JP4894073B2 - Battery internal resistance measuring device - Google Patents

Battery internal resistance measuring device Download PDF

Info

Publication number
JP4894073B2
JP4894073B2 JP2007232170A JP2007232170A JP4894073B2 JP 4894073 B2 JP4894073 B2 JP 4894073B2 JP 2007232170 A JP2007232170 A JP 2007232170A JP 2007232170 A JP2007232170 A JP 2007232170A JP 4894073 B2 JP4894073 B2 JP 4894073B2
Authority
JP
Japan
Prior art keywords
battery
internal resistance
switch
voltage
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007232170A
Other languages
Japanese (ja)
Other versions
JP2009063460A (en
Inventor
康寛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007232170A priority Critical patent/JP4894073B2/en
Publication of JP2009063460A publication Critical patent/JP2009063460A/en
Application granted granted Critical
Publication of JP4894073B2 publication Critical patent/JP4894073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Description

本発明は、電源入力部に用いて好適な塩化チオニール系リチウム電池に関し、塩化皮膜が生成されて内部抵抗が上昇する電池の内部抵抗測定装置関する。 The present invention relates to a suitable thionyl based lithium chloride battery using the power supply input section relates to the internal resistance measuring device of the battery internal resistance chloride film is generated is increased.

図4は一般的な電池の等価回路である。図4において、Rsolは電解液と電極の抵抗の和、Rdは反応抵抗、Cdは電解液の界面に形成される電気二重層による静電容量である。   FIG. 4 is an equivalent circuit of a general battery. In FIG. 4, Rsol is the sum of the resistance of the electrolytic solution and the electrode, Rd is the reaction resistance, and Cd is the capacitance due to the electric double layer formed at the interface of the electrolytic solution.

図5は塩化チオニール系リチウム電池の構造である。図5において、正極端子21は、炭素多孔質形成体24に差し込まれて正極を構成している。
正極(炭素多孔質形成体)24はセパレータ(ガラス不織布)23、上部蓋26、底部絶縁体27に取り囲まれている。
FIG. 5 shows the structure of a thionyl chloride lithium battery. In FIG. 5, the positive electrode terminal 21 is inserted into the carbon porous body 24 to constitute a positive electrode.
The positive electrode (carbon porous body) 24 is surrounded by a separator (nonwoven glass) 23, an upper lid 26, and a bottom insulator 27.

上部蓋26は炭素多孔質形成体24が電解液中に漏れないようにし、セパレータ23、底部絶縁体27は、炭素多孔質形成体24が負極29(Li)、金属ケース25と接触するのを防止する。   The upper lid 26 prevents the carbon porous formed body 24 from leaking into the electrolyte, and the separator 23 and the bottom insulator 27 prevent the carbon porous formed body 24 from contacting the negative electrode 29 (Li) and the metal case 25. To prevent.

炭素多孔質形成体24は放電反応生成物をその内部に収納する。負極29(Li)は金属ケース25の内面に圧着されている。塩化チオニール電解液22(SOCl)は、正極24、負極29が収納された金属ケース25内に満たされている。
塩化チオニール系リチウム電池の化学反応式は式(1)の通りである。
4Li+2SOCl→4LiCl+SO+S・・・・・(1)
The carbon porous forming body 24 stores the discharge reaction product therein. The negative electrode 29 (Li) is pressure-bonded to the inner surface of the metal case 25. The thionyl chloride electrolyte solution 22 (SOCl 2 ) is filled in a metal case 25 in which the positive electrode 24 and the negative electrode 29 are accommodated.
The chemical reaction formula of the thionyl chloride lithium battery is as shown in formula (1).
4Li + 2SOCl 2 → 4LiCl + SO 2 + S (1)

セパレータ23はガラス不織布であり、正極活物質SOCLと負極活物質Liを隔離する機能は無いため、これらが接触すると同時に式(1)による化学反応が起こり負極Liの表面に塩化皮膜28(LiCl)が生成される。この塩化皮膜LiClは、電流を流さない状態で電池の保存期間が長くなるとその厚みを増し、その結果、電池の内部抵抗が増加していく。 Since the separator 23 is a glass nonwoven fabric and does not have a function of separating the positive electrode active material SOCL 2 and the negative electrode active material Li, a chemical reaction according to the formula (1) occurs at the same time as they come into contact with each other, and the chloride film 28 (LiCl ) Is generated. The chloride film LiCl increases in thickness when the battery storage period is extended in a state where no current flows, and as a result, the internal resistance of the battery increases.

図6は図5に示す構成の電池を等価回路に置き換えたものでRC並列回路として表わすことができる。この電池の等価回路は図6に示すようにRC並列回路がさらに直列に接続された形となる。   FIG. 6 is a circuit in which the battery shown in FIG. 5 is replaced with an equivalent circuit, and can be represented as an RC parallel circuit. The equivalent circuit of this battery has a form in which RC parallel circuits are further connected in series as shown in FIG.

この電池から電流を流す場合、回路をオンした直後から電池内部の負極からLiが固体電解質である塩化皮膜(LiCl)28内を拡散して電流が流れ始める。このとき塩化皮膜28の抵抗による電圧降下により出力電圧が一旦低下するが、電流が増えるに従ってLiの拡散が追いつかなくなり塩化皮膜の部分破壊が起こって抵抗が下がるため、塩化皮膜による電圧降下が小さくなり出力電圧が上昇する。回路をオフすると、再び負極Li表面の塩化皮膜生成が始まる。(出展:第3版電池便覧) When current is supplied from this battery, immediately after the circuit is turned on, Li + diffuses from the negative electrode inside the battery through the chloride film (LiCl) 28, which is a solid electrolyte, and current starts to flow. At this time, the output voltage temporarily decreases due to the voltage drop due to the resistance of the chloride film 28, but as the current increases, the diffusion of Li + cannot catch up and the chloride film partially breaks down and the resistance decreases, so the voltage drop due to the chloride film is small. As a result, the output voltage rises. When the circuit is turned off, generation of a chloride film on the surface of the negative electrode Li starts again. (Exhibitor: 3rd edition battery manual)

この電池の内部抵抗を測定する従来技術として以下に示す2つの方法が挙げられる。
図7(a)は直流電流法の測定系を示す第1の方法の回路構成図である。この測定系は、電圧記録計1、スイッチ3、抵抗4および測定対象物(電池)2により構成される。
The following two methods are listed as conventional techniques for measuring the internal resistance of this battery.
FIG. 7A is a circuit configuration diagram of a first method showing a measurement system of the direct current method. This measurement system includes a voltage recorder 1, a switch 3, a resistor 4, and a measurement object (battery) 2.

電圧記録計1はスイッチ3をオンしてから時間経過とともに変化する電池両端の電圧を記録する。抵抗4は既知の抵抗値Rsを有し、回路に流れる電流に応じた電圧降下Vsを発生する。   The voltage recorder 1 records the voltage across the battery that changes over time after the switch 3 is turned on. The resistor 4 has a known resistance value Rs and generates a voltage drop Vs corresponding to the current flowing through the circuit.

図7(b)はスイッチ3をオンした場合の電圧と時間の関係を示す説明図である。図によれば、電圧記録計1の波形は一旦電圧がV0からV1に低下した後、V0とV1の中間電圧V2に移行する。電流を流した直後の電池の内部抵抗(Rbat)は式(2)により求めることができる。
Rbat=(V0−V1)/I
I=V1/Rsより、
Rbat=(V0−V1)×Rs/V1・・・・・(2)
この方法では測定の前後で塩化皮膜の状態が変化してしまうが、実際に電池から電流を負荷に流して使用する状態と同じ条件で内部抵抗を測定することが可能である。
FIG. 7B is an explanatory diagram showing the relationship between voltage and time when the switch 3 is turned on. According to the figure, the waveform of the voltage recorder 1 shifts to an intermediate voltage V2 between V0 and V1 after the voltage once drops from V0 to V1. The internal resistance (Rbat) of the battery immediately after the current is passed can be obtained from the equation (2).
Rbat = (V0−V1) / I
From I = V1 / Rs,
Rbat = (V0−V1) × Rs / V1 (2)
In this method, the state of the chloride film changes before and after the measurement, but it is possible to measure the internal resistance under the same conditions as when the battery is actually used by passing a current from the battery to the load.

図8(a)は交流四端子法の測定系を示す第2の方法の回路構成図である。この測定系は、交流信号発生器5、交流電流計7、交流電圧計8、コンデンサ6および測定対象物(電池)2より構成される。   FIG. 8A is a circuit configuration diagram of a second method showing an AC four-terminal measurement system. This measurement system includes an AC signal generator 5, an AC ammeter 7, an AC voltmeter 8, a capacitor 6, and a measurement object (battery) 2.

交流信号発生器5は一定周波数の交流信号を発生し、周波数は任意に変更可能である。コンデンサ6は電池2から直流電流が流れるのを阻止する。交流電圧計8、交流電流計7はそれぞれ電圧、電流の実効値を測定する。   The AC signal generator 5 generates an AC signal having a constant frequency, and the frequency can be arbitrarily changed. The capacitor 6 prevents a direct current from flowing from the battery 2. The AC voltmeter 8 and the AC ammeter 7 measure the effective values of voltage and current, respectively.

交流信号発生器5より電池2に一定周波数の交流電圧を印加し、周波数に応じた交流電流、交流電圧の実行値を測定、インピーダンスを演算する。
ただし電池のインピーダンスは図4の等価回路によれば、印加する交流信号の周波数により変化するため、周波数を変えて測定を繰り返し、図8(b)の如くプロットした結果、実軸との交点の値(Rsol+Rd)が電池の内部抵抗として求められる。
この方法では電池から直流電流が流れないため、電池内部の塩化皮膜を破壊することなく測定することが可能である。
An alternating voltage of a constant frequency is applied to the battery 2 from the alternating current signal generator 5, an actual value of the alternating current and the alternating voltage corresponding to the frequency is measured, and an impedance is calculated.
However, according to the equivalent circuit of FIG. 4, the impedance of the battery changes depending on the frequency of the AC signal to be applied. Therefore, the measurement was repeated while changing the frequency, and the result of plotting as shown in FIG. The value (Rsol + Rd) is determined as the internal resistance of the battery.
In this method, since direct current does not flow from the battery, measurement can be performed without destroying the chloride film inside the battery.

なお、電池の内部抵抗を測定する方法の先行技術としては、例えば下記の特許文献に示されたものがある。   In addition, as a prior art of the method of measuring the internal resistance of a battery, there exist some which were shown by the following patent document, for example.

特開2002−286819号公報JP 2002-286819 A 特開2003−121513号公報JP 2003-121513 A

ところで、上述の従来の例においては、次のような問題があった。
図7に示す第1の方法の場合、測定前後で塩化皮膜の抵抗分が変化してしまうため、測定を行うたびに測定値が変わってしまう。
図8に示す第2の方法の場合、塩化皮膜の破壊が起こらないため、測定前後で測定値が変化することはないが、インピーダンスプロット図で描かれる半円が1個ではなく複数個現れたり、またそれぞれの半円が重なることもあるため図4や図6に示すような理想的な等価回路で表すことができない。(出展:九州大学中央分析センターニュース Vol.41 No.1 1993)
Incidentally, the above-described conventional example has the following problems.
In the case of the first method shown in FIG. 7, the resistance value of the chloride film changes before and after the measurement, so that the measured value changes every time the measurement is performed.
In the case of the second method shown in FIG. 8, since the chloride film does not break, the measured value does not change before and after the measurement, but a plurality of semicircles drawn in the impedance plot diagram appear instead of one. Also, since the respective semicircles may overlap, it cannot be represented by an ideal equivalent circuit as shown in FIG. 4 or FIG. (Exhibitor: Kyushu University Central Analysis Center News Vol.41 No.1 1993)

このため、真の内部抵抗は周波数が何Hzのときの値であるのか判別するのが難しく、別途第1の方法による測定値と比較して周波数を特定するという手順を踏む必要がある。
また、印加する交流信号の周波数を変えながら繰り返し複数回測定を行う必要があり、測定時間が長くなる。
For this reason, it is difficult to determine the frequency at which the true internal resistance is the Hz, and it is necessary to take a procedure of specifying the frequency separately from the measured value by the first method.
Further, it is necessary to repeatedly perform the measurement a plurality of times while changing the frequency of the AC signal to be applied, and the measurement time becomes long.

従って本発明は、保存時に塩化皮膜が生成されて内部抵抗が上昇する塩化チオニール系リチウム電池の内部抵抗測定において、塩化皮膜を破壊することなく、少ない測定回数で短時間に内部抵抗値を得ることを目的とする。   Therefore, according to the present invention, in the internal resistance measurement of a thionyl chloride lithium battery in which a chloride film is generated during storage and the internal resistance is increased, an internal resistance value can be obtained in a short number of times without breaking the chloride film. With the goal.

本発明は上記問題点を解決するためになされたもので、請求項1の電池の内部抵抗測定装置においては、
電池の正極および負極に接続された第1直流電圧計と、前記電池の正極側に一端が接続された電圧検出用抵抗と、この電圧検出用抵抗の両端に接続された第2直流電圧計およびこの第2直流電圧計の最大値を保持する最大電圧保持手段と、前記電圧検出用抵抗の他端に一端が接続された第1スイッチと、この第1スイッチの他端に一端が接続されたコンデンサおよび放電用抵抗と、からなり、
前記コンデンサの他端は前記電池の負極に接続され、前記放電用抵抗の他端は第2スイッチを介して前記電池の負極に接続されたことを特徴とする。
請求項2においては、請求項1に記載の電池の内部抵抗測定装置において、
前記電池は塩化チオニール系リチウム電池であることを特徴とする。
請求項3おいては、請求項1または2に記載の電池の内部抵抗測定装置において、
前記第1スイッチの一端に一端が接続された第3スイッチと、この第3スイッチの他端に一端が接続され他端が前記電池の負極に接続されるバッテリー駆動センサと、を備えたことを特徴とする。


The present invention was made to solve the above problems, and in the battery internal resistance measuring device according to claim 1,
A first DC voltmeter connected to a positive electrode and a negative electrode of the battery; a voltage detection resistor having one end connected to the positive electrode side of the battery; a second DC voltmeter connected to both ends of the voltage detection resistor; 2 Maximum voltage holding means for holding the maximum value of the DC voltmeter, a first switch having one end connected to the other end of the voltage detection resistor, a capacitor having one end connected to the other end of the first switch, and a discharge For resistance,
The other end of the capacitor is connected to the negative electrode of the battery, and the other end of the discharging resistor is connected to the negative electrode of the battery via a second switch.
In claim 2, in the battery internal resistance measuring device according to claim 1,
The battery is a thionyl chloride lithium battery.
Oite to claim 3, in the internal resistance measuring apparatus of a battery according to claim 1 or 2,
A third switch having one end to one end of the first switch is connected, that the other end one end connected to the other end of the third switch is provided with a battery-powered sensor that will be connected to the negative electrode of the battery Features.


以上説明したことから明らかなように本発明の請求項1〜3によれば、次のような効果がある。
1)測定周波数を特定するための検証を行う必要が無い。
2)周波数を変えて複数回の測定を行う必要が無いので測定時間を短縮できる。
3)コンデンサの静電容量を小さく(例えば1uFと)抑えることにより、電池内部に生成されている塩化皮膜の破壊を最小限に抑えて内部抵抗を測定することができる。
4)構成が単純であり機器への組み込みが容易である。
As is apparent from the above description, according to claims 1 to 3 of the present invention, the following effects can be obtained.
1) There is no need to perform verification for specifying the measurement frequency.
2) Since it is not necessary to perform multiple measurements at different frequencies, the measurement time can be shortened.
3) By suppressing the capacitance of the capacitor to a small value (for example, 1 uF), it is possible to measure the internal resistance while minimizing the destruction of the chloride film generated inside the battery.
4) The configuration is simple and it can be easily incorporated into equipment.

図1は本発明の一実施例を示す電池の測定装置を示す回路構成図である。
本発明の測定装置は、直流電圧計10、直流電圧計11、電圧検出用抵抗13、最大電圧保持手段14、第1(主)スイッチ15、コンデンサ16、放電用抵抗17、放電スイッチ18および測定対象物(電池)12により構成されている。
FIG. 1 is a circuit diagram showing a battery measuring apparatus according to an embodiment of the present invention.
The measuring apparatus of the present invention includes a DC voltmeter 10, a DC voltmeter 11, a voltage detecting resistor 13, a maximum voltage holding means 14, a first (main) switch 15, a capacitor 16, a discharging resistor 17, a discharging switch 18, and a measurement object. (Battery) 12.

即ち、電池12の正極および負極には直流電圧計10が接続され、正極側には電圧検出用抵抗13の一端が接続されている。電圧検出用抵抗13の他端には第1(主)スイッチ15の一端が接続され、このスイッチ15の他端にはコンデンサ16および放電用抵抗17が並列に接続されコンデンサ16の他端は電池の負極に接続されている。   That is, the DC voltmeter 10 is connected to the positive electrode and the negative electrode of the battery 12, and one end of the voltage detection resistor 13 is connected to the positive electrode side. One end of a first (main) switch 15 is connected to the other end of the voltage detection resistor 13, and a capacitor 16 and a discharge resistor 17 are connected in parallel to the other end of the switch 15. The other end of the capacitor 16 is a battery. Is connected to the negative electrode.

また、放電用抵抗17の他端は放電スイッチ18の一端に接続されており、このスイッチ18の他端は電池の負極に接続されている。
電圧検出用抵抗13の両端には直流電圧計11が接続されその最大電圧を保持する最大電圧保持手段が接続されている。
The other end of the discharge resistor 17 is connected to one end of a discharge switch 18, and the other end of the switch 18 is connected to the negative electrode of the battery.
A DC voltmeter 11 is connected to both ends of the voltage detection resistor 13 and a maximum voltage holding means for holding the maximum voltage is connected.

各素子の定数は例えば、電圧検出用抵抗13:Rs=2Ω、コンデンサ16:C=1uF、放電用抵抗17:Rdis=10kΩとする。
塩化チオニール系リチウム電池の場合、その内部抵抗Rbatは塩化皮膜の生成状況にもよるが、 数Ω〜100Ω程度の値である。
The constants of the respective elements are, for example, voltage detection resistor 13: Rs = 2Ω, capacitor 16: C = 1 uF, and discharge resistor 17: Rdis = 10 kΩ.
In the case of a thionyl chloride lithium battery, the internal resistance Rbat is about several Ω to 100 Ω, although it depends on the state of formation of the chloride film.

次にこの回路の動作について説明する。
初期状態は第1(主)スイッチ15および放電スイッチ18はオフの状態である。そして、放電スイッチ18をオンし、コンデンサ16に充電されている電荷を完全に放電した後に、放電スイッチをオフとする。
Next, the operation of this circuit will be described.
In the initial state, the first (main) switch 15 and the discharge switch 18 are off. Then, the discharge switch 18 is turned on, and the charge charged in the capacitor 16 is completely discharged, and then the discharge switch is turned off.

次に、第1の直流電圧計10にて第1(主)スイッチ15がオフの時の電池12の両端電圧V0を測定する。V0は塩化チオニール系リチウム電池の場合、3.7V前後の値である。
次に、第1(主)スイッチ15をオンすると、コンデンサ16の静電容量に応じた突入電流が電圧検出用抵抗13を経由してコンデンサ16に流れる。コンデンサ16は静電容量が小さいもの(例えば1uF)とする。
Next, the first DC voltmeter 10 measures the voltage V0 across the battery 12 when the first (main) switch 15 is off. In the case of a thionyl chloride lithium battery, V0 is a value around 3.7V.
Next, when the first (main) switch 15 is turned on, an inrush current corresponding to the capacitance of the capacitor 16 flows to the capacitor 16 via the voltage detection resistor 13. The capacitor 16 has a small capacitance (for example, 1 uF).

上述の構成にすることにより、突入電流が流れる時間は非常に短く(例えば10us程度)なり、電池内部の塩化皮膜の破壊を最小限に抑えることができる。
電圧検出検出用抵抗は既知の抵抗値Rs(例えば2Ω)であり、前述の突入電流に比例した電圧降下を発生する。
最大電圧保持手段14は、電圧検出用抵抗の両端に発生する電圧降下の最大値V1を保持する。そして、第2の直流電圧計11により、最大電圧保持手段14が保持した電圧値V1を測定する。
With the above-described configuration, the time during which the inrush current flows is very short (for example, about 10 us), and the destruction of the chloride film inside the battery can be minimized.
The voltage detection detection resistor has a known resistance value Rs (for example, 2Ω), and generates a voltage drop proportional to the inrush current.
The maximum voltage holding unit 14 holds the maximum value V1 of the voltage drop generated at both ends of the voltage detection resistor. Then, the second DC voltmeter 11 measures the voltage value V1 held by the maximum voltage holding means 14.

図2は、コンデンサ16に突入電流が流れる際の回路を簡略化した状態を示す図である。Aで示す点線枠内は電池内部を表わしている。突入電流が流れているときコンデンサ16は短絡されているとみなされるので、回路は電池の内部抵抗Rbatと電圧検出用抵抗Rsが直列接続され、両端に電池が接続された形となる。これは前述の図7で示した従来技術第1の方法と等価であり、前述の式(2)により内部抵抗Rbatを求めることができる。   FIG. 2 is a diagram showing a simplified state of the circuit when an inrush current flows through the capacitor 16. A dotted frame indicated by A represents the inside of the battery. Since the capacitor 16 is considered to be short-circuited when the inrush current is flowing, the circuit has a form in which the battery internal resistance Rbat and the voltage detection resistance Rs are connected in series, and the battery is connected to both ends. This is equivalent to the first method of the prior art shown in FIG. 7, and the internal resistance Rbat can be obtained from the above-described equation (2).

上述の構成によれば、塩化皮膜除去の電流を流す時間、測定するサイクルを適切に設定することにより、電池の消耗を最小限に抑えた皮膜の除去を行うことができる。また構成が単純であるので安価に装置を実現可能である。   According to the above-described configuration, it is possible to remove the film while minimizing battery consumption by appropriately setting the time for flowing the current for removing the chloride film and the measurement cycle. Further, since the configuration is simple, the apparatus can be realized at low cost.

塩化チオニール系リチウム電池は前述のように保存時に塩化皮膜が電池内部で成長し内部抵抗が上昇する。この性質は駆動用電源にこの電池を用いる場合に電流をたくさん流そうとすると内部抵抗による電圧降下により電池の出力電圧が低下して機器が起動できなくなるという問題を起こす。   As described above, in the thionyl chloride lithium battery, a chloride film grows inside the battery during storage and the internal resistance increases. This property causes a problem that when the battery is used as a driving power source, if a large amount of current is supplied, the output voltage of the battery decreases due to a voltage drop due to an internal resistance and the device cannot be started.

このような問題を解決するための従来技術としては、常時連続的に電流を流して塩化皮膜の成長を抑制する方法、出力側に大容量コンデンサを設け電池からの供給電流を少なくして電圧降下を小さくするという方法がある。   As a conventional technique for solving such problems, there is a method for suppressing the growth of the chloride film by continuously supplying a current, a large-capacitance capacitor on the output side to reduce the supply current from the battery and the voltage drop. There is a way to make it smaller.

内部抵抗による電圧降下により電池の出力電圧が低下して機器が起動できなくなるという問題を解決するために、本発明を適用した電池内部皮膜除去装置が考えられる。
長期保存された塩化チオニール系リチウム電池を使用する前に本発明の内部抵抗測定装置および測定方法により内部抵抗を測定し、許容値以上の値である場合に放電用抵抗を使って電流を流し塩化皮膜を除去する装置である。
In order to solve the problem that the output voltage of the battery decreases due to the voltage drop due to the internal resistance and the device cannot be activated, a battery inner film removing apparatus to which the present invention is applied can be considered.
Before using a thionyl chloride lithium battery stored for a long period of time, measure the internal resistance with the internal resistance measuring device and measuring method of the present invention. It is an apparatus for removing a film.

図3は本発明を適用したバッテリー駆動センサの回路構成図である。点線Bで囲った部分は本発明の電池の内部抵抗測定装置であり、この部分の説明は省略する。図3において、電圧検出用抵抗13と第1(主)スイッチ15の接続点にセンサ電源スイッチ19の一端が接続され、このセンサ電源スイッチ19他端にバッテリー駆動センサ20の一端が接続され、このセンサ20の他端は電池12の負極に接続された構成となっている。   FIG. 3 is a circuit configuration diagram of a battery drive sensor to which the present invention is applied. The portion surrounded by the dotted line B is the battery internal resistance measuring device of the present invention, and the description of this portion is omitted. In FIG. 3, one end of a sensor power switch 19 is connected to a connection point between the voltage detection resistor 13 and the first (main) switch 15, and one end of a battery drive sensor 20 is connected to the other end of the sensor power switch 19. The other end of the sensor 20 is connected to the negative electrode of the battery 12.

図3において、センサ電源スイッチ19を投入する前に、先に述べたように電池12の内部抵抗を測定し、規定値以上であれば、放電スイッチ18をオンして電池12から電流を流し電池内部の塩化皮膜を除去する。
塩化皮膜をある程度除去した後、再び電池12の内部抵抗を測定し、規定値以内であることを確認してからセンサ電源スイッチ19を投入する。
In FIG. 3, before the sensor power switch 19 is turned on, the internal resistance of the battery 12 is measured as described above, and if it is equal to or greater than the specified value, the discharge switch 18 is turned on to pass current from the battery 12 and the battery. Remove internal chloride film.
After removing the chloride film to some extent, the internal resistance of the battery 12 is measured again, and after confirming that it is within the specified value, the sensor power switch 19 is turned on.

上述の構成によれれば、電池内部の塩化皮膜の成長具合を把握しながら最小限の電流で塩化皮膜を破壊し、バッテリー駆動センサ20を確実に正常起動することができる。
そして、常時連続的に電流を流して塩化皮膜の成長を抑制する方法と比較すると、電池の消耗を最小限に抑えることができる。また、出力側に大容量コンデンサを設けて電池からの供給電流を少なくして電圧降下を小さくするという方法と比較すると、装置の大きさを小型化できるという利点がある。
According to the above-described configuration, the chloride film can be destroyed with a minimum current while grasping the degree of growth of the chloride film inside the battery, and the battery drive sensor 20 can be started normally without fail.
In addition, battery consumption can be minimized as compared with a method in which the current is continuously supplied to suppress the growth of the chloride film. In addition, there is an advantage that the size of the device can be reduced as compared with a method in which a large-capacitance capacitor is provided on the output side to reduce the voltage drop by reducing the supply current from the battery.

また、バッテリー駆動センサの内部に本発明の電池の内部抵抗測定装置を組み込み、起動時のみ自己診断にて内部抵抗が許容値以上であれば放電用の抵抗を使って電流を流し塩化皮膜を除去するという機能を搭載すれば、塩化皮膜が成長し内部抵抗が大きくなった電池であっても機器自身が塩化皮膜除去を行い正常起動するといった応用例もある。   In addition, the battery internal resistance measuring device of the present invention is incorporated in the battery drive sensor, and if the internal resistance is more than the allowable value by self-diagnosis only at the start-up, current is passed using the discharging resistor to remove the chloride film If the function to do is installed, there is an application example in which the device itself removes the chloride film and starts up normally even if the chloride film grows and the internal resistance increases.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。例えば直流電圧計は必ずしも2つ備える必要は無く、1つの直流電圧計をつなぎ変えて使っても良い。
従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. For example, two DC voltmeters are not necessarily provided, and one DC voltmeter may be connected and used.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明の電池の内部抵抗測定装置の一実施例を示す回路構成図である。It is a circuit block diagram which shows one Example of the internal resistance measuring apparatus of the battery of this invention. コンデンサに突入電流が流れる際の回路を簡略化した状態を示す図であるIt is a figure showing the state where the circuit at the time of inrush current flowing into a capacitor was simplified 他の実施例を示す電池の内部抵抗測定装置の回路構成図である。It is a circuit block diagram of the internal resistance measuring apparatus of the battery which shows another Example. 一般的な電池の等価回路である。This is an equivalent circuit of a general battery. 塩化チオニール系リチウム電池の構造である。The structure of a thionyl chloride lithium battery. 直流電流法の測定系を示す第1の方法の回路構成図である。It is a circuit block diagram of the 1st method which shows the measurement system of a direct current method. 第1(主)スイッチをオンした場合の電圧と時間の関係を示す説明図である。It is explanatory drawing which shows the relationship between the voltage at the time of turning ON a 1st (main) switch, and time. 交流四端子法の測定系を示す第2の方法の回路構成図である。It is a circuit block diagram of the 2nd method which shows the measurement system of alternating current four terminal method.

符号の説明Explanation of symbols

1 電圧記録計
2 電池
3 スイッチ
4 抵抗
5 交流信号発生器
6 コンデンサ
7 交流電流計
8 交流電圧計
10,11 直流電圧計
12 測定対象物(電池)
13 電圧検出用抵抗
14 最大電圧保持手段
15 第1(主)スイッチ
16 コンデンサ
17 放電用抵抗
18 放電スイッチ
19 電源スイッチ
20 バッテリー駆動センサ
21 正極端子
22 塩化チオニール電解液
23 セパレータ
24 正極
25 金属ケース
26 上部蓋
27 底部絶縁体
28 塩化皮膜
29 負極
DESCRIPTION OF SYMBOLS 1 Voltage recorder 2 Battery 3 Switch 4 Resistance 5 AC signal generator 6 Capacitor 7 AC ammeter 8 AC voltmeter 10,11 DC voltmeter 12 Measurement object (battery)
DESCRIPTION OF SYMBOLS 13 Voltage detection resistor 14 Maximum voltage holding means 15 1st (main) switch 16 Capacitor 17 Discharge resistance 18 Discharge switch 19 Power switch 20 Battery drive sensor 21 Positive electrode terminal 22 Thionyl chloride electrolyte 23 Separator 24 Positive electrode 25 Metal case 26 Upper part Lid 27 Bottom insulator 28 Chloride film 29 Negative electrode

Claims (3)

電池の正極および負極に接続された第1直流電圧計と、前記電池の正極側に一端が接続された電圧検出用抵抗と、この電圧検出用抵抗の両端に接続された第2直流電圧計およびこの第2直流電圧計の最大値を保持する最大電圧保持手段と、前記電圧検出用抵抗の他端に一端が接続された第1スイッチと、この第1スイッチの他端に一端が接続されたコンデンサおよび放電用抵抗と、からなり、
前記コンデンサの他端は前記電池の負極に接続され、前記放電用抵抗の他端は第2スイッチを介して前記電池の負極に接続されたことを特徴とする電池の内部抵抗測定装置。
A first DC voltmeter connected to a positive electrode and a negative electrode of the battery; a voltage detection resistor having one end connected to the positive electrode side of the battery; a second DC voltmeter connected to both ends of the voltage detection resistor; 2 Maximum voltage holding means for holding the maximum value of the DC voltmeter, a first switch having one end connected to the other end of the voltage detection resistor, a capacitor having one end connected to the other end of the first switch, and a discharge For resistance,
The battery internal resistance measuring device, wherein the other end of the capacitor is connected to the negative electrode of the battery, and the other end of the discharging resistor is connected to the negative electrode of the battery via a second switch.
前記電池は塩化チオニール系リチウム電池であることを特徴とする請求項1に記載の電池の内部抵抗測定装置。   The battery internal resistance measuring device according to claim 1, wherein the battery is a thionyl chloride lithium battery. 前記第1スイッチの一端に一端が接続された第3スイッチと、この第3スイッチの他端に一端が接続され他端が前記電池の負極に接続されたバッテリー駆動センサと、を備えたことを特徴とする請求項1または2記載の電池の内部抵抗測定装置A third switch having one end to one end of the first switch is connected, that the third other end is connected to one end to the other end of the switch and a battery-powered sensor connected to the negative electrode of the battery The internal resistance measuring device for a battery according to claim 1 or 2, characterized in that:
JP2007232170A 2007-09-07 2007-09-07 Battery internal resistance measuring device Expired - Fee Related JP4894073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232170A JP4894073B2 (en) 2007-09-07 2007-09-07 Battery internal resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232170A JP4894073B2 (en) 2007-09-07 2007-09-07 Battery internal resistance measuring device

Publications (2)

Publication Number Publication Date
JP2009063460A JP2009063460A (en) 2009-03-26
JP4894073B2 true JP4894073B2 (en) 2012-03-07

Family

ID=40558155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232170A Expired - Fee Related JP4894073B2 (en) 2007-09-07 2007-09-07 Battery internal resistance measuring device

Country Status (1)

Country Link
JP (1) JP4894073B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT10763U3 (en) * 2009-05-12 2010-08-15 Avl List Gmbh METHOD AND TEST STATION FOR CHECKING HYBRID DRIVE SYSTEMS OR PARTIAL COMPONENTS THEREOF
JP5858219B2 (en) * 2011-09-06 2016-02-10 横河電機株式会社 Method and apparatus for measuring ac impedance of storage battery and life diagnosis apparatus
CN106324512B (en) * 2016-08-10 2019-03-15 杭州瑞利科技有限公司 A kind of wind light mutual complementing energy storage battery capacity check method
US10429448B2 (en) 2016-11-18 2019-10-01 Semiconductor Components Industries, Llc Methods and apparatus for measuring a route resistance of a battery system
CN107765184B (en) * 2017-09-30 2020-05-29 北京车和家信息技术有限公司 Direct-current internal resistance detection method for power lithium battery
CN108152753A (en) * 2017-12-30 2018-06-12 天津华庆百胜能源有限公司 A kind of method that accumulator internal resistance is detected by inductance capacitance discharged in series
CN109802152B (en) * 2019-02-20 2022-04-05 广西睿奕新能源股份有限公司 Application of circuit structure for monitoring capacity of lithium disposable battery
JP2021124322A (en) * 2020-02-03 2021-08-30 横河電機株式会社 Battery diagnostic device and battery diagnostic method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260904A (en) * 1994-03-18 1995-10-13 Fuji Heavy Ind Ltd Residual capacity meter for on-vehicle battery

Also Published As

Publication number Publication date
JP2009063460A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP4894073B2 (en) Battery internal resistance measuring device
CN106104285B (en) Abnormal method in battery cell and short-circuit sensing device for identification
JP6226261B2 (en) Electrochemical system
JP5520580B2 (en) Storage battery cell short-circuit detection method and detection device
US20220091062A1 (en) System and method for anomaly detection and total capacity estimation of a battery
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
US20150303533A1 (en) Battery system and method for evaluating battery system
JP4887581B2 (en) Battery inspection method and inspection apparatus
JP6822465B2 (en) Deterioration judgment method and power storage system
WO2019131741A1 (en) Chargeable cell anomaly detection device and chargeable cell anomaly detection method
TWI579575B (en) Battery health detection method and its circuit
JP2014059174A (en) Impedance detection system, monitoring system, and lithium secondary battery with monitoring function based on such monitoring system
US8854003B2 (en) Technique for rapid battery capacity testing
JP2021174729A (en) Secondary battery status determination method and secondary battery status determination device
JP2002323526A (en) Insulation resistance deterioration detecting method and apparatus
JP5112920B2 (en) Deterioration degree calculation device and deterioration degree calculation method
US20220385095A1 (en) Fast Charging Method
JPH08179017A (en) Monitor device for battery impedance
US7378857B2 (en) Methods and apparatuses for detecting the level of a liquid in a container
JP2016225154A (en) Battery maintenance state determination device and battery maintenance state determination method
JP2008027946A (en) Device and method for determining lifetime of electric double-layer capacitor
JPH0973923A (en) Deterioration judging method for nickel battery and deterioration state detecting circuit
JP2004111371A (en) Method for inspecting secondary battery precursor, its inspection device, and method for manufacturing secondary battery using the method
JP2011028931A (en) Battery insulation testing device
CN112684362A (en) Fault detection method, device and detection equipment for internal structure of storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees