JP4892886B2 - Solid-state imaging device and imaging apparatus - Google Patents

Solid-state imaging device and imaging apparatus Download PDF

Info

Publication number
JP4892886B2
JP4892886B2 JP2005226641A JP2005226641A JP4892886B2 JP 4892886 B2 JP4892886 B2 JP 4892886B2 JP 2005226641 A JP2005226641 A JP 2005226641A JP 2005226641 A JP2005226641 A JP 2005226641A JP 4892886 B2 JP4892886 B2 JP 4892886B2
Authority
JP
Japan
Prior art keywords
light
filter
pixel
region
pixel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005226641A
Other languages
Japanese (ja)
Other versions
JP2007042933A (en
Inventor
亮司 鈴木
章悟 黒木
博則 見口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005226641A priority Critical patent/JP4892886B2/en
Publication of JP2007042933A publication Critical patent/JP2007042933A/en
Application granted granted Critical
Publication of JP4892886B2 publication Critical patent/JP4892886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光電変換素子を用いて被写体を撮像する固体撮像素子及びこの固体撮像素子を利用した撮像装置に関し、特に光電変換素子に入射する光の色分解等を行う光学フィルタを改良して黒基準となるオプティカルブラック(OPB)への不正入射光を有効に防止することができる固体撮像素子及び撮像装置に関する。   The present invention relates to a solid-state image sensor that captures an image of a subject using a photoelectric conversion element and an image pickup apparatus using the solid-state image sensor, and in particular, an improved optical filter that performs color separation and the like of light incident on the photoelectric conversion element. The present invention relates to a solid-state imaging device and an imaging apparatus that can effectively prevent unauthorized incident light on a reference optical black (OPB).

従来より、CCDイメージセンサやCMOSイメージセンサといった固体撮像素子では、画素アレイ部のフォトダイオードで読み取った撮像信号を処理する際に、撮像信号の輝度レベルを調整するため、被写体を撮影する本来の有効画素領域とは別に、有効画素領域と共通の構造を持ったダミー画素を設け、これをメタル膜による遮光膜で遮光して遮光画素領域とし、その出力信号を検出することにより、黒基準信号として用いるようになっている。この遮光画素領域を、いわゆるオプティカルブラック(OPB)と呼ぶ。
この遮光画素領域は、できるたけ実際に撮像を行う画素と同特性で黒基準信号の検出を行えることが好ましいため、通常は有効画素領域の近傍に設けられており、例えば有効画素領域の辺に沿って複数の画素列を割り当てたり、あるいは、有効画素領域の周囲に分散して複数の画素ブロックを設けることにより、画素アレイ部内での特性のばらつきを補正した正確な黒基準を得るようになっている。
そして、このようなOPBの遮光膜の上面や端部に、低透過率の膜を配置して入射光を制限し、不要な光の入射や反射を防止するようなものも提案されている(例えば特許文献1、2参照)。
特開平3−148868号公報 特開平10−112533号公報
Conventionally, in a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, when processing an imaging signal read by a photodiode in a pixel array unit, the luminance level of the imaging signal is adjusted, so that it is originally effective to shoot a subject. In addition to the pixel area, a dummy pixel having a structure common to the effective pixel area is provided, and this is shielded by a light shielding film made of a metal film to form a light shielding pixel area, and by detecting its output signal, a black reference signal is obtained. It comes to use. This light-shielded pixel region is called a so-called optical black (OPB).
This light-shielding pixel region is preferably provided in the vicinity of the effective pixel region because it is preferable to detect the black reference signal with the same characteristics as the pixel that actually captures as much as possible. By assigning multiple pixel columns along the line, or by providing multiple pixel blocks distributed around the effective pixel area, it is possible to obtain an accurate black reference that corrects variations in characteristics within the pixel array section. ing.
In addition, there has been proposed a film having a low transmittance disposed on the upper surface and the end of such an OPB light-shielding film to limit incident light and prevent unnecessary light from entering and reflecting ( For example, see Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 3-148868 JP-A-10-112533

しかしながら、上述のように画素アレイ部上に遮光膜を配置して遮光画素領域とした構造では、有効画素領域に入射した光が遮光膜の下面に入り込んで遮光画素側のフォトダイオードに入射し、偽信号となって黒基準を白側にずらしてしまう。
特にCMOSイメージセンサではフォトダイオード上に配線層が配置される構造上、配線層の最上層膜を用いて遮光膜を形成しているため、遮光膜とフォトダイオードとの間の距離が大きくなり、さらに中間に配線膜が配置されるため、有効画素領域に入射した光が回折や反射によって遮光画素側に進入し易いものとなる。
そのため、遮光画素近傍に強い光が入射すると、不正な偽信号が発生したり、色再現が悪化する現象が見られるという問題がある。特に、長波長光の場合、入射深度が大きいために、遮光画素側に到達する可能性が高くなる。
これに対して従来は、上述した特許文献に開示されるように、遮光膜上や端部に低透過率の膜を配置しているが、有効画素領域側から回折や反射によって遮光膜下に入り込む光に対する対策にはなっていない。
このため、例えば有効画素領域と遮光画素領域との中間に十分なスペース(境界領域)を確保して、有効画素領域側から遮光画素領域側への不正な光の入射を阻止することも考えられるが、画素アレイ部の面積が大きくなってしまい、撮像素子の小型化が妨げられるという問題が生じる。
However, in the structure in which the light shielding film is arranged on the pixel array portion as described above to form the light shielding pixel region, the light incident on the effective pixel region enters the lower surface of the light shielding film and enters the photodiode on the light shielding pixel side, It becomes a false signal and the black reference is shifted to the white side.
In particular, in the CMOS image sensor, because the light shielding film is formed using the uppermost layer film of the wiring layer due to the structure in which the wiring layer is arranged on the photodiode, the distance between the light shielding film and the photodiode is increased, Further, since the wiring film is disposed in the middle, the light incident on the effective pixel region easily enters the light-shielding pixel side by diffraction or reflection.
For this reason, when strong light is incident in the vicinity of the light-shielding pixel, there is a problem that an illegal false signal is generated or a phenomenon in which color reproduction is deteriorated. In particular, in the case of long wavelength light, since the incident depth is large, the possibility of reaching the light-shielding pixel side is increased.
In contrast, conventionally, as disclosed in the above-mentioned patent document, a low-transmittance film is disposed on the light-shielding film or at the end, but from the effective pixel region side by diffraction or reflection, it is below the light-shielding film. It is not a measure against incoming light.
For this reason, for example, it is conceivable to secure a sufficient space (boundary region) between the effective pixel region and the light-shielding pixel region to prevent unauthorized light from entering from the effective pixel region side to the light-shielding pixel region side. However, the area of the pixel array portion becomes large, and there arises a problem that miniaturization of the image sensor is hindered.

そこで本発明は、画素アレイ部の大型化を抑制しつつ、遮光画素領域への不正な光の入射を適切に防止して正確な黒基準を得ることができる固体撮像素子及び撮像装置を提供することを目的とする。   Therefore, the present invention provides a solid-state imaging device and an imaging apparatus capable of appropriately preventing illegal light from entering a light-shielded pixel region and obtaining an accurate black reference while suppressing an increase in size of a pixel array unit. For the purpose.

上述の目的を達成するため、本発明の固体撮像素子は、受光面に入射する光の量に応じた信号電荷を生成する複数の画素を2次元方向に配置され、被写体の撮像に用いる有効画素領域と、前記有効画素領域の近傍に配置される黒基準信号を得るための遮光画素領域と、前記有効画素領域と遮光画素領域との中間に配置される境界領域とを有する画素アレイ部と、前記画素アレイ部の遮光画素領域上に絶縁膜を介して配置され、前記遮光画素領域を遮光する遮光膜と、前記画素アレイ部及び遮光膜上に絶縁膜を介して配置され、前記複数の画素に入射する光の波長成分を画素毎に制限する光学フィルタとを具備し、前記光学フィルタは、前記有効画素領域に対応する有効部と、前記境界領域及び遮光画素領域に対応する無効部とを有し、前記無効部に配置される光学フィルタに少なくとも可視光の長波長光の通過を抑制する入光抑制フィルタを配置した。
また、光学フィルタは赤緑青の3原色フィルタであり、入光抑制フィルタは3原色フィルタの赤フィルタと青フィルタとを重ね合わせたフィルタであり、3原色フィルタは赤フィルタの上層に青フィルタが配置され、入光抑制フィルタの赤フィルタと青フィルタは、赤フィルタが画素アレイ部の境界領域の中途位置まで形成され、青フィルタは赤フィルタよりも有効部側に接近した位置まで形成されている。
In order to achieve the above-described object, the solid-state imaging device of the present invention has a plurality of pixels that generate signal charges corresponding to the amount of light incident on the light receiving surface arranged in a two-dimensional direction, and is an effective pixel used for imaging a subject. A pixel array unit having a region, a light-shielded pixel region for obtaining a black reference signal disposed in the vicinity of the effective pixel region, and a boundary region disposed between the effective pixel region and the light-shielded pixel region; A plurality of pixels disposed on a light-shielding pixel region of the pixel array portion via an insulating film, and disposed on the pixel array portion and the light-shielding film via an insulating film. An optical filter that limits the wavelength component of light incident on each pixel, and the optical filter includes an effective portion corresponding to the effective pixel region, and an ineffective portion corresponding to the boundary region and the light-shielding pixel region. Have Was placed to suppress light entering suppression filter the passage of long wavelength light of at least the visible light to the optical filter disposed part.
The optical filter is a red, green, and blue three primary color filter, the light incident suppression filter is a filter in which the red filter and the blue filter of the three primary color filter are superimposed, and the blue filter is disposed on the upper layer of the red filter. The red filter and the blue filter of the light incident suppression filter are formed up to the middle position of the boundary region of the pixel array portion, and the blue filter is formed to a position closer to the effective portion side than the red filter.

また、本発明の固体撮像素子は、受光面に入射する光の量に応じた信号電荷を生成する複数の画素を2次元方向に配置され、被写体の撮像に用いる有効画素領域と、前記有効画素領域の近傍に配置される黒基準信号を得るための遮光画素領域と、前記有効画素領域と遮光画素領域との中間に配置される境界領域とを有する画素アレイ部と、前記画素アレイ部上に絶縁膜を介して配置される配線層と、前記配線層内の前記画素アレイ部の遮光画素領域に対応する領域に配置され、前記遮光画素領域を遮光する遮光膜と、前記画素アレイ部及び遮光膜上に絶縁膜を介して配置され、前記複数の画素に入射する光の波長成分を画素毎に制限する光学フィルタとを具備し、前記光学フィルタは、前記有効画素領域に対応する有効部と、前記境界領域及び遮光画素領域に対応する無効部とを有し、前記無効部に配置される光学フィルタに少なくとも可視光の長波長光の通過を抑制する入光抑制フィルタを配置した。
また、光学フィルタは赤緑青の3原色フィルタであり、入光抑制フィルタは3原色フィルタの赤フィルタと青フィルタとを重ね合わせたフィルタであり、3原色フィルタは赤フィルタの上層に青フィルタが配置され、入光抑制フィルタの赤フィルタと青フィルタは、赤フィルタが画素アレイ部の境界領域の中途位置まで形成され、青フィルタは赤フィルタよりも有効部側に接近した位置まで形成されている。
In the solid-state imaging device of the present invention, a plurality of pixels that generate signal charges according to the amount of light incident on the light receiving surface are arranged in a two-dimensional direction, and an effective pixel region used for imaging a subject and the effective pixels A pixel array unit having a light-shielded pixel region for obtaining a black reference signal disposed in the vicinity of the region, a boundary region disposed between the effective pixel region and the light-shielded pixel region, and on the pixel array unit A wiring layer disposed via an insulating film; a light-shielding film disposed in a region corresponding to the light-shielding pixel region of the pixel array unit in the wiring layer; and shielding the light-shielding pixel region; the pixel array unit; An optical filter that is disposed on the film via an insulating film and limits the wavelength component of light incident on the plurality of pixels for each pixel, and the optical filter includes an effective portion corresponding to the effective pixel region; , The boundary region and And a disabling unit that corresponds to the light-shielded pixel area, was placed to suppress light entering suppression filter the passage of long wavelength light of at least the visible light to the optical filter disposed in the invalid portion.
The optical filter is a red, green, and blue three primary color filter, the light incident suppression filter is a filter in which the red filter and the blue filter of the three primary color filter are superimposed, and the blue filter is disposed on the upper layer of the red filter. The red filter and the blue filter of the light incident suppression filter are formed up to the middle position of the boundary region of the pixel array portion, and the blue filter is formed to a position closer to the effective portion side than the red filter.

また、本発明の撮像装置は、被写体を固体撮像素子によって撮像する撮像部と、被写体像を撮像部に入射させる撮像光学系と、前記撮像部によって撮像した画像を信号処理する信号処理部と、前記信号処理部によって処理した画像データを表示する表示部と、前記信号処理部によって処理した画像データを記録する記録部と、操作入力を行う操作部とを具備し、前記固体撮像素子は、受光面に入射する光の量に応じた信号電荷を生成する複数の画素を2次元方向に配置され、被写体の撮像に用いる有効画素領域と、前記有効画素領域の近傍に配置される黒基準信号を得るための遮光画素領域と、前記有効画素領域と遮光画素領域との中間に配置される境界領域とを有する画素アレイ部と、前記画素アレイ部の遮光画素領域上に絶縁膜を介して配置され、前記遮光画素領域を遮光する遮光膜と、前記画素アレイ部及び遮光膜上に絶縁膜を介して配置され、前記複数の画素に入射する光の波長成分を画素毎に制限する光学フィルタとを具備し、前記光学フィルタは、前記有効画素領域に対応する有効部と、前記境界領域及び遮光画素領域に対応する無効部とを有し、前記無効部に配置される光学フィルタに少なくとも可視光の長波長光の通過を抑制する入光抑制フィルタを配置した。
また、光学フィルタは赤緑青の3原色フィルタであり、入光抑制フィルタは3原色フィルタの赤フィルタと青フィルタとを重ね合わせたフィルタであり、3原色フィルタは赤フィルタの上層に青フィルタが配置され、入光抑制フィルタの赤フィルタと青フィルタは、赤フィルタが画素アレイ部の境界領域の中途位置まで形成され、青フィルタは赤フィルタよりも有効部側に接近した位置まで形成されている。
In addition, an imaging apparatus according to the present invention includes an imaging unit that images a subject with a solid-state imaging device, an imaging optical system that causes a subject image to enter the imaging unit, a signal processing unit that performs signal processing on an image captured by the imaging unit, A display unit that displays image data processed by the signal processing unit; a recording unit that records image data processed by the signal processing unit; and an operation unit that performs operation input. A plurality of pixels that generate signal charges according to the amount of light incident on the surface are arranged in a two-dimensional direction, and an effective pixel area used for imaging a subject and a black reference signal arranged in the vicinity of the effective pixel area A pixel array unit having a light-shielded pixel region for obtaining, a boundary region disposed between the effective pixel region and the light-shielded pixel region, and an insulating film on the light-shielded pixel region of the pixel array unit A light-shielding film that shields the light-shielded pixel region, and an optical filter that is disposed on the pixel array portion and the light-shielding film via an insulating film and restricts wavelength components of light incident on the plurality of pixels for each pixel. The optical filter includes an effective portion corresponding to the effective pixel region and an invalid portion corresponding to the boundary region and the light-shielding pixel region, and is at least visible to the optical filter disposed in the invalid portion. An incident light suppression filter that suppresses the passage of long-wavelength light is disposed .
The optical filter is a red, green, and blue three primary color filter, the light incident suppression filter is a filter in which the red filter and the blue filter of the three primary color filter are superimposed, and the blue filter is disposed on the upper layer of the red filter. The red filter and the blue filter of the light incident suppression filter are formed up to the middle position of the boundary region of the pixel array portion, and the blue filter is formed to a position closer to the effective portion side than the red filter.

本発明の固体撮像素子及び撮像装置によれば、固体撮像素子の画素アレイ部上に配置される光学フィルタを、画素アレイ部の有効画素領域に対応する有効部と、画素アレイ部の境界領域及び遮光画素領域に対応する無効部とに分け、無効部に配置される光学フィルタに少なくとも可視光の長波長光の通過を抑制する入光抑制フィルタを配置したことから、境界領域側から入射して遮光画素領域側に到達する長波長光を有効に防止できる。
したがって、境界領域のスペースを大きくとることなく、遮光画素領域(OPB)への不正入射光を抑制して、正確な黒基準を測定でき、高品位の撮像画像を出力できる効果がある。
According to the solid-state imaging device and the imaging apparatus of the present invention, the optical filter disposed on the pixel array unit of the solid-state imaging device includes an effective unit corresponding to the effective pixel region of the pixel array unit, a boundary region of the pixel array unit, and Since it is divided into an ineffective part corresponding to the light-shielding pixel region and an incident light suppression filter that suppresses at least the passage of visible light long-wavelength light is arranged in the optical filter arranged in the ineffective part, it enters from the boundary region side. It is possible to effectively prevent long wavelength light reaching the light shielding pixel region side.
Therefore, there is an effect that an accurate black reference can be measured and a high-quality captured image can be output without restricting illegal incident light to the light-shielding pixel region (OPB) without taking a space of the boundary region.

図1は本発明の実施例による撮像装置の構成例を示すブロック図である。
本例の撮像装置は、デジタルスチルカメラまたはデジタルビデオカメラとして構成されており、撮像光学系10、撮像部20、信号処理部30、表示部40、記録部50、操作部60等で構成されている。
撮像光学系10は各種レンズや絞り機構等を含み、被写体像を撮像部20に導く。撮像部20はCCDイメージセンサやCMOSイメージセンサ等の固体撮像素子によって被写体像を撮像する。
信号処理部30は、撮像部20によって取得した画像信号にフォーマット変換等の処理を施し、表示用や記録用のデータに変換する。表示部40は信号処理部30によって処理した画像データを表示する液晶表示器等であり、記録部50は信号処理部30によって処理した画像データを記録媒体に記録する。また、操作部60はシャッタボタン、各種機能キー、及びカーソルキー等を含み、ユーザが本撮像装置を操作するための各種入力を行うものである。
FIG. 1 is a block diagram illustrating a configuration example of an imaging apparatus according to an embodiment of the present invention.
The imaging apparatus of this example is configured as a digital still camera or a digital video camera, and includes an imaging optical system 10, an imaging unit 20, a signal processing unit 30, a display unit 40, a recording unit 50, an operation unit 60, and the like. Yes.
The imaging optical system 10 includes various lenses, a diaphragm mechanism, and the like, and guides a subject image to the imaging unit 20. The imaging unit 20 captures a subject image using a solid-state imaging device such as a CCD image sensor or a CMOS image sensor.
The signal processing unit 30 performs processing such as format conversion on the image signal acquired by the imaging unit 20 and converts the image signal into data for display or recording. The display unit 40 is a liquid crystal display or the like that displays the image data processed by the signal processing unit 30, and the recording unit 50 records the image data processed by the signal processing unit 30 on a recording medium. The operation unit 60 includes a shutter button, various function keys, a cursor key, and the like, and is used by the user to perform various inputs for operating the imaging apparatus.

また、図2は本例の撮像部に用いられる固体撮像素子の一例(CMOSイメージセンサ)を示す平面図であり、図3は図2に示す固体撮像素子の内部構造を示す断面図である。
図2に示すように、本例のCMOSイメージセンサは、半導体チップ100上に画素アレイ部110、周辺回路部120、及び入出力端子部130等を設けたものである。
画素アレイ部110は、それぞれフォトダイオードや画素トランジスタで構成される多数の画素を2次元配列で配置したものである。この画素アレイ部110の大部分が有効画素領域111であり、被写体の撮像を行い、その撮像信号を出力する。また、画素アレイ部110の周辺部には、有効画素領域111の黒基準信号を得るための遮光画素領域(OPB)113が形成されている。また、有効画素領域111と遮光画素領域113との間には、OPBへの不正入射光を防止するための、境界領域112が設けられている。なお、本例では2画素列分が境界領域112として割り当てられている。
これら有効画素領域111、境界領域112、及び遮光画素領域113の各画素は、基本的に同一プロセスで同時形成され、同一の構造を有している。そして、図2では省略するが、遮光画素領域113の上部領域にアルミ等によるメタル遮光膜が形成される。
FIG. 2 is a plan view showing an example (CMOS image sensor) of a solid-state imaging device used in the imaging unit of this example, and FIG. 3 is a cross-sectional view showing the internal structure of the solid-state imaging device shown in FIG.
As shown in FIG. 2, the CMOS image sensor of this example is provided with a pixel array section 110, a peripheral circuit section 120, an input / output terminal section 130, and the like on a semiconductor chip 100.
The pixel array unit 110 is a two-dimensional array in which a large number of pixels each composed of a photodiode and a pixel transistor are arranged. Most of the pixel array unit 110 is an effective pixel region 111, which captures an image of a subject and outputs an image signal thereof. Further, a light-shielding pixel region (OPB) 113 for obtaining a black reference signal of the effective pixel region 111 is formed around the pixel array unit 110. In addition, a boundary region 112 is provided between the effective pixel region 111 and the light-shielding pixel region 113 to prevent unauthorized incident light on the OPB. In this example, two pixel columns are allocated as the boundary region 112.
The pixels of the effective pixel region 111, the boundary region 112, and the light-shielding pixel region 113 are basically formed simultaneously by the same process and have the same structure. Although not shown in FIG. 2, a metal light shielding film made of aluminum or the like is formed in the upper region of the light shielding pixel region 113.

また、周辺回路部120は、画素アレイ部110と共通のCMOSプロセスにより、画素アレイ部を駆動するための駆動回路や各種の信号処理回路等が形成されている。また、入出力端子部130は、外部機器(本例では撮像装置本体)との間で種々の信号をやり取りする入力端子及び出力端子で構成されている。
このように形成された半導体チップ100の上面には、さらにカラーフィルタやオンチップレンズ(図2では省略する)が取り付けられ、センサモジュールとして撮像装置内に組み込まれる。
なお、図2に示す例では、有効画素領域の4辺に沿って遮光画素領域(OPB)を配置したが、遮光画素領域(OPB)の配置方法としては、バランス良く黒基準を測定できるものであれば良く、例えば有効画素領域の両側の2辺に沿って配置したり、各辺の一部や各コーナー部に分散してブロック状に配置したり、様々な方法が可能であり、本発明において特に限定されないものとする。
In the peripheral circuit unit 120, a drive circuit for driving the pixel array unit, various signal processing circuits, and the like are formed by a CMOS process common to the pixel array unit 110. The input / output terminal unit 130 includes an input terminal and an output terminal that exchange various signals with an external device (in this example, the imaging apparatus main body).
A color filter and an on-chip lens (not shown in FIG. 2) are further attached to the upper surface of the semiconductor chip 100 formed in this way, and the sensor chip is incorporated into the imaging device.
In the example shown in FIG. 2, the light-shielded pixel region (OPB) is arranged along the four sides of the effective pixel region. However, as a method for arranging the light-shielded pixel region (OPB), the black reference can be measured with a good balance. For example, it can be arranged along two sides on both sides of the effective pixel region, or can be arranged in blocks in a part of each side or in each corner. In particular, it is not limited.

次に図3は、上述した有効画素領域から遮光画素領域に至る領域の断面を示している。本図において、シリコン基板200には、光電変換素子としてのフォトダイオード210が形成され、基板上面の受光面から入射した光を光電変換し、信号電荷を蓄積する。なお、シリコン基板200には、フォトダイオード210の他に画素回路を構成する増幅、転送、リセット、選択等の各種MOSトランジスタ(画素トランジスタ)が形成されているが、ここでは本発明の特徴に直接関係しないため省略している。
また、シリコン基板200上には、不図示のゲート酸化膜等を介して層間絶縁膜220が配置され、この絶縁膜220内に複数層の配線膜230、240によって各種配線パターン231、241が形成されている。なお、図示の例では、2層配線の例を示している。
ここで、層間絶縁膜の材料としては透明なシリコン酸化膜等が用いられる。また、配線膜の材料としては、例えばシリコン基板に近い下層の配線膜230にはポリシリコン膜が用いられ、上層の配線膜240にはアルミ等のメタル膜が用いられている。
そして、本例では、この上層のアルミ配線膜240を用いて遮光膜242が形成されている。
この遮光膜242は、上述した画素アレイ部110の遮光画素領域113に対応する領域に配置されており、上方から入射する光を遮断し、遮光画素領域113への入光を阻止するものである。これにより、遮光画素領域113は基本的に遮光され、OPBとして機能する。一方、有効画素領域111や境界領域112では、上方からの入射光が各配線パターン231、241の間を通って各画素のフォトダイオード210に入光する。
Next, FIG. 3 shows a cross section of a region from the above-described effective pixel region to the light-shielding pixel region. In this figure, a photodiode 210 as a photoelectric conversion element is formed on a silicon substrate 200, photoelectrically converts light incident from a light receiving surface on the upper surface of the substrate, and accumulates signal charges. In addition to the photodiode 210, the silicon substrate 200 is formed with various MOS transistors (pixel transistors) such as amplification, transfer, reset, and selection that constitute a pixel circuit. Here, the features of the present invention are directly described here. Omitted because it is not related.
An interlayer insulating film 220 is disposed on the silicon substrate 200 via a gate oxide film (not shown), and various wiring patterns 231 and 241 are formed in the insulating film 220 by a plurality of wiring films 230 and 240. Has been. In the illustrated example, an example of two-layer wiring is shown.
Here, a transparent silicon oxide film or the like is used as a material for the interlayer insulating film. As a material of the wiring film, for example, a polysilicon film is used for the lower wiring film 230 close to the silicon substrate, and a metal film such as aluminum is used for the upper wiring film 240.
In this example, the light shielding film 242 is formed using the upper aluminum wiring film 240.
The light shielding film 242 is disposed in a region corresponding to the light shielding pixel region 113 of the pixel array unit 110 described above, and blocks light incident from above and prevents light from entering the light shielding pixel region 113. . Thereby, the light-shielding pixel region 113 is basically shielded from light and functions as an OPB. On the other hand, in the effective pixel region 111 and the boundary region 112, incident light from above passes between the wiring patterns 231 and 241 and enters the photodiode 210 of each pixel.

また、このような配線層240(遮光膜242)の上部には、さらに絶縁膜220が積層され、平坦化膜や保護膜として機能しており、この最上層の絶縁膜220の上面にカラーフィルタ250が形成され、その上面にオンチップマイクロレンズ260が形成されている。
このカラーフィルタ250とマイクロレンズ260は、画素アレイ部110の全領域にわたって形成されているが、カラーフィルタ250については、有効画素領域111に対応する有効部250Aと、境界領域112及び遮光画素領域113に対応する無効部250Bとに分かれており、有効部250Aと無効部250Bとで異なるフィルタ特性を有するものとなっている。
すなわち、有効部250Aのフィルタは、通常のカラーフィルタとして機能するものであり、本例では、赤緑青(RGB)の3原色カラーフィルタが用いられ、所定のパターンでRGBに割り当てられた各画素のフォトダイオードにRGBの成分光が入射するようになっている。
An insulating film 220 is further laminated on the wiring layer 240 (light shielding film 242), and functions as a planarizing film or a protective film. A color filter is formed on the upper surface of the uppermost insulating film 220. 250 is formed, and an on-chip microlens 260 is formed on the upper surface thereof.
The color filter 250 and the microlens 260 are formed over the entire area of the pixel array unit 110. However, the color filter 250 has an effective part 250A corresponding to the effective pixel area 111, a boundary area 112, and a light-shielded pixel area 113. The effective portion 250A and the invalid portion 250B have different filter characteristics.
That is, the filter of the effective portion 250A functions as a normal color filter. In this example, three primary color filters of red, green, and blue (RGB) are used, and each pixel assigned to RGB in a predetermined pattern is used. RGB component light is incident on the photodiode.

これに対して無効部250Bは有効部250Aと異なるパターンを有し、特に可視光の長波長側の光成分を減衰する構造となっている。
この無効部250Bのフィルタとしては、種々のフィルタ構造が可能であるが、まず第1の例として、3原色フィルタを用いた場合に、最も長波長光の透過率が高い赤フィルタを最も長波長光の透過率が低い青フィルタに置き換えることが考えられる。
図3はこの例を示しており、有効部側のフィルタには赤フィルタ251を含むが、無効部側には青フィルタ252と緑フィルタ253だけが配置される状態を示している。
図4はこのようなフィルタ構成を従来との比較で示しており、図4(A)に示す従来のフィルタ構造では、有効部の3原色カラーフィルタ配列をそのまま無効部に延長して設けているが、図4(B)に示す本例のフィルタ構造では、無効部側で赤フィルタを青フィルタに置き換えたフィルタ構造となっている。また、無効部のうち2列分が画素アレイ部の境界領域に対応しており、それより内側は有効部(有効画素領域)として被写体の撮像に用いる構造となっている。
このようなフィルタ構造により、画素アレイ部の境界領域上からの長波長光の入光を有効に抑制し、長波長光を遮光画素側に到達させない構造を得る。この結果、境界領域のスペースを最小限に抑えつつ、遮光画素側への不正入射を適正に阻止し、黒基準の正確な測定を可能とすることができる。
特に、この方法では、フィルタのパターンを変えるだけで実現でき、従来の製造工程を大幅に変えることなく低コストで実現できる利点がある。
In contrast, the invalid portion 250B has a pattern different from that of the effective portion 250A, and has a structure that attenuates the light component on the long wavelength side of visible light in particular.
As the filter of the ineffective portion 250B, various filter structures are possible. First, as a first example, when a three primary color filter is used, a red filter having the highest transmittance of the long wavelength light is the longest wavelength. It is conceivable to replace with a blue filter having a low light transmittance.
FIG. 3 shows this example, and the red filter 251 is included in the effective portion side filter, but only the blue filter 252 and the green filter 253 are disposed on the invalid portion side.
FIG. 4 shows such a filter configuration in comparison with the prior art. In the conventional filter structure shown in FIG. 4A, the primary color filter array of the effective portion is provided as it is extended to the invalid portion. However, the filter structure of this example shown in FIG. 4B has a filter structure in which the red filter is replaced with the blue filter on the invalid portion side. In addition, two columns of the invalid portion correspond to the boundary region of the pixel array portion, and the inside thereof is used as an effective portion (effective pixel region) for imaging a subject.
With such a filter structure, it is possible to effectively suppress the incoming of long wavelength light from the boundary region of the pixel array portion and obtain a structure that does not allow the long wavelength light to reach the light-shielding pixel side. As a result, it is possible to appropriately prevent illegal incident on the light-shielding pixel side while minimizing the space in the boundary region, and to accurately measure the black reference.
In particular, this method has an advantage that it can be realized only by changing the filter pattern and can be realized at low cost without significantly changing the conventional manufacturing process.

また、第2の例として、無効部側のフィルタを青フィルタ252だけで統一する方法が可能である。上述のように青フィルタは3原色の中で最も長波長光を減衰できるため、赤フィルタに加えて緑フィルタも青フィルタに置き換えて無効部を青フィルタで統一することで、長波長光を遮光画素側に到達させない構造を得る。
図5はこのようなフィルタ構成を従来との比較で示している。図5(A)に示す従来のフィルタ構造では、遮光画素領域の上部だけを青フィルタとしているが、この場合には、画素アレイ部の境界領域から遮光画素領域側に長波長光が回り込む恐れがある。しかし、図5(B)に示す本例のフィルタ構造では、遮光画素領域から境界領域に至る無効部全体に青フィルタが配置され、遮光画素領域への長波長光の進入を有効に防止できる。
したがって、本例では、境界領域のスペースを最小限に抑えつつ、遮光画素側への不正入射を適正に阻止し、黒基準の正確な測定を可能とすることができる。また、本例においても、フィルタのパターンを変えるだけで実現でき、従来の製造工程を大幅に変えることなく低コストで実現できる。
Further, as a second example, a method of unifying the ineffective portion side filter only by the blue filter 252 is possible. As described above, the blue filter can attenuate the longest wavelength light among the three primary colors. Therefore, in addition to the red filter, the green filter is replaced with the blue filter, and the ineffective portion is unified with the blue filter, thereby blocking the long wavelength light. A structure that does not reach the pixel side is obtained.
FIG. 5 shows such a filter configuration in comparison with the prior art. In the conventional filter structure shown in FIG. 5A, only the upper part of the light-shielding pixel region is a blue filter, but in this case, there is a possibility that long wavelength light may circulate from the boundary region of the pixel array portion to the light-shielding pixel region side. is there. However, in the filter structure of this example shown in FIG. 5B, the blue filter is disposed in the entire ineffective portion from the light-shielding pixel region to the boundary region, and the long wavelength light can be effectively prevented from entering the light-shielding pixel region.
Therefore, in this example, it is possible to appropriately prevent black light from being illegally incident on the light-shielding pixel side while minimizing the space in the boundary region and to accurately measure the black reference. Also in this example, it can be realized only by changing the filter pattern, and can be realized at low cost without significantly changing the conventional manufacturing process.

また、第3の例として、無効部側のフィルタを青フィルタと赤フィルタの2層構造とする方法が可能である。すなわち、3原色フィルタにおいては、赤フィルタと青フィルタとを重ねることで、強力な遮光効果を得ることができるので、無効部側でこの構造を採用することにより、遮光画素領域への不正入射をさらに有効に防止できる。
図6はこの場合のフィルタ構造を示す断面図である。図示のように、無効部のフィルタを下層の赤フィルタ251と上層の青フィルタ252の2重構造としている。ただし、この場合、マイクロレンズ260を搭載する際の下地が、2重構造のフィルタによって段差となるため、図示のように、赤フィルタ251を境界領域の途中までとし、青フィルタを有効画素領域側に延在させた構造とすることで、段差の角度を緩和し、マイクロレンズの形成に支障のない下地形状としている。
図7はこのようなフィルタ構成を従来との比較で示している。図7(A)に示す従来のフィルタ構造では、遮光画素領域の上部だけを赤フィルタと青フィルタの2重構造としているが、この場合には、画素アレイ部の境界領域から遮光画素領域側に長波長光が回り込む恐れがある。しかし、図7(B)に示す本例のフィルタ構造では、遮光画素領域から境界領域に至る無効部全体に赤フィルタと青フィルタの2重フィルタが配置され、遮光画素領域への光の進入を有効に防止できる。
したがって、本例では、境界領域のスペースを最小限に抑えつつ、遮光画素側への不正入射を適正に阻止し、黒基準の正確な測定を可能とすることができる。また、本例においても、フィルタのパターンを変えるだけで実現でき、従来の製造工程を大幅に変えることなく低コストで実現できる。
As a third example, a method in which the ineffective portion side filter has a two-layer structure of a blue filter and a red filter is possible. That is, in the three primary color filters, a strong light shielding effect can be obtained by overlapping the red filter and the blue filter. Therefore, by adopting this structure on the invalid portion side, illegal incidence to the light shielding pixel region is prevented. Further, it can be effectively prevented.
FIG. 6 is a sectional view showing the filter structure in this case. As shown in the figure, the ineffective portion filter has a double structure of a lower red filter 251 and an upper blue filter 252. However, in this case, since the base on which the microlens 260 is mounted becomes a step due to the double structure filter, as shown in the figure, the red filter 251 is partway along the boundary region, and the blue filter is on the effective pixel region side. With the structure extended to the base, the angle of the step is relaxed, and the base shape has no hindrance to the formation of the microlens.
FIG. 7 shows such a filter configuration in comparison with the prior art. In the conventional filter structure shown in FIG. 7A, only the upper part of the light-shielding pixel region has a double structure of a red filter and a blue filter, but in this case, the boundary region of the pixel array portion extends to the light-shielding pixel region side. There is a risk that long-wavelength light will circulate. However, in the filter structure of this example shown in FIG. 7B, a double filter of a red filter and a blue filter is arranged over the entire ineffective portion from the light-shielded pixel region to the boundary region, so that light enters the light-shielded pixel region. It can be effectively prevented.
Therefore, in this example, it is possible to appropriately prevent black light from being illegally incident on the light-shielding pixel side while minimizing the space in the boundary region and to accurately measure the black reference. Also in this example, it can be realized only by changing the filter pattern, and can be realized at low cost without significantly changing the conventional manufacturing process.

また、第4の例として、無効部に黒フィルタを用いる方法が可能である。黒フィルタであれば、全ての可視光の入射を阻止でき、また配線層内の光も吸収できるため、遮光画素領域の高い遮光効果を得ることが可能である。
図8はこのようなフィルタ構成を従来との比較で示している。図8(A)に示す従来のフィルタ構造では、遮光画素領域の上部だけに黒フィルタ254を設けているが、この場合には、画素アレイ部の境界領域から遮光画素領域側に長波長光が回り込む恐れがある。しかし、図8(B)に示す本例のフィルタ構造では、遮光画素領域から境界領域に至る無効部全体に黒フィルタ254が配置され、遮光画素領域への光の進入を有効に防止できる。
したがって、本例では、境界領域のスペースを最小限に抑えつつ、遮光画素側への不正入射を適正に阻止し、黒基準の正確な測定を可能とすることができる。ただし、通常は用いない黒フィルタを設けることから、その分、新規な工程を設ける必要があり、コストがかかることになるが、十分な遮光効果を得たい場合には有効な方法である。なお、ここでは黒フィルタを用いたが、遮光効果のある他の色のフィルタを用いることも可能である。
また、以上の例では、3原色フィルタを用いた場合を前提としたが、シアン、マゼンタ、イエローの補色フィルタを用いる構成においても同様に工夫でき、例えばシアンフィルタを無効部に配置して遮光を行うようにしてもよいし、黒色フィルタを用いることももちろん可能である。
As a fourth example, a method using a black filter for the invalid portion is possible. If the black filter is used, all visible light can be prevented from entering, and the light in the wiring layer can be absorbed, so that a high light-shielding effect in the light-shielding pixel region can be obtained.
FIG. 8 shows such a filter configuration in comparison with the prior art. In the conventional filter structure shown in FIG. 8A, the black filter 254 is provided only above the light-shielding pixel region. In this case, long-wavelength light is emitted from the boundary region of the pixel array portion to the light-shielding pixel region side. There is a risk of getting around. However, in the filter structure of this example shown in FIG. 8B, the black filter 254 is disposed over the entire invalid portion from the light-shielding pixel region to the boundary region, and light can be effectively prevented from entering the light-shielding pixel region.
Therefore, in this example, it is possible to appropriately prevent black light from being illegally incident on the light-shielding pixel side while minimizing the space in the boundary region and to accurately measure the black reference. However, since a black filter that is not normally used is provided, it is necessary to provide a new process correspondingly, which increases costs. However, this method is effective when a sufficient light-shielding effect is desired. Although a black filter is used here, it is also possible to use a filter of another color having a light shielding effect.
In the above example, it is assumed that the three primary color filters are used. However, the configuration using the complementary color filters of cyan, magenta, and yellow can also be devised in the same manner. Of course, a black filter may be used.

以上のように本例では、有効画素領域と遮光画素領域との間に境界領域を設け、この遮光画素領域から境界領域にわたる領域をカラーフィルタの無効部として、光透過率の低いフィルタを設けたことから、例えば赤色光等の長波長の入射を有効に抑制してOPBへの不正入射光を防止することができ、正確な黒基準の検出を実現でき、安定した画質の固体撮像素子を提供できる。また、このようなフィルタ構造により、境界領域のスペースを大きく取ることなく、OPBへの不正入射光を有効に防止でき、画素アレイ部の省スペース化にも貢献でき、固体撮像素子の小型化に寄与できる。
なお、OPBへの不正入射光を防止する方法として、単純に遮光膜を境界領域まで延在させた場合には、逆に、配線層内での反射や回折による不正入射光が遮光膜の下に入り易くなり、また、いったん遮光膜の下に入り込んだ光が遮光膜に遮られて外部に放出されなくなって反射光としてOPB内に残ることになり、偽信号として永く留まることとなるので、返って黒基準の精度を下げてしまうことになる。
これに対し、本例では、境界領域に低透過率のフィルタを配置することにより、特に長波長の不正入射を防止してOPBに到達する入射光を排除するとともに、配線層内の光が境界領域のフィルタを通して外部に放出されることを可能とし、OPBに至る不正入射光を有効に防止して正確な黒基準の測定を可能とするものである。
As described above, in this example, a boundary region is provided between the effective pixel region and the light-shielded pixel region, and a filter having a low light transmittance is provided using the region extending from the light-shielded pixel region to the boundary region as an invalid portion of the color filter. Therefore, for example, it is possible to effectively prevent long-wavelength incident light such as red light and prevent illegally incident light on the OPB, to realize accurate black reference detection, and to provide a solid-state imaging device with stable image quality. it can. In addition, such a filter structure can effectively prevent unauthorized incident light on the OPB without taking a large space in the boundary region, can contribute to space saving of the pixel array section, and can reduce the size of the solid-state imaging device. Can contribute.
Note that, as a method of preventing illegally incident light on the OPB, when the light shielding film is simply extended to the boundary region, the illegally incident light due to reflection or diffraction in the wiring layer is conversely below the light shielding film. In addition, the light once entering under the light-shielding film is blocked by the light-shielding film and is not emitted to the outside, so that it remains in the OPB as reflected light, and remains as a false signal for a long time. In return, the accuracy of the black reference is lowered.
In contrast, in this example, by arranging a low-transmittance filter in the boundary region, in particular, incident light reaching the OPB is prevented by preventing illegal incidence of a long wavelength, and light in the wiring layer is bounded by the boundary. It can be emitted to the outside through a filter in the region, and it can effectively prevent illegal incident light reaching the OPB, thereby enabling accurate black reference measurement.

なお、以上の説明は、本発明の固体撮像素子をCMOSイメージセンサを前提として説明したが、本発明の固体撮像素子は光電変換素子の受光面上に配線層を持たないCCDイメージセンサにも同様に適用することができる。
また、上述のようなカラー画像を撮影する固体撮像素子に限らず、例えば赤外線等の特殊用途に用いるような素子にも同様に適用できるものである。
また、本発明を適用できる撮像装置としては、デジタルスチルカメラやデジタルビデオカメラに限らず、各種監視カメラや医療用内視鏡等にも広く適用できるものである。
In the above description, the solid-state imaging device of the present invention has been described on the premise of a CMOS image sensor. However, the solid-state imaging device of the present invention is similar to a CCD image sensor that does not have a wiring layer on the light receiving surface of the photoelectric conversion device. Can be applied to.
Further, the present invention is not limited to the solid-state imaging device that captures a color image as described above, but can be similarly applied to an element used for a special purpose such as infrared rays.
The imaging apparatus to which the present invention can be applied is not limited to a digital still camera and a digital video camera, but can be widely applied to various monitoring cameras, medical endoscopes, and the like.

本発明の実施例による撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the imaging device by the Example of this invention. 図1に示す撮像装置に用いられる固体撮像素子の一例を示す平面図である。It is a top view which shows an example of the solid-state image sensor used for the imaging device shown in FIG. 図2に示す固体撮像素子の素子構造を示す断面図である。It is sectional drawing which shows the element structure of the solid-state image sensor shown in FIG. 図2に示す固体撮像素子で用いるフィルタ構造の第1の例を従来例と対比して示す平面図である。FIG. 3 is a plan view showing a first example of a filter structure used in the solid-state imaging device shown in FIG. 2 in comparison with a conventional example. 図2に示す固体撮像素子で用いるフィルタ構造の第2の例を従来例と対比して示す平面図である。It is a top view which shows the 2nd example of the filter structure used with the solid-state image sensor shown in FIG. 2 in contrast with a prior art example. 図2に示す固体撮像素子で用いるフィルタ構造の第3の例を示す断面図である。It is sectional drawing which shows the 3rd example of the filter structure used with the solid-state image sensor shown in FIG. 図6に示すフィルタ構造の第3の例を従来例と対比して示す平面図である。It is a top view which shows the 3rd example of the filter structure shown in FIG. 6 in contrast with a prior art example. 図2に示す固体撮像素子で用いるフィルタ構造の第4の例を従来例と対比して示す平面図である。It is a top view which shows the 4th example of the filter structure used with the solid-state image sensor shown in FIG. 2 in contrast with a prior art example.

符号の説明Explanation of symbols

10……撮像光学系、20……撮像部、30……信号処理部、40……表示部、50……記録部、60……操作部、110……画素アレイ部、111……有効画素領域、112……境界領域、113……遮光画素領域(OPB)、120……周辺回路部、130……入出力端子部、200……シリコン基板、210……フォトダイオード、220……絶縁膜、230、240……配線膜、231、241……配線パターン、242……遮光膜、250……カラーフィルタ、250A……有効部、250B……無効部、251……赤フィルタ、252……青フィルタ、253……緑フィルタ、254……黒フィルタ、260……マイクロレンズ。   DESCRIPTION OF SYMBOLS 10 ... Imaging optical system, 20 ... Imaging part, 30 ... Signal processing part, 40 ... Display part, 50 ... Recording part, 60 ... Operation part, 110 ... Pixel array part, 111 ... Effective pixel Region 112, boundary region 113, light-shielding pixel region (OPB), 120 peripheral circuit portion, 130 input / output terminal portion, 200 silicon substrate, 210 photodiode, 220 insulating film , 230, 240... Wiring film, 231, 241... Wiring pattern, 242 .. light shielding film, 250... Color filter, 250 A... Effective part, 250 B. Blue filter, 253... Green filter, 254... Black filter, 260.

Claims (6)

受光面に入射する光の量に応じた信号電荷を生成する複数の画素を2次元方向に配置され、被写体の撮像に用いる有効画素領域と、前記有効画素領域の近傍に配置される黒基準信号を得るための遮光画素領域と、前記有効画素領域と遮光画素領域との中間に配置される境界領域とを有する画素アレイ部と、
前記画素アレイ部の遮光画素領域上に絶縁膜を介して配置され、前記遮光画素領域を遮光する遮光膜と、
前記画素アレイ部及び遮光膜上に絶縁膜を介して配置され、前記複数の画素に入射する光の波長成分を画素毎に制限する光学フィルタとを具備し、
前記光学フィルタは、前記有効画素領域に対応する有効部と、前記境界領域及び遮光画素領域に対応する無効部とを有し、
前記無効部に配置される光学フィルタに少なくとも可視光の長波長光の通過を抑制する入光抑制フィルタを配置
前記光学フィルタは赤緑青の3原色フィルタであり、前記入光抑制フィルタは3原色フィルタの赤フィルタと青フィルタとを重ね合わせたフィルタであり、
前記3原色フィルタは赤フィルタの上層に青フィルタが配置され、前記入光抑制フィルタの赤フィルタと青フィルタは、赤フィルタが前記画素アレイ部の境界領域の中途位置まで形成され、青フィルタは赤フィルタよりも有効部側に接近した位置まで形成されている
固体撮像素子。
A plurality of pixels that generate signal charges according to the amount of light incident on the light receiving surface are arranged in a two-dimensional direction, and an effective pixel area used for imaging a subject, and a black reference signal that is arranged in the vicinity of the effective pixel area A pixel array unit having a light-shielded pixel region for obtaining a boundary region disposed between the effective pixel region and the light-shielded pixel region;
A light-shielding film disposed on the light-shielding pixel region of the pixel array portion via an insulating film and shielding the light-shielding pixel region;
An optical filter that is disposed on the pixel array portion and the light shielding film via an insulating film and limits a wavelength component of light incident on the plurality of pixels for each pixel;
The optical filter includes an effective portion corresponding to the effective pixel region, and an invalid portion corresponding to the boundary region and the light-shielding pixel region,
The place to suppress light entering suppression filter the passage of long wavelength light of at least the visible light to the optical filter disposed disabled section,
The optical filter is a red, green, and blue primary color filter, and the incident light suppression filter is a filter in which a red filter and a blue filter of the three primary color filters are superimposed.
In the three primary color filters, a blue filter is disposed on an upper layer of the red filter, and the red filter and the blue filter of the light incident suppression filter are formed up to a middle position of the boundary region of the pixel array unit, and the blue filter is a red filter. A solid-state imaging device formed up to a position closer to the effective portion side than the filter .
受光面に入射する光の量に応じた信号電荷を生成する複数の画素を2次元方向に配置され、被写体の撮像に用いる有効画素領域と、前記有効画素領域の近傍に配置される黒基準信号を得るための遮光画素領域と、前記有効画素領域と遮光画素領域との中間に配置される境界領域とを有する画素アレイ部と、
前記画素アレイ部上に絶縁膜を介して配置される配線層と、
前記配線層内の前記画素アレイ部の遮光画素領域に対応する領域に配置され、前記遮光画素領域を遮光する遮光膜と、
前記画素アレイ部及び遮光膜上に絶縁膜を介して配置され、前記複数の画素に入射する光の波長成分を画素毎に制限する光学フィルタとを具備し、
前記光学フィルタは、前記有効画素領域に対応する有効部と、前記境界領域及び遮光画素領域に対応する無効部とを有し、
前記無効部に配置される光学フィルタに少なくとも可視光の長波長光の通過を抑制する入光抑制フィルタを配置
前記光学フィルタは赤緑青の3原色フィルタであり、前記入光抑制フィルタは3原色フィルタの赤フィルタと青フィルタとを重ね合わせたフィルタであり、
前記3原色フィルタは赤フィルタの上層に青フィルタが配置され、前記入光抑制フィルタの赤フィルタと青フィルタは、赤フィルタが前記画素アレイ部の境界領域の中途位置まで形成され、青フィルタは赤フィルタよりも有効部側に接近した位置まで形成されている
固体撮像素子。
A plurality of pixels that generate signal charges according to the amount of light incident on the light receiving surface are arranged in a two-dimensional direction, and an effective pixel area used for imaging a subject, and a black reference signal that is arranged in the vicinity of the effective pixel area A pixel array unit having a light-shielded pixel region for obtaining a boundary region disposed between the effective pixel region and the light-shielded pixel region;
A wiring layer disposed on the pixel array portion via an insulating film;
A light-shielding film disposed in a region corresponding to the light-shielded pixel region of the pixel array portion in the wiring layer and shielding the light-shielded pixel region;
An optical filter that is disposed on the pixel array portion and the light shielding film via an insulating film and limits a wavelength component of light incident on the plurality of pixels for each pixel;
The optical filter includes an effective portion corresponding to the effective pixel region, and an invalid portion corresponding to the boundary region and the light-shielding pixel region,
The place to suppress light entering suppression filter the passage of long wavelength light of at least the visible light to the optical filter disposed disabled section,
The optical filter is a red, green, and blue primary color filter, and the incident light suppression filter is a filter in which a red filter and a blue filter of the three primary color filters are superimposed.
In the three primary color filters, a blue filter is disposed on an upper layer of the red filter, and the red filter and the blue filter of the light incident suppression filter are formed up to a middle position of the boundary region of the pixel array unit, and the blue filter is a red filter. A solid-state imaging device formed up to a position closer to the effective portion side than the filter .
前記配線層は絶縁膜を介して積層された複数層の配線膜を有し、前記遮光膜と最上層の配線膜とを共用し請求項記載の固体撮像素子。 The solid-state imaging device according to claim 2 , wherein the wiring layer has a plurality of wiring films stacked via an insulating film, and the light shielding film and the uppermost wiring film are shared. 被写体を固体撮像素子によって撮像する撮像部と、被写体像を撮像部に入射させる撮像光学系と、前記撮像部によって撮像した画像を信号処理する信号処理部と、前記信号処理部によって処理した画像データを表示する表示部と、前記信号処理部によって処理した画像データを記録する記録部と、操作入力を行う操作部とを具備し、
前記固体撮像素子は、
受光面に入射する光の量に応じた信号電荷を生成する複数の画素を2次元方向に配置され、被写体の撮像に用いる有効画素領域と、前記有効画素領域の近傍に配置される黒基準信号を得るための遮光画素領域と、前記有効画素領域と遮光画素領域との中間に配置される境界領域とを有する画素アレイ部と、
前記画素アレイ部の遮光画素領域上に絶縁膜を介して配置され、前記遮光画素領域を遮光する遮光膜と、
前記画素アレイ部及び遮光膜上に絶縁膜を介して配置され、前記複数の画素に入射する光の波長成分を画素毎に制限する光学フィルタとを具備し、
前記光学フィルタは、前記有効画素領域に対応する有効部と、前記境界領域及び遮光画素領域に対応する無効部とを有し、
前記無効部に配置される光学フィルタに少なくとも可視光の長波長光の通過を抑制する入光抑制フィルタを配置
前記光学フィルタは赤緑青の3原色フィルタであり、前記入光抑制フィルタは3原色フィルタの赤フィルタと青フィルタとを重ね合わせたフィルタであり、
前記3原色フィルタは赤フィルタの上層に青フィルタが配置され、前記入光抑制フィルタの赤フィルタと青フィルタは、赤フィルタが前記画素アレイ部の境界領域の中途位置まで形成され、青フィルタは赤フィルタよりも有効部側に接近した位置まで形成されている
撮像装置。
An imaging unit that images a subject with a solid-state imaging device, an imaging optical system that causes a subject image to enter the imaging unit, a signal processing unit that performs signal processing on an image captured by the imaging unit, and image data that is processed by the signal processing unit A display unit for displaying the image data, a recording unit for recording the image data processed by the signal processing unit, and an operation unit for performing an operation input,
The solid-state imaging device is
A plurality of pixels that generate signal charges according to the amount of light incident on the light receiving surface are arranged in a two-dimensional direction, and an effective pixel area used for imaging a subject, and a black reference signal that is arranged in the vicinity of the effective pixel area A pixel array unit having a light-shielded pixel region for obtaining a boundary region disposed between the effective pixel region and the light-shielded pixel region;
A light-shielding film disposed on the light-shielding pixel region of the pixel array portion via an insulating film and shielding the light-shielding pixel region;
An optical filter that is disposed on the pixel array portion and the light shielding film via an insulating film and limits a wavelength component of light incident on the plurality of pixels for each pixel;
The optical filter includes an effective portion corresponding to the effective pixel region, and an invalid portion corresponding to the boundary region and the light-shielding pixel region,
The place to suppress light entering suppression filter the passage of long wavelength light of at least the visible light to the optical filter disposed disabled section,
The optical filter is a red, green, and blue primary color filter, and the incident light suppression filter is a filter in which a red filter and a blue filter of the three primary color filters are superimposed.
In the three primary color filters, a blue filter is disposed on an upper layer of the red filter, and the red filter and the blue filter of the light incident suppression filter are formed up to a middle position of the boundary region of the pixel array unit, and the blue filter is a red filter. An imaging device formed up to a position closer to the effective portion side than the filter .
前記画素アレイ部上に絶縁膜を介して配置される配線層を有し、前記遮光膜は前記配線層内の前記画素アレイ部の遮光画素領域に対応する領域に配置されてい請求項記載の撮像装置。 Has a wiring layer disposed through an insulating film on the pixel array portion, the shielding film according to claim 4, wherein that are located in a region corresponding to the light-shielded pixel area of the pixel array portion of the wiring layer Imaging device. 前記配線層は絶縁膜を介して積層された複数の配線膜を有し、前記遮光膜と最上層の配線膜とを共用し請求項記載の撮像装置。 The imaging device according to claim 4 , wherein the wiring layer has a plurality of wiring films laminated via an insulating film, and the light shielding film and the uppermost wiring film are shared.
JP2005226641A 2005-08-04 2005-08-04 Solid-state imaging device and imaging apparatus Expired - Fee Related JP4892886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226641A JP4892886B2 (en) 2005-08-04 2005-08-04 Solid-state imaging device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226641A JP4892886B2 (en) 2005-08-04 2005-08-04 Solid-state imaging device and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2007042933A JP2007042933A (en) 2007-02-15
JP4892886B2 true JP4892886B2 (en) 2012-03-07

Family

ID=37800627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226641A Expired - Fee Related JP4892886B2 (en) 2005-08-04 2005-08-04 Solid-state imaging device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP4892886B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725614B2 (en) 2008-01-24 2011-07-13 ソニー株式会社 Solid-state imaging device
CN101494233A (en) * 2008-01-24 2009-07-29 索尼株式会社 Solid-state imaging device and method for manufacturing the same
JP4697258B2 (en) * 2008-05-09 2011-06-08 ソニー株式会社 Solid-state imaging device and electronic equipment
JP5521312B2 (en) * 2008-10-31 2014-06-11 ソニー株式会社 SOLID-STATE IMAGING DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
JP5476745B2 (en) * 2009-03-05 2014-04-23 ソニー株式会社 SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP4835710B2 (en) * 2009-03-17 2011-12-14 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, driving method for solid-state imaging device, and electronic apparatus
JP5985136B2 (en) 2009-03-19 2016-09-06 ソニー株式会社 SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP5665369B2 (en) 2010-05-27 2015-02-04 キヤノン株式会社 Imaging device
WO2013111419A1 (en) * 2012-01-26 2013-08-01 シャープ株式会社 Solid-state image pickup apparatus
JP2015026675A (en) * 2013-07-25 2015-02-05 ソニー株式会社 Solid state image sensor, manufacturing method thereof and electronic apparatus
KR102492102B1 (en) * 2018-07-23 2023-01-30 에스케이하이닉스 주식회사 Image pickup device
CN113574864B (en) * 2019-03-11 2024-01-09 Lg伊诺特有限公司 Camera module
JP7331490B2 (en) * 2019-06-25 2023-08-23 株式会社リコー Solid-state imaging device, image reading device, and image forming device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112533A (en) * 1996-10-04 1998-04-28 Sony Corp Solid-state image sensing device
JP4243084B2 (en) * 2002-09-27 2009-03-25 富士フイルム株式会社 Solid-state imaging device and signal processing method thereof
JP2005039053A (en) * 2003-07-15 2005-02-10 Sony Corp Solid-state imaging element

Also Published As

Publication number Publication date
JP2007042933A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4892886B2 (en) Solid-state imaging device and imaging apparatus
JP7218399B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic equipment
US7742088B2 (en) Image sensor and digital camera
TWI460520B (en) Solid-state imaging device and camera module
JP5442571B2 (en) Solid-state imaging device and imaging device
US9818783B2 (en) Solid-state image pickup apparatus and electronic apparatus
US7985947B2 (en) Photoelectric conversion apparatus and image pickup system using photoelectric conversion apparatus
JP7375852B2 (en) Solid-state image sensor and its manufacturing method, and electronic equipment
US10187595B2 (en) Solid-state image sensor
KR20210043002A (en) Solid-state image-capturing device and production method thereof, and electronic appliance
JP5438374B2 (en) Solid-state imaging device
CN111508983A (en) Solid-state image sensor, method for manufacturing solid-state image sensor, and electronic apparatus
JP2006210701A (en) Solid-state image sensing device and its manufacturing method
US8981515B2 (en) Solid-state imaging device and electronic apparatus
TWI746781B (en) Image sensor having phase difference detection pixel
JP2012023137A (en) Solid state imaging device and method of manufacturing the same
WO2016035569A1 (en) Solid-state imaging element, imaging device, and electronic device
JP4966618B2 (en) Imaging device and endoscope apparatus
JP2008079937A (en) Image processor, endoscope, and image processing program
US8541747B2 (en) Solid-state image sensor and image sensing apparatus
JP4764794B2 (en) Image processing apparatus, endoscope apparatus, and image processing program
US20080316345A1 (en) Imaging element and imaging device
TW201415613A (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic device
JP4264249B2 (en) MOS type image sensor and digital camera
JP4951303B2 (en) Endoscope image sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees