JP4896695B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP4896695B2
JP4896695B2 JP2006339596A JP2006339596A JP4896695B2 JP 4896695 B2 JP4896695 B2 JP 4896695B2 JP 2006339596 A JP2006339596 A JP 2006339596A JP 2006339596 A JP2006339596 A JP 2006339596A JP 4896695 B2 JP4896695 B2 JP 4896695B2
Authority
JP
Japan
Prior art keywords
light
infrared
region
heated
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006339596A
Other languages
Japanese (ja)
Other versions
JP2008153046A (en
Inventor
政廣 横野
和一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006339596A priority Critical patent/JP4896695B2/en
Publication of JP2008153046A publication Critical patent/JP2008153046A/en
Application granted granted Critical
Publication of JP4896695B2 publication Critical patent/JP4896695B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1245Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements
    • H05B6/1254Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements using conductive pieces to direct the induced magnetic field
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Description

本発明は、被加熱物を誘導加熱するとともに赤外線センサにより被加熱物の温度を制御する誘導加熱調理器に関する。   The present invention relates to an induction heating cooker that induction-heats an object to be heated and controls the temperature of the object to be heated by an infrared sensor.

従来の誘導加熱調理器は、加熱コイルの中央に赤外線センサを配置し、赤外線センサからの出力に応じて制御手段によりインバータ回路を制御して加熱コイルの出力を制御している(例えば、特許文献1参照。)。   In the conventional induction heating cooker, an infrared sensor is arranged in the center of the heating coil, and the output of the heating coil is controlled by controlling the inverter circuit by the control means in accordance with the output from the infrared sensor (for example, Patent Documents). 1).

特開2005−38660号公報JP 2005-38660 A

しかしながら、上記構成の誘導加熱調理器は、空の(被調理物が収容されていない)被加熱物を加熱すると、最も磁束密度が高く加熱時の発熱が大きい加熱コイルの外周と内周の間の中間部が急激に温度上昇するため、熱伝導が悪く熱容量の低い薄手のステンレス鍋等を被加熱物として使用すると、鍋底が赤熱して鍋が変形する場合があった。   However, the induction heating cooker having the above-described configuration, when heating an object to be heated (which does not contain an object to be cooked), has the highest magnetic flux density and generates a large amount of heat during heating. As the temperature of the middle part of the pot suddenly rises, when a thin stainless steel pan or the like with poor heat conduction and low heat capacity is used as the object to be heated, the pan bottom may become red hot and the pan may be deformed.

赤外線センサを加熱コイル巻線の中間部あるいは加熱コイルの内周に近づけて配置し、被加熱物をその上に載置すれば上述した課題は解決できるが、この場合、赤外線センサを加熱コイルの中心からずらして配置することになる。このように、赤外線センサを加熱コイルの中心からずらして配置すると、赤外線センサの数が少ない場合には、被加熱物は赤外線センサの上方に位置する天板に必ず載置されるとは限らず、ユーザが間違って赤外線センサへの赤外線入射領域を塞がないように被加熱物を載置すると、赤外線センサで被加熱物の温度を検知できない。また、赤外線センサを加熱コイルの中間部や加熱コイル内周近傍等加熱コイル中央からずらした位置に配置すると、加熱コイルの中央部に配置した場合に比べ、例えば周囲の蛍光灯からの光も赤外線センサに入射されやすく、赤外線センサが誤動作を起こして被加熱物の温度を的確に検知できないという問題がある。   If the infrared sensor is placed close to the middle part of the heating coil winding or the inner periphery of the heating coil and the object to be heated is placed on the infrared sensor, the above-mentioned problem can be solved. It will be shifted from the center. As described above, when the infrared sensor is shifted from the center of the heating coil and the number of infrared sensors is small, the object to be heated is not necessarily placed on the top plate located above the infrared sensor. If the object to be heated is placed so as not to block the infrared incident area to the infrared sensor by mistake, the temperature of the object to be heated cannot be detected by the infrared sensor. In addition, when the infrared sensor is disposed at a position shifted from the center of the heating coil, such as in the middle of the heating coil or in the vicinity of the inner periphery of the heating coil, for example, light from the surrounding fluorescent lamp is also infrared compared with the case where it is disposed at the center of the heating coil. There is a problem in that it is likely to be incident on the sensor, and the temperature of the object to be heated cannot be accurately detected due to the malfunction of the infrared sensor.

本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、赤外線センサにより被加熱物の温度を的確に検知できる誘導加熱調理器を提供することを目的としている。   This invention is made | formed in view of such a problem which a prior art has, and it aims at providing the induction heating cooking appliance which can detect the temperature of a to-be-heated object accurately with an infrared sensor.

上記目的を達成するために、本発明のうちで請求項1に記載の発明は、被加熱物を載置して加熱するための加熱部を有し光を透過する天板と、前記加熱部に対向して前記天板の下方に設けられ磁界を発生して被加熱物を誘導加熱する加熱コイルと、前記天板の下方に設けられ赤外線を検知する赤外線センサと、被加熱物から放射される赤外線を前記赤外線センサに導く導光筒と、前記赤外線センサからの出力信号を被加熱物の温度に換算する温度検知手段と、前記温度検知手段の検知結果に基づいて前記加熱コイルの出力を制御する制御手段と、天板の下方に設けた発光体と、を備え、被加熱物から放射される赤外線を前記導光筒に導くための赤外線入射領域を前記天板の前記加熱コイルの外周より内側で中心からずれた位置に設け、前記赤外線入射領域の少なくとも一部に光拡散層を設け、前記被加熱物から放射される赤外線が前記光拡散層を透過して前記赤外線センサに入射するとともに、前記発光体から出射された光を前記拡散層に照射して発光させることにより前記赤外線入射領域を視認できるようにしたことを特徴とする。 In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention includes a heating plate for placing and heating an object to be heated and transmitting light, and the heating unit. A heating coil that is provided below the top plate to inductively heat the object to be heated by generating a magnetic field, an infrared sensor that is provided below the top plate and detects infrared rays, and is emitted from the object to be heated. A light guide tube that guides infrared light to the infrared sensor, temperature detection means for converting an output signal from the infrared sensor into a temperature of an object to be heated, and output of the heating coil based on a detection result of the temperature detection means. A control means for controlling, and a light emitter provided below the top plate, and an infrared incident region for guiding infrared rays radiated from an object to be heated to the light guide tube is an outer periphery of the heating coil of the top plate Provided at a position inside the center and shifted from the center, the red A light diffusing layer provided on at least a portion of the line entrance area, said with infrared rays emitted from the heated object is incident on the infrared sensor is transmitted through the light diffusing layer, the light emitted from the light emitter The infrared light incident region can be visually recognized by irradiating the light diffusion layer to emit light.

また、請求項2に記載の発明は、前記赤外線入射領域周囲の前記天板裏面に光透過率が略ゼロの黒色の光吸収膜を形成したことを特徴とする。   The invention described in claim 2 is characterized in that a black light absorption film having substantially zero light transmittance is formed on the back surface of the top plate around the infrared incident region.

さらに、請求項3に記載の発明は、前記赤外線入射領域に、前記光拡散層と、前記光拡散層より光透過率の大きい部位を混在して設けたことを特徴とする。   Furthermore, the invention described in claim 3 is characterized in that the light diffusing layer and a portion having a light transmittance larger than that of the light diffusing layer are mixedly provided in the infrared incident region.

また、請求項4に記載の発明は、前記赤外線入射領域が、中央領域と、該中央領域の径方向外方に帯状に設けた周辺領域を有し、前記中央領域と前記周辺領域の光透過率が異なることを特徴とする。   According to a fourth aspect of the present invention, the infrared incident region has a central region and a peripheral region provided in a strip shape radially outward of the central region, and light transmission between the central region and the peripheral region is performed. It is characterized by different rates.

また、請求項5に記載の発明は、前記中央領域の光透過率を前記周辺領域の光透過率より大きく設定したことを特徴とする。   The invention according to claim 5 is characterized in that the light transmittance of the central region is set larger than the light transmittance of the peripheral region.

また、請求項6に記載の発明は、前記周辺領域が、前記中央領域の径方向外方に帯状に設けられた第1の周辺領域と、該第1の周辺領域の径方向外方に帯状に設けられた第2の周辺領域を有し、該第2の周辺領域の光透過率を前記第1の周辺領域の光透過率より小さく設定したことを特徴とする。   According to a sixth aspect of the present invention, the peripheral region includes a first peripheral region provided in a strip shape radially outward of the central region, and a strip shape radially outward of the first peripheral region. The second peripheral region is provided, and the light transmittance of the second peripheral region is set smaller than the light transmittance of the first peripheral region.

また、請求項7に記載の発明は、複数の前記光拡散層を前記赤外線入射領域に点在させたことを特徴とする。   The invention according to claim 7 is characterized in that a plurality of the light diffusion layers are scattered in the infrared incident region.

また、請求項8に記載の発明は、前記光拡散層を前記赤外線入射領域に格子状に設けたことを特徴とする。   The invention according to claim 8 is characterized in that the light diffusion layer is provided in a grid pattern in the infrared incident region.

また、請求項9に記載の発明は、前記導光筒は、前記発光体から出射された光を前記導光筒の開口部から前記拡散層に照射して発光させるようにしたことを特徴とする。 In the invention according to claim 9, the light guide tube emits light emitted from the light emitter by irradiating the light diffusion layer from an opening of the light guide tube. And

本発明によれば、被加熱物の加熱コイル中央に対向する位置の温度より高くなる位置の被加熱物の発熱部分の温度を、当該部分から放射される赤外線を測定して得た検知温度に基づき被加熱物の温度制御を応答性良くおこなうことができるとともに、光拡散層により赤外線入射領域から機器内部が見えにくくなるようにし、さらに発光体から出射された光を拡散層に照射して発光させることにより赤外線入射領域を見栄え良く視認できる。赤外線入射窓が加熱コイル中央近傍にないので、被加熱物が赤外線入射領域の上部を覆わない場合も考えられるが、赤外線入射領域を拡散層で発光させることにより、ユーザは発光部が見えないように被加熱物を載置することで、赤外線センサによる温度制御を適正に行うことができる。また、拡散層が光ることで機器が設置された場所が暗い場合でも赤外線入射領域を視認しやすくなる。 According to the present invention, the temperature of the heat generation part of the heated object at a position higher than the temperature of the position facing the center of the heating coil of the heated object is set to the detected temperature obtained by measuring the infrared rays radiated from the part. Based on this, the temperature of the object to be heated can be controlled with good responsiveness, and the light diffusing layer makes it difficult to see the inside of the device from the infrared incident region, and the light diffusing layer is irradiated with light emitted from the light emitter By emitting light, it is possible to visually recognize the infrared incident region with good appearance. Since there is no infrared incident window near the center of the heating coil, it may be possible that the object to be heated does not cover the upper part of the infrared incident area, but the user cannot see the light emitting part by causing the infrared incident area to emit light with the light diffusion layer. By placing the object to be heated as described above, the temperature control by the infrared sensor can be appropriately performed. Moreover, even if the place where the device is installed is dark because the light diffusion layer is shining, it is easy to visually recognize the infrared incident region.

このように被加熱物からの赤外線が適正に赤外線センサに入力されない状態での温度制御が防止され、被加熱物の温度を的確に検知して被加熱物に対する加熱コイルの加熱制御を適切に行うことができる。   In this way, temperature control in a state where infrared rays from the object to be heated are not properly input to the infrared sensor is prevented, and the temperature of the object to be heated is accurately detected and heating control of the heating coil with respect to the object to be heated is appropriately performed. be able to.

以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は本発明にかかる誘導加熱調理器Cを示しており、本体2と、本体2の上部に取り付けられ光を透過する結晶化セラミック製の天板4a及びその周囲に設けられた金属製のフレーム4bを有するトップユニット4と、天板4aの前部下方には、第1及び第2の加熱コイル6,8と、その後方に設けられたラジェントヒータ10とを備えている。また、本体2を前面から見て左側に位置する第2の加熱コイル8の下方には、ロースター加熱室12が設けられており、ロースター加熱室12は、その前面に開閉自在に取り付けられたロースター扉14により開閉される。ロースター加熱室12の内部には、受け皿(図示せず)と、焼き網(図示せず)と、焼き網の上下に設けられたヒータ(図示せず)が収容されており、両面焼きロースターを構成している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an induction heating cooker C according to the present invention, a main body 2, a crystallized ceramic top plate 4a that is attached to the upper portion of the main body 2 and transmits light, and a metal plate provided around the top plate 4a. A top unit 4 having a frame 4b, and first and second heating coils 6 and 8 and a radial heater 10 provided behind the top unit 4 are provided below the top of the top plate 4a. A roaster heating chamber 12 is provided below the second heating coil 8 located on the left side when the main body 2 is viewed from the front, and the roaster heating chamber 12 is attached to the front of the roaster so as to be freely opened and closed. Opened and closed by the door 14. Inside the roaster heating chamber 12, a tray (not shown), a grill (not shown), and heaters (not shown) provided above and below the grill are accommodated. It is composed.

また、本体2の前面右側には、上述した加熱手段の出力を設定する操作部16が設けられており、その後方には、第1の加熱コイル6の駆動回路を構成する第1のプリント基板18と、第2の加熱コイル8の駆動回路を構成する第2のプリント基板20とが上下に設けられている。これら二つのプリント基板18,20の後方の近接位置には、回転軸がプリント基板18,20と直交するシロッコ型冷却ファン22と、冷却ファン22を駆動するためのモータ(図示せず)が設けられており、冷却ファン22とモータは吸気ダクト24により囲繞されている。なお、ラジェントヒータ10とロースターヒータの駆動回路はプリント基板18,20の中に構成されている。   An operation unit 16 for setting the output of the heating means described above is provided on the right side of the front surface of the main body 2, and a first printed circuit board constituting a drive circuit for the first heating coil 6 is provided behind the operation unit 16. 18 and a second printed circuit board 20 constituting a drive circuit for the second heating coil 8 are provided above and below. A sirocco-type cooling fan 22 whose rotation axis is orthogonal to the printed circuit boards 18 and 20 and a motor (not shown) for driving the cooling fan 22 are provided at positions close to the rear of the two printed circuit boards 18 and 20. The cooling fan 22 and the motor are surrounded by the intake duct 24. The driving circuit for the radial heater 10 and the roaster heater is configured in the printed boards 18 and 20.

また、本体2の上面後部には、吸気ダクト24に連通する吸気口26と、ロースター加熱室12側に吸気口26に隣接して排気口28が形成されている。   Further, an intake port 26 communicating with the intake duct 24 and an exhaust port 28 adjacent to the intake port 26 are formed on the roaster heating chamber 12 side at the upper rear portion of the main body 2.

図1に示されるように、本体2は全体が外郭により一体的に形成され、外郭の上部フランジ30によりキッチン等に支えられる組み込み式のものである。そして、ロースター加熱室12の上には、遮熱隔壁32や第2の加熱コイル8の支持バネ34や第2の加熱コイル8と第2のプリント基板20とを電気的に接続する中継端子台(図示せず)等の温度制約が緩く熱的に破壊しにくい構造物のみが配設されている。さらに、本体2を上面から見たとき、冷却ファン22、第1のプリント基板18、第2のプリント基板20はロースター加熱室12とは重ならない位置でその側方に配設されている。   As shown in FIG. 1, the main body 2 is an integral type that is integrally formed by an outer shell and is supported by a kitchen or the like by an upper flange 30 of the outer shell. On the roaster heating chamber 12, a relay terminal block for electrically connecting the thermal barrier 32, the support spring 34 of the second heating coil 8, and the second heating coil 8 and the second printed circuit board 20. Only structures having a low temperature constraint (not shown) and which are not easily thermally destroyed are provided. Further, when the main body 2 is viewed from the upper surface, the cooling fan 22, the first printed circuit board 18, and the second printed circuit board 20 are disposed on the side in a position that does not overlap the roaster heating chamber 12.

上記構成の本発明にかかる誘導加熱調理器Cの使用に際し、第1の加熱コイル6、第2の加熱コイル8あるいはラジェントヒータ10のうち、任意の加熱手段の上方に位置する天板4a上に被加熱物を載置するか、あるいは、ロースター加熱室12に被調理物を収容した後、操作部16を操作して所望の調理が行われる。このため、加熱手段6,8,10に対応して、天板4aの裏面(下面)に印刷膜35cを円形に形成することにより被加熱物を載置するための加熱部35が表示されている(図4参照)。また、加熱部35を表示するための印刷膜35cの外側(下面)に、光透過率が略ゼロの黒色の光吸収膜35dが印刷により形成されている。なお、加熱部35を表示する印刷膜35cは、天板4aの裏面ではなく表面に形成してもよい。また、印刷膜35cは、線状としてもよい。   When the induction heating cooker C according to the present invention having the above-described configuration is used, the top plate 4a located above any heating means among the first heating coil 6, the second heating coil 8, or the radial heater 10 is used. The object to be heated is placed on the container, or the object to be cooked is stored in the roaster heating chamber 12, and then the operation unit 16 is operated to perform desired cooking. For this reason, the heating unit 35 for placing the object to be heated is displayed by forming the printing film 35c in a circular shape on the back surface (lower surface) of the top plate 4a corresponding to the heating means 6, 8, and 10. (See FIG. 4). In addition, a black light absorption film 35d having a substantially zero light transmittance is formed on the outside (lower surface) of the print film 35c for displaying the heating unit 35 by printing. The printing film 35c displaying the heating unit 35 may be formed on the front surface of the top plate 4a instead of the back surface. Further, the printing film 35c may be linear.

誘導加熱調理器Cの使用時、本体2の内部温度は上昇するが、冷却ファン22の作動により周囲の空気が吸気口26から本体2内に吸い込まれ、吸い込まれた空気はプリント基板18,20の上の空間を流れ、本体2内のロースター加熱室12側の空間を経由して、排気口28から排出される。その結果、加熱手段6,8,10を含む本体2内の加熱部が冷却され、その温度が低下する。   When the induction heating cooker C is used, the internal temperature of the main body 2 rises, but the ambient air is sucked into the main body 2 from the air inlet 26 by the operation of the cooling fan 22, and the sucked air is printed on the printed circuit boards 18 and 20. Through the space on the side of the roaster heating chamber 12 in the main body 2 and discharged from the exhaust port 28. As a result, the heating part in the main body 2 including the heating means 6, 8, and 10 is cooled, and the temperature is lowered.

次に、誘導加熱調理器Cの制御系のうち、特に第1及び第2の加熱コイル6,8の制御系につき第2の加熱コイル8を例に取り説明する。   Next, among the control systems of the induction heating cooker C, the second heating coil 8 will be described as an example with respect to the control systems of the first and second heating coils 6 and 8 in particular.

図2は、第2の加熱コイル8及びその周辺部を示しており、第2の加熱コイル8は、内コイル8aと外コイル8bの分割巻き構成を有し、赤外線の透過率が低い樹脂材料で作製された加熱コイル支持台36上に保持されている。また、加熱コイル支持台36の下面には、加熱コイル8からその裏面側への磁束を加熱コイル8近傍に集中するためのフェライト37(図3参照)が取り付けられており、内コイル8aと外コイル8bの間の空隙部8cには、被加熱物A(図3参照)の底部から放射され後述する赤外線センサへ入射させる赤外線あるいは後述する発光体から出射させる光を導く円筒状の導光部36aが形成されている。さらに、加熱コイル8の中央近傍には、被加熱物Aの底面の温度を検知するサーミスタ38が耐熱樹脂製のサーミスタホルダー38aの溝に嵌め込まれ支持されて天板4aにバネ(図示せず)で押しつけられ密着して取り付けられている。   FIG. 2 shows the second heating coil 8 and its peripheral portion, and the second heating coil 8 has a split winding configuration of an inner coil 8a and an outer coil 8b, and has a low infrared transmittance. It is held on the heating coil support 36 manufactured in the above. Further, a ferrite 37 (see FIG. 3) for concentrating the magnetic flux from the heating coil 8 to the back side thereof in the vicinity of the heating coil 8 is attached to the lower surface of the heating coil support base 36. A cylindrical light guide unit that guides infrared light emitted from the bottom of the heated object A (see FIG. 3) and incident on an infrared sensor described later or light emitted from a light emitter described later in the gap 8c between the coils 8b. 36a is formed. Further, in the vicinity of the center of the heating coil 8, a thermistor 38 for detecting the temperature of the bottom surface of the article A to be heated is fitted in and supported by a groove of a thermistor holder 38a made of heat resistant resin, and a spring (not shown) on the top plate 4a. It is pressed and attached in close contact.

なお、上述した赤外線センサは、サーミスタ38と同様、被加熱物の温度を検知するために設けられているが、サーミスタ38より温度応答性に優れており、この赤外線センサの出力に応じて制御される加熱コイル6,8の制御回路につき、図3を参照して第2の加熱コイル8を例に取り以下説明する。   The infrared sensor described above is provided for detecting the temperature of the object to be heated, similar to the thermistor 38, but has a higher temperature response than the thermistor 38 and is controlled according to the output of the infrared sensor. A control circuit for the heating coils 6 and 8 will be described below by taking the second heating coil 8 as an example with reference to FIG.

図3に示されるように、赤外線センサ40は、加熱コイル8からの磁束の影響を受けにくくするため、加熱コイル8下方への磁束シールド用の磁路を形成するフェライト37より下方で、加熱コイル支持台36と一体に形成された筒状の導光部36aの下部開口部36cの下方に配設されており、被加熱物Aの底面から赤外線センサ40に向かって放射される赤外線の経路上には集光手段としての凸レンズ41が配置され、被加熱物Aから放射される赤外線を集光している。赤外線センサ40の出力は、温度検知手段42に入力されて、温度検知手段42により被加熱物Aの温度を検知する。温度検知手段42の出力は、制御手段44に入力され、制御手段44は温度検知手段42からの信号に応じて加熱コイル8に高周波電流を供給するインバータ回路46の出力を制御する。   As shown in FIG. 3, in order to make the infrared sensor 40 less susceptible to magnetic flux from the heating coil 8, the infrared sensor 40 is below the ferrite 37 that forms a magnetic path for magnetic flux shielding below the heating coil 8. An infrared path radiated from the bottom surface of the article A to be heated toward the infrared sensor 40 is disposed below the lower opening 36c of the cylindrical light guide 36a formed integrally with the support base 36. Is provided with a convex lens 41 as a condensing means for condensing infrared rays emitted from the object A to be heated. The output of the infrared sensor 40 is input to the temperature detection means 42 and the temperature detection means 42 detects the temperature of the object A to be heated. The output of the temperature detection means 42 is input to the control means 44, and the control means 44 controls the output of the inverter circuit 46 that supplies a high frequency current to the heating coil 8 in accordance with a signal from the temperature detection means 42.

以上のように構成された加熱コイル8による加熱動作を以下説明する。
加熱を開始すると、インバータ回路46は加熱コイル8に20kHz以上の高周波電流を供給して、被加熱物Aは加熱コイル8からの磁束(磁界)で誘導された渦電流により自己発熱する。加熱開始後の過渡期の被加熱物Aの底部温度は、加熱コイル8からの磁束密度分布の影響から、外コイル8bの内縁近傍が加熱コイル8の略中心の温度に比べ高温となる。したがって、被加熱物Aの高温部で温度を検知するために、赤外線センサ40を加熱コイル8の内コイル8aと外コイル8bの間の空隙部8c下方に配置し、赤外線センサ40からの検知出力を温度検知手段42により検知温度に換算して制御手段44に出力し、検知温度が所定温度を超えると、あるいは検知温度の傾きが所定値を超えると、インバータ回路46はその出力が減少するように制御手段44により制御される。
The heating operation by the heating coil 8 configured as described above will be described below.
When heating is started, the inverter circuit 46 supplies a high frequency current of 20 kHz or more to the heating coil 8, and the article A to be heated self-heats due to the eddy current induced by the magnetic flux (magnetic field) from the heating coil 8. The bottom temperature of the object A to be heated in the transition period after the start of heating is higher than the temperature at the substantially center of the heating coil 8 in the vicinity of the inner edge of the outer coil 8 b due to the influence of the magnetic flux density distribution from the heating coil 8. Therefore, in order to detect the temperature at the high temperature part of the article A to be heated, the infrared sensor 40 is arranged below the gap 8c between the inner coil 8a and the outer coil 8b of the heating coil 8, and the detection output from the infrared sensor 40 is provided. Is converted into a detected temperature by the temperature detecting means 42 and output to the control means 44. When the detected temperature exceeds a predetermined temperature or when the detected temperature exceeds a predetermined value, the inverter circuit 46 seems to decrease its output. Are controlled by the control means 44.

本発明においては、赤外線センサ40は、その近傍に発光体が配設されたセンサユニットとして形成されており、センサユニットの構成について図4を参照しながら以下説明する。   In the present invention, the infrared sensor 40 is formed as a sensor unit having a light emitter disposed in the vicinity thereof, and the configuration of the sensor unit will be described below with reference to FIG.

図4に示されるように、加熱コイル支持台36の下方には、センサユニット48が配設されており、センサユニット48は、アルミニウムや黄銅等の導電金属材料で形成されたユニットハウジング50と、ユニットハウジング50内に収容された印刷配線板52とを備えている。印刷配線板52上には、上述した赤外線センサ40及び凸レンズ41と、LED等の発光体54が固定され、これらの素子と接続線56とを電気接続するコネクタ58が設けられている。また、凸レンズ41の上方の被加熱物の赤外線が入射する赤外線入射面を除く凸レンズ41の下部及び赤外線センサ40の周囲は、被加熱物の赤外線以外の光が凸レンズ41に入射するのを防止できるように、遮光機能を有する筒状のセンサカバー59により囲繞されている。   As shown in FIG. 4, a sensor unit 48 is disposed below the heating coil support 36, and the sensor unit 48 includes a unit housing 50 formed of a conductive metal material such as aluminum or brass, And a printed wiring board 52 accommodated in the unit housing 50. On the printed wiring board 52, the infrared sensor 40 and the convex lens 41 described above and a light emitting body 54 such as an LED are fixed, and a connector 58 for electrically connecting these elements and the connection line 56 is provided. Moreover, light other than the infrared rays of the object to be heated can be prevented from entering the convex lens 41 at the lower part of the convex lens 41 excluding the infrared incident surface on which the infrared ray of the object to be heated is incident above the convex lens 41 and the periphery of the infrared sensor 40. Thus, it is surrounded by a cylindrical sensor cover 59 having a light shielding function.

ユニットハウジング50は、印刷配線板52よりも加熱コイル8a側に設けられ赤外線センサ40と発光体54を磁気遮蔽する遮蔽部50aを有し、上部に上部開口部60aを有し下部に下部開口部60bを有する円筒状の導光筒60が加熱部に突出するように遮蔽部50aと一体的に形成されており、この導光筒60の下部開口部60bの真下に凸レンズ41と赤外線センサ40は配置されている。また、発光体54は、その出射光が導光筒60の内壁に向かって方向付けられるように赤外線センサ40近傍の印刷配線板52上に取り付けられている。   The unit housing 50 is provided closer to the heating coil 8a than the printed wiring board 52, has a shielding part 50a that magnetically shields the infrared sensor 40 and the light emitter 54, has an upper opening 60a in the upper part, and a lower opening in the lower part. A cylindrical light guide tube 60 having 60b is integrally formed with the shielding portion 50a so as to protrude to the heating portion, and the convex lens 41 and the infrared sensor 40 are directly below the lower opening 60b of the light guide tube 60. Has been placed. The light emitter 54 is mounted on the printed wiring board 52 in the vicinity of the infrared sensor 40 so that the emitted light is directed toward the inner wall of the light guide tube 60.

また、加熱コイル支持台36の導光部36aの下面には円形凹部36bが形成されており、円形凹部36bの内径は導光筒60の外径より大きく設定され、導光筒60の上端面が円形凹部36bの端面に密着して導光筒60の上端部が円形凹部36bに収容された状態で、ユニットハウジング50はねじ62により加熱コイル支持台36の導光部36a近傍に螺着されている。なお、導光部36aの内径と導光筒60の内径は等しく設定されており、導光部36aの内面と導光筒60の内面は面一になっている。   Further, a circular recess 36 b is formed on the lower surface of the light guide portion 36 a of the heating coil support base 36, and the inner diameter of the circular recess 36 b is set to be larger than the outer diameter of the light guide tube 60. Is in close contact with the end surface of the circular recess 36b and the upper end of the light guide tube 60 is accommodated in the circular recess 36b, and the unit housing 50 is screwed to the vicinity of the light guide 36a of the heating coil support 36 by screws 62. ing. The inner diameter of the light guide portion 36a and the inner diameter of the light guide tube 60 are set to be equal, and the inner surface of the light guide portion 36a and the inner surface of the light guide tube 60 are flush with each other.

また、上述したように、天板4aには被加熱物の載置部(加熱部35)が円形に印刷膜35cにより形成されているが、印刷膜35cの一部には円形抜き部が赤外線入射領域35aとして形成されている。赤外線入射領域35aには、光拡散層76(図8(a)参照)が印刷により設けられている。この赤外線入射領域35aは加熱コイル支持台36の導光部36aの上部開口部36d真上に上部開口部36dに対向するように位置し、導光筒60の上部開口部60aと対向する赤外線の入光領域となっており、赤外線入射領域35aの光透過率はその周囲(加熱部35の印刷膜35c)の光透過率より大きく設定されている。なお、この赤外線入射領域35aは、被加熱物A底面の赤外線入射領域35aに対向する部分から放射される赤外線を導光筒60に入射させるための領域である。なお、赤外線入射領域35aは円形でなくてもよく、四角形等任意の形状にすることができる。   Further, as described above, the placing portion (heating unit 35) for the object to be heated is formed in a circular shape by the printing film 35c on the top plate 4a, but the circular punching part is an infrared ray in a part of the printing film 35c. It is formed as an incident region 35a. A light diffusion layer 76 (see FIG. 8A) is provided in the infrared incident area 35a by printing. This infrared incident area 35a is positioned directly above the upper opening 36d of the light guide 36a of the heating coil support 36 so as to oppose the upper opening 36d, and the infrared incident area 35a faces the upper opening 60a of the light guide tube 60. It is a light incident region, and the light transmittance of the infrared incident region 35a is set to be larger than the light transmittance of its surroundings (the printing film 35c of the heating unit 35). The infrared incident area 35 a is an area for allowing the infrared light emitted from the portion facing the infrared incident area 35 a on the bottom surface of the object A to be incident on the light guide tube 60. Note that the infrared incident region 35a does not have to be circular, and can be formed in an arbitrary shape such as a quadrangle.

食材を被加熱物Aに入れて本発明にかかる誘導加熱調理器Cで調理するに際し、誘導加熱調理器Cの電源スイッチ(図示せず)を投入すると、発光体54が発光してその出射光が導光筒60に導かれてその内壁を反射し、その上部開口部60aと導光部36aを介して天板4aの赤外線入射領域35aに照射される。したがって、ユーザは発光体54の出射光により赤外線入射領域35aを容易に視認することができ、操作部16の切入りキー(図示せず)を操作することで加熱動作が開始可能な状態となるので、第2の加熱コイル8を使用する場合、光の照射部(赤外線入射領域35a)を塞ぐように被加熱物Aが天板4a上に載置されていることを確認した上で加熱動作を開始すれば、赤外線センサ40が被加熱物Aの底面から放射される赤外線を効率良く確実に受光することができ、被加熱物Aの温度を赤外線センサ40により制御することができる。また、誘導加熱調理器Cの周囲が暗い場合でも、赤外線入射領域35aを容易に視認することができる。   When the food is put into the heated object A and cooked by the induction heating cooker C according to the present invention, when the power switch (not shown) of the induction heating cooker C is turned on, the light emitter 54 emits light and the emitted light. Is guided to the light guide tube 60, reflects the inner wall thereof, and is irradiated to the infrared incident area 35a of the top plate 4a through the upper opening 60a and the light guide 36a. Therefore, the user can easily visually recognize the infrared incident area 35a by the light emitted from the light emitter 54, and the heating operation can be started by operating a cut-off key (not shown) of the operation unit 16. Therefore, when using the 2nd heating coil 8, it confirms that the to-be-heated material A is mounted on the top plate 4a so that the light irradiation part (infrared-incidence area | region 35a) may be block | closed, and heating operation | movement Is started, the infrared sensor 40 can efficiently and reliably receive the infrared rays emitted from the bottom surface of the article A to be heated, and the temperature of the article A to be heated can be controlled by the infrared sensor 40. Moreover, even when the periphery of the induction heating cooker C is dark, the infrared incident area 35a can be easily visually recognized.

第2の加熱コイル8により被加熱物Aが加熱されると、被加熱物Aの底部より発する赤外線が天板4aの赤外線入射領域35aを介して加熱コイル支持台36の導光部36aに導かれ、さらに導光部36aの下端に当接するユニットハウジング50の導光筒60に導かれて赤外線センサ40に入射する。この入射光を受けて、赤外線センサ40の出力は温度検知手段42に入力され、上述したように被加熱物Aの温度が制御される。   When the object to be heated A is heated by the second heating coil 8, infrared rays emitted from the bottom of the object to be heated A are guided to the light guide part 36a of the heating coil support base 36 via the infrared incident area 35a of the top plate 4a. Further, the light is guided to the light guide tube 60 of the unit housing 50 that is in contact with the lower end of the light guide portion 36 a and enters the infrared sensor 40. Upon receiving this incident light, the output of the infrared sensor 40 is input to the temperature detecting means 42, and the temperature of the object A to be heated is controlled as described above.

このように、発光体54からの出射光は導光筒60及び導光部36aを介して天板4aに導かれ、被加熱物Aから放射された赤外線は、同様の経路で逆方向に導光部36a及び導光筒60を介して赤外線センサ40に導かれるので、導光筒60及び導光部36aは、双方向の導光手段として作用する。このため、導光筒60及び導光部36aの内面は、発光効率の点で光沢面とするのが好ましく、さらに導光筒60の内面は、発光効率及び加熱コイル8からのノイズの影響を低減するシールド性の点で非磁性金属光沢面とするのが好ましい。また、導光手段60,36aは、赤外線センサ40の受光面近傍から加熱コイル8の上面まで延在しているので、被加熱物A、加熱コイル8等の赤外線センサ40の周辺部品からの赤外線放射の影響を受けにくい構成とすることができる。すなわち、導光手段60,36aを遮光機能を有する部材とすることにより赤外線センサ40に入り込む周囲の光を遮断することができ、また、導光手段60,36aの導光経路の内面を黒色として光吸機能を持たせることにより、不要な光や赤外線を除去することができる。   Thus, the emitted light from the light emitter 54 is guided to the top plate 4a via the light guide tube 60 and the light guide part 36a, and the infrared rays radiated from the object A to be heated are guided in the reverse direction along the same path. Since the light is guided to the infrared sensor 40 via the light portion 36a and the light guide tube 60, the light guide tube 60 and the light guide portion 36a function as bidirectional light guide means. For this reason, the inner surfaces of the light guide tube 60 and the light guide portion 36a are preferably glossy in terms of light emission efficiency, and the inner surface of the light guide tube 60 is affected by the light emission efficiency and the noise from the heating coil 8. It is preferable to use a non-magnetic metallic glossy surface in terms of reducing shielding properties. Moreover, since the light guide means 60, 36a extends from the vicinity of the light receiving surface of the infrared sensor 40 to the upper surface of the heating coil 8, infrared rays from peripheral components of the infrared sensor 40 such as the object A to be heated and the heating coil 8. A structure that is not easily affected by radiation can be employed. That is, by making the light guide means 60, 36a a member having a light shielding function, ambient light entering the infrared sensor 40 can be blocked, and the inner surface of the light guide path of the light guide means 60, 36a is black. By providing the light absorbing function, unnecessary light and infrared rays can be removed.

また、赤外線入射領域35aには、光拡散層76が設けられているので、光拡散層76を発光させ、赤外線入射領域35aを目立つようにでき、逆に同系統の色にして目立たないようにすることでデザイン性を向上させることができる。また、加熱部35を表示するための印刷膜35cの外側(下面)に、光透過率が略ゼロの黒色の光吸収膜35dが印刷により形成されているので、発光体54の光が赤外線入射領域35a周囲に漏れ見栄えが悪くなるのを防止することができる。   Further, since the light diffusing layer 76 is provided in the infrared incident area 35a, the light diffusing layer 76 can emit light so that the infrared incident area 35a is conspicuous, and conversely, the same color is used so that it is not conspicuous. By doing so, the design can be improved. In addition, since the black light absorption film 35d having substantially zero light transmittance is formed by printing on the outer side (lower surface) of the printing film 35c for displaying the heating unit 35, the light from the light emitter 54 is incident on the infrared ray. It is possible to prevent the appearance of leakage around the region 35a from deteriorating.

以上、第2の加熱コイル8を例に取り説明したが、第1の加熱コイル6に付いても同様に上記構成を適用することができる。   The second heating coil 8 has been described above as an example, but the above configuration can be similarly applied to the first heating coil 6.

図5は、図4のセンサユニット48の変形例を示しており、図5に示されるセンサユニット48Aは、赤外線センサ40及び発光体54の上方に導光体68を配置したものである。   FIG. 5 shows a modification of the sensor unit 48 of FIG. 4, and the sensor unit 48 </ b> A shown in FIG. 5 has a light guide 68 disposed above the infrared sensor 40 and the light emitter 54.

導光体68は、その中央部に円形の貫通孔68aを有する環状に形成されるとともに、その一部には発光体54の発光部に対向する折曲部68bが形成されている。発光体54からの出射光は、折曲部68bの端面より導光体68に入射して、中央部に貫通孔68aを有する導光体68の全体が光ることになり、その上面が環状(ドーナツ状)に発光する発光面となって環状の光が被加熱物Aに向かって出射される。また、被加熱物Aからの赤外線は導光体68の貫通孔68aを介して赤外線センサ40に入射する。   The light guide 68 is formed in an annular shape having a circular through hole 68a in the center thereof, and a bent portion 68b facing the light emitting portion of the light emitter 54 is formed in a part thereof. The light emitted from the light emitter 54 enters the light guide 68 from the end surface of the bent portion 68b, and the entire light guide 68 having the through hole 68a in the central portion shines, and its upper surface is annular ( It becomes a light emitting surface that emits light in a donut shape, and annular light is emitted toward the object A to be heated. Further, infrared rays from the object A to be heated enter the infrared sensor 40 through the through holes 68 a of the light guide 68.

この構成は、環状の光が被加熱物Aに向かって出射されることから、赤外線入射領域35aを照射する光量が多いばかりでなく、均一に赤外線入射領域35aを照射することができる等の利点がある。   Since this structure emits annular light toward the object A to be heated, not only the amount of light that irradiates the infrared incident region 35a is large, but also the infrared incident region 35a can be irradiated uniformly. There is.

図6は、図4のセンサユニット48の別の変形例を示しており、図6に示されるセンサユニット48Bは、赤外線センサ40及び発光体54をセンサカバー59Bで囲繞し、発光体54を赤外線センサ40に向けて発光させ、赤外線センサ40に取り付けられた凸レンズ41を介して発光させるようにしている。   FIG. 6 shows another modification of the sensor unit 48 of FIG. 4. The sensor unit 48B shown in FIG. 6 surrounds the infrared sensor 40 and the light emitter 54 with a sensor cover 59B, and the light emitter 54 is infrared. Light is emitted toward the sensor 40, and light is emitted through a convex lens 41 attached to the infrared sensor 40.

この構成も、被加熱物Aへの光量が多いばかりでなく、センサカバー59Bが被加熱物Aから発生する赤外線以外の光が赤外線センサ40に入射するのを防止し被加熱物Aからの赤外線集光性が向上する等の利点がある。   This configuration also not only has a large amount of light to the object to be heated A, but also the sensor cover 59B prevents light other than the infrared light generated from the object to be heated A from entering the infrared sensor 40, and infrared light from the object to be heated A. There are advantages such as improved light collection.

図7は、図4のセンサユニット48のさらに別の変形例を示しており、図7に示されるセンサユニット48Cは、ユニットハウジング50の導光筒60を印刷配線板52またはその近傍まで延長して、近接配置した赤外線センサ40と発光体54を導光筒60と連なる下方延長筒60cの内部に収容したものである。また、赤外線センサ40と発光体54の上方に円形貫通孔70aを有する光拡散リング70を設け、赤外線センサ40を貫通孔70aの下方に配置するとともに、発光体54を貫通孔70a以外の部位の下方に配置している。   FIG. 7 shows still another modification of the sensor unit 48 of FIG. 4. The sensor unit 48C shown in FIG. 7 extends the light guide tube 60 of the unit housing 50 to the printed wiring board 52 or the vicinity thereof. Thus, the infrared sensor 40 and the light emitter 54 arranged close to each other are accommodated in a lower extension cylinder 60 c that is continuous with the light guide cylinder 60. In addition, a light diffusion ring 70 having a circular through hole 70a is provided above the infrared sensor 40 and the light emitter 54, the infrared sensor 40 is disposed below the through hole 70a, and the light emitter 54 is disposed at a portion other than the through hole 70a. It is arranged below.

この構成は、例えばコネクタ58近傍のユニットハウジング50の隙間から外部光または機器内部の光が赤外線センサ40に入射するのを防止して赤外光の集光性を向上できるとともに、発光体54からの発光漏れが減少するのでユーザが視認できる天板4aからの出射光の明るさを増大することができる。また、光拡散リング70を設けたことで、発光体54からの発光が点発光ではなく面発光となり、発光の均一性を向上することができる。   For example, this configuration can prevent external light or light inside the device from entering the infrared sensor 40 from the gap between the unit housings 50 near the connector 58 and improve the light collecting property of the infrared light. Therefore, the brightness of the emitted light from the top plate 4a that can be visually recognized by the user can be increased. Further, by providing the light diffusing ring 70, light emission from the light emitter 54 becomes surface light emission instead of point light emission, and the uniformity of light emission can be improved.

以上のように、導光筒60及び導光部36aは、発光体54から出射された光を導光部36aの上部開口部36dから光拡散層76に照射して発光させるので、発光体54を被加熱物Aや加熱コイル6,8等から離れた位置に設けることができ、かつ、発光体54の導光手段を赤外センサ40の導光手段と共用することができるので、安価で省スペースな構成とすることができる。   As described above, the light guide tube 60 and the light guide unit 36a emit light by emitting the light emitted from the light emitter 54 to the light diffusion layer 76 from the upper opening 36d of the light guide unit 36a. Since the light guide means of the light emitter 54 can be shared with the light guide means of the infrared sensor 40, it is inexpensive. A space-saving configuration can be achieved.

なお、上記実施の形態においては、第2の加熱コイル8が内コイル8aと外コイル8bの分割巻き構成を有するものにおいて、赤外線入射領域35aを第2の加熱コイル8中心から偏心させた場合について説明したが、分割巻きをしない加熱コイルで赤外線センサ40の赤外線入射領域35aを第2の加熱コイル8中央を外して設けた場合、例えば加熱コイル巻線の内周に近づけて赤外線入射領域35aを配置した場合にも同様に適用できる。   In the above embodiment, when the second heating coil 8 has a split winding configuration of the inner coil 8a and the outer coil 8b, the infrared incident region 35a is eccentric from the center of the second heating coil 8. As described above, when the infrared incident area 35a of the infrared sensor 40 is provided by removing the center of the second heating coil 8 with a heating coil that does not perform split winding, for example, the infrared incident area 35a is moved closer to the inner periphery of the heating coil winding. The same applies to the arrangement.

なお、上述した赤外線入射領域35aに光拡散層76を設けた構成について、図8を参照しながら以下説明する。   In addition, the structure which provided the light-diffusion layer 76 in the infrared incident area 35a mentioned above is demonstrated below, referring FIG.

図8(a)の構成は、赤外線入射領域35aの全域に半透明の光拡散層76を設けているのに対し、図8(b)〜(e)の構成は、赤外線入射領域35aに、光拡散層76と、光拡散層76より光透過率の大きい部位を混在して設けたものである。   8A is provided with a translucent light diffusing layer 76 over the entire area of the infrared incident region 35a, whereas the configurations of FIGS. 8B to 8E are provided in the infrared incident region 35a. The light diffusion layer 76 and a portion having a light transmittance higher than that of the light diffusion layer 76 are mixedly provided.

さらに詳述すると、図8(b)の構成は、赤外線入射領域35aの中央領域を光拡散層が存在しない透明部78とし、この中央領域の径方向外方に周辺領域を帯状に設け、この周辺領域を半透明の環状光拡散層76で形成し、中央領域の光透過率を周辺領域の光透過率より大きく設定している。光源(発光体)54が発光すると拡散層76が環状に光り赤外線入射領域35aを視認することができる。また、赤外線入射領域35aの中央領域の光透過率が周辺より大きいので、中央領域に対応する被加熱物Aの温度を精度良く測定することができる。 More specifically, in the configuration of FIG. 8B, the central region of the infrared incident region 35a is a transparent portion 78 in which no light diffusion layer exists, and a peripheral region is provided in a strip shape radially outward of the central region. The peripheral region is formed of a semi-transparent annular light diffusion layer 76, and the light transmittance of the central region is set larger than the light transmittance of the peripheral region. When the light source (illuminant) 54 emits light, the light diffusion layer 76 shines in a ring shape, and the infrared incident region 35a can be visually recognized. Moreover, since the light transmittance of the center area | region of the infrared incident area 35a is larger than a periphery, the temperature of the to-be-heated object A corresponding to a center area | region can be measured accurately.

また、図8(c)の構成は、半透明で円形の複数の光拡散層76を赤外線入射領域35aに点在させ、光拡散層76以外の部分は透明部78になっている。複数の光拡散層76を赤外線入射領域35aに点在させたことにより、光源54が発光すると拡散層76がドット状に光り赤外線入射領域35aを視認することができ、点在する拡散層76の密度の大小を変えることで、赤外線入射領域35aの光り方と赤外線入射領域35aを介して入射する赤外線の入射量を調整することができる。 In the configuration of FIG. 8C, a plurality of semitransparent and circular light diffusion layers 76 are scattered in the infrared incident region 35 a, and portions other than the light diffusion layer 76 are transparent portions 78. By interspersed a plurality of light diffusing layer 76 to the infrared incident region 35a, the light source 54 emits light can be light-diffusing layer 76 to view the infrared incident region 35a light like dots, dotted light diffusing layer By changing the density of 76, it is possible to adjust how the infrared incident area 35a shines and the amount of infrared incident through the infrared incident area 35a.

さらに、図8(d)の構成は、赤外線入射領域35aの中央領域を光拡散層が存在しない透明部78とし、この中央領域の径方向外方に第1の周辺領域を帯状に設け、この第1の周辺領域を半透明の環状光拡散層76で形成するとともに、第1の周辺領域の径方向外方に第2の周辺領域を帯状に設け、この第2の周辺領域を第1の周辺領域の光透過率より小さい有色光透過層80で形成したものである。光源54が発光すると拡散層76が環状に光りその外側で有色光透過層が拡散層76より暗い輝度で環状に光ることにより赤外線入射領域35aの視認性を高めることができる。また、赤外線入射領域35aの中央領域の光透過率が周辺より大きいので、中央領域に対応する被加熱物Aの温度を精度良く測定することができる。 Further, in the configuration of FIG. 8D, the central region of the infrared incident region 35a is a transparent portion 78 in which no light diffusion layer exists, and a first peripheral region is provided in a strip shape radially outward of the central region. The first peripheral region is formed of a semi-transparent annular light diffusion layer 76, and a second peripheral region is provided in a strip shape radially outward of the first peripheral region. It is formed with a colored light transmission layer 80 that is smaller than the light transmittance of the peripheral region. When the light source 54 emits light, the light diffusion layer 76 shines in a ring shape, and the colored light transmission layer shines in a ring shape with a darker brightness than the light diffusion layer 76 on the outer side, whereby the visibility of the infrared incident region 35a can be enhanced. Moreover, since the light transmittance of the center area | region of the infrared incident area 35a is larger than a periphery, the temperature of the to-be-heated object A corresponding to a center area | region can be measured accurately.

また、図8(e)の構成は、赤外線入射領域35aに設けられた透明部78に半透明の光拡散層76を格子状に形成したものである。光源54が発光すると拡散層76が格子状に光り赤外線入射領域35aを視認することができる。また、格子状の拡散層76の密度の大小を変えることで、赤外線入射領域35aの光り方と赤外線入射領域35aを介して入射する赤外線の入射量を調整することができる。 Further, in the configuration of FIG. 8E, a translucent light diffusion layer 76 is formed in a lattice shape on a transparent portion 78 provided in the infrared incident region 35a. When the light source 54 emits light, the light diffusion layer 76 shines in a lattice shape, and the infrared incident region 35a can be visually recognized. In addition, by changing the density of the lattice-shaped light diffusion layer 76, it is possible to adjust how the infrared light incident region 35a shines and the amount of incident infrared light incident through the infrared light incident region 35a.

なお、図8(b)〜(e)の構成では、赤外線入射領域35aの一部に透明部78が設けられているが、この透明部78に代えて、光拡散層76より光透過率が大きい別の光拡散層を設けるようにしてもよい。以上のように、赤外線入射領域35aに、光拡散層76と、光拡散層76より光透過率の大きい部位を混在して設けたことにより、赤外線入射領域35aを部分的に光らせ、視認性を高めることができる。また、有色光透過層80に拡散機能を持たすようにしてもよいし、拡散層76を有色にしても視認性をさらに高めることができる。 8B to 8E, a transparent portion 78 is provided in a part of the infrared incident region 35a. Instead of the transparent portion 78, the light diffusion layer 76 has a light transmittance. Another large light diffusion layer may be provided. As described above, by providing the infrared incident region 35a with the light diffusing layer 76 and a portion having a light transmittance larger than that of the light diffusing layer 76, the infrared incident region 35a is partially illuminated, and visibility is improved. Can be increased. Further, the colored light transmission layer 80 may have a diffusion function, and even if the light diffusion layer 76 is colored, the visibility can be further improved.

また、図8(a)〜(e)に示すように、凸レンズ41の集光範囲81を、赤外線入射領域35aの中心から加熱コイルの中心側に偏心させることにより、光拡散層76を被加熱物Aで覆い隠す際に、より確実に集光範囲を覆い隠すことができるとともに、被加熱物Aの周縁と集光範囲81との距離を遠くして被加熱物81の周縁から外光が集光範囲81に入り込むのを抑制することができる。   Further, as shown in FIGS. 8A to 8E, the light diffusion layer 76 is heated by decentering the condensing range 81 of the convex lens 41 from the center of the infrared incident region 35a toward the center of the heating coil. When concealing with the object A, the condensing range can be concealed more reliably, and the distance between the periphery of the object to be heated A and the condensing range 81 is increased, and external light is transmitted from the periphery of the object to be heated 81. It can suppress entering into the condensing range 81. FIG.

本発明にかかる誘導加熱調理器は、赤外線センサの誤動作を防止して被加熱物の温度を的確に検知することができるので、機器の構成を熟知していない一般ユーザが使用する家庭用の誘導加熱調理器として有用である。   The induction heating cooker according to the present invention can accurately detect the temperature of the object to be heated by preventing malfunction of the infrared sensor, so that it is used for general users who are not familiar with the configuration of the equipment. It is useful as a cooking device.

本発明にかかる誘導加熱調理器の分解斜視図The exploded perspective view of the induction heating cooking appliance concerning this invention 図1の誘導加熱調理器に設けられた加熱コイルとその周辺部を示す分解斜視図The disassembled perspective view which shows the heating coil provided in the induction heating cooking appliance of FIG. 1, and its peripheral part 加熱コイルの制御回路を示すブロック図Block diagram showing heating coil control circuit 図1の誘導加熱調理器に設けられたセンサユニットの断面図Sectional drawing of the sensor unit provided in the induction heating cooking appliance of FIG. 図4のセンサユニットの変形例の断面図Sectional drawing of the modification of the sensor unit of FIG. 図4のセンサユニットの別の変形例の断面図Sectional drawing of another modification of the sensor unit of FIG. 図4のセンサユニットのさらに別の変形例の断面図Sectional drawing of another modification of the sensor unit of FIG. 誘導加熱調理器の天板に設けられた赤外線入射領域に光拡散層を形成する場合の種々の例を示す正面図Front view showing various examples in the case of forming a light diffusion layer in an infrared incident region provided on the top plate of an induction heating cooker

符号の説明Explanation of symbols

2 本体、 4 トップユニット、 4a 天板、 4b フレーム、
6 第1の加熱コイル、 8 第2の加熱コイル、 8a 内コイル、
8b 外コイル、 8c 空隙部、 10 ラジェントヒータ、
12 ロースター加熱室、 14 ロースター扉、 16 操作部、
18 第1のプリント基板、 20 第2のプリント基板、 22 冷却ファン、
24 吸気ダクト、 26 吸気口、 28 排気口、 30 フランジ、
32 遮熱隔壁、 34 支持バネ、 35 加熱部、 35a 赤外線入射領域、
35b 発光領域、 35c 印刷膜、 35d 光吸収膜、
36 加熱コイル支持台、 36a 導光部、 36b 凹部、 36c 下部開口部、36d 上部開口部、 37 フェライト、 38 サーミスタ、
38a サーミスタホルダー、 40 赤外線センサ、 41 凸レンズ、
42 温度検知手段、 44 制御手段、 46 インバータ回路、
48,48A,48B,48C,48D センサユニット、
50 ユニットハウジング、 50a 遮蔽部、 52 印刷配線板、 54 発光体、
56 接続線、 58 コネクタ、 59 センサカバー、 60 導光筒、
60a 上部開口部、 60b 下部開口部、 60c 下方延長筒、 62 ねじ、
68 導光体、 68a 貫通孔、 68b 折曲部、 70 光拡散リング、
70a 貫通孔、 76 光拡散層、 78 透明部、 80 有色光透過層、
81 集光範囲、A 被加熱物、 C,C1 誘導加熱調理器
2 body, 4 top unit, 4a top plate, 4b frame,
6 first heating coil, 8 second heating coil, 8a inner coil,
8b outer coil, 8c gap, 10 radiant heater,
12 roaster heating chamber, 14 roaster door, 16 operation unit,
18 first printed circuit board, 20 second printed circuit board, 22 cooling fan,
24 intake duct, 26 intake port, 28 exhaust port, 30 flange,
32 thermal barrier, 34 support spring, 35 heating section, 35a infrared incident area,
35b light emitting region, 35c printed film, 35d light absorbing film,
36 heating coil support, 36a light guide, 36b recess, 36c lower opening, 36d upper opening, 37 ferrite, 38 thermistor,
38a thermistor holder, 40 infrared sensor, 41 convex lens,
42 temperature detection means, 44 control means, 46 inverter circuit,
48, 48A, 48B, 48C, 48D sensor unit,
50 unit housing, 50a shielding part, 52 printed wiring board, 54 light emitter,
56 connection line, 58 connector, 59 sensor cover, 60 light guide tube,
60a upper opening, 60b lower opening, 60c downward extension cylinder, 62 screw,
68 light guide, 68a through-hole, 68b bent part, 70 light diffusion ring,
70a through hole, 76 light diffusion layer, 78 transparent part, 80 colored light transmission layer,
81 Condensing range, A heated object, C, C1 induction heating cooker

Claims (9)

被加熱物を載置して加熱するための加熱部を有し光を透過する天板と、前記加熱部に対向して前記天板の下方に設けられ磁界を発生して被加熱物を誘導加熱する加熱コイルと、前記天板の下方に設けられ赤外線を検知する赤外線センサと、被加熱物から放射される赤外線を前記赤外線センサに導く導光筒と、前記赤外線センサからの出力信号を被加熱物の温度に換算する温度検知手段と、前記温度検知手段の検知結果に基づいて前記加熱コイルの出力を制御する制御手段と、天板の下方に設けた発光体と、を備え、被加熱物から放射される赤外線を前記導光筒に導くための赤外線入射領域を前記天板の前記加熱コイルの外周より内側で中心からずれた位置に設け、前記赤外線入射領域の少なくとも一部に光拡散層を設け、前記被加熱物から放射される赤外線が前記光拡散層を透過して前記赤外線センサに入射するとともに、前記発光体から出射された光を前記拡散層に照射して発光させることにより前記赤外線入射領域を視認できるようにしたことを特徴とする誘導加熱調理器。 A heating plate for placing and heating the object to be heated has a top plate that transmits light, and is provided below the top plate so as to face the heating unit and generate a magnetic field to induce the object to be heated. A heating coil for heating, an infrared sensor provided below the top plate for detecting infrared rays, a light guide tube for guiding infrared rays radiated from an object to be heated to the infrared sensor, and an output signal from the infrared sensor A temperature detection means for converting the temperature of the heated object, a control means for controlling the output of the heating coil based on a detection result of the temperature detection means, and a light emitter provided below the top plate, An infrared incident area for guiding infrared rays radiated from an object to the light guide tube is provided at a position offset from the center inside the outer periphery of the heating coil of the top plate and diffuses light to at least a part of the infrared incident area A layer is provided and released from the heated object. Make incidence to the infrared sensor infrared radiation is transmitted through the light diffusion layer, so that light emitted from the light emitter can be visually recognized the infrared incident region by emitting light by irradiating the light diffusing layer An induction heating cooker characterized by that. 前記赤外線入射領域周囲の前記天板裏面に光透過率が略ゼロの黒色の光吸収膜を形成したことを特徴とする請求項1に記載の誘導加熱調理器。 The induction heating cooker according to claim 1, wherein a black light absorption film having substantially zero light transmittance is formed on the back surface of the top plate around the infrared incident region. 前記赤外線入射領域に、前記光拡散層と、前記光拡散層より光透過率の大きい部位を混在して設けたことを特徴とする請求項1あるいは2に記載の誘導加熱調理器。 The induction heating cooker according to claim 1 or 2, wherein the infrared incident region is provided with a mixture of the light diffusion layer and a portion having a light transmittance larger than that of the light diffusion layer. 前記赤外線入射領域が、中央領域と、該中央領域の径方向外方に帯状に設けた周辺領域を有し、前記中央領域と前記周辺領域の光透過率が異なることを特徴とする請求項1乃至3のいずれか1項に記載の誘導加熱調理器。 2. The infrared ray incident region has a central region and a peripheral region provided in a strip shape radially outward of the central region, and the light transmittance of the central region and the peripheral region is different. The induction heating cooking appliance of any one of thru | or 3. 前記中央領域の光透過率を前記周辺領域の光透過率より大きく設定したことを特徴とする請求項4に記載の誘導加熱調理器。 The induction heating cooker according to claim 4, wherein the light transmittance of the central region is set larger than the light transmittance of the peripheral region. 前記周辺領域が、前記中央領域の径方向外方に帯状に設けられた第1の周辺領域と、該第1の周辺領域の径方向外方に帯状に設けられた第2の周辺領域を有し、該第2の周辺領域の光透過率を前記第1の周辺領域の光透過率より小さく設定したことを特徴とする請求項4あるいは5に記載の誘導加熱調理器。 The peripheral region has a first peripheral region provided in a strip shape radially outward of the central region, and a second peripheral region provided in a strip shape radially outward of the first peripheral region. The induction heating cooker according to claim 4 or 5, wherein the light transmittance of the second peripheral region is set smaller than the light transmittance of the first peripheral region. 複数の前記光拡散層を前記赤外線入射領域に点在させたことを特徴とする請求項3に記載の誘導加熱調理器。 The induction heating cooker according to claim 3, wherein a plurality of the light diffusion layers are scattered in the infrared incident region. 前記光拡散層を前記赤外線入射領域に格子状に設けたことを特徴とする請求項3に記載の誘導加熱調理器。 The induction heating cooker according to claim 3, wherein the light diffusion layer is provided in a grid pattern in the infrared incident region. 前記導光筒は、前記発光体から出射された光を前記導光筒の開口部から前記拡散層に照射して発光させるようにしたことを特徴とする請求項1乃至8のいずれか1項に記載の誘導加熱調理器。 9. The light guide tube according to claim 1, wherein light emitted from the light emitter is irradiated to the light diffusion layer from an opening of the light guide tube to emit light. The induction heating cooker according to item.
JP2006339596A 2006-12-18 2006-12-18 Induction heating cooker Expired - Fee Related JP4896695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339596A JP4896695B2 (en) 2006-12-18 2006-12-18 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339596A JP4896695B2 (en) 2006-12-18 2006-12-18 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2008153046A JP2008153046A (en) 2008-07-03
JP4896695B2 true JP4896695B2 (en) 2012-03-14

Family

ID=39655016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339596A Expired - Fee Related JP4896695B2 (en) 2006-12-18 2006-12-18 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP4896695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4240108A1 (en) * 2022-03-04 2023-09-06 Whirlpool Corporation Method of controlling a cooking system and related cooking system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2322006B1 (en) * 2007-04-19 2010-03-04 Bsh Electrodomesticos España, S.A. DOMESTIC DEVICE DEVICE WITH AN IRON OF A TRANSPARENT MATERIAL AT LEAST PARTIALLY.
JP5052262B2 (en) * 2007-08-31 2012-10-17 パナソニック株式会社 Induction heating cooker
JP5206336B2 (en) * 2008-11-10 2013-06-12 パナソニック株式会社 Induction heating cooker
JP5308830B2 (en) * 2009-01-06 2013-10-09 日立アプライアンス株式会社 Induction heating cooker
KR101474767B1 (en) * 2009-02-25 2014-12-22 삼성전자 주식회사 Cooking apparatus
JP5169970B2 (en) * 2009-04-21 2013-03-27 パナソニック株式会社 Induction heating cooker
JP5240104B2 (en) * 2009-07-01 2013-07-17 パナソニック株式会社 Induction heating cooker
JP4989690B2 (en) * 2009-07-21 2012-08-01 三菱電機株式会社 Induction heating cooker
JP5523232B2 (en) * 2010-07-20 2014-06-18 三菱電機株式会社 Cooker
JP5753973B2 (en) * 2010-12-28 2015-07-22 パナソニックIpマネジメント株式会社 Cooker
JP5722715B2 (en) * 2011-07-11 2015-05-27 三菱電機株式会社 Cooker
JP5741468B2 (en) * 2012-02-10 2015-07-01 三菱電機株式会社 Induction heating cooker
ITTO20120896A1 (en) 2012-10-15 2014-04-16 Indesit Co Spa INDUCTION HOB
US10605464B2 (en) 2012-10-15 2020-03-31 Whirlpool Corporation Induction cooktop
JP5500281B2 (en) * 2013-02-15 2014-05-21 三菱電機株式会社 Electromagnetic induction heating cooker
JP6650247B2 (en) * 2015-10-30 2020-02-19 日立グローバルライフソリューションズ株式会社 Induction heating cooker
EP3432682A1 (en) 2017-07-18 2019-01-23 Whirlpool Corporation Method for operating an induction cooking hob and cooking hob using such method
US10993292B2 (en) 2017-10-23 2021-04-27 Whirlpool Corporation System and method for tuning an induction circuit
EP3544376B1 (en) 2018-03-23 2020-08-26 Whirlpool Corporation Connection interface for induction coil array
EP3544377B1 (en) 2018-03-23 2020-08-05 Whirlpool Corporation Temperature sensor compression features for induction cooktop assembly
EP3544374B1 (en) 2018-03-23 2020-09-23 Whirlpool Corporation Induction cooktop with improved magnetic flux concentrating foil
US11140751B2 (en) 2018-04-23 2021-10-05 Whirlpool Corporation System and method for controlling quasi-resonant induction heating devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075624A (en) * 2000-08-31 2002-03-15 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2003133044A (en) * 2001-10-25 2003-05-09 Matsushita Electric Ind Co Ltd Induction cooker
JP4193138B2 (en) * 2004-04-28 2008-12-10 三菱電機株式会社 Cooker
JP2006245014A (en) * 2006-06-09 2006-09-14 Mitsubishi Electric Corp Heating cooker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4240108A1 (en) * 2022-03-04 2023-09-06 Whirlpool Corporation Method of controlling a cooking system and related cooking system

Also Published As

Publication number Publication date
JP2008153046A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4896695B2 (en) Induction heating cooker
JP5047989B2 (en) Induction heating cooker
US8203106B2 (en) Induction heating appliance for cooking
JP4932548B2 (en) Induction heating cooker
JP5147841B2 (en) Induction heating cooker
JP2008171757A (en) Cooking equipment
JPWO2007097295A1 (en) Induction heating cooker
JP4872822B2 (en) Induction heating cooker
JP2008226573A (en) Induction cooker
JP5065378B2 (en) Induction heating cooker
JP2009059593A (en) Induction-heating cooker
JP2008084854A (en) Induction heating cooker
JP5326356B2 (en) Cooker
JP2003257601A (en) Induction cooker
JP4679653B2 (en) Cooker
JP5107947B2 (en) Rotating antenna rotation detector for high frequency cooking device
JP5500281B2 (en) Electromagnetic induction heating cooker
JP2004171855A (en) Induction heating cooker
JP2011077058A (en) Heating cooker
JP5052262B2 (en) Induction heating cooker
JP2014179255A (en) Induction heating cooker
JP5272979B2 (en) Electromagnetic induction heating cooker
JP6258238B2 (en) Induction heating cooker
JP2012022908A (en) Induction heating cooker
JP2009264734A (en) Cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees