JP4896055B2 - Forced cooling system for electrodeposition tools - Google Patents

Forced cooling system for electrodeposition tools Download PDF

Info

Publication number
JP4896055B2
JP4896055B2 JP2008057328A JP2008057328A JP4896055B2 JP 4896055 B2 JP4896055 B2 JP 4896055B2 JP 2008057328 A JP2008057328 A JP 2008057328A JP 2008057328 A JP2008057328 A JP 2008057328A JP 4896055 B2 JP4896055 B2 JP 4896055B2
Authority
JP
Japan
Prior art keywords
tool
cavity
electrodeposition
refrigerant
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008057328A
Other languages
Japanese (ja)
Other versions
JP2009214186A (en
Inventor
郁男 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsune Seiki Co Ltd
Original Assignee
Tsune Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsune Seiki Co Ltd filed Critical Tsune Seiki Co Ltd
Priority to JP2008057328A priority Critical patent/JP4896055B2/en
Publication of JP2009214186A publication Critical patent/JP2009214186A/en
Application granted granted Critical
Publication of JP4896055B2 publication Critical patent/JP4896055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、難削材料の研削加工に際して生産性を高めるのに効果的な電着工具の強制冷却システムに関するものである。   The present invention relates to a forced cooling system for an electrodeposition tool that is effective for increasing productivity when grinding difficult-to-cut materials.

最近、金型材料として超硬(超硬合金)、航空機関連材料としてチタン合金やニッケル合金など、難削材料の研削加工の要求が多くなってきている。これらの材料が難削である理由は、超硬が工作物の場合は、非常に硬く、ダイヤモンドや立方晶窒化ホウ素(Cubic Boron Nitride 、以下、CBNと略称する)の工具しか刃が立たない状況であるが、生産性を上げようとすると工具温度が上昇し、ダイヤモンドやCBNの本来の強度と硬さが維持できなくなるためである。又、チタン合金やニッケル合金が工作物の場合は、それ自身の熱伝導率が極めて低く、研削加工で発生した熱の多くが工具に流入するため、ここでも工具温度が上昇し、ダイヤモンドやCBNの本来の強度と硬さが維持できなくなるためである。一方、ダイヤモンド又はCBNを砥粒とした電着工具を使用したNC制御の加工が、加工時間及び加工コストの点から有利と考えられ、現場作業としてこの加工が頻繁に要求されている。この工具温度の上昇問題を解決するために、特許文献1などに記載されるように、研削工具の本体内に軸方向に沿ってヒートパイプを内蔵させると共に、当該ヒートパイプの放熱領域を冷却する冷却手段を併設する工具の冷却システムが考えられている。
特開2005−40925号公報
Recently, there is an increasing demand for grinding difficult-to-cut materials such as cemented carbide (hard metal) as a mold material and titanium alloy and nickel alloy as aircraft-related materials. The reason why these materials are difficult to cut is that when the carbide is a workpiece, it is very hard and only a diamond or cubic boron nitride (CBN) tool can be used. However, when the productivity is increased, the tool temperature rises and the original strength and hardness of diamond and CBN cannot be maintained. In addition, when the titanium alloy or nickel alloy is a workpiece, its own thermal conductivity is very low, and much of the heat generated in the grinding process flows into the tool. This is because the original strength and hardness cannot be maintained. On the other hand, NC controlled processing using an electrodeposition tool with diamond or CBN as abrasive grains is considered advantageous from the viewpoint of processing time and processing cost, and this processing is frequently required as a field work. In order to solve the problem of increasing the tool temperature, as described in Patent Document 1 and the like, a heat pipe is incorporated in the main body of the grinding tool along the axial direction, and the heat radiation area of the heat pipe is cooled. A cooling system for a tool provided with a cooling means has been considered.
JP 2005-40925 A

上記のヒートパイプ内蔵の工具を使用する冷却システムでは、工具本体に直接冷媒を接触させて熱交換させる直接冷却方式と比較して冷却効率が低いばかりでなく、工具自体の大幅なコストアップを免れず、実用面で十分な効果が期待できない。勿論、直接冷却方式とも言える従来の湿式研削方法のように、工具の外表面に冷却油剤を直接滴下接触させる冷却方法を採用することも考えられるが、加工時以外の空転時は工具を多少冷却することができるものの、加工時には工具の冷却対象部位である工具先端の加工作用部は工作物によって隠れてしまい、冷却油剤が工具先端の加工作用部に全くかからない状態になってしまう。又、仮に高速回転している工具に冷却油剤をかけることができたとしても、工具は高速回転しているので当該工具表面上の遠心力で冷却油剤が飛散してしまい、滴下された冷却油剤の多くは工具先端の加工作用部まで達することはない。即ち、従来の湿式研削方法では、所期の冷却効果は殆ど期待できないのが実情である。   The cooling system using a tool with a built-in heat pipe not only has a lower cooling efficiency than the direct cooling method in which a heat is exchanged by directly contacting a coolant to the tool body, but also avoids a significant cost increase of the tool itself. Therefore, a practical effect cannot be expected. Of course, it is also possible to adopt a cooling method in which the cooling oil is directly dropped into contact with the outer surface of the tool, as in the conventional wet grinding method, which can be said to be a direct cooling method. Although it is possible, the machining action part at the tip of the tool, which is the part to be cooled of the tool, is hidden by the workpiece during machining, and the cooling oil is not applied to the machining action part at the tool tip. Also, even if the cooling oil can be applied to the tool rotating at high speed, the cooling oil is scattered by the centrifugal force on the surface of the tool because the tool is rotating at high speed, and the dropped cooling oil is applied. Most of them do not reach the working part at the tool tip. That is, in the conventional wet grinding method, the expected cooling effect can hardly be expected.

本発明は上記のような従来の問題点を解消し得る電着工具の強制冷却システムを提供することを目的とするものであって、請求項1に記載の電着工具の強制冷却システムは、後述する実施形態の参照符号を付して示すと、電着工具4の本体5の内部に、本体5の取付け用端部5bの側が開放する軸方向の空洞部8を設け、この工具本体5の取付け用端部5bが工作機械の工具駆動主軸1に装着された状態において、前記空洞部8の奥端部8aに冷媒を供給する冷媒供給手段を設け、この空洞部8の奥端部8aから熱交換後の冷媒を、前記空洞部8を経由させて工具外の大気中に排出するに当って、前記冷媒供給手段は、前記空洞部8内に差し込まれた冷媒供給管9から構成し、この冷媒供給管9から冷媒としての水を、前記空洞部8の奥端部8aで略全量が熱交換により気化する程度の流量で供給し、蒸気が前記空洞部8と冷媒供給管9との間の空隙を経由して工具外の大気中に排出するように構成され、且つ前記電着工具4は、前記空洞部8を備えた工具本体5が、銅、銅合金、アルミニウム、アルミニウム合金などの熱伝導率の高い材料から成形されると共に、前記空洞部8を備えた工具本体5の表面に砥粒6が、銅、銅合金、アルミニウム、アルミニウム合金などの熱伝導率の高い鍍金材料(鍍金層7)によって電着されてなるAn object of the present invention is to provide a forced cooling system for an electrodeposition tool that can solve the conventional problems as described above, and the forced cooling system for an electrodeposition tool according to claim 1, When a reference numeral of an embodiment to be described later is attached and indicated, an axial cavity 8 is provided in the body 5 of the electrodeposition tool 4 so that the attachment end 5b side of the body 5 is opened. In the state where the mounting end portion 5b is mounted on the tool drive spindle 1 of the machine tool, a refrigerant supply means for supplying a refrigerant to the back end portion 8a of the cavity portion 8 is provided, and the back end portion 8a of the cavity portion 8 is provided. When the refrigerant after heat exchange is discharged into the atmosphere outside the tool via the cavity 8, the refrigerant supply means is configured by a refrigerant supply pipe 9 inserted into the cavity 8. The water as the refrigerant is supplied from the refrigerant supply pipe 9 to the back end portion of the cavity 8. Was fed at a degree of flow rate substantially total volume a is vaporized by heat exchange via an air gap between the vapor cavity 8 and the refrigerant supply tube 9 configured to discharge into the atmosphere outside the tool, The electrodeposition tool 4 includes the tool body 5 having the cavity 8 formed from a material having high thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy, and the cavity 8. Abrasive grains 6 are electrodeposited on the surface of the tool body 5 with a plating material (plating layer 7) having a high thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy or the like .

又、請求項2に記載の電着工具の強制冷却システムは、電着工具4の本体5の内部に、本体5の取付け用端部5bの側が開放する軸方向の空洞部8を設け、この工具本体5の取付け用端部5bが工作機械の工具駆動主軸1に装着された状態において、前記空洞部8の奥端部8aに冷媒を供給する冷媒供給手段を設け、この空洞部8の奥端部8aから熱交換後の冷媒を、前記空洞部8を経由させて工具外の大気中に排出するに当って、前記電着工具4は、その工具本体5の取付け用端部5bが工作機械の垂直向きの工具駆動主軸1の下端に装着されるものであって、前記冷媒供給手段は、垂直向きの前記空洞部8の上端開放部(開放端8b)から当該空洞部8内に冷媒としての水を滴下する水滴下ノズル11から構成し、この水滴下ノズル11から水を、前記空洞部8の奥端部8aで略全量が熱交換により気化する程度の流量で滴下供給し、蒸気が前記空洞部8を経由して工具外の大気中に排出するように構成され、且つ前記電着工具4は、前記空洞部8を備えた工具本体5が、銅、銅合金、アルミニウム、アルミニウム合金などの熱伝導率の高い材料から成形されると共に、前記空洞部8を備えた工具本体5の表面に砥粒6が、銅、銅合金、アルミニウム、アルミニウム合金などの熱伝導率の高い鍍金材料(鍍金層7)によって電着されてなるFurther, the forced cooling system for an electrodeposition tool according to claim 2 is provided with an axial cavity 8 in the body 5 of the electrodeposition tool 4 in which the side of the mounting end 5b of the body 5 is opened. In a state where the mounting end portion 5b of the tool body 5 is mounted on the tool drive spindle 1 of the machine tool, a refrigerant supply means for supplying a refrigerant to the back end portion 8a of the cavity portion 8 is provided. In discharging the refrigerant after heat exchange from the end portion 8a to the atmosphere outside the tool through the cavity portion 8, the attachment end portion 5b of the tool body 5 of the electrodeposition tool 4 is a work piece. The coolant supply means is attached to the lower end of the tool drive main shaft 1 in the vertical direction of the machine, and the refrigerant supply means supplies the refrigerant into the cavity portion 8 from the upper end open portion (open end 8b) of the cavity portion 8 in the vertical direction. The water dripping nozzle 11 for dripping water as the water dripping nozzle 11 Water is dripped and supplied at a flow rate such that substantially the entire amount is vaporized by heat exchange at the back end portion 8a of the cavity portion 8, and steam is discharged to the atmosphere outside the tool via the cavity portion 8. In the electrodeposition tool 4, the tool body 5 having the cavity 8 is formed from a material having high thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy, and the cavity 8 Abrasive grains 6 are electrodeposited on the surface of the tool body 5 provided with a plating material (plating layer 7) having a high thermal conductivity such as copper, copper alloy, aluminum or aluminum alloy .

上記請求項1に記載の本発明に係る電着工具の強制冷却システムによれば、工作機械の工具駆動主軸に装着された電着工具の本体先端部、即ち、電着工具の加工作用部をもって工作物を研削加工するとき、当該工具本体に設けられた空洞部の奥端部、即ち、電着工具の加工作用部の内側に冷媒供給手段により冷媒を供給し、この冷媒と電着工具の加工作用部との間で熱交換作用を行わせ、熱交換後の冷媒を、前記空洞部を経由させて工具外に排出するものであるから、重力又は送給圧力で液相又は気相の適当な冷媒を前記空洞部の奥端部に供給しさえすれば、電着工具の加工作用部で発生する熱を確実に前記冷媒に伝播吸収させ、熱交換後の当該冷媒の工具外への排出により、電着工具の加工作用部で発生する熱を確実に除去することができる。   According to the forced cooling system for an electrodeposition tool according to the first aspect of the present invention, the main body tip of the electrodeposition tool mounted on the tool drive spindle of the machine tool, that is, the machining operation portion of the electrodeposition tool is provided. When grinding a workpiece, the coolant is supplied by the coolant supply means to the inner end of the working portion of the electrodeposition tool, that is, the inner end of the cavity portion provided in the tool body. Since the heat exchange action is performed with the processing action part, and the refrigerant after the heat exchange is discharged outside the tool through the cavity part, the liquid phase or the gas phase is caused by gravity or a feeding pressure. As long as an appropriate refrigerant is supplied to the back end of the cavity, the heat generated at the machining operation portion of the electrodeposition tool is reliably propagated and absorbed by the refrigerant, and the refrigerant is exchanged outside the tool after heat exchange. By discharging, the heat generated in the working part of the electrodeposition tool can be reliably removed. .

即ち、従来のヒートパイプ内蔵の工具を使用する冷却システムと比較して、電着工具の加工作用部を内側から冷媒により直接強制冷却することができるので、その冷却効率は格段に高くなる。又、冷却油剤を工具の外側にかける湿式研削方法に頼る場合と比較して、極めて確実に且つ効率良く電着工具の加工作用部を冷却することができる。従って、先に説明したような難削材料を電着工具で研削加工する際の問題点、即ち、ダイヤモンドやCBNなどの砥粒の本来の強度と硬さが工具温度の上昇により維持できなくなるという問題点を解消し、本発明システムの電着工具を使用して超硬(超硬合金)、チタン合金、ニッケル合金などの難削材料の研削加工を行うことにより、加工時間の短縮や加工コストの低減を図ることができ、延いては電着工具の耐用寿命の大幅な延長効果が期待できるに至ったのである。しかも本発明によれば、電着工具側には、工具本体の遊端部側が開放する空洞部を工具本体の軸方向に形成するだけで良く、ヒートパイプ内蔵の工具を使用する冷却システムを採用するときのように、電着工具自体の大幅なコストアップを伴うこともない。   That is, as compared with a conventional cooling system using a tool with a built-in heat pipe, the working portion of the electrodeposition tool can be forcibly cooled directly from the inside by the refrigerant, and the cooling efficiency is remarkably increased. In addition, it is possible to cool the working portion of the electrodeposition tool extremely reliably and efficiently as compared with the case of relying on the wet grinding method in which the cooling oil is applied to the outside of the tool. Therefore, it is difficult to maintain the original strength and hardness of abrasive grains such as diamond and CBN due to an increase in tool temperature when grinding difficult-to-cut materials as described above with an electrodeposition tool. By eliminating the problems and grinding difficult-to-cut materials such as cemented carbide (hard metal), titanium alloy, nickel alloy using the electrodeposition tool of the system of the present invention, the processing time can be reduced and the processing cost can be reduced. As a result, it has become possible to expect a significant extension of the service life of the electrodeposition tool. Moreover, according to the present invention, a cooling system that uses a tool with a built-in heat pipe is used on the electrodeposition tool side, as long as the hollow portion opened on the free end side of the tool body is formed in the axial direction of the tool body. As is the case, there is no significant increase in cost of the electrodeposition tool itself.

尚、本発明によれば、水を使用して本発明を極めて安価に実施することができるだけでなく、熱交換後の高温の水を工具本体内から回収するのではなく、供給した水の略全量を前記空洞部の奥端部で気化させて放出させるのであるから、供給する水量を、その略全量が前記空洞部の奥端部で気化し得る最大量に設定することにより、気化熱による最大の冷却効果を発揮させて、極めて高い強制冷却効果を得ることができる。   In addition, according to the present invention, not only can the present invention be carried out at a very low cost using water, but the high-temperature water after heat exchange is not recovered from within the tool body, Since the entire amount is vaporized and discharged at the back end of the cavity, the amount of water to be supplied is set to the maximum amount that can be vaporized at the back end of the cavity. An extremely high forced cooling effect can be obtained by exerting the maximum cooling effect.

又、請求項2に記載の本発明によれば、請求項1に記載の発明と同様の効果を期待できると共に、工具本体に形成する前記空洞部を、当該空洞部内に向けて上から滴下させた水滴を当該空洞部の奥端部(下端部)まで到達させることができる程度の内径とし、工具本体の前記空洞部内に差し込まれる冷媒供給管を無くし、システムの構成をシンプルにして、本発明を一層安価に実施することができる。勿論、この請求項2に記載の構成は、電着工具の本体遊端部側が工作機械の垂直向きの工具駆動主軸の下端に装着されるものであって、前記空洞部が上端開放の垂直向きになる場合に限定されるが、請求項1に記載のように、前記空洞部内に差し込まれる冷媒供給管を使用する構成では、電着工具が水平横向きにセットされるような工作機械においても本発明を適用実施することができる。   According to the second aspect of the present invention, the same effect as that of the first aspect of the invention can be expected, and the cavity formed in the tool body is dropped from above toward the cavity. The inner diameter is such that the water droplets can reach the back end (lower end) of the cavity, the refrigerant supply pipe inserted into the cavity of the tool body is eliminated, and the system configuration is simplified. Can be implemented at a lower cost. Of course, in the configuration of the second aspect, the main body free end side of the electrodeposition tool is attached to the lower end of the tool drive main shaft in the vertical direction of the machine tool, and the hollow portion is in the vertical direction with the upper end open. However, in the configuration using the refrigerant supply pipe inserted into the hollow portion as in claim 1, the present invention is also applicable to a machine tool in which the electrodeposition tool is set horizontally and horizontally. The invention can be applied.

尚、従来の電着工具では、砥粒のダイヤモンドやCBNは熱伝導率が極めて良く、ヒートシンク特性が優れているにもかかわらず、工具本体のステンレス鋼と電着材料であるニッケルの二材料が電着工具の冷却特性を著しく損ねる結果となっていた。然るに、請求項1又は請求項2に記載の本発明によれば、工具本体の材料や電着材料に、ステンレス鋼やニッケルと比較して熱伝導率の高い銅、銅合金、アルミニウム、アルミニウム合金などを使用するのであるから、電着工具のヒートシンク特性そのものを高め、研削加工で発生した熱を効率よく放散させ、工具先端の加工作用部が高温になることを確実に防止することができる。   In addition, in conventional electrodeposition tools, the diamond and CBN abrasive grains have extremely good thermal conductivity and excellent heat sink characteristics, but there are two materials: stainless steel for the tool body and nickel for electrodeposition. As a result, the cooling characteristics of the electrodeposition tool were significantly impaired. However, according to the first or second aspect of the present invention, copper, copper alloy, aluminum, aluminum alloy having higher thermal conductivity than stainless steel or nickel can be used for the material of the tool body or the electrodeposition material. Therefore, it is possible to improve the heat sink characteristics of the electrodeposition tool itself, dissipate the heat generated by the grinding process efficiently, and reliably prevent the processing action part at the tip of the tool from becoming high temperature.

尚、ステンレス鋼やニッケルと比較して、上記銅などの熱伝導率の高い材料は基本的に機械的強度が低いものであるが、問題は、実際の研削加工時にこれら材料で構成された工具本体や電着層が降伏応力に達するか否かである。この点に関しては、後述するように、実際の研削加工時の実用的な切込み深さに照らして全く問題ないことが確認されている。
即ち、請求項1又は請求項2に記載の本発明に係る電着工具4によれば、空洞部8を備えた工具本体5は、銅、銅合金、アルミニウム、アルミニウム合金などの、ステンレス鋼と比較して熱伝導率の高い材料によって製造し、更にこの工具本体5に砥粒6を電着する鍍金層7には、ニッケルと比較して熱伝導率の高い、銅、銅合金、アルミニウム、アルミニウム合金などを使用するため、工具本体5の加工作用部5aによる研削加工に伴って発生した熱は、熱伝導率の高い鍍金層7から本体5へ、そして熱伝導率の高い本体5から空洞部8の内壁面に接する水へと極めて効率良く伝達されて放熱され、加工作用部5aが高温になるのを効果的に抑制できる。
以上のように、本発明に係るシステムに採用される電着工具4によれば、空洞部8を備えた工具本体5と鍍金層7に銅などの熱伝導率の高い材料を使用して構成するため、従来システムと比較して、電着工具に対する極めて大きな冷却能力を得ることができ、難削材料である超硬、チタン合金、ニッケル合金などの研削加工の際に、厳しい加工条件にしても工具を低温に維持できるため、工具寿命を大幅に延長させて、生産性の向上に寄与できる。
Compared to stainless steel and nickel, materials with high thermal conductivity such as copper are basically low in mechanical strength. However, the problem is that the tool is made of these materials during actual grinding. Whether the main body and the electrodeposition layer reach the yield stress. In this regard, as will be described later, it has been confirmed that there is no problem in light of the practical cutting depth during actual grinding.
That is, according to the electrodeposition tool 4 according to the first or second aspect of the present invention, the tool body 5 having the cavity 8 is made of stainless steel such as copper, copper alloy, aluminum, and aluminum alloy. Compared to nickel, copper, copper alloy, aluminum, which has a higher thermal conductivity than nickel, is manufactured by using a material having a higher thermal conductivity and electrodepositing abrasive grains 6 on the tool body 5. Since an aluminum alloy or the like is used, the heat generated during grinding by the working portion 5a of the tool body 5 is transferred from the plating layer 7 having a high thermal conductivity to the body 5 and from the body 5 having a high thermal conductivity to the cavity. It is possible to effectively prevent the processing action part 5a from becoming high temperature because it is transmitted to the water in contact with the inner wall surface of the part 8 very efficiently and radiated.
As described above, according to the electrodeposition tool 4 employed in the system according to the present invention, the tool body 5 having the cavity 8 and the plating layer 7 are made of a material having high thermal conductivity such as copper. Therefore, compared with the conventional system, it is possible to obtain an extremely large cooling capacity for the electrodeposition tool. When grinding hard materials such as carbide, titanium alloy, nickel alloy, etc. However, since the tool can be maintained at a low temperature, the tool life can be greatly extended and the productivity can be improved.

以下に本発明の具体的実施例を添付図に基づいて説明すると、本発明の第一実施形態を示す図1において、1は工作機械の垂直向きの工具駆動主軸であって、この工具駆動主軸1の下端部に、従来周知のように、先端にコレットチャック2を備えたスピンドル3が工具駆動主軸1と同心状に取り付けられ、このスピンドル3の下端部に電着工具4がコレットチャック2により同心状に取り付けられる。電着工具4は、図3及び図4にも示すように、一例を挙げると、例えば外径 6mm程度の円柱状の本体5の一端を突曲面状に成形すると共に、この突曲面状先端から軸方向所要領域(例えば15mm程度)の外周面全体にダイヤモンド又はCBNから成る砥粒6を鍍金層7により電着して加工作用部5aを構成し、内部には、適当な内径(例えば直径3.3mm 程度)の空洞部8を、その奥端部8aが加工作用部5aの内側に位置するように、本体5の取付け用端部5bの端面から同心状に穿設したものである。従って空洞部8は、本体5の取付け用端部5b側に開放端8bを有する。   A specific example of the present invention will be described below with reference to the accompanying drawings. In FIG. 1 showing a first embodiment of the present invention, reference numeral 1 denotes a tool drive spindle in a vertical direction of a machine tool. As is well known in the art, a spindle 3 having a collet chuck 2 at its tip is concentrically attached to the tool driving spindle 1 at the lower end of the spindle 1, and an electrodeposition tool 4 is attached to the lower end of the spindle 3 by the collet chuck 2. Mounted concentrically. As shown in FIGS. 3 and 4, for example, the electrodeposition tool 4 forms one end of a columnar body 5 having an outer diameter of about 6 mm into a projecting curved surface, and from the tip of the projecting curved surface. An abrasive 6 made of diamond or CBN is electrodeposited on the entire outer peripheral surface of an axially required region (for example, about 15 mm) by a plating layer 7 to form a working portion 5a. The hollow portion 8 (about mm) is drilled concentrically from the end face of the mounting end portion 5b of the main body 5 so that the back end portion 8a is located inside the processing action portion 5a. Therefore, the cavity portion 8 has an open end 8 b on the attachment end portion 5 b side of the main body 5.

上記構成の電着工具4は、その本体5の取付け側端部5bにおいて、スピンドル3の下端部にコレットチャック2により同心状に取り付けられる。スピンドル3の内端部には、工具取付け孔3aと連通する貫通孔部3bが同心状に設けられており、工具駆動主軸1のスピンドル取付け孔1aも上端側が開放されている。従って、工具駆動主軸1におけるスピンドル取付け孔1aの上端開放部からスピンドル3の貫通孔部3b及び工具取付け孔3aを経由して、当該スピンドル3に取り付けられている電着工具4の空洞部8内に、当該空洞部8の内径より適当に小径(例えば直径 2mm程度)で撓み剛性の大きな例えばステンレス鋼から成る直線状の冷媒供給管9を差し込むことができる。而して、電着工具4の空洞部8内に冷媒供給管9を、その先端が空洞部8の奥端部8a近傍に達するように差し込んだならば、好ましくは当該冷媒供給管9が空洞部8の内壁面に接触しないように、例えば工具駆動主軸1を支承している工作機械のフレームに当該冷媒供給管9を適当な支持具を介して固定し、この冷媒供給管9を流量の微調整可能なミスト装置10に接続する。   The electrodeposition tool 4 having the above-described configuration is concentrically attached to the lower end portion of the spindle 3 by the collet chuck 2 at the attachment side end portion 5 b of the main body 5. A through hole 3b communicating with the tool mounting hole 3a is concentrically provided at the inner end of the spindle 3, and the upper end of the spindle mounting hole 1a of the tool driving spindle 1 is also opened. Accordingly, in the cavity portion 8 of the electrodeposition tool 4 attached to the spindle 3 from the upper end opening portion of the spindle attachment hole 1a in the tool drive spindle 1 through the through hole portion 3b and the tool attachment hole 3a of the spindle 3. In addition, a linear refrigerant supply pipe 9 made of, for example, stainless steel having a small diameter (for example, about 2 mm in diameter) and a large bending rigidity, which is appropriately smaller than the inner diameter of the hollow portion 8, can be inserted. Thus, if the coolant supply pipe 9 is inserted into the cavity portion 8 of the electrodeposition tool 4 so that the tip thereof reaches the vicinity of the back end portion 8a of the cavity portion 8, the coolant supply tube 9 is preferably hollow. For example, the refrigerant supply pipe 9 is fixed to a frame of a machine tool supporting the tool driving spindle 1 via an appropriate support so as not to contact the inner wall surface of the portion 8, and the refrigerant supply pipe 9 is connected to the flow rate of the flow rate. Connected to a fine-tunable mist device 10.

工作物に対する上記電着工具4による研削作業は従来周知の方法で行われるが、この研削作業に際して、前記ミスト装置10から適当な流量で冷媒としての水を冷媒供給管9に連続的に供給すると、冷媒供給管9の先端から流出する水は、工具本体5の空洞部8の奥端部8a内に供給され、この空洞部8の周壁から、研削加工作用により発生した加工作用部5aの熱を直接受けて加熱されて気化し、その気化熱による冷却作用により、空洞部8の奥端部8aの周壁、即ち、加工作用部5aを直接冷却することになる。水の気化により発生した蒸気は、冷媒供給管9と空洞部5の内壁面との間の空隙を経由して上昇し、スピンドル3の工具取付け孔3a及び貫通孔部3bから工具駆動主軸1におけるスピンドル取付け孔1aを経由してその上端開放部から外界に自然放出される。空洞部8の奥端部8a内で従って、ミスト装置10から冷媒供給管9に連続的に供給する水の流量を、その水の全量が空洞部8の奥端部8a内で気化して液相で残らない最大流量に設定することにより、工具本体5の加工作用部5aに対する内側からの水の気化熱冷却効果を最大に高め、極めて効率良く工具本体5の加工作用部5aを冷却することができる。   Grinding work on the workpiece by the electrodeposition tool 4 is performed by a conventionally known method. In this grinding work, when water as a coolant is continuously supplied from the mist device 10 to the coolant supply pipe 9 at an appropriate flow rate. The water flowing out from the tip of the refrigerant supply pipe 9 is supplied into the inner end 8a of the cavity 8 of the tool body 5, and the heat of the working part 5a generated by the grinding action from the peripheral wall of the cavity 8 is provided. Is directly heated and vaporized, and the peripheral wall of the back end portion 8a of the cavity portion 8, that is, the working portion 5a is directly cooled by the cooling action by the heat of vaporization. Vapor generated by the vaporization of water rises through a gap between the refrigerant supply pipe 9 and the inner wall surface of the cavity 5, and passes through the tool mounting hole 3 a and the through hole 3 b of the spindle 3 in the tool drive spindle 1. Through the spindle mounting hole 1a, it is spontaneously discharged from the open end of the upper end to the outside. Accordingly, the flow rate of water continuously supplied from the mist device 10 to the refrigerant supply pipe 9 is vaporized in the back end portion 8a of the cavity portion 8 in the back end portion 8a of the cavity portion 8 so that the liquid flow is reduced. By setting the maximum flow rate that does not remain in the phase, the vaporization heat cooling effect of water from the inside with respect to the machining action portion 5a of the tool body 5 is maximized, and the machining action portion 5a of the tool body 5 is cooled extremely efficiently. Can do.

図2に示す本発明の第二実施形態では、ミスト装置10に接続された冷媒供給管9を工具本体5の空洞部8内に挿入せず、当該冷媒供給管9の先端に水滴下ノズル11が取り付けられ、この水滴下ノズル11から滴下する水が工具本体5の空洞部8内に、その上端の開放端8bより流入するように、当該水滴下ノズル11が位置決め保持されている。図示例では、水滴下ノズル11がスピンドル3の工具取付け孔3a内に位置決めされているが、工具駆動主軸1におけるスピンドル取付け孔1a内や、工具駆動主軸1のスピンドル取付け孔1aより上方に水滴下ノズル11を配設し、水滴下ノズル11から滴下する水が、スピンドル3の貫通孔部3bから工具取付け孔3aを経由して工具本体5の空洞部8内に滴下流入するように構成しても良い。水滴下ノズル11の位置決め固定は、工作機械のフレームに取り付けた支持具で水滴下ノズル11を直接保持できるときはそのようにし、図示の構造のように水滴下ノズル11を直接保持できないときは、前記支持具で冷媒供給管9を保持して水滴下ノズル11を位置決めすれば良い。   In the second embodiment of the present invention shown in FIG. 2, the coolant supply pipe 9 connected to the mist device 10 is not inserted into the cavity 8 of the tool body 5, and the water dropping nozzle 11 is formed at the tip of the coolant supply pipe 9. The water dropping nozzle 11 is positioned and held so that the water dripping from the water dropping nozzle 11 flows into the cavity 8 of the tool body 5 from the open end 8b at the upper end. In the illustrated example, the water dripping nozzle 11 is positioned in the tool mounting hole 3 a of the spindle 3, but the water dripping is performed in the spindle mounting hole 1 a of the tool driving main shaft 1 or above the spindle mounting hole 1 a of the tool driving main shaft 1. A nozzle 11 is arranged so that water dripping from the water dripping nozzle 11 flows into the cavity 8 of the tool body 5 from the through hole 3b of the spindle 3 via the tool mounting hole 3a. Also good. The positioning and fixing of the water dripping nozzle 11 is performed when the water dripping nozzle 11 can be directly held by the support attached to the frame of the machine tool, and when the water dripping nozzle 11 cannot be directly held as shown in the structure, The water supply nozzle 9 may be positioned by holding the coolant supply pipe 9 with the support.

本発明の電着工具の冷却システムは以上のように実施することができるものであるが、更に好ましくは、空洞部8を備えた工具本体5は、銅、銅合金、アルミニウム、アルミニウム合金などの、ステンレス鋼と比較して熱伝導率の高い材料によって製造し、この工具本体5に砥粒6を電着する鍍金層7には、ニッケルと比較して熱伝導率の高い、銅、銅合金、アルミニウム、アルミニウム合金などを使用する。このように素材を特定して構成された電着工具4によれば、工具本体5の加工作用部5aによる研削加工に伴って発生した熱は、熱伝導率の高い鍍金層7から本体5へ、そして熱伝導率の高い本体5から空洞部8の内壁面に接する水へと極めて効率良く伝達されて放熱され、加工作用部5aが高温になるのを効果的に抑制できる。   The cooling system for an electrodeposition tool according to the present invention can be implemented as described above. More preferably, the tool body 5 having the cavity 8 is made of copper, copper alloy, aluminum, aluminum alloy, or the like. The plating layer 7 is made of a material having a high thermal conductivity compared to stainless steel, and electrodeposits the abrasive grains 6 on the tool body 5. The copper or copper alloy has a higher thermal conductivity than nickel. Aluminum, aluminum alloy, etc. are used. According to the electrodeposition tool 4 configured by specifying the material in this way, the heat generated along with the grinding by the working portion 5a of the tool body 5 is transferred from the plating layer 7 having a high thermal conductivity to the body 5. And, it is possible to effectively suppress heat from being transferred from the main body 5 having high thermal conductivity to the water in contact with the inner wall surface of the cavity portion 8 and dissipated, and the processing portion 5a can be effectively prevented from becoming high temperature.

尚、図5は、本発明システムの一実施形態において研削加工実験を試みたときの強度面での影響を示している。即ち、工具本体5と鍍金層7に銅を使用して構成した電着工具4を図1に示す本発明システムに採用して、超硬V10の工作物を研削した際の、切込み深さ(mm)と工具本体5及び鍍金層7における最大応力(MPa )の関係を有限要素法シミュレーションで解析した結果を、図5に示している。この図から明らかなように、工具本体5と鍍金層7を構成している銅の降伏応力は86.3MPa であるが、切込み深さが 0.3mm(300 μm )までは降伏応力に達していない。換言すれば、実用的な切込み深さは、5 μm 程度であるから、ステンレス鋼と比較して機械的強度が低い銅を工具本体5と鍍金層7に使用しても、強度的に全く問題ないことが明らかである。   FIG. 5 shows the influence on strength when a grinding experiment is attempted in one embodiment of the system of the present invention. That is, when the electrodeposition tool 4 constituted by using copper for the tool body 5 and the plating layer 7 is adopted in the system of the present invention shown in FIG. mm) and the relationship between the maximum stress (MPa) in the tool body 5 and the plating layer 7 are analyzed by a finite element method simulation. As is apparent from this figure, the yield stress of the copper constituting the tool body 5 and the plating layer 7 is 86.3 MPa, but the yield stress is not reached until the cutting depth is 0.3 mm (300 μm). In other words, since the practical depth of cut is about 5 μm, there is no problem in terms of strength even when copper having lower mechanical strength than stainless steel is used for the tool body 5 and the plating layer 7. Obviously not.

図6は、同図中に示す同じ加工条件の元で超硬V10の研削加工を行ったときの工具寿命、即ち、研削により母材から除去できた総量である総研削量(mm3 )の比較結果を示しており、同図中、Aは、工具本体に空洞部8が設けられていない従来の中実工具本体から成る電着工具を、一切の冷却システムを利用しない環境で研削加工に供した場合の総研削量を示し、Bは、特許文献1に記載されるように、工具本体内にヒートパイプを内蔵させると共に、当該ヒートパイプの放熱領域を冷却する冷却手段を併設した従来の冷却システムを利用した場合の総研削量を示し、Cは、上記のように工具本体5と鍍金層7に銅を使用して構成した電着工具4を図1に示す本発明システムに採用した場合の総研削量を示している。この図6からも明らかなように、上記のように工具本体5と鍍金層7に銅などの熱伝導率の高い材料を使用して構成した電着工具4を本発明システムに採用することにより、上記のような従来システムと比較して、電着工具に対する極めて大きな冷却能力を得ることができ、難削材料である超硬、チタン合金、ニッケル合金などの研削加工の際に、厳しい加工条件にしても工具を低温に維持できるため、工具寿命を大幅に延長させて、生産性の向上に寄与できる。 FIG. 6 shows the tool life when the carbide V10 is ground under the same machining conditions shown in the figure, that is, the total grinding amount (mm 3 ) which is the total amount removed from the base material by grinding. The comparison results are shown. In the figure, A is used for grinding an electrodeposition tool consisting of a conventional solid tool body in which the cavity 8 is not provided in the tool body in an environment that does not use any cooling system. B shows the total amount of grinding in the case of being provided, and B, as described in Patent Document 1, incorporates a heat pipe in the tool body and is provided with a cooling means for cooling the heat radiation area of the heat pipe. 1 shows the total amount of grinding when the cooling system is used, and C employs the electrodeposition tool 4 configured by using copper for the tool body 5 and the plating layer 7 in the system of the present invention shown in FIG. The total amount of grinding is shown. As is apparent from FIG. 6, the electrodeposition tool 4 constructed by using a material having high thermal conductivity such as copper for the tool body 5 and the plating layer 7 as described above is adopted in the system of the present invention. Compared with the conventional system as described above, it can obtain extremely large cooling capacity for electrodeposition tools, and severe processing conditions when grinding difficult-to-cut materials such as carbide, titanium alloy, nickel alloy, etc. However, since the tool can be maintained at a low temperature, the tool life can be greatly extended and the productivity can be improved.

本発明の第一実施形態を示す要部の縦断側面図である。It is a vertical side view of the principal part which shows 1st embodiment of this invention. 本発明の第二実施形態を示す要部の縦断側面図である。It is a vertical side view of the principal part which shows 2nd embodiment of this invention. 電着工具の縦断側面図である。It is a vertical side view of an electrodeposition tool. 図3のA部の拡大図である。It is an enlarged view of the A section of FIG. 本発明の一実施形態に係る電着工具の機械的強度に関する実験データを示すグラフである。It is a graph which shows the experimental data regarding the mechanical strength of the electrodeposition tool which concerns on one Embodiment of this invention. 従来システムと本発明の一実施形態に係るシステムとにおける工具寿命に関する実験データを示すグラフである。It is a graph which shows the experimental data regarding the tool life in the conventional system and the system which concerns on one Embodiment of this invention.

1 工具駆動主軸
1a 工具駆動主軸のスピンドル取付け孔
2 コレットチャック
3 スピンドル
3a スピンドルの工具取付け孔
3b スピンドルの貫通孔部
4 電着工具
5 工具本体
5a 工具本体の加工作用部
5b 工具本体の取付け用端部
6 砥粒
7 砥粒電着用鍍金層
8 工具本体の空洞部
8a 空洞部の奥端部
8b 空洞部の開放端
9 冷媒供給管
10 ミスト装置
11 水滴下ノズル
DESCRIPTION OF SYMBOLS 1 Tool drive spindle 1a Tool drive spindle spindle mounting hole 2 Collet chuck 3 Spindle 3a Spindle tool mounting hole 3b Spindle through hole 4 Electrodeposition tool 5 Tool body 5a Tool body working portion 5b Tool body mounting end Part 6 Abrasive Grain 7 Abrasive Electroplating Plating Layer 8 Tool Body Cavity 8a Cavity Deep End 8b Cavity Open End 9 Refrigerant Supply Pipe 10 Mist Device 11 Water Dropping Nozzle

Claims (2)

電着工具の本体内部に、当該工具本体の取付け用端部側が開放する軸方向の空洞部を設け、この工具本体の取付け用端部が工作機械の工具駆動主軸に装着された状態において、前記空洞部の奥端部に冷媒を供給する冷媒供給手段を設け、この空洞部の奥端部から熱交換後の冷媒を、前記空洞部を経由させて工具外の大気中に排出するに当って、
前記冷媒供給手段は、前記空洞部内に差し込まれた冷媒供給管から成り、この冷媒供給管から冷媒としての水を、前記空洞部の奥端部で略全量が熱交換により気化する程度の流量で供給し、蒸気が前記空洞部と冷媒供給管との間の空隙を経由して工具外の大気中に排出するように構成され、
且つ前記電着工具は、前記空洞部を備えた工具本体が、銅、銅合金、アルミニウム、アルミニウム合金などの熱伝導率の高い材料から成形されると共に、前記空洞部を備えた工具本体の表面に砥粒が、銅、銅合金、アルミニウム、アルミニウム合金などの熱伝導率の高い鍍金材料によって電着されてなる、電着工具の強制冷却システム。
In the main body of the electrodeposition tool, a hollow portion in the axial direction that opens at the end of the tool body for attachment is provided, and in the state where the attachment end of the tool body is attached to the tool drive spindle of the machine tool, Provided with a refrigerant supply means for supplying a refrigerant to the back end of the cavity, and when discharging the refrigerant after heat exchange from the back end of the cavity through the cavity to the atmosphere outside the tool ,
The refrigerant supply means is composed of a refrigerant supply pipe inserted into the cavity, and the flow rate is such that substantially the entire amount of water as a refrigerant is vaporized by heat exchange at the back end of the cavity from the refrigerant supply pipe. Configured to supply and discharge steam into the atmosphere outside the tool via a gap between the cavity and the refrigerant supply pipe,
In the electrodeposition tool, the tool body including the cavity is formed from a material having high thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy, and the surface of the tool body including the cavity. This is a forced cooling system for electrodeposition tools, in which the abrasive grains are electrodeposited with a plating material having high thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy .
電着工具の本体内部に、当該工具本体の取付け用端部側が開放する軸方向の空洞部を設け、この工具本体の取付け用端部が工作機械の工具駆動主軸に装着された状態において、前記空洞部の奥端部に冷媒を供給する冷媒供給手段を設け、この空洞部の奥端部から熱交換後の冷媒を、前記空洞部を経由させて工具外の大気中に排出するに当って、
前記電着工具は、その工具本体の取付け用端部が工作機械の垂直向きの工具駆動主軸の下端に装着されるものであって、前記冷媒供給手段は、垂直向きの前記空洞部の上端開放部から当該空洞部内に冷媒としての水を滴下する水滴下ノズルから成り、この水滴下ノズルから水を、前記空洞部の奥端部で略全量が熱交換により気化する程度の流量で滴下供給し、蒸気が前記空洞部を経由して工具外の大気中に排出するように構成され、
且つ前記電着工具は、前記空洞部を備えた工具本体が、銅、銅合金、アルミニウム、アルミニウム合金などの熱伝導率の高い材料から成形されると共に、前記空洞部を備えた工具本体の表面に砥粒が、銅、銅合金、アルミニウム、アルミニウム合金などの熱伝導率の高い鍍金材料によって電着されてなる、電着工具の強制冷却システム。
In the main body of the electrodeposition tool, a hollow portion in the axial direction that opens at the end of the tool body for attachment is provided, and in the state where the attachment end of the tool body is attached to the tool drive spindle of the machine tool, Provided with a refrigerant supply means for supplying a refrigerant to the back end of the cavity, and when discharging the refrigerant after heat exchange from the back end of the cavity through the cavity to the atmosphere outside the tool ,
The electrodeposition tool has an attachment end of a tool body attached to a lower end of a vertical tool driving spindle of a machine tool, and the coolant supply means opens the upper end of the vertical cavity. A water dropping nozzle that drops water as a refrigerant into the cavity from the water supply portion, and supplies water from the water dropping nozzle dropwise at a flow rate such that substantially the entire amount is vaporized by heat exchange at the back end of the cavity. The steam is configured to be discharged into the atmosphere outside the tool via the cavity,
In the electrodeposition tool, the tool body including the cavity is formed from a material having high thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy, and the surface of the tool body including the cavity. This is a forced cooling system for electrodeposition tools, in which the abrasive grains are electrodeposited with a plating material having high thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy .
JP2008057328A 2008-03-07 2008-03-07 Forced cooling system for electrodeposition tools Active JP4896055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057328A JP4896055B2 (en) 2008-03-07 2008-03-07 Forced cooling system for electrodeposition tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057328A JP4896055B2 (en) 2008-03-07 2008-03-07 Forced cooling system for electrodeposition tools

Publications (2)

Publication Number Publication Date
JP2009214186A JP2009214186A (en) 2009-09-24
JP4896055B2 true JP4896055B2 (en) 2012-03-14

Family

ID=41186616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057328A Active JP4896055B2 (en) 2008-03-07 2008-03-07 Forced cooling system for electrodeposition tools

Country Status (1)

Country Link
JP (1) JP4896055B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112643396B (en) * 2020-12-08 2022-05-17 东莞市明骏智能科技有限公司 Cooling liquid supply mechanism for rotary cutter
KR102568053B1 (en) * 2021-06-09 2023-08-18 한국생산기술연구원 Cryogenic indirect cooling toolkit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309565A (en) * 1992-05-11 1993-11-22 Tokai Gokin Kogyo Kk Grinding wheel device for grinding machine
JPH06320428A (en) * 1993-05-12 1994-11-22 Mitsubishi Materials Corp Manufacture of metal bonded grinding wheel
JP2000280153A (en) * 1999-03-30 2000-10-10 Yamagata Prefecture Super-abrasive grain grinding method, and disc-shaped super-abrasive grain grinding wheel used therein
JP4090403B2 (en) * 2003-07-25 2008-05-28 津根精機株式会社 Machine tool with cooling means for cutting tools

Also Published As

Publication number Publication date
JP2009214186A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP6025569B2 (en) Face milling and its use
JP6282613B2 (en) Dicing blade
JP6412538B2 (en) Dicing machine
WO2013187510A1 (en) Dicing device and dicing method
KR20080078797A (en) Gun drill
CN102935524B (en) Deep hole drilling processing method of high temperature alloy material casing
JP4896055B2 (en) Forced cooling system for electrodeposition tools
JP2014128865A (en) In-abrasive-grain grinding fluid feeder for super abrasive grain electrodeposited abrasive grain and grinding method for the same
JP2016196085A (en) Working grindstone
JP2019022936A (en) Work processing device
CN113000934A (en) Brazing diamond saw blade for cutting casting material and cutting process thereof
TW201822980A (en) Interchangeable chisel holder
CN207888474U (en) Ceramic matric composite grinding wheel structure
JP2018103356A (en) Blade processing device and blade processing method
JP6434113B2 (en) Work processing apparatus and work processing method
KR100761625B1 (en) Diamond tools
KR200468624Y1 (en) Indexable type drill
CN217166797U (en) Deep hole reamer with guide structure
CN215090884U (en) Counter bit for blank surface casting
JP6253206B2 (en) Blade processing apparatus and blade processing method
JP2016087820A (en) Core drill for cutting work of sapphire single crystal boule
JP4191924B2 (en) Grinding material having amorphous surface layer and method for producing the same
KR20090082575A (en) A diamond tool and method of manufacturing the same
CN118081583A (en) Hole making tool and process
KR20210114937A (en) How to perform a cutting operation on a workpiece

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4896055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250