JP4898069B2 - Presulfidation and preconditioning method of residual oil hydroconversion catalyst - Google Patents

Presulfidation and preconditioning method of residual oil hydroconversion catalyst Download PDF

Info

Publication number
JP4898069B2
JP4898069B2 JP2002503445A JP2002503445A JP4898069B2 JP 4898069 B2 JP4898069 B2 JP 4898069B2 JP 2002503445 A JP2002503445 A JP 2002503445A JP 2002503445 A JP2002503445 A JP 2002503445A JP 4898069 B2 JP4898069 B2 JP 4898069B2
Authority
JP
Japan
Prior art keywords
catalyst
stream
hydroconversion
oil
residual oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002503445A
Other languages
Japanese (ja)
Other versions
JP2003535689A (en
Inventor
ジェイムズ ビー マッカーサー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of JP2003535689A publication Critical patent/JP2003535689A/en
Application granted granted Critical
Publication of JP4898069B2 publication Critical patent/JP4898069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/703Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/708Coking aspect, coke content and composition of deposits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素供給原料の水素化処理および/または水素化分解(水素化クラッキング)に使用される金属酸化物担持触媒を予備硫化する改善された方法、これにより得られる予備硫化された触媒組成物、およびこのような予備硫化された金属酸化物触媒を使用する水素化処理および/または水素化分解プロセスに関する。本発明はさらに、触媒の予備硫化と残油の水素化転換プロセスとを統合する、改善された方法に関する。
【0002】
【従来の技術】
水素化処理触媒は、炭化水素供給原料の水素化を触媒して、その水素含有量を増大させ、および/またはヘテロ原子混入物を除去するために使用され得る、あらゆる触媒組成物と定義され得る。水素化分解触媒は、大きいまたは複雑な炭化水素分子を分解して、より小さい、より低分子量の分子を得る反応と共に分子への水素の付加を触媒するために使用されてもよい、あらゆる触媒組成物と定義されてもよい。残油の水素化転換プロセスは、石油の大気圧または減圧残留物を高温、高圧の条件で、水素と、水素化処理および/または水素化分解触媒との存在下で転換する方法であって、供給原料を、(硫黄や窒素のような)混入物のレベルが減少した、より低分子量の生成物に転換するプロセスと定義され得る。
【0003】
残油の水素化転換プロセスに使用される触媒組成物は、当業者に周知であり、市販されているものもいくつかある。好適な触媒は、シリカ、アルミナ、チタニアまたはこれらの組み合わせのような多孔質支持体に担持されたニッケル、コバルト、タングステン、モリブデンまたはこれらの組み合わせを含有する触媒を含む。
【0004】
最大限の有効性のために、これらの金属酸化物触媒は、少なくとも部分的に金属硫化物に転換される。金属酸化物触媒は、反応器内で、高温で、硫化水素または硫黄含有油もしくは供給原料と接触させることにより硫化され得る。
【0005】
該触媒はまた、取り込まれる硫黄を既に有するエンド・ユーザに提供されてもよい。しかしながら、金属酸化物担持触媒を予備硫化するこれらの現場外(ex-situ)での方法は、炭化水素供給原料の存在下で、水素化処理反応器の始動時に、硫黄の過度のストリッピングを受けてきた。硫黄のストリッピングの結果、触媒活性の低下が観測される。従って、当業者に周知であることは、上記の金属酸化物触媒の活性および活性維持は、該製造過程において、または現場での(in situ)水素化転換プロセスの始動の間、触媒を予備硫化することにより、実質的に高められることである。
【0006】
水素化転換プロセスは、固定触媒床方式で作動することができ、この方式では、触媒を除去し、置換するために、該プロセスが止められる前に、触媒のバッチが、水素化転換反応器内で、典型的には3〜24か月の期間使用される。この固定床方式において、触媒は、装置の始動の間に予備硫化されて、触媒性能(水素化、脱硫、脱窒、転換等)の最大限のレベルを達成できる。
【0007】
水素化処理/水素化分解プロセスにおいて、このプロセスは、触媒を規則的な基準で(すなわち毎日、週1回)添加しかつ取り出す一方、プロセスは、通常の温度および圧力の条件で作動し、触媒は、典型的には、製造したままの状態で(すなわち金属酸化物を含有する状態で)添加される。この方式で作動するプロセスは、(HオイルTM法のような)沸騰床水素化分解装置、移動床水素化処理装置、運転中触媒置換反応器(OCR)および固定床残油水素化処理装置内で使用される保護反応器を含む。
【0008】
第一発生低活性触媒を使用する、沸騰床処理の適用において、毎日添加される触媒の予備硫化のための、最小限の利点が確認されていた。これらの触媒は、水素化転換反応器に添加される際に、若干の予備硫化を達成する。しかしながら、新しい第二および第三発生触媒(高い脱硫、少ない沈降物)を使用するこのような操作では、添加触媒を予備硫化することにより、脱硫、脱窒およびコンラドソン炭素の除去の顕著な増加が達成され得る。
【0009】
触媒の予備硫化の利益は、一般に先行技術で周知である。例えば、減圧軽油のような高沸点油と、硫黄の触媒への取り込みを助ける炭化水素溶媒とを使用することが、1990年7月24日に発行された特許文献1に教示されている。さらにBerrebiにより1985年7月23日に発行された特許文献2に、水素化処理触媒を有機多硫化物により予備硫化する方法が開示されている。
【0010】
Herringtonらにより1979年12月4日に発行された特許文献3に、触媒を元素状硫黄で処理する、触媒の予備硫化方法が開示されている。次いで水素が、元素状硫黄をその場で硫化水素に転換する還元剤として使用される。Kittrellらにより1978年5月16日に発行された特許文献4に、触媒を水素の存在下で元素状硫黄で予備処理することが開示されている。前記の特許はすべてこの出願に参照のために組み込まれている。
【0011】
【特許文献1】
米国特許第4943547号。
【0012】
【特許文献2】
米国特許第4530917号。
【0013】
【特許文献3】
米国特許第4117136号。
【0014】
【特許文献4】
米国特許第4089930号。
【0015】
【発明が解決しようとする課題】
本発明には、通常の工場での操作の間、しかし触媒反応器への触媒の添加の前に、触媒の予備硫化と予備調整とを達成するための、改善された方法が記載されており、本発明は、ほとんどの状況で、装置の最小限の変更で達成され得る。このことは、基礎の応用を実現すると共に、既存の装置を改良できるという利益をもたらす。さらに、本発明は、残油の水素化転換プロセスの連続的な操作を中断することなく、残油の水素化処理または水素化分解触媒の予備調整を考慮する。重要なことは、本発明の残油の水素化転換プロセスが、高い触媒活性を維持しながら、数年間連続的に作動できることである。
【0016】
本発明の目的は、水素化処理および/または水素化分解触媒が水素化処理および/または水素化分解反応器に添加されるときに、触媒の活性を最大にする方法で、触媒を予備硫化することである。
【0017】
本発明のさらなる目的は、新しいまたは再生された、安全かつ安定な予備硫化された水素化処理および/または水素化分解触媒を調製することである。
【0018】
本発明のさらなる目的は、その場での(in situ)活性化時に、非常に活性な水素化処理および/または水素化分解触媒を提供する、予備硫化された水素化処理および/または水素化分解触媒を提供することである。
【0019】
本発明のもう1つの目的は、活性を急速に損失することなく、急速に過酷な水素化分解条件に至らせることができる、予備硫化された水素化処理および/または水素化分解触媒を提供することである。
【0020】
本発明のもう1つの目的は、残油の水素化転換プロセスの連続的な操作を中断することなく、残油の水素化処理または水素化分解触媒を予備調整することである。
【0021】
【課題を解決するための手段】
本発明には、残油の水素化処理または水素化分解触媒を予備硫化および予備調整する、改善された方法が、水素化転換プロセスの統合された部分として記載されている。さらに、この方法は、水素化転換プロセスを中断することなく、運転中に断続的または連続的に添加される触媒を考慮する。この方法は、新しいまたは再生された触媒を、水素化転換プロセスからの生成物流(stream)を使用する水素化転換反応器に添加する前に、触媒を調整、活性化または予備硫化するために使用される。
【0022】
特に、本発明は、残油の水素化転換プロセスで使用される水素化処理および/または水素化分解触媒の活性と活性維持とを向上させるための方法において、該方法が、
(a)水素化転換プロセス内で金属酸化物触媒を、HSとHとに富む流に晒して、該金属酸化物触媒を少なくとも部分的に金属硫化物に転換すること、および
(b)該触媒を液体炭化水素流に通過させることにより調整することから成り、残油の水素化転換プロセスの連続的な操作を中断することなく、上記工程を行う方法である。
【0023】
より具体的には、本発明には、残油の水素化転換プロセスで使用される水素化処理および/または水素化分解触媒の活性と活性維持とを向上させるための方法において、該方法が、
(a)水素化転換プロセス内で金属酸化物触媒を、HSとHとに富む流に、約300〜750°Fの温度、大気圧〜3000PSIGの圧力、および処理された触媒の硫黄含有量を5〜15重量%まで増大させるのに十分なHSの量で晒すことにより、触媒を予備硫化すること、
(b)低いレベルのカーボン(1〜5重量%)を予備硫化された触媒に付着させるために、大気圧または減圧軽油のような液体炭化水素流と、HSとHとに富む流とを、約500〜750°Fの温度、大気圧〜3000PSIGの反応器圧力で15分〜10時間触媒に通すことにより、触媒を予備調整することから成り、残油の水素化転換プロセスの連続的な操作を中断することなく、上記工程を行う方法が記載されている。
【0024】
図2は触媒予備調整システムの概要のフローシートである。このプロセスに使用される、新しいまたは再生された触媒は、触媒供給ホッパー(20)から、これに受け入れたままの金属酸化物状態で、触媒添加容器(22)に添加される。残油の水素化転換プロセスに適した触媒は、シリカ、アルミナ、チタニアまたはこれらの組み合わせのような多孔質支持体に担持されたニッケル、コバルト、タングステン、モリブデンまたはこれらの組み合わせを含有する触媒を含む。触媒添加容器(22)は、次いで排気されおよび/または窒素でパージされ、容器から酸素と湿気とが除去される。
【0025】
新しい触媒を含む触媒添加容器(22)は、次いで水素と硫化水素とを含有するガスにより、下流の中圧アミン吸収器(26)の圧力まで加圧され、触媒が予備硫化される。このHSに富む水素流(10)は、残油の水素化転換プロセスのフローシート内で得られる多くの源から来るものであってよい。これらの源は、(i)高圧の冷たい分離器(58)、(ii)温かい高圧の分離器(56)、または(iii)このプロセスで回収される、HとHSとに富むあらゆる流を含む。これらの源を図1に示す。H/HSに富む流(10)は、典型的には400〜3000PSIGの圧力および100〜800°Fの温度で得られる。
【0026】
触媒の予備硫化は、好ましくは、約300〜750°Fの温度で、圧力を大気圧から、得られる流の圧力に近い圧力(すなわち400〜3000PSIG)に増加させて行われる。さらに、供給ガス中のHS濃度1〜10容量%が好ましい。さらに、完全な予備硫化を確実にするには、金属酸化物を金属硫化物状態に転換するのに必要な量より少なくとも50%多い量のHSで触媒を処理することが望ましい。
【0027】
Grace GR−25、Criterion HDS−2443BまたはAKZO Nobel KF−1303等の典型的な市販の水素化転換触媒を用いて、触媒を完全に硫化するには、約8〜15重量%の硫黄(液体流中でHSまたは硫黄の形)が必要である。次いで流れ(flow)は、水素化分解反応器に添加される触媒を経て冷却器と蒸気/液体分離器とを経て、HSの除去のためのアミン吸収器(26)の方に、次いで水素の回収の方に開始される。
【0028】
触媒の活性と活性の維持をさらに高めるために、触媒は、次いで炭化水素の流に晒される。留出物炭化水素流(14)は、温かい高圧分離器(56)から、または大気圧および/または減圧軽油を用いて供給される。同流(14)は触媒添加容器(22)内で、HとHSとに富む流(10)と共に触媒を横切って流通される。炭化水素流の温度は、大気圧から、得られる流の圧力(400〜3000PSIG)までの圧力で、約400〜800°F、典型的には500〜750°Fである。
【0029】
この工程は、本発明の予備硫化および予備調整プロセスを完結させる。この時点で、適度に低いレベルのカーボン(コークス)(典型的には1〜5重量%)が触媒に付着されている。このコークス層は、高い過酷度(典型的には750〜850°F)の残油の水素化分解反応器の環境に触媒が最初に添加されるときに、触媒を表面温度の発熱量から保護する。
【0030】
触媒が一旦、上記の方法で予備硫化および予備調整されると、触媒は残油の水素化転換プロセスに添加される準備ができている。触媒添加容器(22)は、流(14)からの液体炭化水素で満たされ、水素によって反応器圧力まで加圧される。触媒は次いで、液体炭化水素と共に反応器(50)(52)のうちの1つに運ばれ、残油の炭化水素の処理のために、反応器に添加される。反応器(50)(52)を図2と図1の両方に示し、図1は全体の残油の水素化転換プロセスの系統図である。
【0031】
残油の水素化転換触媒の予備硫化の顕著な効果を図3に見ることができる。この図は、最初に100%予備硫化された触媒を用いて、運転中の触媒を添加または取り出すことなく作動する、商業的な残油の水素化転換プラントのデータを示す。最初の実際の触媒の脱硫性能は、小規模の試験に基づく相関から予測される性能よりも優れている。重要なのは、このモデル予測が、100%予備硫化された触媒に基づくことに注目することである。脱硫性能は、減圧残油供給原料を供給することにより、触媒が老化するにつれて低下した。モデル予測は、実際のデータより4〜5重量%低いHDSであるが、HDSの減少する傾向に従う。40日後、運転中の触媒の添加(予備硫化されていない触媒で)および取り出しを、規則的な基準で行った。
【0032】
しかしながら、触媒を予備硫化しなかったので、脱硫活性は、相関から予想される活性まで回復しなかった。本発明の応用は、触媒の脱硫活性を、期待されるレベルまで回復させることであると期待される。
【0033】
本明細書および特許請求の範囲に提供される範囲および限定は、本発明を特に指摘し、かつ明瞭に特許請求すると信じられるものである。しかしながら、実質的に同様な方法で、実質的に同様な機能を実施して、同様なまたは実質的に同様な結果を得る、他の範囲および限定が、本明細書および特許請求の範囲により規定されたように、本発明の範囲内であることが意図されることが理解される。
【0034】
【発明の実施の形態】
本発明を下記の実施例により説明する。これらの実施例は例証的な目的で提供され、発明を限定すると解釈されるべきではない。
【0035】
実施例1
図1に示したものと同様な残油の水素化転換プロセスにおいて、新しいまたは再生されたニッケル−モリブデン触媒を、室温および常圧で、ロックホッパーを経て、図2に示したものと同様な触媒添加容器に供給する。次いで容器から、一方のラインを用いて空気と湿気とを排出し、容器を、他方のラインを用いて窒素でパージする。次いで、高圧の冷たい分離器から、HSに富む水素パージガスを供給することにより、触媒添加容器内の触媒を予備硫化する。この実施例では、流が130°Fおよび2760PSIAで得られ、2.2容量%のHSと75容量%のHとを、大部分が軽質炭化水素である残りと共に含有する。触媒はアルミナ押出物上のニッケル−モリブデンであり、Criterion HDS−2443B触媒と呼ばれる。
【0036】
流れ(flow)を処理ガスにより130°Fおよび大気圧で開始し、一方、流(stream)を約300〜750°Fの望ましい予備硫化温度まで加熱する。触媒添加容器を、下流の中圧アミン吸収器の圧力までゆっくり加圧する。次いで流れを、HSの除去のためのアミン吸収器の方に、次いで水素の回収の方に開始する。100ポンドの新しいニッケル−モリブデン触媒に対して、約12ポンドの硫黄が触媒床を通過して、触媒の完全な予備硫化を達成するまで、HSとHとに富む処理ガスの流れを続ける。次いで流れを止める。
【0037】
次いで、重油輸送油を油と共に触媒添加容器に満たし、油を触媒を通って流通させ、水素化転換反応器への移動のために、触媒を500〜650°Fの範囲まで加熱する。次いで触媒添加容器を、反応器の条件まで、水素化転換プロセスからの水素で加圧し、触媒を水素化転換反応器に運ぶ。この方法を、典型的には12時間以内で行うことができる。この間、残油の水素化転換プロセスは、望ましい生成物の収率と質とをもたらす温度と圧力で、連続的な方法で作動する。
【0038】
実施例2
図1に示したものと同様な残油の水素化転換プロセスにおいて、新しいまたは再生されたニッケル−モリブデン触媒を、室温および常圧で、ロックホッパーを経て、図2に示したものと同様な触媒添加容器に供給する。次いで容器から、一本のラインを用いて空気と湿気とを排出し、容器を、異なるラインを用いて窒素でパージする。
【0039】
次いで、温かい高圧の分離器(図1に(56)と例示される)を出る、HSに富む蒸気流の一部を供給することにより、触媒添加容器内の触媒を予備硫化する。流が約525°Fおよび2800PSIAで得られ、3容量%のHSと75容量%のHとを、大部分が軽質炭化水素である残りと共に含有する。触媒はアルミナ押出物上のニッケル−モリブデンであり、Grace GR−25触媒という名称を有する。流れを触媒添加容器の方へ開始し、この容器を下流の中圧アミン吸収器の圧力まで加圧する。
【0040】
次いで流れを、触媒添加容器を通って、HSの除去のための中圧アミン吸収器の方へ、次いで水素の回収の方へ定着させる。触媒を徐々に加熱し、525°Fの温度および約400PSIGの圧力で、HSを含有する高圧の蒸気流で予備硫化する。100ポンドの新しいニッケル−モリブデン触媒に対して、約12ポンドの硫黄が触媒床を通過して、完全な触媒の予備硫化を達成するまで処理を続ける。これらの条件で、約8ポンドの硫黄が触媒上に保持される。
【0041】
次いで、温かい高圧の分離器からの液体流の一部を、(前述のように)予備硫化に使用される蒸気流と混合する。次いで組み合わせられた流を、触媒を横切って15分〜10時間供給し、触媒を調整する。触媒は、組み合わせられた流に晒された後、約1〜5重量%のカーボンを含有する。
【0042】
次いで流れを、下流の装置に向けて終わらせ、触媒添加容器を液体炭化水素で満たし、水素化転換プロセスからの水素(図1に(60)と例示される)を用いて、反応器の圧力の近くまで加圧する。次いで触媒を、高圧の温かい分離器から得られる液体炭化水素を用いて水素化転換反応器に運ぶ。
【0043】
ここに記載された発明は、具体的な実施態様と応用の点で開示されてきた。しかしながら、これらの詳細は、限定するためのものではなく、他の実施態様は、この教示を考慮して、当業者に自明であるであろう。従って、図面および記述は、本発明の原理の例証となること、並びに図面および記述がその範囲を限定すると解釈するべきではないことを理解すべきである。
【図面の簡単な説明】
【図1】 残油の水素化転換プロセスの概要のフローシートである。
【図2】 触媒予備調整システムの概要のフローシートである。
【図3】 触媒の予備硫化の効果を示す、脱硫率対時間のグラフである。
【符号の説明】
(20)…触媒供給ホッパー
(22)…触媒添加容器
(26)…中圧アミン吸収器
(50)(52)…反応器
(56)…温かい高圧の分離器
(58)…冷たい高圧の分離器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved process for presulfiding a metal oxide-supported catalyst used in hydroprocessing and / or hydrocracking (hydrocracking) of hydrocarbon feedstock, and the presulfided catalyst obtained thereby The present invention relates to compositions and hydrotreating and / or hydrocracking processes using such presulfided metal oxide catalysts. The present invention further relates to an improved method of integrating catalyst presulfidation and residual hydroconversion processes.
[0002]
[Prior art]
A hydroprocessing catalyst can be defined as any catalyst composition that can be used to catalyze the hydrogenation of a hydrocarbon feedstock to increase its hydrogen content and / or remove heteroatom contaminants. . A hydrocracking catalyst is any catalyst composition that may be used to catalyze the addition of hydrogen to a molecule along with a reaction that breaks up large or complex hydrocarbon molecules to yield smaller, lower molecular weight molecules. It may be defined as a thing. The residual oil hydroconversion process is a method of converting petroleum atmospheric pressure or vacuum residue under high temperature and high pressure conditions in the presence of hydrogen and hydrotreating and / or hydrocracking catalyst, It can be defined as the process of converting a feedstock to a lower molecular weight product with reduced levels of contaminants (such as sulfur and nitrogen).
[0003]
The catalyst compositions used in the residual oil hydroconversion process are well known to those skilled in the art and some are commercially available. Suitable catalysts include catalysts containing nickel, cobalt, tungsten, molybdenum or combinations thereof supported on a porous support such as silica, alumina, titania or combinations thereof.
[0004]
For maximum effectiveness, these metal oxide catalysts are at least partially converted to metal sulfides. The metal oxide catalyst can be sulfided by contacting it with hydrogen sulfide or a sulfur-containing oil or feedstock at elevated temperatures in the reactor.
[0005]
The catalyst may also be provided to end users who already have incorporated sulfur. However, these ex-situ methods for presulfiding the metal oxide supported catalyst result in excessive sulfur stripping when the hydroprocessing reactor is started in the presence of a hydrocarbon feedstock. I have received it. As a result of sulfur stripping, a decrease in catalytic activity is observed. Thus, it is well known to those skilled in the art that the activity and maintenance of the metal oxide catalyst described above can presulfurize the catalyst during the production process or during the start of an in situ hydroconversion process. By doing so, it is substantially improved.
[0006]
The hydroconversion process can operate in a fixed catalyst bed mode in which a batch of catalyst is placed in the hydroconversion reactor before the process is stopped to remove and replace the catalyst. Typically, it is used for a period of 3 to 24 months. In this fixed bed system, the catalyst can be presulfided during start up of the apparatus to achieve the maximum level of catalyst performance (hydrogenation, desulfurization, denitrification, conversion, etc.).
[0007]
In the hydrotreating / hydrocracking process, this process adds and removes the catalyst on a regular basis (ie, daily, weekly), while the process operates at normal temperature and pressure conditions, Is typically added as prepared (ie, containing metal oxide). Processes that operate in this manner include boiling bed hydrocrackers (such as the H Oil TM process), moving bed hydrotreaters, in-service catalyst replacement reactors (OCR), and fixed bed residue hydrotreaters. Including the protective reactor used in
[0008]
In an ebullated bed application using a first generation low activity catalyst, a minimum benefit has been identified for the presulfidation of the catalyst added daily. These catalysts achieve some presulfidation when added to the hydroconversion reactor. However, in such operations using new second and third generation catalysts (high desulfurization, low sediment), the presulfidation of the added catalyst results in a significant increase in desulfurization, denitrification and Conradson carbon removal. Can be achieved.
[0009]
The benefits of catalyst presulfidation are generally well known in the prior art. For example, the use of a high boiling oil such as vacuum gas oil and a hydrocarbon solvent that aids in the incorporation of sulfur into the catalyst is taught in US Pat. Further, Patent Document 2 issued on July 23, 1985 by Berrebi discloses a method for presulfiding a hydrotreating catalyst with an organic polysulfide.
[0010]
Patent Document 3 issued on December 4, 1979 by Herrington et al. Discloses a catalyst presulfiding method in which the catalyst is treated with elemental sulfur. Hydrogen is then used as a reducing agent that converts elemental sulfur into hydrogen sulfide in situ. U.S. Patent No. 6,053,028 issued May 16, 1978 by Kittrell et al. Discloses pretreating a catalyst with elemental sulfur in the presence of hydrogen. All of the above patents are incorporated by reference into this application.
[0011]
[Patent Document 1]
U.S. Pat. No. 4,943,547.
[0012]
[Patent Document 2]
U.S. Pat. No. 4,530,917.
[0013]
[Patent Document 3]
U.S. Pat. No. 4,117,136.
[0014]
[Patent Document 4]
U.S. Pat. No. 4,089,930.
[0015]
[Problems to be solved by the invention]
The present invention describes an improved method for achieving catalyst presulfidation and preconditioning during normal factory operation, but prior to catalyst addition to the catalytic reactor. The present invention can be achieved with minimal changes in the apparatus in most situations. This provides the benefit of realizing basic applications and improving existing equipment. Further, the present invention contemplates residual oil hydroprocessing or hydrocracking catalyst preconditioning without interrupting the continuous operation of the residual oil hydroconversion process. Importantly, the residue hydroconversion process of the present invention can operate continuously for several years while maintaining high catalytic activity.
[0016]
The object of the present invention is to presulfide the catalyst in a way that maximizes the activity of the catalyst when the hydrotreating and / or hydrocracking catalyst is added to the hydrotreating and / or hydrocracking reactor. That is.
[0017]
A further object of the present invention is to prepare a new or regenerated, safe and stable presulfided hydrotreating and / or hydrocracking catalyst.
[0018]
A further object of the present invention is to provide a pre-sulfided hydrotreating and / or hydrocracking that provides a highly active hydrotreating and / or hydrocracking catalyst upon in situ activation. It is to provide a catalyst.
[0019]
Another object of the present invention is to provide a pre-sulfided hydrotreating and / or hydrocracking catalyst that can quickly reach severe hydrocracking conditions without rapidly losing activity. That is.
[0020]
Another object of the present invention is to precondition the residual oil hydrotreating or hydrocracking catalyst without interrupting the continuous operation of the residual oil hydroconversion process.
[0021]
[Means for Solving the Problems]
In the present invention, an improved process for presulfiding and preconditioning a residual oil hydrotreating or hydrocracking catalyst is described as an integrated part of the hydroconversion process. In addition, the process allows for a catalyst that is added intermittently or continuously during operation without interrupting the hydroconversion process. This method is used to condition, activate or presulfide the catalyst before adding fresh or regenerated catalyst to the hydroconversion reactor using the product stream from the hydroconversion process. Is done.
[0022]
In particular, the present invention provides a method for improving the hydrotreating and / or hydrocracking catalyst activity and activity used in a residual oil hydroconversion process, wherein the method comprises:
(A) subjecting the metal oxide catalyst in a hydroconversion process to a stream rich in H 2 S and H 2 to at least partially convert the metal oxide catalyst to a metal sulfide; and (b And) adjusting the catalyst by passing it through a liquid hydrocarbon stream, the process being carried out without interrupting the continuous operation of the residual oil hydroconversion process.
[0023]
More specifically, the present invention provides a method for improving the activity and maintenance of the hydrotreating and / or hydrocracking catalyst used in a residual oil hydroconversion process comprising:
(A) A metal oxide catalyst in a hydroconversion process, in a H 2 S and H 2 rich stream, at a temperature of about 300-750 ° F., a pressure of atmospheric pressure to 3000 PSIG, and sulfur of the treated catalyst. by exposure in an amount sufficient H 2 S to increase the content to 5 to 15 wt%, be pre-sulfurized catalyst,
(B) A liquid hydrocarbon stream, such as atmospheric or vacuum gas oil, and a stream rich in H 2 S and H 2 to deposit low levels of carbon (1-5 wt%) on the presulfided catalyst. Through a catalyst at a temperature of about 500 to 750 ° F. and a reactor pressure of atmospheric pressure to 3000 PSIG for 15 minutes to 10 hours, and the continuation of the residual oil hydroconversion process. A method is described in which the above steps are performed without interrupting general operations.
[0024]
FIG. 2 is a flow sheet outlining the catalyst preconditioning system. The new or regenerated catalyst used in this process is added from the catalyst feed hopper (20) to the catalyst addition vessel (22) in the metal oxide state as received. Suitable catalysts for the residual oil hydroconversion process include catalysts containing nickel, cobalt, tungsten, molybdenum or combinations thereof supported on a porous support such as silica, alumina, titania or combinations thereof. . The catalyst addition vessel (22) is then evacuated and / or purged with nitrogen to remove oxygen and moisture from the vessel.
[0025]
The catalyst addition vessel (22) containing the new catalyst is then pressurized to the pressure of the downstream intermediate pressure amine absorber (26) with a gas containing hydrogen and hydrogen sulfide, and the catalyst is presulfided. This H 2 S rich hydrogen stream (10) may come from a number of sources obtained within the flow sheet of the residual oil hydroconversion process. These sources can be (i) a high pressure cold separator (58), (ii) a warm high pressure separator (56), or (iii) any H 2 and H 2 S enriched in this process. Including flow. These sources are shown in FIG. A H 2 / H 2 S rich stream (10) is typically obtained at a pressure of 400-3000 PSIG and a temperature of 100-800 ° F.
[0026]
The presulfidation of the catalyst is preferably performed at a temperature of about 300-750 ° F., increasing the pressure from atmospheric pressure to a pressure close to that of the resulting stream (ie, 400-3000 PSIG). Furthermore, the H 2 S concentration in the supply gas is preferably 1 to 10% by volume. Furthermore, to ensure complete presulfidation, it is desirable to treat the catalyst with an amount of H 2 S that is at least 50% greater than that required to convert the metal oxide to the metal sulfide state.
[0027]
To completely sulfidize the catalyst using a typical commercial hydroconversion catalyst such as Grace GR-25, Criterion HDS-2443B or AKZO Nobel KF-1303, about 8-15 wt% sulfur (liquid flow In the form of H 2 S or sulfur). The flow is then passed through a catalyst added to the hydrocracking reactor, through a cooler and a vapor / liquid separator, towards an amine absorber (26) for removal of H 2 S, and then Begins with hydrogen recovery.
[0028]
In order to further enhance the activity and maintenance of the catalyst, the catalyst is then exposed to a hydrocarbon stream. The distillate hydrocarbon stream (14) is fed from a warm high pressure separator (56) or using atmospheric pressure and / or vacuum gas oil. The same stream (14) is circulated across the catalyst together with the stream (10) rich in H 2 and H 2 S in the catalyst addition vessel (22). The temperature of the hydrocarbon stream is about 400-800 ° F., typically 500-750 ° F., from atmospheric pressure to the pressure of the resulting stream (400-3000 PSIG).
[0029]
This step completes the presulfiding and preconditioning process of the present invention. At this point, a reasonably low level of carbon (coke) (typically 1-5% by weight) is deposited on the catalyst. This coke layer protects the catalyst from surface temperature heating when it is first added to the environment of a high severity (typically 750-850 ° F.) residual hydrocracking reactor. To do.
[0030]
Once the catalyst is presulfided and preconditioned in the manner described above, the catalyst is ready to be added to the residual hydroconversion process. The catalyst addition vessel (22) is filled with liquid hydrocarbons from stream (14) and pressurized to the reactor pressure with hydrogen. The catalyst is then carried along with the liquid hydrocarbons to one of the reactors 50, 52 and added to the reactor for treatment of the residual hydrocarbons. Reactors (50) and (52) are shown in both FIG. 2 and FIG. 1, which is a system diagram of the entire residual oil hydroconversion process.
[0031]
The remarkable effect of the presulfidation of the residual oil hydroconversion catalyst can be seen in FIG. This figure shows data for a commercial residual hydroconversion plant that uses a 100% presulfided catalyst initially and operates without the addition or removal of an operating catalyst. The initial actual catalyst desulfurization performance is superior to that predicted from correlations based on small scale tests. It is important to note that this model prediction is based on a 100% presulfided catalyst. Desulfurization performance decreased as the catalyst aged by supplying a vacuum residue feed. The model prediction is 4-5 wt% lower HDS than the actual data, but follows the decreasing trend of HDS. After 40 days, in-service catalyst addition (with non-presulfided catalyst) and removal were done on a regular basis.
[0032]
However, since the catalyst was not presulfided, the desulfurization activity did not recover to the activity expected from the correlation. The application of the present invention is expected to restore the desulfurization activity of the catalyst to the expected level.
[0033]
It is believed that the scope and limitations provided in the specification and claims particularly point out and distinctly claim the invention. However, other ranges and limitations that perform substantially similar functions in substantially similar ways to achieve similar or substantially similar results are defined by this specification and the claims. As such, it is understood that it is intended to be within the scope of the present invention.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
The invention is illustrated by the following examples. These examples are provided for illustrative purposes and should not be construed as limiting the invention.
[0035]
Example 1
In a residual oil hydroconversion process similar to that shown in FIG. 1, a new or regenerated nickel-molybdenum catalyst is passed through a lock hopper at room temperature and atmospheric pressure, and the same catalyst as shown in FIG. Feed into the addition vessel. The vessel is then evacuated of air and moisture using one line and the vessel is purged with nitrogen using the other line. Next, the catalyst in the catalyst addition vessel is presulfided by supplying a hydrogen purge gas rich in H 2 S from a high-pressure cold separator. In this example, a stream is obtained at 130 ° F. and 2760 PSIA and contains 2.2% by volume H 2 S and 75% by volume H 2 with the remainder being mostly light hydrocarbons. The catalyst is nickel-molybdenum on an alumina extrudate and is referred to as Criterion HDS-2443B catalyst.
[0036]
The flow is started with process gas at 130 ° F. and atmospheric pressure, while the stream is heated to the desired presulfidation temperature of about 300-750 ° F. Slowly pressurize the catalyst addition vessel to the pressure of the downstream medium pressure amine absorber. The flow is then started towards the amine absorber for the removal of H 2 S and then towards the recovery of hydrogen. For a 100 pound fresh nickel-molybdenum catalyst, the H 2 S and H 2 rich process gas stream is flowed until about 12 pounds of sulfur has passed through the catalyst bed to achieve complete presulfidation of the catalyst. to continue. The flow is then stopped.
[0037]
The heavy oil transport oil is then filled with the oil into the catalyst addition vessel, the oil is circulated through the catalyst, and the catalyst is heated to a range of 500-650 ° F. for transfer to the hydroconversion reactor. The catalyst addition vessel is then pressurized with hydrogen from the hydroconversion process to the reactor conditions and the catalyst is conveyed to the hydroconversion reactor. This process can typically be performed within 12 hours. During this time, the residue hydroconversion process operates in a continuous manner at temperatures and pressures that provide the desired product yield and quality.
[0038]
Example 2
In a residual oil hydroconversion process similar to that shown in FIG. 1, a new or regenerated nickel-molybdenum catalyst is passed through a lock hopper at room temperature and atmospheric pressure, and the same catalyst as shown in FIG. Feed into the addition vessel. The vessel is then evacuated with air and moisture using a single line, and the vessel is purged with nitrogen using a different line.
[0039]
The catalyst in the catalyst addition vessel is then presulfided by feeding a portion of the H 2 S rich vapor stream exiting the warm high pressure separator (exemplified as (56) in FIG. 1). A stream is obtained at about 525 ° F. and 2800 PSIA and contains 3% by volume H 2 S and 75% by volume H 2 with the remainder being mostly light hydrocarbons. The catalyst is nickel-molybdenum on an alumina extrudate and has the name Grace GR-25 catalyst. The flow is started towards the catalyst addition vessel and this vessel is pressurized to the pressure of the downstream medium pressure amine absorber.
[0040]
The stream is then settled through a catalyst addition vessel towards a medium pressure amine absorber for H 2 S removal and then towards hydrogen recovery. The catalyst is gradually heated and presulfided with a high pressure steam stream containing H 2 S at a temperature of 525 ° F. and a pressure of about 400 PSIG. For 100 pounds of new nickel-molybdenum catalyst, processing continues until about 12 pounds of sulfur has passed through the catalyst bed to achieve complete catalyst presulfidation. Under these conditions, about 8 pounds of sulfur is retained on the catalyst.
[0041]
A portion of the liquid stream from the warm high pressure separator is then mixed with the vapor stream used for presulfidation (as described above). The combined stream is then fed across the catalyst for 15 minutes to 10 hours to condition the catalyst. The catalyst contains about 1-5 wt% carbon after being exposed to the combined stream.
[0042]
The flow is then terminated towards the downstream equipment, the catalyst addition vessel is filled with liquid hydrocarbons, and hydrogen from the hydroconversion process (exemplified as (60) in FIG. 1) is used to pressure the reactor. Pressurize close to. The catalyst is then conveyed to the hydroconversion reactor using liquid hydrocarbons obtained from a high pressure warm separator.
[0043]
The invention described herein has been disclosed in terms of specific embodiments and applications. However, these details are not intended to be limiting and other embodiments will be apparent to those skilled in the art in view of this teaching. Accordingly, it is to be understood that the drawings and descriptions are illustrative of the principles of the present invention and that the drawings and descriptions should not be construed as limiting the scope thereof.
[Brief description of the drawings]
FIG. 1 is a flow sheet outlining a residual oil hydroconversion process.
FIG. 2 is a flow sheet outlining the catalyst preconditioning system.
FIG. 3 is a graph of desulfurization rate versus time showing the effect of catalyst presulfidation.
[Explanation of symbols]
(20)… Catalyst supply hopper
(22)… Catalyst addition container
(26)… Medium pressure amine absorber
(50) (52) ... Reactor
(56)… Warm high pressure separator
(58)… Cold high pressure separator

Claims (12)

残油の水素化転換プロセスで使用される水素化処理および/または水素化分解触媒の活性と活性維持とを向上させるための方法において、該方法が、
(a)金属酸化物触媒を、水素化転換プロセスから来るHSとHとに富む流(stream)に晒して、該金属酸化物触媒を少なくとも部分的に金属硫化物に転換する工程、および
(b)該触媒を液体炭化水素流に通過させることにより調整する (conditioning)工程から成り、残油の水素化転換プロセスの操作を中断することなく、上記工程(a)および(b)を行う方法。
In a method for improving the activity and activity maintenance of a hydroprocessing and / or hydrocracking catalyst used in a residual oil hydroconversion process, the method comprises:
(A) subjecting the metal oxide catalyst to a stream rich in H 2 S and H 2 coming from a hydroconversion process to at least partially convert the metal oxide catalyst to a metal sulfide; And (b) a step of conditioning the catalyst by passing it through a liquid hydrocarbon stream, wherein the steps (a) and (b) are carried out without interrupting the operation of the residual oil hydroconversion process. How to do.
該プロセスが、移動床残油水素化転換プロセスまたは使用される運転中触媒置換(OCR)である、請求項1記載の方法。  The process of claim 1, wherein the process is a moving bed residue hydroconversion process or an in-operation catalyst replacement (OCR) used. 供給原料が、石油減圧軽油、脱アスファルト油、重コーカー軽油、FCCスラリー油または石炭に由来する軽油である、請求項1記載の方法。  The process of claim 1, wherein the feedstock is petroleum vacuum gas oil, deasphalted oil, heavy coker gas oil, FCC slurry oil or gas oil derived from coal. 該プロセスが、1つ、2つまたは3つの反応器段階を有する沸騰床水素化転換プロセスである、請求項1記載の方法。  The process of claim 1, wherein the process is an ebullated bed hydroconversion process having one, two or three reactor stages. 2〜10重量%の硫黄が触媒に付着(deposit)されるように触媒が予備硫化される、請求項1記載の方法。  The process of claim 1 wherein the catalyst is presulfided such that 2-10 wt% sulfur is deposited on the catalyst. 調整工程(b)からの液体炭化水素流が、大気圧軽油と、減圧軽油と、プロセス内で得られる(available)液体炭化水素流とから成る群から選ばれる、請求項1記載の方法。  The method of claim 1, wherein the liquid hydrocarbon stream from conditioning step (b) is selected from the group consisting of atmospheric gas oil, vacuum gas oil, and liquid hydrocarbon stream available in the process. 予備硫化工程(a)のための蒸気流が、60〜90%のHと1〜5%のHSとを含有する、HSとHとに富む流である、請求項6記載の方法。The vapor stream for the presulfidation step (a) is a H 2 S and H 2 rich stream containing 60-90% H 2 and 1-5% H 2 S. The method described. 調整工程(b)が、触媒に付着された1〜10重量%のコークスを生じる、請求項1記載の方法。  The process of claim 1 wherein the conditioning step (b) results in 1 to 10 wt% coke deposited on the catalyst. 調整工程(b)が、触媒に付着された1〜5重量%のコークスを生じる、請求項1記載の方法。  The process of claim 1 wherein the conditioning step (b) results in 1-5 wt% coke attached to the catalyst. 調整工程(b)が、00〜800°F(204〜427℃)の温度で行われる、請求項1記載の方法。Adjustment step (b), 4 00-800 at a temperature of ° F (204~427 ℃), The method of claim 1, wherein. 調整工程(b)が、大気圧〜3000PSIG(20.6MPa)の反応器圧力で行われる、請求項1記載の方法。The process according to claim 1, wherein the conditioning step (b) is carried out at a reactor pressure of from atmospheric to 3000 PSIG (20.6 MPa) . 調整工程(b)が、大気圧〜3000PSIG(20.6MPa)の反応器圧力で15分〜10時間行われる、請求項10記載の方法。The method according to claim 10, wherein the adjusting step (b) is carried out at a reactor pressure of from atmospheric pressure to 3000 PSIG (20.6 MPa) for 15 minutes to 10 hours.
JP2002503445A 2000-06-19 2000-06-19 Presulfidation and preconditioning method of residual oil hydroconversion catalyst Expired - Fee Related JP4898069B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2000/005629 WO2001097971A1 (en) 2000-06-19 2000-06-19 Method for presulfiding and preconditioning of residuum hydroconversion catalyst

Publications (2)

Publication Number Publication Date
JP2003535689A JP2003535689A (en) 2003-12-02
JP4898069B2 true JP4898069B2 (en) 2012-03-14

Family

ID=8163993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002503445A Expired - Fee Related JP4898069B2 (en) 2000-06-19 2000-06-19 Presulfidation and preconditioning method of residual oil hydroconversion catalyst

Country Status (4)

Country Link
EP (1) EP1299192A1 (en)
JP (1) JP4898069B2 (en)
CA (1) CA2412363C (en)
WO (1) WO2001097971A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257252C (en) * 2004-07-30 2006-05-24 神华集团有限责任公司 Method for directly liquefying coal
US9523048B2 (en) * 2009-07-24 2016-12-20 Lummus Technology Inc. Pre-sulfiding and pre-conditioning of residuum hydroconversion catalysts for ebullated-bed hydroconversion processes
US8883036B2 (en) * 2013-03-13 2014-11-11 Chevron U.S.A. Inc. Hydrogen sulfide stream for catalyst sulfidation from refinery rich amines
MY185667A (en) 2015-11-06 2021-05-28 Uop Llc Use of c4 absorber overhead for stripping aldehydes
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10655074B2 (en) 2017-02-12 2020-05-19 Mag{hacek over (e)}m{hacek over (a)} Technology LLC Multi-stage process and device for reducing environmental contaminates in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
KR102085613B1 (en) * 2017-12-14 2020-03-06 주식회사 포스코 A regeneration method of metal sulfurized catalyst

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176390A (en) * 1983-03-15 1984-10-05 コンパニ−,フランセ−ズ,ド,ラフイナ−ジユ Hydrogenation for hydrocarbon-charged matter and catalyst therefor
JPH02211256A (en) * 1988-09-13 1990-08-22 Cri Ventures Inc Pre-sulfurization process of hydrogen treating catalyst
JPH08325580A (en) * 1995-03-16 1996-12-10 Inst Fr Petrole Method for perfectly and catalytically hydroforming heavy petroleum feedstock
JPH08332391A (en) * 1995-06-08 1996-12-17 Sumitomo Metal Mining Co Ltd Hydrogenation treatment catalyst of hydrocarbon oil, and its activation method
WO1997048488A1 (en) * 1996-06-17 1997-12-24 Shell Internationale Research Maatschappij B.V. A process for presulphiding hydrocarbon conversion catalysts
JPH10230163A (en) * 1996-12-18 1998-09-02 Sekiyu Sangyo Kasseika Center Hydrogenation processing catalyst of heavy hydrocarbon oil and hydrogenation treatment method using the same
JPH10235207A (en) * 1996-11-13 1998-09-08 Eurecat Europ De Retraitement De Catalyseurs Preliminary treatment of hydrocarbon treating catalyst outside the job side
JPH11104499A (en) * 1997-08-11 1999-04-20 Eurecat Europ De Retraitement De Catalyseurs Protection of catalyst by deposit of protective layer
JP2000117121A (en) * 1998-10-12 2000-04-25 Eurecat Europ De Retraitement De Catalyseurs Ex-situ presulfurization in the presence of hydrocarbon molecule

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213850A (en) * 1978-06-29 1980-07-22 Union Oil Company Of California Hydrodesulfurization of oil feedstock with presulfided catalyst
US5155073A (en) * 1991-04-24 1992-10-13 Coastal Catalyst Technology, Inc. Demetallization of hydrocarbon conversion catalysts
US5215954A (en) * 1991-07-30 1993-06-01 Cri International, Inc. Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176390A (en) * 1983-03-15 1984-10-05 コンパニ−,フランセ−ズ,ド,ラフイナ−ジユ Hydrogenation for hydrocarbon-charged matter and catalyst therefor
JPH02211256A (en) * 1988-09-13 1990-08-22 Cri Ventures Inc Pre-sulfurization process of hydrogen treating catalyst
JPH08325580A (en) * 1995-03-16 1996-12-10 Inst Fr Petrole Method for perfectly and catalytically hydroforming heavy petroleum feedstock
JPH08332391A (en) * 1995-06-08 1996-12-17 Sumitomo Metal Mining Co Ltd Hydrogenation treatment catalyst of hydrocarbon oil, and its activation method
WO1997048488A1 (en) * 1996-06-17 1997-12-24 Shell Internationale Research Maatschappij B.V. A process for presulphiding hydrocarbon conversion catalysts
JPH10235207A (en) * 1996-11-13 1998-09-08 Eurecat Europ De Retraitement De Catalyseurs Preliminary treatment of hydrocarbon treating catalyst outside the job side
JPH10230163A (en) * 1996-12-18 1998-09-02 Sekiyu Sangyo Kasseika Center Hydrogenation processing catalyst of heavy hydrocarbon oil and hydrogenation treatment method using the same
JPH11104499A (en) * 1997-08-11 1999-04-20 Eurecat Europ De Retraitement De Catalyseurs Protection of catalyst by deposit of protective layer
JP2000117121A (en) * 1998-10-12 2000-04-25 Eurecat Europ De Retraitement De Catalyseurs Ex-situ presulfurization in the presence of hydrocarbon molecule

Also Published As

Publication number Publication date
EP1299192A1 (en) 2003-04-09
JP2003535689A (en) 2003-12-02
WO2001097971A1 (en) 2001-12-27
CA2412363A1 (en) 2001-12-27
CA2412363C (en) 2010-03-30

Similar Documents

Publication Publication Date Title
US6291391B1 (en) Method for presulfiding and preconditioning of residuum hydroconversion catalyst
CA1183116A (en) Catalyst regeneration process including metal contaminants removal
US5925238A (en) Catalytic multi-stage hydrodesulfurization of metals-containing petroleum residua with cascading of rejuvenated catalyst
US6127299A (en) Process for preparing a hydroprocessing catalyst from waste hydroprocessing catalyst
KR101429830B1 (en) Pre-sulfiding and pre-conditioning of residuum hydroconversion catalysts for ebullated-bed hydroconversion processes
US4795726A (en) Method for the regeneration of spent alumina-based catalysts
CN107866285B (en) Regeneration method of isodewaxing catalyst
JPH0598270A (en) Catalytic hydrogenation of heavy hydrocarbon oil
US5868921A (en) Single stage, stacked bed hydrotreating process utilizing a noble metal catalyst in the upstream bed
JPH0753967A (en) Hydrotreatment of heavy oil
JPH0115559B2 (en)
RU2459858C2 (en) Method for catalytic hydrofining of silicon-containing hydrocarbon material
JPH1192772A (en) Hydrodesulfurization process for catalytic cracking gasoline, and gasoline
KR101230809B1 (en) Process for hydrorefining heavy hydrocarbon oil
CN101619241B (en) Method for hydrofining paraffin wax
JP4898069B2 (en) Presulfidation and preconditioning method of residual oil hydroconversion catalyst
CA2081718A1 (en) Process for regenerating hydrocarbon oil hydrogenation catalysts
JPH05192578A (en) Hydrogenation method using catalyst having specific pore distribution
CN113874476B (en) Catalyst for sulfur reduction reactivation hydrotreatment
WO1999061557A1 (en) Hydrotreating process for residual oil
JP3054966B2 (en) Hydrodenitrogenation method
AU718734B2 (en) A process for presulphiding hydrocarbon conversion catalysts
US4202865A (en) On-line regeneration of hydrodesulfurization catalyst
WO1991007227A1 (en) Catalyst regeneration process
US20020139716A1 (en) Catalyst activation method for selective cat naphtha hydrodesulfurization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101203

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110203

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees