JP4893431B2 - Method for manufacturing polarization reversal element - Google Patents

Method for manufacturing polarization reversal element Download PDF

Info

Publication number
JP4893431B2
JP4893431B2 JP2007099392A JP2007099392A JP4893431B2 JP 4893431 B2 JP4893431 B2 JP 4893431B2 JP 2007099392 A JP2007099392 A JP 2007099392A JP 2007099392 A JP2007099392 A JP 2007099392A JP 4893431 B2 JP4893431 B2 JP 4893431B2
Authority
JP
Japan
Prior art keywords
electrode
sacrificial layer
substrate
polarization inversion
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007099392A
Other languages
Japanese (ja)
Other versions
JP2008256969A (en
Inventor
真之介 曽田
幸久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007099392A priority Critical patent/JP4893431B2/en
Publication of JP2008256969A publication Critical patent/JP2008256969A/en
Application granted granted Critical
Publication of JP4893431B2 publication Critical patent/JP4893431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、強誘電体材料からなる非線形光学結晶基板に分極反転構造を施した光機能素子、電子デバイス等の製造方法に関するものである。   The present invention relates to a method for manufacturing an optical functional element, an electronic device, etc., in which a polarization inversion structure is applied to a nonlinear optical crystal substrate made of a ferroelectric material.

電子ビームや形状加工した電極を用いて非線形光学結晶基板に電界を印加すると、任意箇所に分極反転領域を形成することができ、メモリ機能や光変調機能を持つ素子を製造することができる。
例えば、特許文献1に開示されているような周期分極反転構造の形成方法が知られていた。この方法は、Z面でカットされたニオブ酸リチウム(LiNbO)の結晶基板に対して、結晶基板の+C面へ櫛歯状の第1の電極、−C面へ平面の第2の電極を設け、第1の電極と第2の電極との間に所定の分極反転電圧を印加し、第1の電極直下のC軸方向に分極反転領域を成長させ、周期分極反転構造を形成するものであった。しかし、この製造方法では、電圧が印加された櫛歯電極パターンの端部において放電が起こるため、結晶基板への電圧印加が再現性良く行えない問題があった。そのため、この製法で作成した周期分極反転構造は、櫛歯状の電極パターンの直下にできる分極反転領域と、電極パターンが無く分極反転しなかった部分の非分極反転領域とが同じ領域幅ではなく不均一なものであった。
When an electric field is applied to the nonlinear optical crystal substrate using an electron beam or a shape-processed electrode, a domain-inverted region can be formed at an arbitrary location, and an element having a memory function or a light modulation function can be manufactured.
For example, a method for forming a periodically poled structure as disclosed in Patent Document 1 has been known. In this method, with respect to a crystal substrate of lithium niobate (LiNbO 3 ) cut in the Z plane, a comb-shaped first electrode is formed on the + C plane of the crystal substrate, and a planar second electrode is formed on the −C plane. Providing a predetermined polarization inversion voltage between the first electrode and the second electrode to grow a domain inversion region in the C-axis direction immediately below the first electrode to form a periodic domain inversion structure. there were. However, this manufacturing method has a problem in that the voltage application to the crystal substrate cannot be performed with good reproducibility because discharge occurs at the end of the comb electrode pattern to which the voltage is applied. Therefore, in the periodic domain-inverted structure created by this manufacturing method, the domain-inverted region that can be directly under the comb-shaped electrode pattern and the non-domain-inverted region of the part that was not electrode-reversed without the electrode pattern are not the same region width. It was uneven.

また、特許文献2に開示されているように、非分極反転面に絶縁膜のパターンを形成した後に金属膜を成膜して電極とする方法があった。この方法を用いることで電極を櫛歯形状にする必要がなくなり、上述の特許文献1の方法の欠点である放電現象を防止できる利点があった。しかしながら、この絶縁膜を用いた分極反転の方法では、絶縁膜を介して電界が漏れるため、分極反転領域と非分極反転領域との電界強度の差を大きくすることができず、再現性良く任意パターンの分極反転構造を形成することが難しかった。例えば、0.5mm厚のニオブ酸リチウム基板の上に厚み0.5μmのSiOの絶縁層を形成した後にこの分極反転の方法で作成すると、非分極反転領域と分極反転領域の電界強度の差は僅か3%であり、基板の保持温度や印加電圧が僅かに変動するだけで、非分極反転領域にも分極反転が発生し、均一な周期分極反転構造を形成できない、といった問題があった。 Further, as disclosed in Patent Document 2, there is a method of forming an electrode by forming a metal film after forming an insulating film pattern on a non-polarized surface. By using this method, there is no need to make the electrode into a comb shape, and there is an advantage that the discharge phenomenon, which is a disadvantage of the method of Patent Document 1 described above, can be prevented. However, in this polarization inversion method using an insulating film, an electric field leaks through the insulating film, so that the difference in electric field strength between the polarization inversion region and the non-polarization inversion region cannot be increased, and any reproducibility is arbitrary. It was difficult to form a pattern inversion structure. For example, when a 0.5 μm thick SiO 2 insulating layer is formed on a 0.5 mm thick lithium niobate substrate and then created by this polarization reversal method, the difference in electric field strength between the non-polarization reversal region and the polarization reversal region There is a problem that even if the holding temperature of the substrate and the applied voltage slightly change, polarization inversion occurs in the non-polarization inversion region, and a uniform periodic polarization inversion structure cannot be formed.

さらに、特許文献3に開示されているように、非線形光学結晶基板の上面にスリット状の穴が開口された膜を載せ、スリット状の穴を介して導電性液体を基板へ接触させ、この接触部分を電極として分極反転電圧を印加する方法があった。この方法を用いることで、櫛歯構造の金属電極パターンを用いず、また、空気層を絶縁層として用いることができるので、放電現象や電界漏れを抑制でき、必要の無い部分にまで分極反転領域が発生することが防止できた。しかし、この方法では、導電性液体と基板との接触幅は導電性液体への加圧力に依存するため、電極幅の制御が難しく、分極反転領域の幅の不均一性は改善されなかった。   Further, as disclosed in Patent Document 3, a film having slit-like holes is placed on the upper surface of the nonlinear optical crystal substrate, and the conductive liquid is brought into contact with the substrate through the slit-like holes. There was a method of applying a polarization reversal voltage using the portion as an electrode. By using this method, a metal electrode pattern having a comb-teeth structure is not used, and an air layer can be used as an insulating layer. Therefore, a discharge phenomenon and electric field leakage can be suppressed, and a domain-inverted region can be used even when it is not necessary. Was able to be prevented. However, in this method, since the contact width between the conductive liquid and the substrate depends on the pressure applied to the conductive liquid, it is difficult to control the electrode width, and the non-uniformity in the width of the domain-inverted region has not been improved.

また、非特許文献1に開示されているように、電極パターンの形状をしたモールドを基板に押し当て、電極とする方法が提案されている。この方法は空気層が絶縁層となり絶縁破壊や電界漏れは抑制される。しかし、モールドの電極パターンと非線形光学結晶基板との接触状態が安定しない問題があり、一定の幅の分極反転領域を均一に製造することが難しかった。   Also, as disclosed in Non-Patent Document 1, a method has been proposed in which a mold having an electrode pattern shape is pressed against a substrate to form an electrode. In this method, the air layer becomes an insulating layer, and dielectric breakdown and electric field leakage are suppressed. However, there is a problem that the contact state between the electrode pattern of the mold and the nonlinear optical crystal substrate is not stable, and it is difficult to uniformly manufacture a domain-inverted region having a certain width.

特開平4−19719号公報(第4頁〜第5頁、図1)JP-A-4-19719 (pages 4-5, FIG. 1) 特開平9−230403号公報(第3頁〜第4頁、図1)Japanese Patent Laid-Open No. 9-230403 (pages 3 to 4, FIG. 1) 特開平10−48680号公報(第3頁、図2)Japanese Patent Laid-Open No. 10-48680 (page 3, FIG. 2) M. Sato, P.G.R. Smith and D.C. Hanna, “Contact electrode method for fabricating bulk periodically poled LiNbO3”, Electronics Letters, Vol.34, pp.660−661, 1998.M.M. Sato, P.M. G. R. Smith and D.C. C. Hanna, “Contact electrode method for fabricating bulk periodically polled LiNbO3”, Electronics Letters, Vol. 34, pp. 660-661, 1998.

本発明は、上述の放電現象や電極幅精度の低下に起因する課題を解決するためになされたものであり、均一で高精度な周期分極反転構造を高い製造歩留まりで実現する分極反転素子の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems caused by the discharge phenomenon and the decrease in electrode width accuracy, and the manufacture of a domain-inverted device that realizes a uniform and high-accuracy periodic domain-inverted structure with a high production yield. It aims to provide a method.

本発明の分極反転素子の製造方法は、非線形光学結晶の基板上に基板と接触する接触部を有する電極を形成し、その電極に電圧を印加して分極反転素子を製造する方法であり、所定の間隔をおいて設けられる感光性樹脂材料の犠牲層をフォトリソグラフィーにより形成する工程と、犠牲層の間に電極の接触部が形成されるよう、犠牲層および犠牲層の間の基板の上に電極材料を成膜して電極材料からなる電極を形成する工程と、電極材料の成膜後に犠牲層を除去する工程と、犠牲層の除去後に電極に電圧を印加して分極反転させる工程とを備えたことを特徴とする。 The method of manufacturing the polarization inversion element of the present invention is to form an electrode having a contact portion for contacting a substrate on a substrate of nonlinear optical crystal, a method of making a polarization inversion element by applying a voltage to the electrodes, a predetermined A step of forming a sacrificial layer of a photosensitive resin material provided at intervals of photolithography , and a substrate between the sacrificial layer and the sacrificial layer so that an electrode contact portion is formed between the sacrificial layer Forming an electrode material and forming an electrode made of the electrode material; removing the sacrificial layer after forming the electrode material; and applying a voltage to the electrode to invert the polarization after removing the sacrificial layer. It is characterized by having.

本発明に係る分極反転素子の製造方法によれば、所定の間隔をおいて設けられる感光性樹脂材料の犠牲層をフォトリソグラフィーにより形成し、犠牲層の間に電極材料を成膜して電極が基板と接触する接触部を形成することで、電極と基板との接触部をフォトリソグラフィーの寸法精度で制御できるので、均一で高精度な分極反転構造を高い製造歩留まりで実現する分極反転素子の製造方法を提供することができる。 According to the method of manufacturing a polarization inverting element according to the present invention, a sacrificial layer of a photosensitive resin material provided at a predetermined interval is formed by photolithography, and an electrode material is formed between the sacrificial layers to form an electrode. By forming a contact portion that contacts the substrate, the contact portion between the electrode and the substrate can be controlled with the dimensional accuracy of photolithography, so that a polarization inversion element that realizes a uniform and highly accurate domain-inverted structure with a high manufacturing yield A method can be provided.

実施の形態1.
分極反転によって非線形光学結晶に周期的に分極反転構造を形成するための分極反転素子の製造方法を説明する。図1〜7は、本実施の形態1に係る分極反転素子の製造方法を工程順に示した図である。また、各図は、工程中の分極反転素子の斜視図であって、素子端面も合わせて図示したものである。また、説明の煩雑さを避けるためにニオブ酸リチウムの基板を単に「基板」と称して、この発明の実施形態について図面を参照しながら詳細に説明する。
なお、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することである。また、明細書全文に表れている構成要素の形容は、あくまで例示であってこれらの記載に限定されるものではない。また、以下説明する製法はニオブ酸リチウムの基板を例にとって説明するが、電界の印加により分極反転を起こす非線形光学結晶ならニオブ酸リチウムに限られることなく利用できる製造方法である。
Embodiment 1 FIG.
A method of manufacturing a polarization inversion element for periodically forming a polarization inversion structure in a nonlinear optical crystal by polarization inversion will be described. FIGS. 1-7 is the figure which showed the manufacturing method of the polarization inversion element which concerns on this Embodiment 1 in order of a process. Each figure is a perspective view of the polarization inverting element in the process, and also shows the element end face. In order to avoid complicated explanation, a lithium niobate substrate is simply referred to as a “substrate”, and an embodiment of the present invention will be described in detail with reference to the drawings.
In addition, what attached | subjected the same code | symbol is the same or it corresponds, This is common in the whole text of a specification. Further, the description of the constituent elements appearing in the whole specification is merely an example and is not limited to these descriptions. Further, although the manufacturing method described below will be described by taking a lithium niobate substrate as an example, any non-linear optical crystal that undergoes polarization inversion by applying an electric field can be used without being limited to lithium niobate.

図1を参照して、まず、厚み0.5mmの基板101の裏面に、第2の電極102となる金属膜をスパッタ法で成膜する。金属膜としては例えばCrが使用可能である。ここで、図1中に示した第2の電極102が付着している側の基板101の面は、ニオブ酸リチウム基板の−C面である。なお、この面の反対側の面は+C面である。   Referring to FIG. 1, first, a metal film to be the second electrode 102 is formed on the back surface of a substrate 101 having a thickness of 0.5 mm by a sputtering method. For example, Cr can be used as the metal film. Here, the surface of the substrate 101 to which the second electrode 102 attached in FIG. 1 is attached is the −C surface of the lithium niobate substrate. Note that the surface opposite to this surface is the + C surface.

つぎに、図2を参照して、基板101の表面に厚み2.0μmの感光性材料(例えば、ノボラック系のポジ型フォトレジスト)を塗布し、フォトリソグラフィーを用いてライン・アンド・スペース状の犠牲層106を形成する。なお、犠牲層106が形成されている側の面がニオブ酸リチウム基板の+C面である。   Next, referring to FIG. 2, a photosensitive material (for example, a novolac positive photoresist) having a thickness of 2.0 μm is applied to the surface of the substrate 101, and a line-and-space pattern is formed using photolithography. A sacrificial layer 106 is formed. Note that the surface on which the sacrificial layer 106 is formed is the + C surface of the lithium niobate substrate.

さらに、図3に示すように、厚み0.5μmの金属膜をスパッタ成膜して、第1の電極104を形成する。金属膜としては例えばCrが使用可能である。金属膜は犠牲層106のある部分と基板101が露出している部分の両方の上に積層されるため、第1の電極104は犠牲層106が無い部分は基板101の+C面と直接接触し、犠牲層106のある部分はその上を覆うように形成される。   Further, as shown in FIG. 3, the first electrode 104 is formed by sputtering a metal film having a thickness of 0.5 μm. For example, Cr can be used as the metal film. Since the metal film is laminated on both the portion where the sacrificial layer 106 is present and the portion where the substrate 101 is exposed, the first electrode 104 is in direct contact with the + C plane of the substrate 101 where the sacrificial layer 106 is not present. A portion of the sacrificial layer 106 is formed so as to cover it.

つぎに、図4に示すように、金属膜をパターニングして犠牲層106を除去するためのエッチングホール105を形成する。そして、基板101および第1の電極104、第2の電極102に損傷を与えない薬液(例えば、アセトン)へ浸漬し、エッチングホール105を介して犠牲層106を溶解して除去する。その結果、図5に示すようなトンネル状の構造110が完成する。トンネルの空洞部分は、犠牲層106が元々あった部分であるから、除去後は空気の層となる。したがって、この空気層と接する基板101の表面は、後の分極反転の工程において、結晶が分極反転しない領域(非分極反転面107)となる。   Next, as shown in FIG. 4, an etching hole 105 for patterning the metal film to remove the sacrificial layer 106 is formed. Then, the substrate 101, the first electrode 104, and the second electrode 102 are immersed in a chemical solution (for example, acetone) that does not damage, and the sacrifice layer 106 is dissolved and removed through the etching hole 105. As a result, a tunnel-like structure 110 as shown in FIG. 5 is completed. Since the hollow portion of the tunnel is the portion where the sacrificial layer 106 was originally, it becomes an air layer after removal. Therefore, the surface of the substrate 101 in contact with the air layer becomes a region where the crystal is not reversed in polarity (non-polarized inversion surface 107) in the subsequent polarization inversion step.

ここで、犠牲層106を除去する工程において、プラズマアッシングなどのドライプロセスを用いると有機残渣が低減できる。また、第1の電極および第2の電極の金属膜として用いる材料は、Cr以外にNi、Al、Cu、Tiなどの卑金属でもよく、あるいはAuやPtなどの貴金属類でもパターニングのためのエッチング液があれば使用可能である。   Here, in the step of removing the sacrificial layer 106, organic residues can be reduced by using a dry process such as plasma ashing. The material used for the metal film of the first electrode and the second electrode may be a base metal such as Ni, Al, Cu or Ti in addition to Cr, or a noble metal such as Au or Pt, or an etching solution for patterning. If there is, it can be used.

つぎに、上記の工程を経て作製した基板101を分極反転させる。具体的には、基板101上の第1の電極104と第2の電極102との間に電圧を印加し、基板101を分極反転させる。図6は係る工程の説明図であり、第1の電極と接した部分の近辺が電圧印加によって分極反転して分極反転領域103となり、第1の電極と接しなかった部分は非分極反転領域109となる。したがって、ライン・アンド・スペース状の犠牲層106のパターン寸法を適宜調整することによって、所望の周期で分極反転領域と非分極反転領域とがくり返される周期分極反転構造が作製できる。
ここで、分極反転は強誘電体材料固有の分極反転電界が印加されたときに発生するが、ニオブ酸リチウムの分極反転電界の強度は室温で約20kV/mmである。したがって、本実施の形態で説明している0.5mm厚のニオブ酸リチウム基板の例では、分極反転電圧は常温で10kV程度が好ましいことになる。
Next, the polarization of the substrate 101 manufactured through the above steps is reversed. Specifically, a voltage is applied between the first electrode 104 and the second electrode 102 on the substrate 101 to invert the polarization of the substrate 101. FIG. 6 is an explanatory diagram of such a process, and the vicinity of the portion in contact with the first electrode undergoes polarization inversion by application of voltage to become the polarization inversion region 103, and the portion not in contact with the first electrode shows the non-polarization inversion region 109. It becomes. Therefore, by appropriately adjusting the pattern dimensions of the line-and-space sacrificial layer 106, a periodically poled structure in which the domain-inverted region and the non-domain-inverted region are repeated at a desired cycle can be manufactured.
Here, the polarization inversion occurs when a polarization inversion electric field unique to the ferroelectric material is applied, and the intensity of the polarization inversion electric field of lithium niobate is about 20 kV / mm at room temperature. Therefore, in the example of the 0.5 mm-thick lithium niobate substrate described in this embodiment, the polarization inversion voltage is preferably about 10 kV at room temperature.

最後に、第1の電極104と第2の電極102を除去すると、図7に示すような、均一性に優れた周期分極反転素子を製造することができる。電極の除去方法は、例えば、電極材料がCrの場合は酸溶剤を用いて除去することができる。   Finally, when the first electrode 104 and the second electrode 102 are removed, a periodic polarization reversal element having excellent uniformity as shown in FIG. 7 can be manufactured. For example, when the electrode material is Cr, the electrode can be removed using an acid solvent.

本実施の形態では、半導体工業で用いられているフォトリソグラフィーの手法等を利用して分極反転のための電極パターンを形成しているため、高精度かつ均一に所望の電極パターンを作ることができる。また、電極パターンはスパッタ法など半導体工業で用いられている手法で形成されるため基板との密着性に優れ、基板との接触状態が問題となることはない。したがって、分極反転させる部分の幅や形状を精密に、しかも基板全域で均一に制御することが可能となる。   In the present embodiment, the electrode pattern for polarization inversion is formed by using a photolithography technique used in the semiconductor industry, so that a desired electrode pattern can be formed with high accuracy and uniformity. . Further, since the electrode pattern is formed by a technique used in the semiconductor industry, such as sputtering, the adhesiveness with the substrate is excellent, and the contact state with the substrate does not become a problem. Therefore, it is possible to control the width and shape of the part where the polarization is reversed precisely and uniformly over the entire substrate.

また、本実施形態の工程では、犠牲層のパターンを一旦形成し、その後除去することによって電極パターンが基板と接触する部分と接触しない部分とを作り分けている。そのため電極はトンネル状の構造となり、犠牲層のあった部分は空気層となる。この製法により、誘電率が低い空気層を絶縁層として用いることができ、かつ容易に絶縁層の厚みを所望の厚みにすることができる。つまり、非分極反転領域109に加わる電界は空気層の分だけ緩和されるので、分極反転領域108と非分極反転領域109の電界強度の差を容易に大きくすることができる。本実施の形態の場合、分極反転領域108には20kV/mmの電界が印加されるが、非分極反転領域109には15Kv/mmの電界しか印加されなくなる。これにより、保持温度や印加電圧が設定値から数%変動しても、非分極反転領域109には分極反転を起こす電界が加わることがなくなる。したがって、従来のように非分極反転領域における不都合な分極反転が発生せず、さらにフォトリソグラフィーの精度で基板と電極の接触面積を制御できるので、高精度かつ均一に周期分極反転構造を形成することができる。   Further, in the process of this embodiment, the pattern of the sacrificial layer is once formed and then removed, so that a portion where the electrode pattern is in contact with the substrate and a portion where the electrode pattern is not in contact are separately formed. Therefore, the electrode has a tunnel-like structure, and the portion where the sacrificial layer is provided becomes an air layer. By this manufacturing method, an air layer having a low dielectric constant can be used as the insulating layer, and the thickness of the insulating layer can be easily set to a desired thickness. That is, since the electric field applied to the non-polarization inversion region 109 is relaxed by the air layer, the difference in electric field strength between the polarization inversion region 108 and the non-polarization inversion region 109 can be easily increased. In the case of the present embodiment, an electric field of 20 kV / mm is applied to the domain-inverted region 108, but only an electric field of 15 Kv / mm is applied to the non-domain-inverted region 109. As a result, even if the holding temperature and applied voltage fluctuate by several percent from the set values, an electric field that causes polarization inversion is not applied to the non-polarization inversion region 109. Therefore, unlike the conventional case, inconvenient polarization inversion in the non-polarization inversion region does not occur, and furthermore, the contact area between the substrate and the electrode can be controlled with photolithography accuracy, so that a periodic polarization inversion structure can be formed with high accuracy and uniformity. Can do.

また、犠牲層の形状と犠牲層の配列周期とを調整することによって、所望の周期で分極反転領域と非分極反転領域とがくり返される周期分極反転構造が作製できる。そのため、所望の非線形光学特性を得るための構造が容易に作成可能となる。   In addition, by adjusting the shape of the sacrificial layer and the arrangement period of the sacrificial layer, a periodically poled structure in which the domain-inverted region and the non-domain-inverted region are repeated at a desired cycle can be manufactured. Therefore, a structure for obtaining a desired nonlinear optical characteristic can be easily created.

さらに、本実施形態の工程では、犠牲層を除去するために金属膜をパターニングしてエッチングホールを形成している。このホールを設けることで容易に犠牲層を除去できるので、工程時間の短縮と工程コストの低減が図れる。   Furthermore, in the process of the present embodiment, the etching hole is formed by patterning the metal film in order to remove the sacrificial layer. By providing this hole, the sacrificial layer can be easily removed, so that the process time and the process cost can be reduced.

また、犠牲層のパターンが細長い形状のときは、犠牲層パターンの両端近辺の金属膜を開口してエッチングホールを設けることもできる。この場合は、犠牲層のパターンの中央付近にエッチングホールを設ける場合に比べて、より高精度かつ均一に周期分極反転構造を形成することができる。
つまり、非線形光学結晶を分極反転させる場合は結晶基板に電極を介して電界をかけるが、この電極形状が電界に影響を与えるので電極形状に不連続な部分が無い方が好ましい。
そこで、電界に影響を与える可能性のあるエッチングホールはなるべく犠牲層パターンの両端近辺に配置して分極反転の工程を行うこととする。こうしてできる構造の中央部分は、乱れた電界の影響が無い部分であるから、より高精度かつ均一な周期分極反転構造となる。具体的には、一旦分極反転構造を作成し、乱れた電界の影響の無い中央部分の結晶板を切り出して使用する。
In addition, when the sacrificial layer pattern has an elongated shape, an etching hole can be provided by opening a metal film near both ends of the sacrificial layer pattern. In this case, the periodic domain-inverted structure can be formed with higher accuracy and uniformity than in the case where the etching hole is provided near the center of the pattern of the sacrificial layer.
That is, in order to reverse the polarization of the nonlinear optical crystal, an electric field is applied to the crystal substrate via the electrode. Since this electrode shape affects the electric field, it is preferable that the electrode shape does not have a discontinuous portion.
Therefore, an etching hole that may affect the electric field is arranged as close to both ends of the sacrificial layer pattern as possible, and the polarization inversion process is performed. Since the central portion of the structure thus formed is a portion that is not affected by the disturbed electric field, it becomes a highly accurate and uniform periodic polarization inversion structure. Specifically, a domain-inverted structure is once created, and a crystal plate in a central portion that is not affected by a disturbed electric field is cut out and used.

本実施の形態では、上述したように、従来技術で生じていた放電現象や電界漏れ、電極幅精度の低下に起因する製造歩留の低下が無く、均一で高精度な周期分極反転構造を高い製造歩留まりで実現する分極反転素子の製造方法を提供することができる。   In this embodiment, as described above, there is no reduction in manufacturing yield due to a discharge phenomenon, electric field leakage, or a decrease in electrode width accuracy that has occurred in the prior art, and a highly uniform periodic polarization inversion structure is high. It is possible to provide a method for manufacturing a polarization inversion element that is realized with a manufacturing yield.

実施の形態2.
上述の実施の形態1では、ノボラック系のポジ型フォトレジストなどの感光性材料を犠牲層に使用する例を説明したが、本実施の形態では犠牲層に金属を用いる場合を説明する。
Embodiment 2. FIG.
In the first embodiment described above, an example in which a photosensitive material such as a novolac positive photoresist is used for the sacrificial layer has been described, but in this embodiment, a case where a metal is used for the sacrificial layer will be described.

フォトレジストを犠牲層として用いる場合は、その後の工程中で高温となったときにフォトレジストが変質して容易に除去できなくなる欠点がある。そこで、犠牲層に金属を用いることで係る問題を回避することとした。   When a photoresist is used as a sacrificial layer, there is a drawback that the photoresist changes in quality when it becomes high temperature in the subsequent process and cannot be easily removed. Therefore, it was decided to avoid such a problem by using a metal for the sacrificial layer.

本形態の分極反転素子の製造方法は、犠牲層が金属になること、その後の工程で犠牲層を除去するときのエッチャントが金属用になることが前述の実施形態1の工程と異なる他は、実施形態1と同じ工程手順であるので、説明の煩雑さを避けるため工程の説明は省略する。なお、エッチングして金属犠牲層を除去する必要があるため、第1の電極、第2の電極にはエッチャントに対して耐性のある金属を選択する必要がある。   The manufacturing method of the polarization inverting element of this embodiment is different from the process of the first embodiment except that the sacrificial layer is made of metal and the etchant when removing the sacrificial layer in the subsequent process is made of metal. Since it is the same process procedure as Embodiment 1, description of a process is abbreviate | omitted in order to avoid the complexity of description. Since the metal sacrificial layer needs to be removed by etching, it is necessary to select a metal resistant to the etchant for the first electrode and the second electrode.

例えば、犠牲層にAlを使用し、第1の電極、第2の電極にはCrを使用する。また、エッチャントには、熱燐酸を使用する。実施形態1と同じ工程手順を経ることにより周期分極反転構造を作成することができる。なお、適宜エッチャントを選択すればAl以外でもNi、Cu、CrあるいはTiなどの卑金属も使用可能である。   For example, Al is used for the sacrificial layer, and Cr is used for the first electrode and the second electrode. Moreover, hot phosphoric acid is used for the etchant. A periodic domain-inverted structure can be created through the same process procedure as in the first embodiment. If an etchant is selected as appropriate, base metals such as Ni, Cu, Cr or Ti can be used in addition to Al.

また、第1の電極および第2の電極に使用する金属種によっては、犠牲層には、SiOやSiなどの無機絶縁材料、あるいはSi、ポリSiも用いることができる。例えば、電極材料にCr、Taを選択する場合は、エッチャントにバッファドフッ酸(フッ化アンモニウムとフッ酸の混合液)を使用してSiOの犠牲層を除去することも可能である。 Further, depending on the metal species used for the first electrode and the second electrode, an inorganic insulating material such as SiO 2 or Si 3 N 4 , Si, or poly-Si can be used for the sacrificial layer. For example, when Cr or Ta is selected as the electrode material, the sacrificial layer of SiO 2 can be removed by using buffered hydrofluoric acid (a mixed solution of ammonium fluoride and hydrofluoric acid) as an etchant.

本実施の形態では、実施の形態1で説明した効果に加えて、高温の工程を採用できるようになるので製造方法の自由度がより向上する利点がある。また、犠牲層にフォトレジストなどの有機材料を使用することに由来する残渣に起因した弊害も、犠牲層に金属あるいはシリコン、ポリシリコン、シリコン酸化物、シリコン窒化物などの無機材料を使用することで解決可能となる。   In the present embodiment, in addition to the effects described in the first embodiment, a high-temperature process can be adopted, so that there is an advantage that the degree of freedom of the manufacturing method is further improved. In addition, the adverse effects caused by residues resulting from the use of organic materials such as photoresist for the sacrificial layer are also due to the use of metals or inorganic materials such as silicon, polysilicon, silicon oxide, and silicon nitride for the sacrificial layer. Can be solved.

本発明の実施の形態1の製造工程を示した斜視図である。It is the perspective view which showed the manufacturing process of Embodiment 1 of this invention. 本発明の実施の形態1の製造工程を示した斜視図である。It is the perspective view which showed the manufacturing process of Embodiment 1 of this invention. 本発明の実施の形態1の製造工程を示した斜視図である。It is the perspective view which showed the manufacturing process of Embodiment 1 of this invention. 本発明の実施の形態1の製造工程を示した斜視図である。It is the perspective view which showed the manufacturing process of Embodiment 1 of this invention. 本発明の実施の形態1の製造工程を示した斜視図である。It is the perspective view which showed the manufacturing process of Embodiment 1 of this invention. 本発明の実施の形態1の製造工程を示した斜視図である。It is the perspective view which showed the manufacturing process of Embodiment 1 of this invention. 本発明の実施の形態1の製造工程を示した斜視図である。It is the perspective view which showed the manufacturing process of Embodiment 1 of this invention.

符号の説明Explanation of symbols

101 非線形光学結晶基板、102 第2の電極、103 分極反転領域、104 第1の電極、105 エッチングホール、106 犠牲層、107 非分極反転面、108 分極反転面、109 非分極反転領域、110 トンネル状の構造、110 電源 DESCRIPTION OF SYMBOLS 101 Nonlinear optical crystal substrate, 102 2nd electrode, 103 Polarization inversion area | region, 104 1st electrode, 105 Etching hole, 106 Sacrificial layer, 107 Non-polarization inversion surface, 108 Polarization inversion surface, 109 Non-polarization inversion area | region, 110 Tunnel Structure, 110 power supply

Claims (4)

非線形光学結晶の基板上に前記基板と接触する接触部を有する電極を形成し、前記電極に電圧を印加して分極反転素子を製造する方法において、前記基板上に所定の間隔をおいて設けられる感光性樹脂材料の犠牲層をフォトリソグラフィーにより形成する工程と、前記犠牲層の間に前記電極の接触部が形成されるよう、前記犠牲層および前記犠牲層の間の前記基板の上に電極材料を成膜して前記電極材料からなる前記電極を形成する工程と、前記電極材料の成膜後に前記犠牲層を除去する工程と、前記犠牲層の除去後に前記電極に電圧を印加して分極反転させる工程とを備えた分極反転素子の製造方法。   In a method of manufacturing a polarization reversal element by forming an electrode having a contact portion in contact with the substrate on the substrate of the nonlinear optical crystal and applying a voltage to the electrode, the polarization inversion element is provided at a predetermined interval on the substrate. Forming a sacrificial layer of photosensitive resin material by photolithography, and an electrode material on the substrate between the sacrificial layer and the sacrificial layer so that a contact portion of the electrode is formed between the sacrificial layer Forming the electrode made of the electrode material, removing the sacrificial layer after forming the electrode material, and applying a voltage to the electrode after removing the sacrificial layer to reverse polarization And a method for manufacturing a polarization inversion element. 非線形光学結晶の基板上に周期的に所定形状の犠牲層を配列することを特徴とする請求項1に記載の分極反転素子の製造方法。   2. The method of manufacturing a polarization inversion element according to claim 1, wherein sacrificial layers having a predetermined shape are periodically arranged on the substrate of the nonlinear optical crystal. 犠牲層の上に成膜された電極材料の端部の一部を開口し、前記開口を介して前記犠牲層を除去することを特徴とする請求項1に記載の分極反転素子の製造方法。 2. The method of manufacturing a polarization inversion element according to claim 1, wherein a part of an end portion of the electrode material formed on the sacrificial layer is opened, and the sacrificial layer is removed through the opening. 分極反転後、前記開口に対向する部分を含む前記基板の端部を除去することを特徴とする請求項3に記載の分極反転素子の製造方法。   The method of manufacturing a polarization inverting element according to claim 3, wherein after the polarization inversion, an end portion of the substrate including a portion facing the opening is removed.
JP2007099392A 2007-04-05 2007-04-05 Method for manufacturing polarization reversal element Expired - Fee Related JP4893431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099392A JP4893431B2 (en) 2007-04-05 2007-04-05 Method for manufacturing polarization reversal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099392A JP4893431B2 (en) 2007-04-05 2007-04-05 Method for manufacturing polarization reversal element

Publications (2)

Publication Number Publication Date
JP2008256969A JP2008256969A (en) 2008-10-23
JP4893431B2 true JP4893431B2 (en) 2012-03-07

Family

ID=39980601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099392A Expired - Fee Related JP4893431B2 (en) 2007-04-05 2007-04-05 Method for manufacturing polarization reversal element

Country Status (1)

Country Link
JP (1) JP4893431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9235074B2 (en) 2013-01-23 2016-01-12 Samsung Display Co., Ltd. Display device and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426333B2 (en) * 2009-11-24 2014-02-26 信越化学工業株式会社 Hollow structure manufacturing method
KR20140089650A (en) 2013-01-03 2014-07-16 삼성디스플레이 주식회사 Liquid crystal display and manufacturing method thereof
KR20140095120A (en) 2013-01-16 2014-08-01 삼성디스플레이 주식회사 Display device and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI98325C (en) * 1994-07-07 1997-05-26 Vaisala Oy Selective infrared detector
JP3754136B2 (en) * 1996-08-07 2006-03-08 三菱電線工業株式会社 Method for manufacturing polarization-inverted nonlinear optical material
JP3881234B2 (en) * 2001-12-25 2007-02-14 富士フイルムホールディングス株式会社 Light modulation element and manufacturing method thereof
JP2007034231A (en) * 2005-07-29 2007-02-08 Sharp Corp Optical modulating element and compound type optical modulating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9235074B2 (en) 2013-01-23 2016-01-12 Samsung Display Co., Ltd. Display device and manufacturing method thereof
US9482917B2 (en) 2013-01-23 2016-11-01 Samsung Display Co., Ltd. Display device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008256969A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
US8064129B2 (en) Process for poling a ferroelectric material doped with a metal
JP4893431B2 (en) Method for manufacturing polarization reversal element
JP2010529512A (en) Improved field polarization of ferroelectric materials
JP5300664B2 (en) Method for manufacturing polarization reversal part
JP2010156787A (en) Method for manufacturing optical functional element
US7864409B2 (en) Fabrication method for quasi-phase-matched waveguides
JP2007003885A (en) Method for manufacturing substrate having periodical polarization inversion region
JP2009271496A (en) Method of fabricating optical functional element
US20080158655A1 (en) Method for Preparing a Periodically Poled Structure
US7460295B2 (en) Periodic poling structure and electrode element and method for preparing the same
JP4646150B2 (en) Method for manufacturing periodically poled structure
US11332849B2 (en) Method of producing periodic polarization inversion structures
JP4974872B2 (en) Method for manufacturing periodically poled structure
WO2005124447A1 (en) Production method for polarization inversion unit
JPH08271941A (en) Production of optical device
JP4642065B2 (en) Method for manufacturing periodic polarization reversal part
JP2008170931A (en) Apparatus for manufacturing wavelength converting element and method for manufacturing wavelength converting element
JP5407317B2 (en) Method for forming polarization inversion region and method for manufacturing quasi-phase matching element
JP2008309828A (en) Manufacturing method of optical wavelength converting element, and optical wavelength conversion element
JP4764964B2 (en) Method for forming minute periodic polarization reversal structure and minute periodic polarization reversal structure
JP2009092843A (en) Manufacturing method for periodic polarization reversal structure
JP4333534B2 (en) Optical waveguide manufacturing method
US20090080062A1 (en) Method for preparing a poled structure by using double-sided electrodes
JP2010060764A (en) Method for forming polarization-inverted area, method for manufacturing pseudo phase matching element, electrode, and method for manufacturing electrode
US20080106785A1 (en) Segmenting Method For Preparing A Periodically Poled Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R151 Written notification of patent or utility model registration

Ref document number: 4893431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees