JP4895537B2 - Calixarene polymer and process for producing the same - Google Patents

Calixarene polymer and process for producing the same Download PDF

Info

Publication number
JP4895537B2
JP4895537B2 JP2005192497A JP2005192497A JP4895537B2 JP 4895537 B2 JP4895537 B2 JP 4895537B2 JP 2005192497 A JP2005192497 A JP 2005192497A JP 2005192497 A JP2005192497 A JP 2005192497A JP 4895537 B2 JP4895537 B2 JP 4895537B2
Authority
JP
Japan
Prior art keywords
unsubstituted
substituted
carbon atoms
group
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005192497A
Other languages
Japanese (ja)
Other versions
JP2007009082A (en
Inventor
忠臣 西久保
宏人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Kanagawa University
Original Assignee
JSR Corp
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp, Kanagawa University filed Critical JSR Corp
Priority to JP2005192497A priority Critical patent/JP4895537B2/en
Publication of JP2007009082A publication Critical patent/JP2007009082A/en
Application granted granted Critical
Publication of JP4895537B2 publication Critical patent/JP4895537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

本発明は、カリックスアレーン系の新規なポリマー及びその製造方法に関し、特に耐熱性が高く、溶剤に可溶であり、官能基の導入による機能化が容易なカリックスアレーン系の新規なラダーポリマー及びその製造方法に関する。   The present invention relates to a novel calixarene-based polymer and a method for producing the same, and particularly to a novel calixarene-based ladder polymer that has high heat resistance, is soluble in a solvent, and can be easily functionalized by introduction of a functional group. It relates to a manufacturing method.

ラダーポリマー類は二次元幾何構造と直線構造を有する梯子状の構造を有しており、有機高分子の分野において、既に1950年以前からこのような構造のポリマーが合成されている。1960年、Brownらは、ラダーポリマーとしてポリ(フェニルシルセスキオキサン)を合成し、1本鎖のポリシロキサンと比較して大幅に熱安定性が向上することを報告している(非特許文献1〜3参照)。ラダーポリマーは2本鎖からなるため1本鎖ポリマーと比較し剛直で、しばしば不溶不融になるが、分子鎖中の1つの結合が切れても分子量低下が起こらないため、高い熱安定性、機械的強度、化学安定性を有することが知られている。   Ladder polymers have a ladder-like structure having a two-dimensional geometric structure and a linear structure. In the field of organic polymers, polymers having such a structure have already been synthesized before 1950. In 1960, Brown et al. Synthesized poly (phenylsilsesquioxane) as a ladder polymer and reported that thermal stability was significantly improved compared to single-chain polysiloxane (Non-Patent Document). 1-3). Ladder polymers are composed of two chains, so they are stiffer than single-chain polymers and often become insoluble and infusible. However, even if one bond in the molecular chain is broken, the molecular weight does not decrease, so high thermal stability, It is known to have mechanical strength and chemical stability.

ラダーポリマーの合成法は大きく二つに分けられる。一つ目は2本の多くの官能基を有するポリマー同士の間を結合させる方法であり、側鎖に反応性基を有するビニル型ポリマーでは、隣接する側鎖の間で環化反応が起こる可能性があると提案されていた。最近になりMacGillvrayらは、水素結合による相互作用を利用して得られた2−(レゾルシノール)−2(4−ピル−ポリ−n−エン)の結晶に光を照射することによりラダー分子を合成することに成功した(非特許文献4参照)。   Ladder polymer synthesis methods can be broadly divided into two. The first is a method of bonding between two polymers having many functional groups, and in the case of a vinyl type polymer having a reactive group in a side chain, a cyclization reaction may occur between adjacent side chains. It was proposed to have sex. Recently, MacGillvray et al. Synthesized ladder molecules by irradiating crystals of 2- (resorcinol) -2 (4-pyr-poly-n-ene) obtained by utilizing hydrogen bond interaction. (See Non-Patent Document 4).

二つ目は環構造をしているモノマーを合成し、それを重合させることによりラダーポリマーを合成する方法である。Diels−Alder反応は二つの結合が協奏的に生成するので、ラダーポリマーを得るのに適した反応の1つであり、2−ビニルブタジエンとベンゾキノンの反応からラダーポリマーが得られている。このポリマーは通常の有機溶媒には不溶であるが、ヘキサフルオロ−2−プロパノールには可溶で、7000程度の分子量を有することが確かめられている。   The second is a method of synthesizing a monomer having a ring structure and polymerizing it to synthesize a ladder polymer. The Diels-Alder reaction is one of the reactions suitable for obtaining a ladder polymer because two bonds are generated in a concerted manner, and a ladder polymer is obtained from the reaction of 2-vinylbutadiene and benzoquinone. Although this polymer is insoluble in ordinary organic solvents, it has been confirmed that it is soluble in hexafluoro-2-propanol and has a molecular weight of about 7000.

一方、カリックスアレーン系化合物(CA類)は大環状ポリエーテルであるクラウンエーテルや、天然由来のグルコース数個が環をつくったシクロデキストリンに次いで、イオン分子を包接するホスト−ゲスト化学の分野で注目され、活発に研究が行われてきた。また、CA類は、原料がフェノール類やアルデヒド類と安価であること、合成法が安易であること、高い熱安定性を有すること、分子サイズが小さいにも関わらず誘導体にはフィルム形成能を有するものが多いなどの特徴があり、半導体デバイスの高密度、高容量化を目指した新しい機能性材料としての観点からも有用性が注目されている。   On the other hand, calixarene compounds (CAs) are notable in the field of host-guest chemistry that includes ionic molecules after crown ether, which is a macrocyclic polyether, and cyclodextrin in which several naturally occurring glucoses form a ring. Has been actively researched. In addition, CAs are inexpensive in terms of raw materials such as phenols and aldehydes, easy to synthesize, have high thermal stability, and have a film forming ability for derivatives despite their small molecular size. It has many features such as having many, and its usefulness is attracting attention from the viewpoint of a new functional material aiming at high density and high capacity of semiconductor devices.

光機能性CA類の例として、藤田らによる、p−メチルカリックス[6]アレーンヘキサアセテートを用いた電子線ネガ型フォトレジストへの応用や、上田らによるカリックス[4]レゾルシンアレーン、架橋剤及び光酸発生剤に基づくアルカリ現像型のネガ型フォトレジストへの応用が報告されている。これらの研究においては、いずれもCA類をマトリクスとして用いることで、極めて高解像度のパターン形成が可能であることを報告している(非特許文献5〜7参照)。   Examples of photofunctional CAs include application to an electron beam negative photoresist using p-methylcalix [6] arene hexaacetate by Fujita et al., Calix [4] resorcinarene by Ueda et al. An application to an alkali developing type negative photoresist based on a photoacid generator has been reported. In these studies, it has been reported that pattern formation with extremely high resolution is possible by using CAs as a matrix (see Non-Patent Documents 5 to 7).

J.F.Brown et al.,J.Am.Chem.Soc.,82,6194(1960)J. et al. F. Brown et al. , J .; Am. Chem. Soc. , 82, 6194 (1960) J.F.Brown,J.Polym.Sci.,Part C,1,83(1963)J. et al. F. Brown, J. et al. Polym. Sci. Part C, 1, 83 (1963) T.Kitakohji,S.takeda,M.Nakajima,M.Usui,Jpn.J.Appl.Phys.,22,1934(1938)T.A. Kitakohji, S .; takeda, M .; Nakajima, M .; Usui, Jpn. J. et al. Appl. Phys. , 22, 1934 (1938) Leonard R.MacGillivray,Angew.Chem.Int.Ed.,43,232(2004)Leonard R.D. MacGillivray, Angew. Chem. Int. Ed. , 43, 232 (2004) T.Nakayama,K.Haga,O.Haba,and M.Ueda,Chem.Lett.,265(1997)T.A. Nakayama, K .; Haga, O .; Haba, and M.M. Ueda, Chem. Lett. , 265 (1997) M.Ueda,D.takahashi,T.yakayama and O.Haba,Chem.Mater.,10,2230(1998)M.M. Ueda, D .; Takahashi, T .; yakayama and O.I. Haba, Chem. Mater. , 10, 2230 (1998) J.Fujita,Y.Ohnishi,Y.Ochiai,and S.Matsui,Appl.Phys.Lett.,68,2438(1995)J. et al. Fujita, Y .; Ohnishi, Y .; Ochiai, and S.R. Matsui, Appl. Phys. Lett. 68, 2438 (1995)

しかしながら、CA類は解像度に優れている反面、分子間の絡み合いに欠けることから、機械的強度が低いことが問題であった。そこで、本発明は、CA類の優れた特性を有しつつ分子間の絡み合いによる強度向上が期待できるカリックスアレーン系の新規なポリマー及びその製造方法を提供することを特徴とする。   However, CAs are excellent in resolution, but lack in entanglement between molecules, so that the mechanical strength is low. Therefore, the present invention is characterized by providing a calixarene-based novel polymer that can be expected to have improved strength due to intermolecular entanglement while having excellent properties of CAs, and a method for producing the same.

本発明は以下のカリックスアレーン系ポリマー及びその製造方法を提供するものである。   The present invention provides the following calixarene polymers and methods for producing the same.

[1] 式(1)で表される連鎖を有するカリックスアレーン系ポリマー。 [1] A calixarene polymer having a chain represented by the formula (1).

Figure 0004895537
(式(1)中、各Xは相互に独立に水素原子、炭素数1〜10の置換又は非置換アルキル基、炭素数2〜10の置換又は非置換アルケニル基、炭素数2〜10の置換又は非置換アルキニル基、炭素数7〜10の置換又は非置換アラルキル基、炭素数1〜10の置換又は非置換アルコキシ基、或いは置換又は非置換フェノキシ基;R及びR は非置換ジメチレン基(−CH −CH −);nは2以上の自然数を表す。)
Figure 0004895537
(In formula (1), each X is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substituted group having 2 to 10 carbon atoms. Or an unsubstituted alkynyl group, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; R 1 and R 2 are unsubstituted dimethylene groups (—CH 2 —CH 2 —) ; n represents a natural number of 2 or more.)

[2] 式(1)において、各Xが水素原子である[1]に記載のカリックスアレーン系ポリマー。 [2] The calixarene polymer according to [1], wherein in the formula (1), each X is a hydrogen atom.

[3] 式(1)において、各Xがメチル基である[1]に記載のカリックスアレーン系ポリマー。 [3] The calixarene polymer according to [1], wherein in formula (1), each X is a methyl group.

A)式(2)で表される化合物の群から選ばれた少なくとも1種の化合物と、(B)非置換1,4−ブタンジアール及び/又は非置換2,5−ジメトキシテトラヒドロフランとを反応させるカリックスアレーン系ポリマーの製造方法。
[4] (A) at least one compound selected from the group of compounds represented by formula (2), (B) an unsubstituted 1,4-butanedial and / or unsubstituted 2,5-dimethoxytetrahydrofuran A method for producing a calixarene-based polymer that reacts with.

Figure 0004895537
(式(2)中、Xは水素原子、炭素数1〜10の置換又は非置換アルキル基、炭素数2〜10の置換又は非置換アルケニル基、炭素数2〜10の置換又は非置換アルキニル基、炭素数7〜10の置換又は非置換アラルキル基、炭素数1〜10の置換又は非置換アルコキシ基、或いは置換又は非置換フェノキシ基を表す。)
Figure 0004895537
(In the formula (2), X is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms. Represents a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group.

本発明のカリックスアレーン系ポリマーは、耐熱性が高く溶剤に可溶であり、かつ多くのフェノール性水酸基を有するため官能基の導入による機能化が容易である。更に、ポリマー化することにより、機械的強度の向上が期待できる。また、本発明のカリックスアレーン系ポリマーの製造方法は、上記のカリックスアレーン系ポリマーを好適に製造することができる。   The calixarene polymer of the present invention has high heat resistance, is soluble in a solvent, and has many phenolic hydroxyl groups, so that it can be easily functionalized by introducing functional groups. Furthermore, improvement in mechanical strength can be expected by polymerizing. Moreover, the calixarene polymer production method of the present invention can suitably produce the calixarene polymer.

以下、本発明の、カリックスアレーン系ポリマー及びその製造方法について、詳細に説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, although the calixarene polymer and the production method thereof of the present invention will be described in detail, the present invention is not limited to the following embodiments.

本発明のカリックスアレーン系ポリマーは、下記、式(1)で表される連鎖を有する。   The calixarene polymer of the present invention has a chain represented by the following formula (1).

Figure 0004895537
(式(1)中、各Xは相互に独立に水素原子、炭素数1〜10の置換又は非置換アルキル基、炭素数2〜10の置換又は非置換アルケニル基、炭素数2〜10の置換又は非置換アルキニル基、炭素数7〜10の置換又は非置換アラルキル基、炭素数1〜10の置換又は非置換アルコキシ基、或いは置換又は非置換フェノキシ基;R及びR は非置換ジメチレン基(−CH −CH −);nは2以上の自然数を表す。)
Figure 0004895537
(In formula (1), each X is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substituted group having 2 to 10 carbon atoms. Or an unsubstituted alkynyl group, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; R 1 and R 2 are unsubstituted dimethylene groups (—CH 2 —CH 2 —) ; n represents a natural number of 2 or more.)

本発明のカリックスアレーン系ポリマーは、式(1)に示すようなラダー構造を有するため、高い耐熱性及び機械的強度が期待できる。更に、そのままで、又は機能化することにより、包摂化合物としての使用、硬化性材料やレジスト材の成分としての使用が可能である。また、この構造のカリックスアレーン系ポリマーは溶剤に可溶であるため、種々の用途に容易に用いることができる。   Since the calixarene polymer of the present invention has a ladder structure as shown in Formula (1), high heat resistance and mechanical strength can be expected. Furthermore, it can be used as an inclusion compound, as a component of a curable material or a resist material, as it is or by functionalization. Moreover, since the calixarene polymer having this structure is soluble in a solvent, it can be easily used for various applications.

本発明のカリックスアレーン系ポリマーにおいて、芳香環は1置換又は非置換レゾルシノール環である。芳香環が1置換又は非置換レゾルシノール環であると、配座の固定が容易となり、包摂化合物として好適に用いることができるとともに、水酸基に対する化学修飾による機能化が容易となる。   In the calixarene-based polymer of the present invention, the aromatic ring is a mono-substituted or unsubstituted resorcinol ring. When the aromatic ring is a mono-substituted or unsubstituted resorcinol ring, the conformation can be easily fixed, it can be suitably used as an inclusion compound, and the functionalization by chemical modification to the hydroxyl group is facilitated.

また、1つの芳香環における水酸基以外の置換基(式(1)における各X)は、ないこと(即ち、式(1)におけるXが水素原子であること)も好ましいが、目的に応じて種々の置換基を付けることも可能である。置換基(各X)としては、例えば炭素数1〜10の置換又は非置換アルキル基、炭素数2〜10の置換又は非置換アルケニル基、炭素数2〜10の置換又は非置換アルキニル基、炭素数7〜10の置換又は非置換アラルキル基、炭素数1〜10の置換又は非置換アルコキシ基、或いは置換又は非置換フェノキシ基が挙げられる。ここで、置換基(X)は、同一であっても各々異なっていても良い。この中でも置換基(X)がメチル基であることが好ましい。或いは、式(1)におけるXが水素原子であることが好ましい。   In addition, it is preferable that there is no substituent other than a hydroxyl group in each aromatic ring (each X in formula (1)) (that is, X in formula (1) is a hydrogen atom). It is also possible to attach a substituent of Examples of the substituent (each X) include a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, and carbon. Examples thereof include a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group. Here, the substituents (X) may be the same or different. Among these, it is preferable that substituent (X) is a methyl group. Or it is preferable that X in Formula (1) is a hydrogen atom.

式(1)におけるR及びR は非置換ジメチレン基(−CH −CH −)である。R及びRの炭素数が各々2であると容易にポリマー化することができる。R 及びRが非置換ジメチレン基(−CH−CH−)であることが、良い収率でポリマーを容易に得ることができるため好ましい。
R 1 and R 2 in the formula (1) are unsubstituted dimethylene groups (—CH 2 —CH 2 —) . When R 1 and R 2 each have 2 carbon atoms, it can be easily polymerized . It is preferable that R 1 and R 2 are unsubstituted dimethylene groups (—CH 2 —CH 2 —) because a polymer can be easily obtained with a good yield.

本発明のカリックスアレーン系ポリマーの分子量は、nが2以上であれば特に制限はないが、分子量が低すぎるとポリマーとしての特性が十分発揮されない傾向にある。従って、ポリマー組成物中において、式(1)におけるnが4以上のポリマーを50質量%以上含むことが好ましい。一方、分子量が高くなりすぎると、溶媒に不溶になる傾向にありハンドリング性が低下する。従って、ポリマー組成物中において、式(1)におけるnが20以下のポリマーを50質量%以上含むことが好ましい。数平均分子量(Mn)は、1,000〜500,000であることが好ましく、3,000〜100,000であることが更に好ましく、4,000〜10,000であることが特に好ましい。   The molecular weight of the calixarene polymer of the present invention is not particularly limited as long as n is 2 or more. However, if the molecular weight is too low, the properties as a polymer tend not to be sufficiently exhibited. Accordingly, the polymer composition preferably contains 50% by mass or more of the polymer having n of 4 or more in the formula (1). On the other hand, if the molecular weight is too high, it tends to be insoluble in the solvent and the handling property is lowered. Therefore, the polymer composition preferably contains 50% by mass or more of the polymer having n of 20 or less in the formula (1). The number average molecular weight (Mn) is preferably 1,000 to 500,000, more preferably 3,000 to 100,000, and particularly preferably 4,000 to 10,000.

本発明のカリックスアレーン系ポリマーにおける各末端は通常下記式(3)で示される基になると考えられる。   Each terminal in the calixarene polymer of the present invention is usually considered to be a group represented by the following formula (3).

Figure 0004895537
(式(3)中、Xは水素原子、炭素数1〜10の置換又は非置換アルキル基、炭素数2〜10の置換又は非置換アルケニル基、炭素数2〜10の置換又は非置換アルキニル基、炭素数7〜10の置換又は非置換アラルキル基、炭素数1〜10の置換又は非置換アルコキシ基、或いは置換又は非置換フェノキシ基を表す。)
Figure 0004895537
(In formula (3), X is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms. Represents a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group.

次に、カリックスアレーン系ポリマーの製造方法について説明する。上述のようなカリックスアレーン系ポリマーは、(A)成分として、下記式(2)で表される化合物、(B)成分として、非置換1,4−ブタンジアールを反応(縮合)させることにより得ることができる。
Next, a method for producing a calixarene polymer will be described. The calixarene-based polymer as described above is obtained by reacting (condensing) an unsubstituted 1,4-butane dial as the component (A) and the compound represented by the following formula (2) and the component (B). Can do.

Figure 0004895537
(式(2)中、Xは水素原子、炭素数1〜10の置換又は非置換アルキル基、炭素数2〜10の置換又は非置換アルケニル基、炭素数2〜10の置換又は非置換アルキニル基、炭素数7〜10の置換又は非置換アラルキル基、炭素数1〜10の置換又は非置換アルコキシ基、或いは置換又は非置換フェノキシ基を表す。)
Figure 0004895537
(In the formula (2), X is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms. Represents a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group.

(A)成分(式(2)で表される化合物)は、1置換又は非置換レゾルシノールであり、式(2)におけるXは、式(1)におけるXに対応する。(A)成分の具体例としては、レゾルシノール、2−メチルレゾルシノール、2−ブチルレゾルシノール等が挙げられ、これらの中の少なくとも1種の化合物を用いることが好ましい。この中でも特にレゾルシノール及び2−メチルレゾルシノールが好ましい。(B)成分としては、非置換1,4−ブタンジアールが挙げられる。良好な収率でポリマーを得る観点から非置換1,4−ブタンジアール(以後、単に「1,4−ブタンジアール」という)が好ましい。
The component (A) (the compound represented by the formula (2)) is mono-substituted or unsubstituted resorcinol, and X in the formula (2) corresponds to X in the formula (1). Specific examples of the component (A) include resorcinol, 2-methylresorcinol, 2-butylresorcinol and the like, and it is preferable to use at least one compound among them. Among these, resorcinol and 2-methylresorcinol are particularly preferable. As the component (B), unsubstituted 1,4-butanedial and the like. Unsubstituted 1,4-butanedial (hereinafter, simply referred to as "1,4-butanedial") from the viewpoint of obtaining a polymer with good good yield is preferable.

(A)成分と、(B)成分とを溶媒中、触媒の存在下で脱水縮合させて式(1)で表される繰り返し単位からなるカリックスアレーン系ポリマーを得ることができる。触媒としては酸触媒等が挙げられる。また、非置換2,5−ジメトキシテトラヒドロフランは、酸により非置換1,4−ブタンジアールに変化するため、(B)成分として、非置換1,4−ブタンジアールに代えて、又は非置換1,4−ブタンジアールとともに、非置換2,5−ジメトキシテトラヒドロフランを用いることもできる。これらの中でも、良好な収率でポリマーを得る観点から、1,4−ブタンジアールに変化する非置換2,5−ジメトキシテトラヒドロフラン(以後、単に「2,5−ジメトキシテトラヒドロフラン」という)が好ましい。なお、2,5−ジメトキシテトラヒドロフランの構造を式(4)に示す。 (A) min deposition, it is possible to obtain the calixarene polymer consisting of repeating units represented by (B) in the component solvent, dehydration condensation in the presence of a catalyst formula (1). Examples of the catalyst include an acid catalyst. Further, unsubstituted 2,5-dimethoxytetrahydrofuran, in order to vary the O merits substituted 1,4 butanedial acid, as the component (B), in place of the unsubstituted 1,4-butanedial, or unsubstituted 1 , 4 to butanedial together with, it is possible to use unsubstituted 2,5-dimethoxytetrahydrofuran. Among these, from the viewpoint of obtaining a polymer with a good yield, unsubstituted 2,5-dimethoxytetrahydrofuran (hereinafter simply referred to as “2,5-dimethoxytetrahydrofuran”) that changes to 1,4-butanediar is preferable. The structure of 2,5-dimethoxytetrahydrofuran is shown in Formula (4).

Figure 0004895537
Figure 0004895537

(A)成分と、(B)成分の比に特に制限はない。(B)成分の比率を増加させると分子量が高くなる傾向があり、(B)成分を増加させすぎるとゲル化する場合がある。また、(B)成分の比率が少なすぎると収率が低下する傾向がある。従って、(A)成分/(B)成分のモル比が、1.0〜20の範囲であることが好ましく、1.8〜15の範囲であることが更に好ましく、2.5〜10の範囲であることが特に好ましい。   There is no restriction | limiting in particular in ratio of (A) component and (B) component. When the ratio of the component (B) is increased, the molecular weight tends to increase, and when the component (B) is increased too much, gelation may occur. Moreover, when there is too little ratio of (B) component, there exists a tendency for a yield to fall. Therefore, the molar ratio of component (A) / component (B) is preferably in the range of 1.0 to 20, more preferably in the range of 1.8 to 15, and in the range of 2.5 to 10 It is particularly preferred that

これらの化合物を脱水縮合させることにより以下のように反応が進むものと考えられる。例えば、(A)成分として、レゾルシノールを用い、(B)成分として1,4−ブタンジアールを用い、これらを反応させると、レゾルシノールの4分子と1,4−ブタンジアールの1分子が縮合した式(5)で表される中間体等の種々の中間体が生成する。以後、レゾルシノールの脱離を伴う他の中間体との縮合反応による高分子量化、及びレゾルシノールの脱離を伴う分子内の縮合反応によるラダー構造への変化がともに生じつつ重合が進行し、式(1)で表される繰り返し単位からなるカリックスアレーン系ポリマーが生成する。なお、1,4−ブタンジアールの代わりに1,5−ペンタンジアールや1,7−ヘプタンジアール等を用いても同様の反応が起こるが、この場合にはポリマー化せずに、特定の分子量の環状体となる。   It is considered that the reaction proceeds as follows by dehydrating and condensing these compounds. For example, when resorcinol is used as the component (A) and 1,4-butane dial is used as the component (B) and these are reacted, a formula (5) in which four molecules of resorcinol and one molecule of 1,4-butane dial are condensed. ) Are produced. Thereafter, the polymerization proceeds while both the increase in the molecular weight by condensation reaction with other intermediates accompanied by the elimination of resorcinol and the change to the ladder structure by the intramolecular condensation reaction accompanied by the elimination of resorcinol occur, and the formula ( A calixarene polymer composed of the repeating unit represented by 1) is produced. The same reaction occurs even when 1,5-pentane dial or 1,7-heptane dial is used instead of 1,4-butane dial, but in this case, a specific molecular weight is not obtained without polymerizing. It becomes an annular body.

Figure 0004895537
Figure 0004895537

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(参考例:レゾルシノールとグルタルアルデヒド(1,5−ペンタンジアール)との反応によるカリックスアレーン系化合物の合成)
レゾルシノール2.20g(20mmol)をエタノール4.5mLに溶解させ塩酸1.5mL加えた。この溶液を撹拌しながら5℃まで氷冷し、グルタルアルデヒドの50%水溶液0.40g(2mmol)をゆっくりと滴下した。その後、80℃で48時間加熱し、濁った黄色の溶液を得た。この懸濁液をメタノール中に注ぎ、沈殿物をろ過により取得後、メタノールで3回洗浄した。得られた固体は室温で24時間減圧乾燥した。その結果、粉末状の淡黄色固体が得られた。構造確認はMALDI−TOF−MS、IR及び1H−NMRで行った。結果を以下に示し、この化合物の構造を式(6)に示す。なお、式(6)において、各水素原子の位置に付した記号(a〜f)は、NMRのデータにおける水素の記号に対応するものである。
(Reference Example: Synthesis of calixarene compound by reaction of resorcinol and glutaraldehyde (1,5-pentane dial))
Resorcinol 2.20 g (20 mmol) was dissolved in 4.5 mL of ethanol and 1.5 mL of hydrochloric acid was added. This solution was ice-cooled to 5 ° C. with stirring, and 0.40 g (2 mmol) of a 50% aqueous solution of glutaraldehyde was slowly added dropwise. Then, it heated at 80 degreeC for 48 hours, and the cloudy yellow solution was obtained. This suspension was poured into methanol, and the precipitate was obtained by filtration and then washed with methanol three times. The obtained solid was dried under reduced pressure at room temperature for 24 hours. As a result, a powdery pale yellow solid was obtained. The structure was confirmed by MALDI-TOF-MS, IR, and 1 H-NMR. A result is shown below and the structure of this compound is shown in Formula (6). In the formula (6), the symbols (af) attached to the positions of the hydrogen atoms correspond to the symbols of hydrogen in the NMR data.

MALDI−TOF−MS:分子量1705.86の化合物のみが得られたことが示された。
収量:0.43g(収率:79%)
IR(film法):(cm-1
3406(νOH);2931(νC-H);1621、1505、1436(νC=C(aromatic)
1H−NMR(500MHz、溶媒CDCl3、内部標準TMS):δ(ppm)=0.86〜2.35(b,32.0H,Ha,Hb)、
3.98〜4.22(m,4.0H,c)、
6.09〜7.42(m,8.0H,aromaticHd,He
8.65〜9.56(m,8.0H,OHf
MALDI-TOF-MS: It was shown that only a compound with a molecular weight of 1705.86 was obtained.
Yield: 0.43 g (Yield: 79%)
IR (film method): (cm −1 )
3406 (ν OH ); 2931 (ν CH ); 1621, 1505, 1436 (ν C = C (aromatic) )
1 H-NMR (500MHz, solvent CDCl 3, internal standard TMS): δ (ppm) = 0.86~2.35 (b, 32.0H, H a, H b),
3.98~4.22 (m, 4.0H, H c ),
6.09~7.42 (m, 8.0H, aromaticH d , H e)
8.65 to 9.56 (m, 8.0H, OH f )

Figure 0004895537
Figure 0004895537

(実施例1:レゾルシノールと2,5−ジメトキシテトラヒドロフランを用いたカリックスアレーン系ポリマーの合成)
レゾルシノールと1,4−ブタンジアールのモル比(レゾルシノール/ブタンジアール比)が20/2となるように、レゾルシノールと2,5−ジメトキシテトラヒドロフランとを重合容器に仕込み、触媒として12N塩酸を用い、エタノール中、80℃、24時間重合を行った。重合終了後メタノール中に反応液を注ぎ、その溶液を遠心分離機にかけた。得られた固体を減圧乾燥し、粉末状の淡黄色固体(ポリマー)を得た。分子量及び分子量分布はジメチルホルムアミド(DMF)を溶媒としたサイズ排除クロマトグラフィー(SEC)を用いて測定し、標準ポリスチレンで得られた検量線を用いて算出した。
(Example 1: Synthesis of calixarene polymer using resorcinol and 2,5-dimethoxytetrahydrofuran)
Resorcinol and 2,5-dimethoxytetrahydrofuran were charged into a polymerization vessel so that the molar ratio of resorcinol to 1,4-butanediar (resorcinol / butanediar ratio) was 20/2, and 12N hydrochloric acid was used as a catalyst in ethanol. Polymerization was carried out at 80 ° C. for 24 hours. After completion of the polymerization, the reaction solution was poured into methanol, and the solution was centrifuged. The obtained solid was dried under reduced pressure to obtain a powdery pale yellow solid (polymer). The molecular weight and molecular weight distribution were measured using size exclusion chromatography (SEC) using dimethylformamide (DMF) as a solvent, and calculated using a calibration curve obtained with standard polystyrene.

(実施例2〜8)
レゾルシノール/ブタンジアール比を表1に示すように、20/4〜20/10の間で変化させた以外は実施例1と同様にして、重合を行いポリマーを得た。なお、エタノールに対する1,4−ブタンジアールの濃度を1mol/Lに固定した。実施例1〜8で得られたポリマーの数平均分子量(Mn)、分子量分布(Mw/Mn)及び収率を表1に示す。
(Examples 2 to 8)
Polymerization was carried out in the same manner as in Example 1 except that the resorcinol / butane dial ratio was changed between 20/4 and 20/10 as shown in Table 1, to obtain a polymer. The concentration of 1,4-butanediar relative to ethanol was fixed at 1 mol / L. Table 1 shows the number average molecular weight (Mn), molecular weight distribution (Mw / Mn) and yield of the polymers obtained in Examples 1-8.

Figure 0004895537
Figure 0004895537

この結果から、実施例1〜8で得られたものは、参考例で得られたような単一の分子量を有する環状体ではなく、所定の分子量分布を有するポリマーであることがわかる。即ち、ジアルデヒドとしてブタンジアールを用いることにより、式(1)におけるn=3となったところで環化することなく、更に連鎖が成長することがわかる。また、レゾルシノール/ブタンジアール比が20/6の場合に最大の収率が得られることが確認された。更に1,4−ブタンジアールを増やすと収率は減少するが分子量は増加し続けた。また、レゾルシノール/ブタンジアール比が20/9と20/10では反応開始5分後に溶媒に不溶化した。レゾルシノール/ブタンジアール比が20/10のものについては室温でも反応を行ったが約30分後に溶媒に不溶化した。   From this result, it can be seen that the polymers obtained in Examples 1 to 8 are not cyclic bodies having a single molecular weight as obtained in Reference Examples, but polymers having a predetermined molecular weight distribution. That is, it can be seen that by using butane dial as the dialdehyde, further chain growth occurs without cyclization at n = 3 in the formula (1). It was also confirmed that the maximum yield was obtained when the resorcinol / butane dial ratio was 20/6. When 1,4-butanediar was further increased, the yield decreased, but the molecular weight continued to increase. Further, when the resorcinol / butane dial ratio was 20/9 and 20/10, the reaction was insolubilized 5 minutes after the start of the reaction. Resins having a resorcinol / butane dial ratio of 20/10 were reacted at room temperature, but became insoluble in a solvent after about 30 minutes.

実施例3で得られたポリマーの構造確認をMALDI−TOF−MS、IR及び1H−NMRで行った。得られたスペクトル測定結果を図1〜3に示した。また、IR及び1H−NMRのデータを下記に示し、このポリマーの構造を式(7)に示す。なお、式(7)において、水素原子の位置に付した記号(a、b)は、NMRのデータにおける水素の記号に対応するものである。 The structure of the polymer obtained in Example 3 was confirmed by MALDI-TOF-MS, IR, and 1 H-NMR. The obtained spectrum measurement results are shown in FIGS. Further, IR and 1 H-NMR data are shown below, and the structure of this polymer is shown in Formula (7). In the formula (7), the symbols (a, b) attached to the hydrogen atom positions correspond to the hydrogen symbols in the NMR data.

図1に示すMALDI−TOF−MSの結果より、等間隔のピークが確認され、その間隔は式(7)に示す構造単位の分子量約540とほぼ一致した。また、図2及び図3に示す1H−NMR及びIRの結果からも、得られたポリマーが式(7)に示す構造単位を有することが支持された。 From the result of MALDI-TOF-MS shown in FIG. 1, equidistant peaks were confirmed, and the intervals substantially coincided with the molecular weight of about 540 of the structural unit shown in Formula (7). Also, from the results of 1 H-NMR and IR shown in FIGS. 2 and 3, it was supported that the obtained polymer had a structural unit represented by the formula (7).

IR(KBr disk法):(cm-1
3367(νOH);2935、2863(νC-H);1616、1504(νC=C(aromatic)
1H−NMR(500MHz、溶媒DMSO−d6、内部標準TMS):δ(ppm)=1.00〜2.69(m,7.9H,Ha)、
3.96〜4.44(m,4.0H,Hb)、
5.64〜7.43(m,8.8H,aromatic)
7.95〜9.13(m,8.3H,OH)
IR (KBr disk method): (cm −1 )
3367 (ν OH ); 2935, 2863 (ν CH ); 1616, 1504 (ν C = C (aromatic) )
1 H-NMR (500MHz, solvent DMSO-d 6, internal standard TMS): δ (ppm) = 1.00~2.69 (m, 7.9H, H a),
3.96 to 4.44 (m, 4.0H, Hb ),
5.64-7.43 (m, 8.8H, aromatic)
7.95 to 9.13 (m, 8.3H, OH)

Figure 0004895537
Figure 0004895537

(実施例9〜19:原料/溶媒比の検討)
レゾルシノール/ブタンジアール比を20/2に固定し溶媒であるエタノールの量を種々変えて、モノマー濃度を0.05〜1.0mol/Lまで変化させた以外は実施例1と同様にして重合を行いポリマーを得た。得られたポリマーのSECの結果(クロマトグラム)を図4に示し、結果を表2に示す。
(Examples 9 to 19: Investigation of raw material / solvent ratio)
Polymerization was carried out in the same manner as in Example 1 except that the resorcinol / butane dial ratio was fixed at 20/2, the amount of ethanol as a solvent was changed, and the monomer concentration was changed from 0.05 to 1.0 mol / L. A polymer was obtained. FIG. 4 shows the SEC result (chromatogram) of the polymer obtained, and Table 2 shows the result.

Figure 0004895537
Figure 0004895537

図4に示すクロマトグラムから、溶媒量を増やすことによりポリマーが高分子側にシフトする傾向が確認された。これはポリマーのエタノールに対する溶解度があまり良くないため、高濃度の時には成長しきらないまま沈殿し反応が止まってしまうが、低濃度の時にはポリマーの多くが溶媒中に溶けているためにオリゴマー的な中間体同士が重合することができるために分子量が伸びて、結果、高分子量のポリマーが生成したのではないかと考えられる。   From the chromatogram shown in FIG. 4, it was confirmed that the polymer tends to shift to the polymer side by increasing the amount of the solvent. This is because the solubility of the polymer in ethanol is not so good, and at high concentrations it will not grow and will precipitate and the reaction will stop, but at low concentrations it will be oligomeric because most of the polymer is dissolved in the solvent. Since the intermediates can be polymerized, the molecular weight is increased, and as a result, a high molecular weight polymer may be generated.

(実施例20〜24:反応時間の検討)
レゾルシノール/ブタンジアール比を20/20、モノマー濃度を0.7mol/Lとし、反応時間を0〜24時間の間で変化させて、実施例1と同様にして重合を行い、ポリマーを得た。得られたポリマーのSECの結果(クロマトグラム)を図5に示し、結果を表3に示す。
(Examples 20 to 24: Examination of reaction time)
Polymerization was carried out in the same manner as in Example 1 by changing the resorcinol / butane dial ratio to 20/20, the monomer concentration to 0.7 mol / L, and changing the reaction time from 0 to 24 hours. The SEC result (chromatogram) of the obtained polymer is shown in FIG.

Figure 0004895537
Figure 0004895537

図5に示すクロマトグラムから、重合初期の段階で種々の低分子の中間体が生成されて、それら中間体同士が結合することにより高分子量のラダーポリマーが生成されるのではないかと考えられる。そして、SEC曲線が一定のところで落ち着くのはポリマーのエタノールに対する溶解性が悪く、高分子量になると析出して反応系から外れるためだと考えられる。   From the chromatogram shown in FIG. 5, it is considered that various low molecular weight intermediates are generated at the initial stage of polymerization, and these intermediates are bonded to each other to generate a high molecular weight ladder polymer. The reason why the SEC curve settles at a certain point is thought to be that the polymer has poor solubility in ethanol and precipitates out of the reaction system at a high molecular weight.

(熱的特性の評価)
実施例16で得られたポリマー及び参考例で得られた環状体の熱分解開始温度、5%及び10%分解温度を、TG/DTAを用いて測定した。結果を表4に示す。このポリマーは環状体と同様、比較的高い熱安定性を示した。
(Evaluation of thermal characteristics)
The thermal decomposition onset temperature, 5%, and 10% decomposition temperature of the polymer obtained in Example 16 and the cyclic product obtained in Reference Example were measured using TG / DTA. The results are shown in Table 4. This polymer, like the cyclic body, showed a relatively high thermal stability.

Figure 0004895537
Figure 0004895537

実施例16で得られたポリマー及び参考例で得られた環状体について、1H−1HCOSYによる構造の比較を行ったところ、両者ともベンゼン環のプロトン同士のカップリングが同様に確認され、両者が類似した立体配座をとっていることが示唆された。 Regarding the polymer obtained in Example 16 and the cyclic product obtained in the reference example, the structures were compared by 1 H- 1 HCOSY. As a result, the coupling between protons in the benzene ring was confirmed in both cases, It was suggested that has a similar conformation.

以上説明してきたように、本発明のカリックスアレーン系ポリマーは、耐熱性が高くかつ溶剤に可溶であり、更にその構造上高い機械的強度が期待できる。従って、包摂化合物としての利用やレジストなどの分野への応用が期待できる。更にOH基を多く有することから官能基の導入による機能化が容易な新規なポリマーである。そして、本発明の製造方法により、このような化合物を容易に製造することができる。   As described above, the calixarene polymer of the present invention has high heat resistance, is soluble in a solvent, and can be expected to have high mechanical strength in terms of its structure. Therefore, it can be expected to be used as an inclusion compound and applied to fields such as resists. Furthermore, since it has many OH groups, it is a novel polymer that can be easily functionalized by introducing functional groups. And such a compound can be easily manufactured with the manufacturing method of this invention.

実施例3で得られた本発明のカリックスアレーン系ポリマーのMALDI−TOF−MSスペクトルの測定結果を示すチャートである。4 is a chart showing measurement results of a MALDI-TOF-MS spectrum of the calixarene polymer of the present invention obtained in Example 3. FIG. 実施例3で得られた本発明のカリックスアレーン系ポリマーの1H−NMRスペクトルの測定結果を示すチャートである。4 is a chart showing the measurement results of 1 H-NMR spectrum of the calixarene polymer of the present invention obtained in Example 3. FIG. 実施例3で得られた本発明のカリックスアレーン系ポリマーのIRスペクトルの測定結果を示すチャートである。6 is a chart showing IR spectrum measurement results of the calixarene polymer of the present invention obtained in Example 3. FIG. 実施例で得られた本発明のカリックスアレーン系ポリマーの分子量分布を示すSECのクロマトグラムである。It is the SEC chromatogram which shows the molecular weight distribution of the calixarene polymer of this invention obtained in the Example. 実施例で得られた本発明のカリックスアレーン系ポリマーの分子量分布を示すSECのクロマトグラムである。It is the SEC chromatogram which shows the molecular weight distribution of the calixarene polymer of this invention obtained in the Example.

Claims (4)

式(1)で表される連鎖を有するカリックスアレーン系ポリマー。
Figure 0004895537
(式(1)中、各Xは相互に独立に水素原子、炭素数1〜10の置換又は非置換アルキル基、炭素数2〜10の置換又は非置換アルケニル基、炭素数2〜10の置換又は非置換アルキニル基、炭素数7〜10の置換又は非置換アラルキル基、炭素数1〜10の置換又は非置換アルコキシ基、或いは置換又は非置換フェノキシ基;R及びR は非置換ジメチレン基(−CH −CH −);nは2以上の自然数を表す。)
A calixarene-based polymer having a chain represented by the formula (1).
Figure 0004895537
(In formula (1), each X is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substituted group having 2 to 10 carbon atoms. Or an unsubstituted alkynyl group, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; R 1 and R 2 are unsubstituted dimethylene groups (—CH 2 —CH 2 —) ; n represents a natural number of 2 or more.)
式(1)において、各Xが水素原子である請求項1に記載のカリックスアレーン系ポリマー。   The calixarene polymer according to claim 1, wherein each X in formula (1) is a hydrogen atom. 式(1)において、各Xがメチル基である請求項1に記載のカリックスアレーン系ポリマー。   The calixarene polymer according to claim 1, wherein each X in the formula (1) is a methyl group. (A)式(2)で表される化合物の群から選ばれた少なくとも1種の化合物と、(B)非置換1,4−ブタンジアール及び/又は非置換2,5−ジメトキシテトラヒドロフランとを反応させるカリックスアレーン系ポリマーの製造方法。
Figure 0004895537
(式(2)中、Xは水素原子、炭素数1〜10の置換又は非置換アルキル基、炭素数2〜10の置換又は非置換アルケニル基、炭素数2〜10の置換又は非置換アルキニル基、炭素数7〜10の置換又は非置換アラルキル基、炭素数1〜10の置換又は非置換アルコキシ基、或いは置換又は非置換フェノキシ基を表す。)
(A) at least one compound selected from the group of compounds represented by formula (2), (B) an unsubstituted 1,4-butanedial and / or reaction of unsubstituted 2,5-dimethoxytetrahydrofuran A method for producing a calixarene polymer.
Figure 0004895537
(In the formula (2), X is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms. Represents a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group.
JP2005192497A 2005-06-30 2005-06-30 Calixarene polymer and process for producing the same Active JP4895537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192497A JP4895537B2 (en) 2005-06-30 2005-06-30 Calixarene polymer and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192497A JP4895537B2 (en) 2005-06-30 2005-06-30 Calixarene polymer and process for producing the same

Publications (2)

Publication Number Publication Date
JP2007009082A JP2007009082A (en) 2007-01-18
JP4895537B2 true JP4895537B2 (en) 2012-03-14

Family

ID=37747990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192497A Active JP4895537B2 (en) 2005-06-30 2005-06-30 Calixarene polymer and process for producing the same

Country Status (1)

Country Link
JP (1) JP4895537B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5596258B2 (en) * 2007-05-09 2014-09-24 学校法人神奈川大学 Calixarene dimer compound and method for producing the same
JP5481017B2 (en) * 2007-05-09 2014-04-23 学校法人神奈川大学 Method for producing ladder polymer derivative
WO2009020035A1 (en) * 2007-08-09 2009-02-12 Jsr Corporation Radiation-sensitive composition and compound
WO2009025335A1 (en) * 2007-08-23 2009-02-26 Jsr Corporation Radiation-sensitive composition and compound
JP2009084344A (en) * 2007-09-28 2009-04-23 Jsr Corp Curing agent for epoxy resin
JP2009084343A (en) * 2007-09-28 2009-04-23 Jsr Corp Epoxy resin composition
JP2009155228A (en) * 2007-12-25 2009-07-16 Jsr Corp Phenolic compound, and method for producing the same
JP5219540B2 (en) * 2008-02-13 2013-06-26 Jsr株式会社 Phenolic compound and method for producing the same
JP2009196904A (en) * 2008-02-19 2009-09-03 Jsr Corp Cyclic compound and its production method
JP5629490B2 (en) * 2009-04-30 2014-11-19 Jsr株式会社 Aromatic compounds
JP2016138272A (en) * 2016-02-03 2016-08-04 日立化成株式会社 Calixarene-based compound, manufacturing method of calixarene-based compound, curing agent for epoxy resin, epoxy resin composition and electronic component device
JP7095435B2 (en) * 2018-06-27 2022-07-05 Dic株式会社 Phenolic hydroxyl group-containing compounds, thermosetting compositions using them, and their cured products

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226194B2 (en) * 1994-03-11 2001-11-05 戸田工業株式会社 Corn-type calixarene-based compound derivatives
JP3542883B2 (en) * 1997-03-04 2004-07-14 独立行政法人 科学技術振興機構 Vesicle comprising cyclic compound having resorcinol structure and method for producing the same
JP2004018421A (en) * 2002-06-13 2004-01-22 Tokuyama Corp Novel calixresorcinarene derivative
JP4137669B2 (en) * 2003-02-28 2008-08-20 学校法人神奈川大学 Calix resorcinarene derivative, method for producing the same, refractive index conversion material and light-thermal energy conversion storage material
TWI342873B (en) * 2004-02-04 2011-06-01 Univ Kanagawa Calixarene compound, method for menufacturing same, intermediate of same, and composition containing same
JP4657030B2 (en) * 2005-06-30 2011-03-23 Jsr株式会社 Calixarene derivatives and compositions containing the same
WO2009025335A1 (en) * 2007-08-23 2009-02-26 Jsr Corporation Radiation-sensitive composition and compound

Also Published As

Publication number Publication date
JP2007009082A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4895537B2 (en) Calixarene polymer and process for producing the same
KR101135771B1 (en) Calixarene compound, process for producing the same, intermediate therefor, and composition thereof
Mohamed et al. Formaldehyde-free synthesis of fully bio-based multifunctional bisbenzoxazine resins from natural renewable starting materials
Kisanuki et al. Ring‐opening polymerization of lipoic acid and characterization of the polymer
Wu et al. Synthesis and properties of soluble aromatic polyamides derived from 2, 2′‐bis (4‐carboxyphenoxy)‐9, 9′‐spirobifluorene
Agag Preparation and properties of some thermosets derived from allyl‐functional naphthoxazines
US20190153154A1 (en) Polymers of intrinsic microporosity (pims) containing locked spirobisindane structures and methods of synthesis of pims polymers
WO2010101882A1 (en) Thermosetting ring-opening metathesis polymerization materials with thermally degradable linkages
JP5586458B2 (en) Synthesis of acylarylenes and hyperbranched polyacylarylenes by metal-free cyclic trimerization of alkynes
Al-Muaikel Synthesis and characterization of new unsaturated polyesters and copolyesters containing azo groups in the main chain
Akbulut et al. Synthesis, characterization and properties of novel polyspiroacetals
JP4431790B2 (en) Resorcinol novolac derivatives
KR20140109619A (en) Poly(ethersulfone) resin
TWI573813B (en) Main structure of adamantane - containing oxo - nitrobenzene cyclohexane resin
JP5481017B2 (en) Method for producing ladder polymer derivative
Mustata et al. Multifunctional formaldehyde resins as curing agent for epoxy resins
Farcas et al. Poly (azomethine) s with rotaxane architecture containing a blocking group in every structural unit: synthesis and characterization
Park Grignard Metathesis Polymerization and Properties of 1, 1-Disubstituted-2, 5-dibromo-3, 4-diphenylsiloles
JP3329416B2 (en) Curable compound and method for producing the same
JPH03229717A (en) Phenolic resin containing propenyl group
Xu et al. Structural Effect on Thermal Cure and Property of Naphthalene‐Based Epoxies: Preparation and Characterization
JP2008050366A (en) Intermediate of calixarene-based compound
Relles et al. Dichloromaleimide chemistry. IV. Preparation of poly (maleimide–ethers) from the reaction of bisdichloromaleimides with bisphenols
Liu et al. Poly (silyl ester) s: A new route of synthesis via the condensation of Di‐tert‐butyl ester of dicarboxylic acid with dichlorosilane
JP4389010B2 (en) NOVOLAC DERIVATIVE HAVING SUBSTITUENT AND PROCESS FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250