JP4894152B2 - Long-term storage method of radically polymerizable resin composition - Google Patents

Long-term storage method of radically polymerizable resin composition Download PDF

Info

Publication number
JP4894152B2
JP4894152B2 JP2005083714A JP2005083714A JP4894152B2 JP 4894152 B2 JP4894152 B2 JP 4894152B2 JP 2005083714 A JP2005083714 A JP 2005083714A JP 2005083714 A JP2005083714 A JP 2005083714A JP 4894152 B2 JP4894152 B2 JP 4894152B2
Authority
JP
Japan
Prior art keywords
polymerizable resin
radical polymerizable
resin composition
cobalt
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005083714A
Other languages
Japanese (ja)
Other versions
JP2006265336A (en
Inventor
満幸 神崎
理恵 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2005083714A priority Critical patent/JP4894152B2/en
Publication of JP2006265336A publication Critical patent/JP2006265336A/en
Application granted granted Critical
Publication of JP4894152B2 publication Critical patent/JP4894152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、ラジカル重合性樹脂組成物の硬化性能を維持することが可能な長期保存方法に関する。   The present invention relates to a long-term storage method capable of maintaining the curing performance of a radical polymerizable resin composition.

従来、不飽和ポリエステル樹脂、ビニルエステル樹脂は常温またはこれに近い温度で硬
化させるためにはコバルトの有機酸塩からなる硬化促進剤の使用が不可欠である。
しかしこのコバルトの有機酸塩をベース樹脂に内添し、長期保存した場合、ゲル化時間
および硬化時間が遅延する現象が見られ、一般にゲルタイムドリフトと呼ばれる。このゲ
ルタイムドリフトはベース樹脂の酸価が高い場合や、シリカ微粉末を配合した場合に顕著
にみられる。この現象が発生する原因としては、樹脂中に残存するフリー酸とコバルトと
の錯体形成によるコバルトの失活、あるいは樹脂中のシリカ微粉末にコバルトの有機酸塩が吸着されること等が推定されている。
この現象に対して、例えばN,N’−ジメチルアニリン等のアミン系化合物を硬化促進
助剤として用いる場合があるがその効果は十分ではない。
また硬化促進助剤としてN,N’−ジメチルアセトアセトアミドを不飽和ポリエステル
樹脂、ビニルエステル樹脂に使用し、常温ないしそれに近い温度で、短時間の硬化時間で
、黄変の少ない硬化物が得られることが記載されている(例えば特許文献1及び特許文献
2参照)。しかし、これらの技術では、使用に際しゲルタイムは短くなるが、保存中にゲ
ル化が生じるという問題があった。
Conventionally, in order to cure unsaturated polyester resin and vinyl ester resin at room temperature or a temperature close to this, it is indispensable to use a curing accelerator made of an organic acid salt of cobalt.
However, when this organic acid salt of cobalt is internally added to the base resin and stored for a long period of time, a phenomenon in which the gelation time and the curing time are delayed is observed, and this is generally called gel time drift. This gel time drift is noticeable when the acid value of the base resin is high or when silica fine powder is blended. Possible causes of this phenomenon are the deactivation of cobalt due to the complex formation of free acid and cobalt remaining in the resin, or the adsorption of organic acid salts of cobalt to the fine silica powder in the resin. ing.
For this phenomenon, for example, an amine compound such as N, N′-dimethylaniline may be used as a curing accelerator, but the effect is not sufficient.
In addition, N, N'-dimethylacetoacetamide is used as an accelerator for curing in unsaturated polyester resins and vinyl ester resins, and a cured product with little yellowing can be obtained at room temperature or a temperature close to it at a short curing time. (For example, see Patent Document 1 and Patent Document 2). However, these techniques have a problem that gelation occurs during storage, although the gel time is shortened during use.

コバルトの有機酸塩及びアミン系化合物をラジカル重合性樹脂に添加し、ゲルタイムドリフト現象の発生を防止し、硬化性能を維持することができる長期保存方法を提供するものである。 An organic acid salt of cobalt and an amine compound are added to a radical polymerizable resin to provide a long-term storage method capable of preventing the occurrence of a gel time drift phenomenon and maintaining curing performance.

本発明者らは、前記課題について鋭意検討した結果、特定量のコバルトの有機酸塩及びアセトアミド構造を持ったアミン系化合物を添加すると、長期保存中のゲルタイムドリフトを防止することができることを見いだし、本発明を完成するに至った。
すなわち本発明は、ラジカル重合性樹脂と硬化剤とを含むラジカル重合性樹脂組成物に、コバルトの有機酸塩及びN,N’−ジメチルアセトアセトアミドを添加することによりラジカル重合性樹脂組成物を長期保存する方法であって、前記N,N’−ジメチルアセトアセトアミドが、ラジカル重合性樹脂100重量部に対し、0.01〜0.18重量部であり、前記コバルトの有機酸塩が、ラジカル重合性樹脂100重量部に対し、0.1〜2.0重量部であることを特徴とするラジカル重合性樹脂組成物の長期保存方法を提供するものである。
As a result of intensive studies on the above problems, the present inventors have found that, when a specific amount of an organic acid salt of cobalt and an amine compound having an acetamide structure are added, gel time drift during long-term storage can be prevented, The present invention has been completed.
That is, the present invention provides a radical polymerizable resin composition for a long time by adding an organic acid salt of cobalt and N, N′-dimethylacetoacetamide to a radical polymerizable resin composition containing a radical polymerizable resin and a curing agent. a method of storing, the N, N'-dimethyl acetoacetamide is, relative to 100 parts by weight of the radical polymerizable resin, Ri 0.01 to 0.18 parts by weight der, an organic acid salt of the cobalt, the radical the polymerizable resin 100 parts by weight, there is provided a long-term storage methods of the radical polymerizable resin composition comprising 0.1 to 2.0 parts by weight der Rukoto.

本発明は、コバルトの失活等によるゲルタイムドリフト現象の発生を防止することにより、ラジカル重合性樹脂組成物の保存期間を延長することができる。   The present invention can extend the storage period of the radical polymerizable resin composition by preventing the occurrence of a gel time drift phenomenon due to cobalt deactivation or the like.

次に本発明の詳細について説明する。
本発明のラジカル重合性樹脂組成物の長期保存方法は、コバルトの有機酸塩を硬化促進剤として用い、かつN,N’−ジメチルアセトアセトアミドを硬化促進助剤として用いることが特徴である。
かかるコバルトの有機酸塩としては、ナフテン酸コバルト(6%コバルト)、オクチル酸コバルト(8%コバルト)などの有機コバルト化合物が挙げられる。これらのコバルト化合物を単独又は組み合わせて用いることができる。
またN,N’−ジメチルアセトアセトアミドは下記の化学構造式にて表される。
Next, details of the present invention will be described.
The long-term storage method of the radical polymerizable resin composition of the present invention is characterized in that an organic acid salt of cobalt is used as a curing accelerator and N, N′-dimethylacetoacetamide is used as a curing accelerator.
Examples of the organic acid salt of cobalt include organic cobalt compounds such as cobalt naphthenate (6% cobalt) and cobalt octylate (8% cobalt). These cobalt compounds can be used alone or in combination.
N, N′-dimethylacetoacetamide is represented by the following chemical structural formula.

Figure 0004894152
Figure 0004894152

本発明は、ラジカル重合性樹脂100重量部に対し、N,N’−ジメチルアセトアセト
アミドを、0.01〜0.18重量部、好ましくは0.03重量部〜0.15重量部用い
るものである。またコバルトの有機酸塩を、ラジカル重合性樹脂100重量部に対し、0.1〜2.0重量部であり、好ましくは0.3〜1.0重量部用いるものである。
コバルトの有機酸塩及びN,N’−ジメチルアセトアセトアミドをかかる範囲量用いることにより、ラジカル重合性樹脂組成物のゲルタイムドリフト現象の発生を効果的に防止し、長期間保存することが可能となる。
In the present invention, 0.01 to 0.18 parts by weight, preferably 0.03 to 0.15 parts by weight of N, N′-dimethylacetoacetamide is used with respect to 100 parts by weight of the radical polymerizable resin. is there. The cobalt organic acid salt is used in an amount of 0.1 to 2.0 parts by weight, preferably 0.3 to 1.0 parts by weight, based on 100 parts by weight of the radical polymerizable resin.
By using such a range amount of the organic acid salt of cobalt and N, N′-dimethylacetoacetamide, the occurrence of the gel time drift phenomenon of the radical polymerizable resin composition can be effectively prevented, and it can be stored for a long time. .

本発明に使用するラジカル重合性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、ウレタン(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂等が挙げられる。これらのうち、不飽和ポリエステル樹脂、ビニルエステル樹脂が好ましい。
かかる不飽和ポリエステル樹脂は、α,β−不飽和カルボン酸又は場合により飽和カルボン酸を含むα,β−不飽和カルボン酸とアルコール類とから得られるオリゴマーである。
Examples of the radical polymerizable resin used in the present invention include unsaturated polyester resins, vinyl ester resins, urethane (meth) acrylate resins, and polyester (meth) acrylate resins. Of these, unsaturated polyester resins and vinyl ester resins are preferred.
Such an unsaturated polyester resin is an oligomer obtained from an α, β-unsaturated carboxylic acid or an α, β-unsaturated carboxylic acid containing an optionally saturated carboxylic acid and an alcohol.

α,β−不飽和カルボン酸としては、例えばフマ−ル酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸、メサコン酸、クロロマレイン酸、あるいはこれらのジメチルエステル類などが挙げられる。これらのα,β−不飽和カルボン酸はそれぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。また、飽和カルボン酸としては、例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、ヘキサヒドロ無水フタル酸、アジピン酸、セバチン酸、アゼライン酸などが挙げられる。これらの飽和カルボン酸はそれぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。   Examples of the α, β-unsaturated carboxylic acid include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, chloromaleic acid, and dimethyl esters thereof. These α, β-unsaturated carboxylic acids may be used alone or in combination of two or more. Examples of the saturated carboxylic acid include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, hetic acid, hexahydrophthalic anhydride, adipic acid, sebacic acid, and azelaic acid. These saturated carboxylic acids may be used alone or in combination of two or more.

一方、アルコール類としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリエチレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,3−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジオール、ネオペンチルグリコール、2,2,4−トリメチル−1,3−ペンタンジオール、グリセリンモノアリルエーテル、水素化ビスフェノールA、2,2−ビス(4−ヒドロキシプロボキシフェニル)プロパン、2,2−ビス(4−ヒドロキシエトキシフェニル)プロパンなどのジオール類、トリメチロールプロパンなどのトリオール類、ペンタエリスリトールなどのテトラオール類などが挙げられる。これらのアルコールはそれぞれ単独で用いても、2種類以上を組み合わせて用いても良い。   On the other hand, examples of alcohols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,3-pentanediol, 1,6- Hexanediol, cyclohexanediol, neopentyl glycol, 2,2,4-trimethyl-1,3-pentanediol, glycerol monoallyl ether, hydrogenated bisphenol A, 2,2-bis (4-hydroxypropoxyphenyl) propane, Examples thereof include diols such as 2,2-bis (4-hydroxyethoxyphenyl) propane, triols such as trimethylolpropane, and tetraols such as pentaerythritol. These alcohols may be used alone or in combination of two or more.

前記ビニルエステル樹脂としては、従来一般に慣用されている公知のエポキシ(メタ)アクリレート樹脂が使用できる。例えばビスフェノールタイプのエポキシ樹脂単独またはビスフェノールタイプのエポキシ樹脂とノボラックタイプのエポキシ樹脂とを混合したものと不飽和一塩基酸とを付加反応せしめたものが挙げられる。
ビスフェノールタイプのエポキシ樹脂としては、エピクロルヒドリンとビスフェノールAまたはビスフェノ―ルFとの反応により得られるグリシジルエーテル型のエポキシ樹脂、メチルエピクロルヒドリンとビスフェノールAまたはビスフェノールFとの反応により得られるジメチルグリシジルエーテル型のエポキシ樹脂あるいはビスフェノールAのアルキレンオキサイド付加物とエピクロルヒドリンまたはメチルエピクロルヒドリンとから得られるエポキシ樹脂などが挙げられる。
ノボラックタイプのエポキシ樹脂としては、フェノールノボラックまたはクレゾールノボラックと、エピクロルヒドリンまたはメチルエピクロルヒドリンとの反応により得られるエポキシ樹脂などが挙げられる。
As the vinyl ester resin, a known epoxy (meth) acrylate resin that is generally used conventionally can be used. For example, a bisphenol type epoxy resin alone or a mixture of a bisphenol type epoxy resin and a novolac type epoxy resin and an unsaturated monobasic acid may be added.
Examples of bisphenol type epoxy resins include glycidyl ether type epoxy resins obtained by reaction of epichlorohydrin with bisphenol A or bisphenol F, and dimethyl glycidyl ether type epoxy obtained by reaction of methyl epichlorohydrin with bisphenol A or bisphenol F. Examples thereof include an epoxy resin obtained from a resin or an alkylene oxide adduct of bisphenol A and epichlorohydrin or methyl epichlorohydrin.
Examples of the novolak type epoxy resin include an epoxy resin obtained by a reaction of a phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.

不飽和一塩基酸としては、アクリル酸、メタクリル酸、桂皮酸、クロトン酸、モノメチルマレート、ソルビン酸あるいはモノ(2−エチルヘキシル)マレート等が挙げられる。これらの不飽和一塩基酸は単独又は2種以上組み合わせて用いられる。   Examples of the unsaturated monobasic acid include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, monomethyl malate, sorbic acid or mono (2-ethylhexyl) malate. These unsaturated monobasic acids are used alone or in combination of two or more.

本発明に使用するラジカル重合性樹脂組成物は、エチレン性不飽和単量体を含むものである。エチレン性不飽和単量体としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸エステル類が挙げられる。さらに、これらのほかに、例えば炭素数が1〜12のアルキル基を有する(メタ)アクリル酸エステル、スチレン、α−メチルスチレン、(メタ)アクリル酸アミド、炭素数1〜4のアルキル基を有するマレイン酸エステル及びフマ−ル酸エステル等が挙げられる。これらのうち、スチレンが好ましい。   The radical polymerizable resin composition used in the present invention contains an ethylenically unsaturated monomer. Examples of the ethylenically unsaturated monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylic. Examples include (meth) acrylic acid esters such as isobutyl acid and cyclohexyl (meth) acrylate. In addition to these, for example, a (meth) acrylic acid ester having 1 to 12 carbon atoms, styrene, α-methylstyrene, (meth) acrylic acid amide, or an alkyl group having 1 to 4 carbon atoms. Examples thereof include maleic acid esters and fumaric acid esters. Of these, styrene is preferred.

また、前記エチレン性不飽和単量体に多官能性重合性単量体を併用することができる。かかる多官能性重合性単量体としては、例えばエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、オリゴエチレンジ(メタ)アクリレートなどが挙げられる。   Moreover, a polyfunctional polymerizable monomer can be used in combination with the ethylenically unsaturated monomer. Examples of such polyfunctional polymerizable monomers include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, trimethylolpropane di ( Examples include meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, hexanediol di (meth) acrylate, and oligoethylene di (meth) acrylate.

ラジカル重合性樹脂とエチレン性不飽和単量体との割合は、重量比でラジカル重合性樹脂:エチレン性不飽和単量体=40〜80:60〜20であることが好ましい。   The ratio of the radical polymerizable resin to the ethylenically unsaturated monomer is preferably radical polymerizable resin: ethylenically unsaturated monomer = 40 to 80:60 to 20 by weight ratio.

本発明のラジカル重合性樹脂組成物には、有機過酸化物等の硬化剤を用いることができ
る。
有機過酸化物としては、例えばジアリルパーオキサイド系、パーオキシエステル系、ハ
イドロパーオキサイド系、ジアルキルパーオキサイド系、ケトンパーオキサイド系、パー
オキシケタール系、アルキルパーエステル系、パーカーボネート系等の公知のものが使用
され硬化温度により適時選択される。また、必要に応じて、有機系、無機系の着色剤、充
填剤を用いることができる。例えば樹脂にチキソ性を付与するための乾式シリカや着色用
トナーが挙げられる。
本発明の長期保存方法は、ラジカル重合性樹脂の常温硬化の分野、例えば繊維強化プラスチック、塗料、ライニング、注型等の分野で用いられる。
In the radical polymerizable resin composition of the present invention, a curing agent such as an organic peroxide can be used.
Examples of the organic peroxide include known diallyl peroxides, peroxyesters, hydroperoxides, dialkyl peroxides, ketone peroxides, peroxyketals, alkyl peroxides, and carbonates. The one used is selected as appropriate according to the curing temperature. Moreover, an organic type and an inorganic type coloring agent and a filler can be used as needed. Examples thereof include dry silica and color toner for imparting thixotropy to the resin.
The long-term storage method of the present invention is used in the field of room temperature curing of radically polymerizable resins, for example, in the fields of fiber reinforced plastics, paints, linings, casting and the like.

以下本発明を実施例によって更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。また、文中「部」「%」とあるのは、重量部、重量%を示すものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples. In the text, “parts” and “%” indicate parts by weight and% by weight.

合成例1
温度計、アンカー型攪拌翼及び冷却器を具備した5L三口フラスコで、エピクロン1050[ビスフェノールAとエピクロルヒドリンとの反応により得られたエポキシ当量が470のエポキシ樹脂、大日本インキ化学工業(株)製]4600g、メタクリル酸860g(エポキシ基/カルボキシル基=1/1モル比)とハイドロキノンの1.36g及びトリエチルアミンの10.8gを仕込んで、120℃まで昇温させ、同温度で10時間反応を続けた。サンプリングして、酸価が3.5、色数が2で冷却した。トルハイドロキノン25ppm、ナフテン酸銅10ppmを添加し、スチレンで希釈し、不揮発分60%の液状のビニルエステル樹脂を得た。このビニルエステル樹脂を以下VE−1という。
Synthesis example 1
Epicron 1050 [Epoxy resin having an epoxy equivalent of 470 obtained by reaction of bisphenol A and epichlorohydrin, manufactured by Dainippon Ink & Chemicals, Inc.] in a 5 L three-necked flask equipped with a thermometer, an anchor type stirring blade and a cooler 4600 g, 860 g of methacrylic acid (epoxy group / carboxyl group = 1/1 molar ratio), 1.36 g of hydroquinone and 10.8 g of triethylamine were charged, the temperature was raised to 120 ° C., and the reaction was continued at the same temperature for 10 hours. . Sampling and cooling with an acid value of 3.5 and a color number of 2. Toluhydroquinone 25 ppm and naphthenic acid copper 10 ppm were added and diluted with styrene to obtain a liquid vinyl ester resin having a nonvolatile content of 60%. This vinyl ester resin is hereinafter referred to as VE-1.

実施例1、2及び比較例1、2
VE−1を用い、硬化促進剤及び硬化促進助剤を表−1のとおり配合した。
ゲルタイムの測定方法は、JIS K6901 5.10.1[常温ゲル化時間(A法)]によるものである。またゲルタイム測定は、配合直後から3ヶ月後まで実施した。
Examples 1 and 2 and Comparative Examples 1 and 2
Using VE-1, a curing accelerator and a curing acceleration assistant were blended as shown in Table 1.
The measuring method of gel time is based on JIS K6901 5.10.1 [normal temperature gelation time (Method A)]. The gel time was measured from immediately after compounding to 3 months later.

Figure 0004894152
注)表中の略号の説明
6%コバルト :6%ナフテン酸コバルト
DMA :ジメチルアニリン
DMAAM :ジメチルアセトアセトアミド
QS−20L :レオロシール QS−20L[(株)トクヤマ製]
55%MEKPO:55%メチルエチルケトンパーオキサイド
Figure 0004894152
Note) Explanation of abbreviations in the table 6% Cobalt: 6% Cobalt naphthenate DMA: Dimethylaniline DMAAM: Dimethylacetoacetamide QS-20L: Leorosil QS-20L [manufactured by Tokuyama Corporation]
55% MEKPO: 55% methyl ethyl ketone peroxide

合成例2
温度計、アンカー型攪拌翼及び冷却器を具備した5L三口フラスコに、ジエチレングリコール(DEG)3.5モル、テレフタル酸(TPA)1.2モル、アジピン酸(AA)0.5モル、ジブチル錫オキサイド1000ppmを仕込んで窒素気流下215℃で12時間反応を続け、ソリッド酸価が3以下になったところで、150℃まで冷却し、無水フタル酸0.8モル、無水マレイン酸1.0モルを仕込み、205℃まで昇温した。同温度で16時間反応を続けた。サンプリングは60%スチレン溶液で行い、酸価10〜20、ガードナー粘度K〜Lで冷却した。トルハイドロキノン30ppm、ナフテン酸銅10ppmを添加し、スチレンで希釈し、不揮発分60%の液状の不飽和ポリエステル樹脂を得た。この不飽和ポリエステル樹脂をUP−1という。
Synthesis example 2
In a 5 L three-necked flask equipped with a thermometer, an anchor-type stirring blade and a condenser, diethylene glycol (DEG) 3.5 mol, terephthalic acid (TPA) 1.2 mol, adipic acid (AA) 0.5 mol, dibutyltin oxide The reaction was continued for 12 hours at 215 ° C. under a nitrogen stream when 1000 ppm was added. When the solid acid value became 3 or less, the mixture was cooled to 150 ° C., and 0.8 mol of phthalic anhydride and 1.0 mol of maleic anhydride were added. The temperature was raised to 205 ° C. The reaction was continued for 16 hours at the same temperature. Sampling was performed with a 60% styrene solution and cooled with an acid value of 10 to 20 and a Gardner viscosity of K to L. 30 ppm of toluhydroquinone and 10 ppm of copper naphthenate were added and diluted with styrene to obtain a liquid unsaturated polyester resin having a nonvolatile content of 60%. This unsaturated polyester resin is referred to as UP-1.

実施例3及び比較例3
UP−1を用い、硬化促進剤及び硬化促進助剤を表−2のとおり配合した。ゲルタイムの測定方法は、前記と同様である。
Example 3 and Comparative Example 3
Using UP-1, a curing accelerator and a curing acceleration assistant were blended as shown in Table 2. The method for measuring the gel time is the same as described above.

Figure 0004894152
Figure 0004894152


Claims (3)

ラジカル重合性樹脂と硬化剤とを含むラジカル重合性樹脂組成物に、コバルトの有機酸塩及びN,N’−ジメチルアセトアセトアミドを添加することによりラジカル重合性樹脂組成物を長期保存する方法であって、前記N,N’−ジメチルアセトアセトアミドが、ラジカル重合性樹脂100重量部に対し、0.01〜0.18重量部であり、前記コバルトの有機酸塩が、ラジカル重合性樹脂100重量部に対し、0.1〜2.0重量部であることを特徴とするラジカル重合性樹脂組成物の長期保存方法。 This is a method for storing a radical polymerizable resin composition for a long period of time by adding an organic acid salt of cobalt and N, N′-dimethylacetoacetamide to a radical polymerizable resin composition containing a radical polymerizable resin and a curing agent. Te, the N, N'-dimethyl acetoacetamide is, relative to 100 parts by weight of the radical polymerizable resin, Ri 0.01 to 0.18 parts by weight der, an organic acid salt of the cobalt, the radical polymerizable resin 100 weight parts with respect to long-term storage methods of the radical polymerizable resin composition comprising 0.1 to 2.0 parts by weight der Rukoto. 前記コバルトの有機酸塩が、ナフテン酸コバルトである請求項1記載のラジカル重合性樹脂組成物の長期保存方法。 The method for long-term storage of a radical polymerizable resin composition according to claim 1, wherein the organic acid salt of cobalt is cobalt naphthenate. 前記ラジカル重合性樹脂が、不飽和ポリエステル樹脂又はビニルエステル樹脂である請求項1又は2記載のラジカル重合性樹脂組成物の長期保存方法。 The method for long-term storage of a radical polymerizable resin composition according to claim 1 or 2, wherein the radical polymerizable resin is an unsaturated polyester resin or a vinyl ester resin.
JP2005083714A 2005-03-23 2005-03-23 Long-term storage method of radically polymerizable resin composition Active JP4894152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083714A JP4894152B2 (en) 2005-03-23 2005-03-23 Long-term storage method of radically polymerizable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083714A JP4894152B2 (en) 2005-03-23 2005-03-23 Long-term storage method of radically polymerizable resin composition

Publications (2)

Publication Number Publication Date
JP2006265336A JP2006265336A (en) 2006-10-05
JP4894152B2 true JP4894152B2 (en) 2012-03-14

Family

ID=37201639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083714A Active JP4894152B2 (en) 2005-03-23 2005-03-23 Long-term storage method of radically polymerizable resin composition

Country Status (1)

Country Link
JP (1) JP4894152B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254723A (en) * 1988-04-01 1989-10-11 Showa Highpolymer Co Ltd Cure promotion of radically curable resin
JP2005036176A (en) * 2003-06-25 2005-02-10 Japan Composite Co Ltd Method for curing resin composition
JP2006176715A (en) * 2004-12-24 2006-07-06 Hitachi Chem Co Ltd Composition for decorative laminate and decorative laminate using the same resin composition for decorative laminate

Also Published As

Publication number Publication date
JP2006265336A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP5790155B2 (en) Curable resin composition
ES2359846T3 (en) COMPOSITIONS OF INSURED POLYESTER RESIN.
JP5828225B2 (en) Curable resin composition
JP2001240631A (en) Curable resin composition
JP4894152B2 (en) Long-term storage method of radically polymerizable resin composition
JP4936100B2 (en) Long-term storage method of radically polymerizable resin composition
JP2002069317A (en) Polymerizable resin composition
JP5772230B2 (en) Curable resin composition
JPH11148045A (en) Active energy light-curable coating composition and formation of coating using the same
JP6710892B2 (en) Curable resin composition
US6184314B1 (en) Vinyl ester of polyepoxide and unsaturated monocarboxyic acid with maleic stabilizer
JP5772229B2 (en) Curable resin composition
JP7358940B2 (en) thermosetting resin composition
JPWO2020040052A1 (en) Curable resin composition and its cured product
JPH0681782B2 (en) Method for producing polyester poly (meth) acrylate
JP2000327729A (en) Curable resin composition
JP2740527B2 (en) Epoxy acrylate resin composition
JP2005075973A (en) Method for producing oligo(meth)acrylate-including composition, oligo(meth)acrylate- including composition therefrom, method for hardening the same and hardened product by the hardening method
WO2018079078A1 (en) Curing accelerator and radical polymerizable resin composition
JPS6094415A (en) Unsaturated epoxy resin composition of improved storage stability
ES2973422T3 (en) Unsaturated polyester resin compositions and methods for preparing the same
JP2001307930A (en) Coil impregnating resin composition
TWI760623B (en) Vinyl ester resin composition, composite material comprising such composition, and hardened product of such composition or composite material
JP4632084B2 (en) Radical polymerizable resin composition and cured product thereof
WO2024090516A1 (en) Radical polymerizable resin curing agent composition and radical polymerizable resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250