototransformation and light emitting device using the same
CN104061531A (en) Manufacturing method of wavelength conversion device
JP2897270B2 (en) High strength inorganic adhesive
JP4982061B2 (en) Adhesive composition
JP4675081B2 (en) Adhesive composition
JP2014513159A (en) Tin phosphate glass with embedded luminescent material particles
JP4270097B2 (en) Tube
WO2020174719A1 (en) High-alumina melt-casted refractory and method for manufacturing same
JP4942963B2 (en) Corrosion-resistant member and manufacturing method thereof
CN116419957A (en) High temperature resistant adhesive
JP2018193283A (en) Sealing material and method for producing joined body
CN109467315B (en) InN-doped sodium-based glass and preparation method thereof
JP2008004902A (en) Glass-sealed light emitting element including phosphor, circuit substrate with glass-sealed light emitting element, method of manufacturing glass-sealed light emitting element, and method of mounting glass-sealed light emitting element
JP4908128B2 (en) Light emitting device and manufacturing method thereof
JP5111821B2 (en) Alumina particles, production method thereof, and resin composition using alumina particles

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250