JP4892885B2 - transmission - Google Patents

transmission Download PDF

Info

Publication number
JP4892885B2
JP4892885B2 JP2005223093A JP2005223093A JP4892885B2 JP 4892885 B2 JP4892885 B2 JP 4892885B2 JP 2005223093 A JP2005223093 A JP 2005223093A JP 2005223093 A JP2005223093 A JP 2005223093A JP 4892885 B2 JP4892885 B2 JP 4892885B2
Authority
JP
Japan
Prior art keywords
transmission
torque
gear
speed
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005223093A
Other languages
Japanese (ja)
Other versions
JP2007040341A (en
Inventor
新 村上
眞 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005223093A priority Critical patent/JP4892885B2/en
Publication of JP2007040341A publication Critical patent/JP2007040341A/en
Application granted granted Critical
Publication of JP4892885B2 publication Critical patent/JP4892885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、動力源から出力部材に伝達されるトルクを、流体圧に応じて変化させることができ、したがって変速比を連続的に変化させることのできる変速機に関するものである。   The present invention relates to a transmission capable of changing a torque transmitted from a power source to an output member in accordance with a fluid pressure, and thus changing a gear ratio continuously.

変速機は、入力部材と出力部材との間に、複数の動力伝達経路を選択的に形成し、各動力伝達経路での増減速比を異ならせることにより、入力部材と出力部材との回転数比である変速比を複数の変速比に設定するように構成された動力伝達装置である。この種の変速機が車両に搭載されていることは周知の通りであり、車両用の変速機としては、設定可能な変速比の数が多いこと、小型軽量であること、動力の伝達効率が高いことなどが要求される。そこで例えば特許文献1には、7段以上の変速段を設定でき、しかも小型化を図ることのできる変速機が記載されている。   The transmission selectively forms a plurality of power transmission paths between the input member and the output member, and makes the speed of rotation between the input member and the output member different by changing the acceleration / deceleration ratio in each power transmission path. It is a power transmission device configured to set a speed ratio as a ratio to a plurality of speed ratios. It is well known that this type of transmission is mounted on a vehicle. As a transmission for a vehicle, there are a large number of gear ratios that can be set, a small size and light weight, and power transmission efficiency. It is required to be expensive. Thus, for example, Patent Document 1 describes a transmission that can set seven or more shift stages and that can be downsized.

この特許文献1に記載された変速機は、いわゆるツインクラッチ式の有段変速機であり、第1クラッチを介してエンジンに連結される第1入力軸と、第2クラッチを介してエンジンに連結される第2入力軸と、出力軸と、第1入力軸にギヤ対を介して連結されている副軸と、第1入力軸と副軸との間に設けられるとともに噛み合いクラッチ機構によって選択的に連結状態とする複数のギヤ対と、第2入力軸と出力軸との間に設けられるとともに噛み合いクラッチ機構によって選択的に連結状態とされる複数のギヤ対とを有している。そして、この変速機は、いずれかの入力軸から所定のギヤ対を介して出力軸にトルクを伝達する変速段と、いずれかの入力軸から所定のギヤ対および副軸を介して出力軸にトルクを伝達する変速段とを設定するように構成され、その結果、後進段を含めて7段以上の変速段を設定するように構成されている。   The transmission described in Patent Document 1 is a so-called twin clutch type stepped transmission, which is connected to an engine via a first clutch and a first input shaft connected to the engine via a first clutch. The second input shaft, the output shaft, the auxiliary shaft connected to the first input shaft via a gear pair, and the first input shaft and the auxiliary shaft are provided and selectively engaged by the mesh clutch mechanism. And a plurality of gear pairs that are provided between the second input shaft and the output shaft and that are selectively connected by a meshing clutch mechanism. The transmission includes a gear stage that transmits torque from any one of the input shafts to the output shaft through a predetermined gear pair, and any output shaft from the input shaft to the output shaft through the predetermined gear pair and the sub shaft. It is configured to set a gear stage for transmitting torque, and as a result, it is configured to set seven or more gear stages including the reverse gear.

変速段数を可及的に多くした究極の構造が、変速比を連続的に変化させることのできる無段変速機であり、無段変速機によれば、エンジンなどの動力源の回転数を運転効率などを考慮した最適な回転数に設定でき、また駆動力を多様に変化させることができる。その無段変速機の一例として、ギヤ列を使用した有段変速部と油圧を利用した無段変速部とを、入力軸と出力軸との間に並列に配置した構成が、特許文献2や特許文献3に記載されている。
特開2003−120764号公報 特開平11−51150号公報 特開2000−320644号公報
The ultimate structure with as many gears as possible is a continuously variable transmission that can continuously change the gear ratio. According to the continuously variable transmission, the speed of the power source such as the engine is operated. It can be set to the optimum number of revolutions considering efficiency and the driving force can be changed in various ways. As an example of the continuously variable transmission, there is a configuration in which a stepped transmission unit using a gear train and a continuously variable transmission unit using hydraulic pressure are arranged in parallel between an input shaft and an output shaft. It is described in Patent Document 3.
Japanese Patent Application Laid-Open No. 2003-120764 JP 11-51150 A JP 2000-320644 A

上記の特許文献1に記載されている変速機では、設定可能な変速段数が多いことにより、エンジンを燃費のよい状態で運転でき、また副軸を効果的に利用するように構成されているので、変速機が全体として小型軽量化され、その結果、車両の燃費を向上させることができる。   In the transmission described in Patent Document 1 described above, since the number of shift speeds that can be set is large, the engine can be operated in a state with good fuel efficiency, and the auxiliary shaft is effectively used. The transmission is reduced in size and weight as a whole, and as a result, the fuel consumption of the vehicle can be improved.

しかしながら、動力の伝達経路を設定し、また変更するために用いられている前記第1クラッチおよび第2クラッチは、変速過渡時の慣性力を吸収するべく油圧式の摩擦クラッチによって構成されており、そのために、エネルギー効率や変速応答性の点で改善すべき余地があった。すなわち、油圧式の摩擦クラッチは、油圧によって摩擦板を押圧することにより係合するから、所定の変速段を設定して走行している定常的な状態であっても、クラッチを係合させるための油圧を発生させる必要があり、そのための動力を常時消費することになる。   However, the first clutch and the second clutch used for setting and changing the power transmission path are constituted by a hydraulic friction clutch to absorb the inertial force at the time of shifting transition, Therefore, there is room for improvement in terms of energy efficiency and shift response. In other words, since the hydraulic friction clutch is engaged by pressing the friction plate with hydraulic pressure, the clutch is engaged even in a steady state where the vehicle is traveling with a predetermined gear set. It is necessary to generate the hydraulic pressure, and power for that is always consumed.

また、トルクの伝達に関与していないクラッチはいわゆる解放状態に制御されるが、摩擦板の相対回転による引き摺りトルクが生じ、それに伴う摩擦によって動力損失が生じる。また、その際に熱が生じるので、冷却のために常時潤滑油を供給する必要があり、その潤滑のために動力を消費するから、動力損失が増える可能性がある。   In addition, the clutch that is not involved in the transmission of torque is controlled in a so-called released state, but drag torque is generated by relative rotation of the friction plate, and power loss is caused by the accompanying friction. In addition, since heat is generated at that time, it is necessary to always supply lubricating oil for cooling, and power is consumed for the lubrication, which may increase power loss.

さらに、解放状態のクラッチを係合させる場合、摩擦板同士の間のクリアランスが詰まった後、摩擦板同士が実質的に係合してトルクを伝達する。したがってそのクリアランスが詰まるまでの時間が遅れ時間となる。特に、特許文献1に記載された変速機では、一方のクラッチの解放と他方のクラッチの係合とを協調して進行させるいわゆるクラッチ・ツウ・クラッチ変速となるので、各クラッチ相互の状況に応じて係合もしくは解放を進行させることになり、そのために複雑な制御が余儀なくされるのみならず、変速応答性が必ずしも良好ではない。   Further, when the clutch in the released state is engaged, after the clearance between the friction plates is clogged, the friction plates are substantially engaged to transmit torque. Therefore, the time until the clearance is blocked becomes a delay time. In particular, the transmission described in Patent Document 1 is a so-called clutch-to-clutch shift in which the release of one clutch and the engagement of the other clutch proceed in a coordinated manner. Thus, the engagement or disengagement is advanced, so that not only complicated control is forced, but also the shift response is not always good.

また、特許文献2あるいは特許文献3に記載されている変速機は、変速比を連続的に変化させる無段変速機として機能させることができるが、油圧を使用した無段変速部では、常時、油圧を発生させるとともに、その圧油をモータに供給している。そのため、オイルの撹拌や摩擦による損失あるいは漏れに起因する損失などが常時かつ不可避的に生じ、その結果、動力の伝達効率が必ずしも良好ではなく、車両の全体としては燃費が悪化する可能性がある。   Further, the transmission described in Patent Document 2 or Patent Document 3 can function as a continuously variable transmission that continuously changes the gear ratio, but in a continuously variable transmission using hydraulic pressure, While generating hydraulic pressure, the pressure oil is supplied to the motor. Therefore, loss due to oil agitation and friction or loss due to leakage occurs constantly and unavoidably, and as a result, power transmission efficiency is not necessarily good, and the fuel consumption of the vehicle as a whole may deteriorate. .

この発明は上記の技術的課題に着目してなされたものであり、全体としてのエネルギー効率が良好で、しかも変速比を連続的に変化させ、また設定することのでき、さらには発進加速性を向上させることのできる変速機を提供することを目的とするものである。   The present invention has been made by paying attention to the above technical problems, and has good overall energy efficiency, can continuously change and set the gear ratio, and can further improve the start acceleration. An object of the present invention is to provide a transmission that can be improved.

上記の目的を達成するために、請求項1の発明は、動力源から出力部材に伝達されるトルクを、モータの機能を兼ね備えた流体圧ポンプの吐出量もしくは吐出圧に応じて変化させることのできる変速機において、前記動力源からトルクが伝達される入力要素と前記出力部材に対してトルクを出力する出力要素と前記流体圧ポンプに連結された反力要素との少なくとも三つの回転要素を備えて差動作用をなす第1の差動機構と、前記出力要素と出力部材との間に配置され、かつ所定の変速比を設定する第1の伝動機構と、その第1の伝動機構を前記出力要素と前記出力部材との間で選択的にトルク伝達可能な状態にする第1の係合機構と、前記流体圧ポンプが吐出した圧力流体が供給されて動作することによるトルクを出力する流体圧モータと、その流体圧モータの出力軸と前記出力部材との間に設けられた第2の伝動機構と、前記流体圧モータの出力軸が連結された反力要素と前記動力源からトルクが伝達される入力要素と前記出力部材に対してトルクを出力する出力要素との少なくとも三つの回転要素を備えて差動作用をなす第2の差動機構と、その第2の差動機構における出力要素と前記出力部材との間に配置され、かつ所定の変速比を設定する第3の伝動機構と、その第3の伝動機構を前記第2の差動機構における出力要素と前記出力部材との間で選択的にトルク伝達可能な状態にする第2の係合機構とを備えていることを特徴とする変速機である。
In order to achieve the above object, the invention according to claim 1 changes the torque transmitted from the power source to the output member in accordance with the discharge amount or discharge pressure of the fluid pressure pump having the function of the motor. In a possible transmission, the transmission includes at least three rotation elements, an input element to which torque is transmitted from the power source, an output element for outputting torque to the output member, and a reaction force element connected to the fluid pressure pump. A first differential mechanism that performs a differential action, a first transmission mechanism that is disposed between the output element and the output member and that sets a predetermined gear ratio, and the first transmission mechanism includes: A first engagement mechanism that selectively transmits torque between the output element and the output member; and a fluid that outputs torque when the pressure fluid discharged from the fluid pressure pump is supplied and operated. With pressure motor A second transmission mechanism provided between the output member and the output shaft of the fluid pressure motor, input the output shaft of the hydraulic motor torque from the power source as a reaction element connected is transmitted A second differential mechanism having a differential action by providing at least three rotating elements, that is, an element and an output element that outputs torque to the output member, and the output element and the output in the second differential mechanism A third transmission mechanism that is arranged between the member and that sets a predetermined gear ratio, and the third transmission mechanism is selectively between the output element and the output member in the second differential mechanism. And a second engagement mechanism that enables torque transmission .

請求項2の発明は、請求項1の発明において、前記流体圧モータは、前記流体圧ポンプから圧力流体が供給されることにより正回転する状態と逆回転する状態とに切り替え可能な正逆転型流体圧モータから構成されていることを特徴とする変速機である。
According to a second aspect of the present invention, in the first aspect of the invention, the fluid pressure motor can be switched between a forward rotation state and a reverse rotation state when a pressure fluid is supplied from the fluid pressure pump. A transmission comprising a fluid pressure motor.

請求項3の発明は、請求項1の発明において、前記第1の差動機構の全体を一体回転する状態で前記動力源が出力したトルクを前記流体圧ポンプに伝達する伝達手段を更に備えていることを特徴とする変速機である。
According to a third aspect of the present invention, in the first aspect of the invention, the first differential mechanism is further provided with transmission means for transmitting torque output from the power source to the fluid pressure pump in a state where the entire first differential mechanism rotates integrally. It is the transmission characterized by having.

請求項4の発明は、請求項3の発明において、前記伝達手段は、前記第1の差動機構の少なくとも二つの回転要素同士を連結して第1の差動機構の全体を一体回転させる他の係合機構によって構成されていることを特徴とする変速機である。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the transmission means is configured to connect the at least two rotating elements of the first differential mechanism to each other and rotate the entire first differential mechanism integrally. It is a transmission characterized by comprising the engagement mechanism.

請求項5の発明は、請求項4の発明において、前記第1の差動機構におけるいずれかの回転要素と前記出力部材との間に設けられ、前記第1ないし第3の各伝動機構による変速比より小さい変速比を設定する第4の伝動機構と、その第4の伝動機構を前記第1の差動機構における前記いずれかの回転要素と前記出力部材との間で選択的にトルク伝達可能な状態にする更に他の係合機構とを更に備えていることを特徴とする変速機である。
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the speed change by each of the first to third transmission mechanisms is provided between any of the rotating elements in the first differential mechanism and the output member. A fourth transmission mechanism that sets a transmission ratio smaller than the ratio, and the fourth transmission mechanism can selectively transmit torque between any one of the rotating elements and the output member in the first differential mechanism. Further, the transmission further includes another engagement mechanism for achieving a stable state.

請求項6の発明は、請求項5の発明において、前記第3の伝動機構は、前記第4の伝動機構に次いで変速比が小さい伝動機構を含むことを特徴とする変速機である。
A sixth aspect of the invention is the transmission according to the fifth aspect of the invention, wherein the third transmission mechanism includes a transmission mechanism having a gear ratio smaller than that of the fourth transmission mechanism.

請求項1の発明によれば、動力源のトルクが差動機構の入力要素に伝達され、かつ流体圧ポンプによるトルクが反力要素に伝達されるから、動力源のトルクと流体圧ポンプによるトルクとが差動機構によって合成されて出力要素から出力され、あるいは動力源のトルクが反力要素を介して流体圧ポンプに分配されるとともに出力要素を介して出力部材側に分配される。すなわち、差動機構が動力の合成分配機構として機能する。そのため、動力源から所定のトルクが伝達されている状態で、流体圧ポンプによる反力トルクを次第に増大させれば、出力要素に現れるいわゆる出力トルクが次第に増大し、その回転数が増大する。すなわち、実質的な変速比が連続的に変化する。   According to the first aspect of the present invention, the torque of the power source is transmitted to the input element of the differential mechanism, and the torque generated by the fluid pressure pump is transmitted to the reaction force element. Are combined by the differential mechanism and output from the output element, or the torque of the power source is distributed to the fluid pressure pump through the reaction force element and distributed to the output member side through the output element. That is, the differential mechanism functions as a power combining and distributing mechanism. Therefore, if the reaction torque generated by the fluid pressure pump is gradually increased while a predetermined torque is transmitted from the power source, so-called output torque appearing in the output element is gradually increased, and the rotation speed is increased. That is, the substantial gear ratio changes continuously.

その過程における流体圧ポンプの反力トルクは、加圧流体の押し出し容積を増大し、またその吐出を次第に絞ることにより増大するが、この加圧流体は流体圧モータに供給され、この流体圧モータがトルクを出力する。そして、そのトルクが第2の伝動機構を介して出力部材に伝達される。したがって、出力部材には差動機構の出力要素と流体圧モータとの両方からトルクが伝達されるので、その出力トルクが大きくなり、車両に使用した場合には、発進加速性を向上させることができる。また、流体圧ポンプから吐出した圧力流体の有するエネルギーを流体圧モータによってトルクとして出力させるから、エネルギーの有効利用を図って車両における燃費を向上させることができ、さらには発熱を抑制して変速機としての信頼性を向上させることができる。   The reaction torque of the fluid pressure pump in the process increases by increasing the pushing volume of the pressurized fluid and gradually reducing the discharge thereof, but this pressurized fluid is supplied to the fluid pressure motor. Outputs torque. Then, the torque is transmitted to the output member via the second transmission mechanism. Therefore, torque is transmitted to the output member from both the output element of the differential mechanism and the fluid pressure motor, so that the output torque is increased, and when used in a vehicle, start acceleration can be improved. it can. Further, since the energy of the pressure fluid discharged from the fluid pressure pump is output as torque by the fluid pressure motor, it is possible to improve the fuel consumption in the vehicle by effectively using the energy, and further to suppress the heat generation and to change the transmission. As a result, the reliability can be improved.

また、第1の差動機構および第1の伝動機構を介した出力部材へのトルクの伝達と、第2の差動機構および第3の伝動機構を介した出力部材へのトルクの伝達とが可能になるから、第1の伝動機構および第3の伝動機構のそれぞれで決まる変速比(いわゆる固定変速比)を複数設定することが可能になり、その場合、流体圧を介したトルクの伝達を行わないので、動力の伝達効率が良好になり、したがって第1あるいは第3の伝動機構が複数の変速比を設定できるように構成することにより、変速機の全体としての動力伝達効率が向上し、ひいては車両に使用した場合の燃費を向上させることができる。
Further , the transmission of torque to the output member via the first differential mechanism and the first transmission mechanism, and the transmission of torque to the output member via the second differential mechanism and the third transmission mechanism. Therefore, it becomes possible to set a plurality of transmission gear ratios (so-called fixed transmission gear ratios) determined by each of the first transmission mechanism and the third transmission mechanism. In this case, torque transmission via fluid pressure can be performed. Since the power transmission efficiency is improved, the power transmission efficiency of the entire transmission is improved by configuring the first or third transmission mechanism so that a plurality of gear ratios can be set. As a result, the fuel consumption when used in a vehicle can be improved.

さらに、請求項2の発明によれば、流体圧ポンプが吐出した圧力流体によって流体圧モータを正回転および逆回転のいずれにも動作させることができるので、上述したように、発進時に流体圧ポンプから吐出される圧力流体によって流体圧モータを駆動することにより、動力の回収を行うことができ、これに加えて、流体圧モータを逆回転させることにより、後進段を設定することができる。
Furthermore, according to the invention of claim 2, since the fluid pressure motor can be operated in either the forward rotation or the reverse rotation by the pressure fluid discharged from the fluid pressure pump, as described above, the fluid pressure pump at the time of starting. Power can be recovered by driving the fluid pressure motor with the pressure fluid discharged from the vehicle, and in addition to this, the reverse speed can be set by reversely rotating the fluid pressure motor.

またさらに、請求項3あるいは請求項4の発明によれば、動力源が出力したトルクをそのまま流体圧ポンプに伝達してその流体圧ポンプから圧力流体を吐出させ、これを流体圧モータに供給して流体圧モータを動作させる。その場合、流体圧モータに対する圧力流体の供給方向を、流体圧ポンプにおける吸入・吐出方向とは反対とすることにより、流体圧モータが相対的に逆回転するので、前記第3の伝動機構を利用して後進段を設定することができ、また後進時の発進を流体圧を利用して滑らかに行うことができる。さらに、流体圧モータを正逆回転する構成とする必要がない上に、後進走行のための伝動機構を新たに設ける必要がないので、全体としての構成を小型・軽量化することができる。
Furthermore, if the claim 3 Oh Rui the invention of claim 4, to transmit the torque power source is output to the hydraulic pump by discharging pressure fluid from the fluid pressure pump, which fluid pressure motor Supply and operate fluid pressure motor. In that case, since the fluid pressure motor rotates in the reverse direction by making the supply direction of the pressure fluid to the fluid pressure motor opposite to the suction / discharge direction in the fluid pressure pump, the third transmission mechanism is used. Thus, the reverse gear can be set, and the start of the reverse can be smoothly performed using the fluid pressure. Furthermore, it is not necessary to rotate the fluid pressure motor in the forward and reverse directions, and it is not necessary to newly provide a transmission mechanism for reverse travel, so that the overall structure can be reduced in size and weight.

また、請求項5の発明によれば、いわゆる固定変速比での最高速比を設定する第4の伝動機構が、前記他の係合機構によって全体が一体化される第1の差動機構におけるいずれかの回転要素と出力部材との間に設けられているので、車両に使用した場合に使用頻度が高くなる最高変速比では、流体を介すことなく、また差動機構における回転要素の相対回転を生じさせることなく、動力を伝達することができる。そのため、動力の伝達効率の良い状態での走行頻度が高くなるから、車両としての燃費を向上させることができる。
According to the invention of claim 5, the fourth transmission mechanism for setting the maximum speed ratio at the so-called fixed transmission ratio is the first differential mechanism in which the whole is integrated by the other engagement mechanism. Since it is provided between any of the rotating elements and the output member, the maximum gear ratio that is frequently used when used in a vehicle is not related to fluid and the relative speed of the rotating elements in the differential mechanism is high. Power can be transmitted without causing rotation. As a result, the frequency of travel in a state where the power transmission efficiency is good increases, and the fuel efficiency of the vehicle can be improved.

そして、請求項6の発明によれば、いわゆる最高変速比を設定する第4の伝動機構と、固定変速比のうち前記第4の伝動機構についで小さい変速比を設定する伝動機構とが、第1の差動機構側と第2の差動機構側とに分かれて配置されているので、これらの固定変速比の間での変速をスムースに実行することができる。




According to the invention of claim 6, the fourth transmission mechanism that sets a so-called maximum transmission ratio and the transmission mechanism that sets a small transmission ratio after the fourth transmission mechanism among the fixed transmission ratios are Since the first differential mechanism side and the second differential mechanism side are separately arranged, the shift between these fixed gear ratios can be executed smoothly.




つぎにこの発明を具体例に基づいて説明する。図1にこの発明の一例をスケルトン図で示してあり、ここに示す例は、流体を介さずにトルクを伝達して設定できるいわゆる固定変速比として五つの変速比を設定するように構成した例である。すなわち、動力源(E/G)1に入力部材2が連結されており、この入力部材2から第1遊星歯車機構3および第2遊星歯車機構4にトルクを伝達するように構成されている。   Next, the present invention will be described based on specific examples. FIG. 1 shows an example of the present invention in a skeleton diagram, and the example shown here is an example in which five transmission ratios are set as so-called fixed transmission ratios that can be set by transmitting torque without using fluid. It is. That is, the input member 2 is connected to the power source (E / G) 1, and the torque is transmitted from the input member 2 to the first planetary gear mechanism 3 and the second planetary gear mechanism 4.

その動力源1は、内燃機関や電気モータあるいはこれらを組み合わせた構成など、車両に使用されている一般的な動力源であってよい。また、この動力源1と入力部材2との間にダンパーやクラッチ、トルクコンバータなどの適宜の伝動手段を介在させてもよい。   The power source 1 may be a general power source used in a vehicle such as an internal combustion engine, an electric motor, or a combination thereof. Further, an appropriate transmission means such as a damper, a clutch, or a torque converter may be interposed between the power source 1 and the input member 2.

第1遊星歯車機構3がこの発明の第2の差動機構に相当し、また第2遊星歯車機構4がこの発明の第1の差動機構に相当しており、第1遊星歯車機構3が入力部材2と同一軸線上に配置され、第2遊星歯車機構4が第1遊星歯車機構3の半径方向で外側に離隔し、それぞれの中心軸線を平行にした状態で並列に配置されている。   The first planetary gear mechanism 3 corresponds to the second differential mechanism of the present invention, the second planetary gear mechanism 4 corresponds to the first differential mechanism of the present invention, and the first planetary gear mechanism 3 is The second planetary gear mechanism 4 is disposed on the same axis as the input member 2, and is separated in the radial direction of the first planetary gear mechanism 3. The second planetary gear mechanism 4 is disposed in parallel with the respective central axes parallel to each other.

これらの遊星歯車機構3,4は、シングルピニオン型遊星歯車機構によって構成されており、外歯歯車であるサンギヤ3S,4Sと、そのサンギヤ3S,4Sと同心円状に配置された、内歯歯車であるリングギヤ3R,4Rと、これらサンギヤ3S,4Sとリングギヤ3R,4Rとに噛み合っているピニオンギヤを自転自在かつ公転自在に保持したキャリヤ3C,4Cとを備えている。そして、第1遊星歯車機構3におけるリングギヤ3Rに前記入力部材2が連結され、このリングギヤ3Rが入力要素となっている。また、入力部材2にはカウンタドライブギヤ5が取り付けられており、このカウンタドライブギヤ5にアイドルギヤ6が噛み合っているとともに、そのアイドルギヤ6にカウンタドリブンギヤ7が噛み合っている。このカウンタドリブンギヤ7は、前記第2遊星歯車機構4と同一軸線上に配置され、かつ第2遊星歯車機構4のリングギヤ4Rに、一体となって回転するように連結されている。したがって、第2遊星歯車機構4においては、そのリングギヤ4Rが入力要素となっている。各遊星歯車機構3,4の入力要素であるリングギヤ3R,4Rは、カウンタギヤ対がアイドルギヤ6を備えた構成であるから、同方向に回転するようになっている。   These planetary gear mechanisms 3 and 4 are constituted by single pinion type planetary gear mechanisms, which are sun gears 3S and 4S that are external gears, and internal gears that are arranged concentrically with the sun gears 3S and 4S. There are provided ring gears 3R, 4R, and carriers 3C, 4C holding pinion gears meshed with the sun gears 3S, 4S and the ring gears 3R, 4R so as to freely rotate and revolve. The input member 2 is connected to a ring gear 3R in the first planetary gear mechanism 3, and the ring gear 3R serves as an input element. Further, a counter drive gear 5 is attached to the input member 2, and an idle gear 6 is engaged with the counter drive gear 5, and a counter driven gear 7 is engaged with the idle gear 6. The counter driven gear 7 is disposed on the same axis as the second planetary gear mechanism 4 and is connected to the ring gear 4R of the second planetary gear mechanism 4 so as to rotate together. Therefore, in the second planetary gear mechanism 4, the ring gear 4R serves as an input element. The ring gears 3R and 4R, which are input elements of the planetary gear mechanisms 3 and 4, are configured so that the counter gear pair includes the idle gear 6, and thus rotate in the same direction.

第1遊星歯車機構3におけるキャリヤ3Cは出力要素となっており、そのキャリヤ3Cに第1中間軸8が、一体になって回転するように連結されている。この第1中間軸8は中空軸であって、その内部をモータ軸9が回転自在に挿入されており、このモータ軸9の一端部が、第1遊星歯車機構3における反力要素であるサンギヤ3Sに、一体となって回転するように連結されている。   The carrier 3C in the first planetary gear mechanism 3 serves as an output element, and the first intermediate shaft 8 is connected to the carrier 3C so as to rotate together. The first intermediate shaft 8 is a hollow shaft into which a motor shaft 9 is rotatably inserted. One end of the motor shaft 9 is a sun gear that is a reaction force element in the first planetary gear mechanism 3. It is connected to 3S so as to rotate together.

第2遊星歯車機構4においても同様な構成であって、そのキャリヤ4Cが出力要素となっており、そのキャリヤ4Cに第2中間軸10が、一体になって回転するように連結されている。この第2中間軸10は中空軸であって、その内部をポンプ軸11が回転自在に挿入されており、このポンプ軸11の一端部が、第2遊星歯車機構4における反力要素であるサンギヤ4Sに、一体となって回転するように連結されている。   The second planetary gear mechanism 4 has the same configuration, and the carrier 4C serves as an output element, and the second intermediate shaft 10 is connected to the carrier 4C so as to rotate together. The second intermediate shaft 10 is a hollow shaft into which a pump shaft 11 is rotatably inserted. One end of the pump shaft 11 is a sun gear that is a reaction force element in the second planetary gear mechanism 4. 4S is connected to rotate integrally.

上記のモータ軸9の他方の端部が正逆転可能な可変容量型ポンプモータ12の出力軸に連結されている。この可変容量型ポンプモータ12は、斜軸ポンプや斜板ポンプあるいはラジアルピストンポンプなどの吐出容量を変更可能な流体圧(油圧)ポンプであって、その出力軸にトルクを与えて回転させることによりポンプとして機能して圧力流体(圧油)を吐出し、また、ポンプとして機能する際の吐出口から圧力流体を供給して、ポンプとして機能する際の吸入口から排出させることにより、モータとして機能するようになっている。また、吐出容量がゼロの状態から正負いずれの方向にも斜軸や斜板などの角度を変更できるように構成され、したがってモータとして機能する場合に、その設定の仕方によって正回転および逆回転のいずれも行うことができるようになっている。なお、この可変容量型ポンプモータ12を以下の説明では、第1ポンプモータ12と記し、図にはP/M1と表示する。   The other end of the motor shaft 9 is connected to the output shaft of a variable displacement pump motor 12 that can be rotated forward and backward. The variable displacement pump motor 12 is a fluid pressure (hydraulic) pump capable of changing the discharge capacity, such as a slant shaft pump, a swash plate pump, or a radial piston pump, and is rotated by applying torque to its output shaft. Functions as a motor by discharging pressure fluid (pressure oil) functioning as a pump, supplying pressure fluid from a discharge port when functioning as a pump, and discharging from a suction port when functioning as a pump It is supposed to be. In addition, it is configured so that the angle of the oblique axis, swash plate, etc. can be changed in either the positive or negative direction from the state where the discharge capacity is zero. Therefore, when functioning as a motor, forward rotation and reverse rotation depending on the setting method Both can be done. In the following description, the variable displacement pump motor 12 is referred to as a first pump motor 12, and is indicated as P / M1 in the figure.

また、ポンプ軸11の他方の端部が可変容量型ポンプモータ13の出力軸に連結されている。この可変容量型ポンプモータ13は、斜軸ポンプや斜板ポンプあるいはラジアルピストンポンプなどの吐出容量を変更可能な流体圧(油圧)ポンプであって、その出力軸にトルクを与えて回転させることによりポンプとして機能して圧力流体(圧油)を吐出し、また、ポンプとして機能する際の吐出口から圧力流体を供給して、ポンプとして機能する際の吸入口から排出させることにより、モータとして機能するようになっている。なお、この可変容量型ポンプモータ13を以下の説明では、第2ポンプモータ13と記し、図にはP/M2と表示する。   The other end of the pump shaft 11 is connected to the output shaft of the variable displacement pump motor 13. The variable displacement pump motor 13 is a fluid pressure (hydraulic) pump capable of changing the discharge capacity, such as an oblique shaft pump, a swash plate pump, or a radial piston pump, and is rotated by applying torque to its output shaft. Functions as a motor by discharging pressure fluid (pressure oil) functioning as a pump, supplying pressure fluid from a discharge port when functioning as a pump, and discharging from a suction port when functioning as a pump It is supposed to be. In the following description, the variable displacement pump motor 13 is referred to as a second pump motor 13 and is indicated as P / M2 in the figure.

各ポンプモータ12,13は、圧力流体である圧油を相互に受け渡すことができるように、油路14,15によって連通されている。すなわち、それぞれの吸入口12S,13S同士が油路14によって連通され、また吐出口12D,13D同士が油路15によって連通されている。そして、これらの油路14,15を流通する圧油の量や圧力すなわち各ポンプモータ12,13の押し出し容積や圧力を制御するためのバルブを主体として油圧制御装置16が、油路14,15に介装されている。さらに、この油圧制御装置16や各ポンプモータ12,13の吐出容量を制御するための電子制御装置(ECU)17が設けられている。すなわち、吐出容量を設定するための斜板や斜軸の角度あるいはラジアルピストンポンプのカムリング(図示せず)の位相角度などを変更するためのアクチュエータ(図示せず)に、電子制御装置17から指令信号が出力されるようになっている。   The pump motors 12 and 13 are communicated with each other by oil passages 14 and 15 so that the pressure oil, which is a pressure fluid, can be transferred to each other. That is, the suction ports 12 </ b> S and 13 </ b> S are communicated with each other through the oil passage 14, and the discharge ports 12 </ b> D and 13 </ b> D are communicated with each other through the oil passage 15. The hydraulic control device 16 mainly includes a valve for controlling the amount and pressure of the pressure oil flowing through the oil passages 14 and 15, that is, the pushing volume and pressure of the pump motors 12 and 13, and the oil passages 14 and 15. Is intervened. Furthermore, an electronic control unit (ECU) 17 for controlling the discharge capacity of the hydraulic control device 16 and the pump motors 12 and 13 is provided. That is, a command is sent from the electronic control unit 17 to an actuator (not shown) for changing the angle of the swash plate or the oblique axis for setting the discharge capacity or the phase angle of the cam ring (not shown) of the radial piston pump. A signal is output.

上記の各中間軸8,10と平行に、この発明の出力部材に相当する出力軸18が配置されている。そして、この出力軸18と各中間軸8,10との間のそれぞれに、所定の変速比を設定する伝動機構が設けられている。この発明における伝動機構としては、固定された変速比で動力を伝達する機構に限らず、変速比が可変な機構を採用することができ、図1に示す例では、固定された変速比で動力を伝達する複数のギヤ対19,20,21,22,23が採用されている。具体的に説明すると、前記第1中間軸8には、第4速駆動ギヤ19Aと第2速駆動ギヤ20Aとが、第1遊星歯車機構3側から順に配置され、かつ第1中間軸8に対して回転自在に嵌合されている。その第4速駆動ギヤ19Aに噛み合っている第4速従動ギヤ19Bと、第2速駆動ギヤ20Aに噛み合っている第2速従動ギヤ20Bとが、出力軸18に一体回転するように取り付けられている。したがって第4速用の駆動ギヤ19Aおよび従動ギヤ19B、ならびに第2速用の駆動ギヤ20Aおよび従動ギヤ20Bが、この発明における第3の伝動機構に相当する。   An output shaft 18 corresponding to the output member of the present invention is arranged in parallel with each of the intermediate shafts 8 and 10 described above. A transmission mechanism for setting a predetermined gear ratio is provided between the output shaft 18 and each of the intermediate shafts 8 and 10. The transmission mechanism in the present invention is not limited to a mechanism that transmits power at a fixed gear ratio, and a mechanism with a variable gear ratio can be adopted. In the example shown in FIG. 1, power is transmitted at a fixed gear ratio. A plurality of gear pairs 19, 20, 21, 22, and 23 are used. More specifically, the first intermediate shaft 8 is provided with a fourth speed drive gear 19A and a second speed drive gear 20A in order from the first planetary gear mechanism 3 side. It is fitted in a freely rotatable manner. A fourth speed driven gear 19B meshed with the fourth speed drive gear 19A and a second speed driven gear 20B meshed with the second speed drive gear 20A are attached to the output shaft 18 so as to rotate integrally. Yes. Therefore, the fourth speed drive gear 19A and driven gear 19B, and the second speed drive gear 20A and driven gear 20B correspond to the third transmission mechanism in the present invention.

さらに、上記の第4速従動ギヤ19Bに噛み合っている第3速駆動ギヤ21Aと、第2速従動ギヤ20Bに噛み合っている第1速駆動ギヤ22Aとが、第2中間軸10に回転自在に嵌合させられている。したがって、第4速従動ギヤ19Bが第3速従動ギヤを兼ねており、また第2速従動ギヤ20Bが第1速従動ギヤを兼ねている。そして、第1速駆動ギヤ22Aよりも第2ポンプモータ13側には、第5速駆動ギヤ23Aが配置されており、この第5速駆動ギヤ23Aは第2中間軸10に一体回転するように連結されている。この第5速駆動ギヤ23Aに噛み合っている第5速従動ギヤ23Bは出力軸18に回転自在に嵌合させられている。これら第1速用の駆動ギヤ22Aおよび従動ギヤ20B、第3速用の駆動ギヤ21Aおよび従動ギヤ19B、第5速用の駆動ギヤ23Aおよび従動ギヤ23Bが、この発明における第1の伝動機構を構成している。   Further, the third speed drive gear 21A meshed with the fourth speed driven gear 19B and the first speed drive gear 22A meshed with the second speed driven gear 20B are rotatable on the second intermediate shaft 10. It is made to fit. Accordingly, the fourth speed driven gear 19B also serves as the third speed driven gear, and the second speed driven gear 20B also serves as the first speed driven gear. A fifth speed drive gear 23A is disposed closer to the second pump motor 13 than the first speed drive gear 22A. The fifth speed drive gear 23A rotates integrally with the second intermediate shaft 10. It is connected. The fifth speed driven gear 23B meshed with the fifth speed drive gear 23A is rotatably fitted to the output shaft 18. The first speed drive gear 22A and driven gear 20B, the third speed drive gear 21A and driven gear 19B, and the fifth speed drive gear 23A and driven gear 23B constitute the first transmission mechanism of the present invention. It is composed.

この発明の特徴的構成である発進用ギヤ対24が設けられている。この発進用ギヤ対24は、図1の上側の第1ポンプモータ12が流体圧モータとして機能した場合に、その出力トルクを出力軸18に伝達するためのものであって、この発明の第2の伝動機構に相当する。具体的には、モータ軸9に一体回転するように取り付けられた発進駆動ギヤ24Aと、この発進駆動ギヤ24Aに噛み合うとともに出力軸18に回転自在に嵌合させられた発進従動ギヤ24Bとによって構成されている。   A starting gear pair 24 which is a characteristic configuration of the present invention is provided. The starting gear pair 24 is for transmitting the output torque to the output shaft 18 when the upper first pump motor 12 in FIG. 1 functions as a fluid pressure motor. It corresponds to the transmission mechanism. Specifically, a start drive gear 24A attached so as to rotate integrally with the motor shaft 9 and a start driven gear 24B meshed with the start drive gear 24A and rotatably fitted to the output shaft 18 are configured. Has been.

ここで、各ギヤ対19,20,21,22,23,24の変速比(それぞれの駆動ギヤの歯数に対する従動ギヤの歯数の比)について説明すると、その変速比は、発進用ギヤ対24、第1速用ギヤ対22、第2速用ギヤ対20、第3速用ギヤ対21、第4速用ギヤ対19、第5速用ギヤ対23の順に小さくなるように構成されている。なお、発進用ギヤ対24の変速比は、第1速用ギヤ対22の変速比と同等もしくはそれ以下であってもよい。すなわちこの発明における第1の伝動機構による変速比より大きい変速比を第2の伝動機構が設定し、あるいは反対に第1の伝動機構による変速比以下の変速比を第2の電動機が設定するように構成することができる。   Here, the gear ratio of each gear pair 19, 20, 21, 22, 23, 24 (ratio of the number of teeth of the driven gear to the number of teeth of each drive gear) will be described. 24, first speed gear pair 22, second speed gear pair 20, third speed gear pair 21, fourth speed gear pair 19, and fifth speed gear pair 23. Yes. The gear ratio of the starting gear pair 24 may be equal to or less than the gear ratio of the first speed gear pair 22. That is, the second transmission mechanism sets a gear ratio larger than the gear ratio by the first transmission mechanism in the present invention, or conversely, the second motor sets a gear ratio that is equal to or lower than the gear ratio by the first transmission mechanism. Can be configured.

上述した第1速用ないし第5速用の各ギヤ対19,20,21,22,23および発進用のギヤ対24を、いずれかの中間軸8,10と出力軸18との間、もしくはモータ軸9と出力軸18との間でトルク伝達可能な状態とするための係合機構が設けられている。この係合機構は、要は、選択的にトルクを伝達する機構であって、従来知られているドグクラッチ機構や同期連結機構(シンクロナイザー)などの機構を採用することができ、図1にはシンクロナイザーを採用した例を示してある。   The first to fifth gear pairs 19, 20, 21, 22, 23 and the starting gear pair 24 are connected between any of the intermediate shafts 8 and 10 and the output shaft 18, or An engagement mechanism is provided for enabling torque transmission between the motor shaft 9 and the output shaft 18. In short, this engagement mechanism is a mechanism that selectively transmits torque, and conventionally known mechanisms such as a dog clutch mechanism and a synchronous coupling mechanism (synchronizer) can be employed. An example employing a synchronizer is shown.

シンクロナイザーは、基本的には、回転軸と共に回転するスリーブを軸線方向に移動させて、その回転軸に対して相対回転するように取り付けられた回転部材のスプラインに係合させ、その過程でシンクロナイザーリングが回転部材に次第に摩擦接触することにより回転軸と回転部材とを同期させることにより、回転軸と回転部材とを連結するように構成されている。前記出力軸18上で、発進従動ギヤ24Bと第5速従動ギヤ23Bとの間に第1のシンクロナイザー(以下、第1シンクロと記す)25が設けられている。この第1シンクロ25は、そのスリーブを図1の左側に移動させることにより、発進従動ギヤ24Bを出力軸18に連結し、発進用のギヤ対24がモータ軸9と出力軸18との間でトルクを伝達するように構成されている。また、反対にそのスリーブを図1の右側に移動させることにより、第5速従動ギヤ23Bを出力軸18に連結し、第5速用のギヤ対23が第2中間軸10と出力軸18との間でトルクを伝達するように構成されている。   The synchronizer basically moves the sleeve that rotates together with the rotating shaft in the axial direction, and engages with the spline of the rotating member that is mounted so as to rotate relative to the rotating shaft. The rotating shaft and the rotating member are connected by synchronizing the rotating shaft and the rotating member by the frictional contact of the knit ring with the rotating member. On the output shaft 18, a first synchronizer (hereinafter referred to as a first synchronizer) 25 is provided between the start driven gear 24B and the fifth speed driven gear 23B. The first sync 25 connects the starter driven gear 24B to the output shaft 18 by moving the sleeve to the left side of FIG. 1, and the starter gear pair 24 is connected between the motor shaft 9 and the output shaft 18. It is configured to transmit torque. On the other hand, by moving the sleeve to the right in FIG. 1, the fifth driven gear 23B is connected to the output shaft 18, and the fifth gear pair 23 is connected to the second intermediate shaft 10 and the output shaft 18. Torque is transmitted between the two.

また、前記第2中間軸10上で、第1速駆動ギヤ22Aと第3速駆動ギヤ21Aとの間に第2のシンクロナイザー(以下、第2シンクロと記す)26が設けられている。この第2シンクロ26は、そのスリーブを図1の左側に移動させることにより、第1速駆動ギヤ22Aを第2中間軸10に連結し、第1速用のギヤ対22が第2中間軸10と出力軸18との間でトルクを伝達するように構成されている。また、反対にそのスリーブを図1の右側に移動させることにより、第3速駆動ギヤ21Aを第2中間軸10に連結し、第3速用のギヤ対21が第2中間軸10と出力軸18との間でトルクを伝達するように構成されている。   A second synchronizer (hereinafter referred to as a second synchronizer) 26 is provided on the second intermediate shaft 10 between the first speed driving gear 22A and the third speed driving gear 21A. The second sync 26 moves the sleeve to the left side of FIG. 1 to connect the first speed drive gear 22A to the second intermediate shaft 10, and the first speed gear pair 22 is connected to the second intermediate shaft 10. And the output shaft 18 are configured to transmit torque. On the other hand, the third speed drive gear 21A is connected to the second intermediate shaft 10 by moving the sleeve to the right in FIG. 1, and the third speed gear pair 21 is connected to the second intermediate shaft 10 and the output shaft. Torque is transmitted to and from 18.

さらに、前記第1中間軸8上で、第2速駆動ギヤ20Aと第4速駆動ギヤ19Aとの間に第3のシンクロナイザー(以下、第3シンクロと記す)27が設けられている。この第3シンクロ27は、そのスリーブを図1の左側に移動させることにより、第2速駆動ギヤ20Aを第1中間軸8に連結し、第2速用のギヤ対20が第1中間軸8と出力軸18との間でトルクを伝達するように構成されている。また、反対にそのスリーブを図1の右側に移動させることにより、第4速駆動ギヤ19Aを第1中間軸8に連結し、第4速用のギヤ対19が第1中間軸8と出力軸18との間でトルクを伝達するように構成されている。   Further, a third synchronizer (hereinafter referred to as a third synchronizer) 27 is provided on the first intermediate shaft 8 between the second speed drive gear 20A and the fourth speed drive gear 19A. The third sync 27 moves the sleeve to the left side in FIG. 1 to connect the second speed drive gear 20A to the first intermediate shaft 8 and the second speed gear pair 20 is connected to the first intermediate shaft 8. And the output shaft 18 are configured to transmit torque. On the other hand, the fourth speed drive gear 19A is connected to the first intermediate shaft 8 by moving the sleeve to the right in FIG. 1, and the fourth speed gear pair 19 is connected to the first intermediate shaft 8 and the output shaft. Torque is transmitted to and from 18.

これらのシンクロ25,26,27は、手動操作によって切り替え動作するように構成することができるが、これに替えていわゆる自動制御するように構成することもでき、その場合は、例えば前述したスリーブを軸線方向に移動させる適宜のアクチュエータ(図示せず)を設け、そのアクチュエータを前述した電子制御装置17の指令信号を動作させるように構成すればよい。   These synchros 25, 26, and 27 can be configured to be switched by manual operation, but can be configured to perform so-called automatic control instead. In this case, for example, the above-described sleeve is used. An appropriate actuator (not shown) that moves in the axial direction may be provided, and the actuator may be configured to operate the command signal of the electronic control device 17 described above.

上述したように、図1に示す変速機は、動力源1が出力したトルクが、各いずれかの中間軸8,10もしくはモータ軸9を介して出力軸18に伝達されるように構成されている。そして、その出力軸18には、歯車機構あるいはチェーンなどの巻き掛け伝動機構などの伝動機構28を介してデファレンシャル29が連結され、ここから左右の車輪(図示せず)に動力を出力するようになっている。   As described above, the transmission shown in FIG. 1 is configured such that the torque output from the power source 1 is transmitted to the output shaft 18 via any one of the intermediate shafts 8 and 10 or the motor shaft 9. Yes. A differential 29 is connected to the output shaft 18 via a transmission mechanism 28 such as a gear mechanism or a winding transmission mechanism such as a chain, and outputs power to right and left wheels (not shown) from here. It has become.

つぎに、上述した変速機の作用について説明する。図2は、各変速段を設定する際の各オイルポンプ(P/M1,P/M2)12,13、および各シンクロ25,26,27の動作状態をまとめて示す図表であって、この図2における各オイルポンプ12,13についての「OFF」は、ポンプ容量を実質的にゼロとし、その出力軸が回転させられても圧油を発生することがなく、また油圧が供給されても出力軸が回転しない状態を示し、「LOCK」は、ポンプ容量を最大にするとともにオイルの吐出を制限してその出力軸にトルクが現れる状態を示している。さらに「油圧発生」は、ポンプ容量を実質的なゼロより大きくするとともに圧油を吐出している状態を示し、したがって該当するオイルポンプ12,13はポンプとして機能している。また、「油圧回収」は、一方のオイルポンプ13(もしくは12)が吐出した圧油が供給されてモータとして機能している状態を示し、したがって該当するオイルポンプ13(もしくは12)は軸トルクを発生し、対応する中間軸8,10に駆動トルクを伝達している。   Next, the operation of the transmission described above will be described. FIG. 2 is a chart collectively showing the operation states of the oil pumps (P / M1, P / M2) 12, 13 and the synchros 25, 26, 27 when setting the respective gear positions. “OFF” for each of the oil pumps 12 and 13 in 2 makes the pump capacity substantially zero, does not generate pressure oil even if its output shaft is rotated, and is output even if hydraulic pressure is supplied. A state where the shaft does not rotate is shown, and “LOCK” shows a state where the pump capacity is maximized and the oil discharge is restricted and torque appears on the output shaft. Furthermore, “hydraulic pressure generation” indicates a state in which the pump capacity is made larger than substantially zero and pressure oil is discharged, and therefore the corresponding oil pumps 12 and 13 function as pumps. “Hydraulic pressure recovery” indicates a state in which pressure oil discharged from one oil pump 13 (or 12) is supplied and functions as a motor, and therefore the corresponding oil pump 13 (or 12) has a shaft torque. And driving torque is transmitted to the corresponding intermediate shafts 8 and 10.

そして、各シンクロ25,26,27についての「右」、「左」は、それぞれのシンクロ25,26,27におけるスリーブの図1での位置を示すとともに、丸括弧はダウンシフトするための待機状態、カギ括弧はアップシフトするための待機状態を示し、そして「−」はスリーブが中央に位置して中立状態となっていることを示す。   In addition, “right” and “left” for each of the syncs 25, 26, and 27 indicate the positions of the sleeves in the respective syncs 25, 26, and 27 in FIG. 1, and parentheses indicate a standby state for downshifting. , Square brackets indicate a waiting state for upshifting, and "-" indicates that the sleeve is in the center and is in a neutral state.

図示しないシフト装置でニュートラルポジションが選択されるなどのことによってニュートラル(N)状態を設定する際には、各オイルポンプ12,13が「OFF」状態とされ、また各シンクロ25,26,27のスリーブが中央位置に設定される。したがって、いずれのギヤ対19,20,21,22,23,24も出力軸18に連結されていないニュートラル状態となる。すなわち、各オイルポンプ12,13が、ポンプ容量が実質的にゼロとなるように制御され、その結果、いわゆる空回り状態となるので、各遊星歯車機構3,4のリングギヤ3R,4Rに動力源1からトルクが伝達されても、サンギヤ3S,4Sに反力が作用しないので、出力要素であるキャリヤ3C,4Cに連結されている各中間軸8,10にはトルクが伝達されない。   When the neutral (N) state is set by selecting a neutral position with a shift device (not shown), the oil pumps 12 and 13 are set to the “OFF” state, and the synchros 25, 26, and 27 are turned on. The sleeve is set to the center position. Accordingly, none of the gear pairs 19, 20, 21, 22, 23, 24 is in a neutral state that is not connected to the output shaft 18. That is, the oil pumps 12 and 13 are controlled so that the pump capacity becomes substantially zero, and as a result, a so-called idling state is established. Therefore, the power source 1 is connected to the ring gears 3R and 4R of the planetary gear mechanisms 3 and 4, respectively. No torque is transmitted to the intermediate shafts 8 and 10 connected to the carriers 3C and 4C as output elements because no reaction force acts on the sun gears 3S and 4S even if torque is transmitted from the motor.

車両が発進する場合、発進用のギヤ対24と第1速用のギヤ対22とを介して出力軸18にトルクが伝達される。すなわち、先ず、第1シンクロ25のスリーブが図1の左側に移動させられて発進従動ギヤ24Bが出力軸18に連結され、モータ軸9と出力軸18とが発進用のギヤ対24を介して連結される。また、同時に、第2シンクロ26のスリーブが図1の左側に移動させられて第1速駆動ギヤ22Aが第2中間軸10に連結され、第2中間軸10と出力軸18とが第1速用のギヤ対22を介して連結される。したがって、この場合は、第2遊星歯車機構4を介したトルクの伝達が生じ、その第2遊星歯車機構4についての共線図を図3の(A)に示してある。なお、第1遊星歯車機構3についての共線図を図3の(B)に併せて示してある。   When the vehicle starts, torque is transmitted to the output shaft 18 via the starting gear pair 24 and the first speed gear pair 22. That is, first, the sleeve of the first sync 25 is moved to the left in FIG. 1, the starter driven gear 24B is connected to the output shaft 18, and the motor shaft 9 and the output shaft 18 are connected via the starter gear pair 24. Connected. At the same time, the sleeve of the second synchro 26 is moved to the left in FIG. 1 to connect the first speed drive gear 22A to the second intermediate shaft 10, and the second intermediate shaft 10 and the output shaft 18 are connected to the first speed. It is connected via a gear pair 22 for use. Therefore, in this case, torque is transmitted through the second planetary gear mechanism 4, and an alignment chart for the second planetary gear mechanism 4 is shown in FIG. A collinear diagram for the first planetary gear mechanism 3 is also shown in FIG.

第1および第2のシンクロ25,26を上記のように設定した状態で車両が停止していると、第2遊星歯車機構4のリングギヤ4Rは、動力源1からのトルクを受けて所定の回転数で正回転(動力源1の回転方向と同じ方向の回転)しており、また出力軸18に連結されているキャリヤ4Cの回転が止められているから、サンギヤ4Sおよびこれに連結されている第2ポンプモータ13が逆回転している。その状態で、第2ポンプモータ13の押し出し容積を次第に増大させ、またその吐出を次第に絞ると、すなわちフリー状態からロック状態に向けて次第に変化させると、ポンプ軸11およびこれに連結されているサンギヤ4Sに、その回転を止める方向のトルク(反力トルク)が発生する。また同時に、第2ポンプモータ13が圧油を吐出し、これが第1ポンプモータ12の吐出口12Dに供給される。   When the vehicle is stopped with the first and second syncs 25 and 26 set as described above, the ring gear 4R of the second planetary gear mechanism 4 receives the torque from the power source 1 and performs a predetermined rotation. Since the rotation of the carrier 4C connected to the output shaft 18 is stopped, the sun gear 4S and the sun gear 4S are connected. The second pump motor 13 is rotating in the reverse direction. In this state, when the push-out volume of the second pump motor 13 is gradually increased and the discharge is gradually reduced, that is, gradually changed from the free state to the locked state, the pump shaft 11 and the sun gear connected thereto In 4S, a torque (reaction torque) in a direction to stop the rotation is generated. At the same time, the second pump motor 13 discharges the pressure oil, which is supplied to the discharge port 12D of the first pump motor 12.

その場合、第1ポンプモータ12に連結されているモータ軸9が回転できないので、第1ポンプモータ12のポンプ容量をゼロから次第に増大させると、圧油が前記油圧制御装置16におけるリリーフバルブ(図示せず)などを介してドレーンされる。すなわち、いわゆるダブルロック状態となることを、圧油をドレーンさせることにより解消するようになっている。   In that case, since the motor shaft 9 connected to the first pump motor 12 cannot rotate, when the pump capacity of the first pump motor 12 is gradually increased from zero, the pressure oil is released into the relief valve (see FIG. (Not shown). That is, the so-called double lock state is eliminated by draining the pressure oil.

各ポンプモータ12,13のポンプ容量が増大すると、第2遊星歯車機構4でそのサンギヤ4Sに作用する反力が増大するので、キャリヤ4Cおよびこれに連結されている第2中間軸10に現れるトルクが大きくなり、そのトルクが第1速用のギヤ対22を介して出力軸18に伝達される。その場合、第1速用のギヤ対22の変速比に応じた減速作用を受け、伝達されるトルクが増大する。また一方、第2ポンプモータ13が圧油を発生し、これが第1ポンプモータ12に供給される。第1ポンプモータ12は、そのポンプ容量が増大させられることにより、圧油が供給されて油圧モータとして機能し、したがってそのモータ軸9に現れたトルクが発進用のギヤ対24を介して出力軸18に伝達される。その場合、発進用のギヤ対24の変速比に応じた減速作用を受け、伝達されるトルクが増大する。このようにして出力軸18のトルクが増大することにより車両が発進する。   As the pump capacity of each pump motor 12, 13 increases, the reaction force acting on the sun gear 4S in the second planetary gear mechanism 4 increases, so that the torque appearing on the carrier 4C and the second intermediate shaft 10 connected thereto. And the torque is transmitted to the output shaft 18 via the first speed gear pair 22. In that case, the transmitted torque increases due to the deceleration action corresponding to the gear ratio of the gear pair 22 for the first speed. On the other hand, the second pump motor 13 generates pressure oil, which is supplied to the first pump motor 12. When the pump capacity is increased, the first pump motor 12 is supplied with pressure oil and functions as a hydraulic motor. Therefore, the torque appearing on the motor shaft 9 is output to the output shaft via the starting gear pair 24. 18 is transmitted. In that case, the transmitted torque increases due to the deceleration action corresponding to the gear ratio of the starting gear pair 24. Thus, the vehicle starts by increasing the torque of the output shaft 18.

したがって、発進時には、第1ポンプモータ12をポンプとして機能させて反力トルクを生じさせ、それに伴って第2遊星歯車機構4のキャリヤ4Cから第2中間軸10および第1速用のギヤ対22を介して出力軸18にトルクを伝達する。これと同時に、第2ポンプモータ13で生じた圧油を第1ポンプモータ12に供給して動力の回収を行い、それに伴うトルクを発進用のギヤ対24を介して出力軸18に伝達するから、動力源1の動力を有効に利用して、変速機としての大きい出力軸トルクもしくは車両としての大きい駆動トルクを得ることができる。その出力トルクToを式で表せば、
To≒{(1+ρ2)κ1+q1・ρ2・κs/q2}×Tin
であり、また吐出口12D,13D同士を連通させている油路15の圧力Pは、
P≒(2π・ρ2/q2)×Tin
となる。ここで、q1は第1ポンプモータ12の1回転あたりの押し出し容積、q2は第2ポンプモータ13の1回転あたりの押し出し容積、ρ2は第2遊星歯車機構4のギヤ比、κsは発進用ギヤ対24の変速比、Tinは入力部材2に入力されるトルクをそれぞれ示す。
Therefore, at the time of starting, the first pump motor 12 is caused to function as a pump to generate a reaction torque, and accordingly, the second intermediate shaft 10 and the first speed gear pair 22 from the carrier 4C of the second planetary gear mechanism 4. Torque is transmitted to the output shaft 18 via At the same time, the pressure oil generated by the second pump motor 13 is supplied to the first pump motor 12 to recover the power, and the accompanying torque is transmitted to the output shaft 18 via the gear pair 24 for starting. By effectively utilizing the power of the power source 1, a large output shaft torque as a transmission or a large drive torque as a vehicle can be obtained. If the output torque To is expressed by an equation,
To≈ {(1 + ρ2) κ1 + q1, ρ2, κs / q2} × Tin
The pressure P of the oil passage 15 that connects the discharge ports 12D and 13D is
P ≒ (2π ・ ρ2 / q2) × Tin
It becomes. Here, q1 is the pushing volume per rotation of the first pump motor 12, q2 is the pushing volume per rotation of the second pump motor 13, ρ2 is the gear ratio of the second planetary gear mechanism 4, and κs is the starting gear. The transmission ratio of the pair 24, Tin, indicates the torque input to the input member 2.

このように発進時の駆動トルクが大きくなるので、車両の発進加速性を良好なものとすることができ、また動力源1の動力を有効に利用するので、燃費を向上し、内燃機関を使用した場合には排ガスを低減することができる。また、第2ポンプモータ13で発生した圧油を第1ポンプモータ12に供給することにより、その圧油を動力の伝達に使用するから、オイルの温度の上昇を抑制でき、それに伴ってオイルの耐久性や変速機の全体としての信頼性を向上させることができる。そして、発進時には、発進用のギヤ対24を使用したトルクの伝達が可能であり、そのため走行中の加減速時に使用する第1速の変速比を相対的に小さくすることができ、そのために全体としての固定変速比の数を少なくし、変速機の小型・軽量化を図ることができる。   Since the driving torque at the time of starting is increased in this way, the vehicle starting acceleration can be improved, and the power of the power source 1 is effectively used, so that the fuel consumption is improved and the internal combustion engine is used. In this case, exhaust gas can be reduced. In addition, by supplying the pressure oil generated by the second pump motor 13 to the first pump motor 12, the pressure oil is used for power transmission, so that an increase in the temperature of the oil can be suppressed. Durability and overall reliability of the transmission can be improved. At the time of starting, torque transmission using the starting gear pair 24 is possible, so that the gear ratio of the first speed used at the time of acceleration / deceleration during traveling can be made relatively small. As a result, the number of fixed transmission ratios can be reduced, and the transmission can be reduced in size and weight.

第2ポンプモータ13の吐出量を次第に絞り、ついには圧油の吐出を完全に止めると、これがロック状態であり、第2遊星歯車機構4に対する反力が最大になるとともに、そのサンギヤ4Sの回転が止められる。その状態を図4の(A)に共線図で示してあり、キャリヤ4Cおよびこれに連結されている第2中間軸10が、入力要素であるリングギヤ4Rの回転数に対して減速されて正回転する。この場合、第2ポンプモータ13は停止していて圧油を発生しないから、第1ポンプモータ12はトルク伝達に特には関与しない。したがって第1シンクロ25を中立状態(解放状態)に設定し、第1ポンプモータ12を停止させる。図4の(B)は、この状態における第1遊星歯車機構3についての共線図である。   When the discharge amount of the second pump motor 13 is gradually reduced and finally the discharge of the pressure oil is completely stopped, this is in a locked state, the reaction force against the second planetary gear mechanism 4 is maximized, and the rotation of the sun gear 4S Is stopped. This state is shown in a collinear diagram in FIG. 4A, where the carrier 4C and the second intermediate shaft 10 connected thereto are decelerated with respect to the rotational speed of the ring gear 4R as an input element, and Rotate. In this case, since the second pump motor 13 is stopped and does not generate pressure oil, the first pump motor 12 is not particularly involved in torque transmission. Accordingly, the first sync 25 is set to the neutral state (release state), and the first pump motor 12 is stopped. FIG. 4B is a collinear diagram for the first planetary gear mechanism 3 in this state.

このようにして設定された状態が、固定変速比である第1速でかつ停止待機の状態である。したがって、動力源1の動力は、第2中間軸10から第1速用のギヤ対22を介して出力軸18に伝達されるので、変速比は第1速用のギヤ対22で決まる値となる。なお、上記の説明および図3ならびに図4から知られるように、車両が停止している状態から発進して固定変速比である第1速が設定されるまでの間では、出力軸18のトルクおよび回転数が第2ポンプモータ13の反力トルクおよび回転数に応じて連続的に変化する。したがって、いわゆる無段変速が実行され、スムースな発進が可能になる。   The state set in this way is the first speed which is the fixed gear ratio and the stop standby state. Accordingly, the power of the power source 1 is transmitted from the second intermediate shaft 10 to the output shaft 18 via the first speed gear pair 22, and the gear ratio is determined by the first speed gear pair 22. Become. As is known from the above description and FIGS. 3 and 4, the torque of the output shaft 18 from the time when the vehicle is stopped until the first speed, which is a fixed gear ratio, is set. The rotational speed continuously changes in accordance with the reaction torque of the second pump motor 13 and the rotational speed. Therefore, a so-called continuously variable transmission is executed, and a smooth start is possible.

第1速を設定している場合には、第1および第2のシンクロ25,26のスリーブを図1の左側に移動させて設定する車両を停止させるため停止待機の状態の他に、固定変速比である第2速へのアップシフトに備える待機状態を設定することが可能である。これは、図2に示すように、第2シンクロ26のスリーブを図1の左側に移動させて第1速の状態を維持したまま、第3シンクロ27のスリーブを図1の左側に移動させて、第2速駆動ギヤ20Aを第1中間軸8に連結して設定される。この場合、第1ポンプモータ12は容量がゼロでかつ吐出を制限しないフリー状態となっている。したがって、第1中間軸8が第2速用のギヤ対20を介して出力軸18に連結されても、第1ポンプモータ12が逆回転するのみであって、いわゆるダブルロックなどの事態が生じることはない。この第1速での第2速へのアップシフト待機状態における各遊星歯車機構3,4の共線図を図5の(A)および(B)に示してある。   When the first speed is set, in order to stop the vehicle to be set by moving the sleeves of the first and second syncs 25 and 26 to the left in FIG. It is possible to set a standby state in preparation for an upshift to the second speed, which is the ratio. As shown in FIG. 2, the sleeve of the second synchro 26 is moved to the left side of FIG. 1 to maintain the first speed state, and the sleeve of the third synchro 27 is moved to the left side of FIG. The second speed drive gear 20A is connected to the first intermediate shaft 8 and set. In this case, the first pump motor 12 is in a free state in which the capacity is zero and discharge is not limited. Therefore, even if the first intermediate shaft 8 is connected to the output shaft 18 via the gear pair 20 for the second speed, only the first pump motor 12 rotates in the reverse direction, and a so-called double lock or the like occurs. There is nothing. FIGS. 5A and 5B show collinear diagrams of the planetary gear mechanisms 3 and 4 in the state of waiting for upshifting to the second speed at the first speed.

第2速は、動力源1から第1遊星歯車機構3および第1中間軸8ならびに第2速用のギヤ対20を介して設定するから、フリー状態の第1ポンプモータ12のポンプ容量を次第に増大させるとともにその吐出量を次第に絞ることにより、第2速への変速を実行する。第1ポンプモータ12は第1速で逆回転しているので、そのポンプ容量を増大させると、ポンプとして機能した圧油を吐出し、それに伴う反力トルクが第1遊星歯車機構3のサンギヤ3Sに作用する。したがって、動力源1からのトルクと第1ポンプモータ12からの反力トルクが第1遊星歯車機構3で合成されて第1中間軸8および第2速用のギヤ対20を介して出力軸18に伝達される。この状態の第1遊星歯車機構3についての共線図を図6の(B)に示してある。   The second speed is set from the power source 1 through the first planetary gear mechanism 3, the first intermediate shaft 8, and the second speed gear pair 20, so that the pump capacity of the first pump motor 12 in the free state is gradually increased. Shifting to the second speed is executed by increasing the discharge amount and gradually reducing the discharge amount. Since the first pump motor 12 rotates in the reverse direction at the first speed, if the pump capacity is increased, the pressure oil functioning as a pump is discharged, and the reaction force torque associated therewith is the sun gear 3S of the first planetary gear mechanism 3. Act on. Therefore, the torque from the power source 1 and the reaction torque from the first pump motor 12 are combined by the first planetary gear mechanism 3 and output shaft 18 via the first intermediate shaft 8 and the second speed gear pair 20. Is transmitted to. A collinear diagram for the first planetary gear mechanism 3 in this state is shown in FIG.

また、第1ポンプモータ12が吐出した圧油が第2ポンプモータ13に供給されるので、第2ポンプモータ13がモータとして機能し、そのトルクが第2遊星歯車機構4のサンギヤ4Sに伝達される。したがって、第2遊星歯車機構4では、動力源1から伝達されたトルクと第2ポンプモータ13から伝達されたトルクとが合成され、その合成トルクが第2中間軸および第1速用のギヤ対22を介して出力軸18に伝達される。   Further, since the pressure oil discharged from the first pump motor 12 is supplied to the second pump motor 13, the second pump motor 13 functions as a motor, and the torque is transmitted to the sun gear 4 </ b> S of the second planetary gear mechanism 4. The Therefore, in the second planetary gear mechanism 4, the torque transmitted from the power source 1 and the torque transmitted from the second pump motor 13 are combined, and the combined torque is a gear pair for the second intermediate shaft and the first speed. 22 to the output shaft 18.

このように、第1ポンプモータ12の押し出し容積を増大させるとともに吐出を次第に絞ることにより、第2速への変速が進行し、したがって変速比およびトルクが連続的に変化する無段変速が実行される。また、その変速の過程で第1ポンプモータ12がポンプとして機能し、圧油を発生するが、その圧油を第2ポンプモータ13に供給して動力として回収するので、動力損失の少ない変速が可能になり、車両の燃費の向上に有利である。   In this way, by increasing the pushing volume of the first pump motor 12 and gradually narrowing the discharge, the shift to the second speed proceeds, and therefore a continuously variable transmission in which the gear ratio and torque continuously change is executed. The Further, the first pump motor 12 functions as a pump and generates pressure oil in the process of the speed change, but the pressure oil is supplied to the second pump motor 13 and recovered as power, so that the speed change with less power loss can be achieved. This is possible and is advantageous in improving the fuel consumption of the vehicle.

上記のようにして第1ポンプモータ12の吐出を次第に絞り、ついには完全にゼロとすることにより、すなわちロックすることにより、第2速が達成される。その状態における第1遊星歯車機構3についての共線図を図7の(B)に示してある。また、この第2速状態、特に第1速からアップシフトされた直後の状態もしくは第1速へのダウンシフトに備えた待機状態では、第2ポンプモータ13は容量がゼロで自由回転の可能なフリー状態に設定される。その状態を図7の(A)に示してある。さらに、アップシフトおよびダウンシフトのいずれにも備えていない安定的な第2速の状態は、第2シンクロ26を中立位置に設定した状態であり、これを図8の(A)および(B)に共線図で示してある。   As described above, the second speed is achieved by gradually restricting the discharge of the first pump motor 12 to finally zero, that is, by locking. A collinear diagram of the first planetary gear mechanism 3 in this state is shown in FIG. Further, in this second speed state, particularly in a state immediately after being upshifted from the first speed or in a standby state in preparation for a downshift to the first speed, the second pump motor 13 has zero capacity and can freely rotate. Set to free state. This state is shown in FIG. Further, the stable second speed state that is not provided for either the upshift or the downshift is a state in which the second sync 26 is set to the neutral position, which is shown in FIGS. 8A and 8B. Is shown in a nomograph.

さらに、第2速で第3速へのアップシフトに備えた待機状態では、上述した第2速の状態で第2シンクロ26のスリーブを図1の右側に移動させて、第3速駆動ギヤ21Aを第2中間軸10に連結する。こうすることにより、第2中間軸およびこれに連結されている第2遊星歯車機構4のキャリヤ4Cの回転数が引き下げられるので、サンギヤ4Sおよびこれに連結されているフリー状態の第2ポンプモータ13が逆回転する。この状態を図9の(A)に第2遊星歯車機構4についての共線図として記載してある。なお、図9の(B)は第1遊星歯車機構3についての共線図である。   Further, in the standby state in preparation for the upshift to the third speed at the second speed, the sleeve of the second synchro 26 is moved to the right side in FIG. Are connected to the second intermediate shaft 10. By doing so, the rotational speed of the second intermediate shaft and the carrier 4C of the second planetary gear mechanism 4 connected to the second intermediate shaft is reduced, so that the sun gear 4S and the free second pump motor 13 connected thereto are also provided. Rotates in reverse. This state is shown in FIG. 9A as a collinear diagram for the second planetary gear mechanism 4. FIG. 9B is a collinear diagram for the first planetary gear mechanism 3.

このようにして設定される第2速でのアップシフト待機状態で第2ポンプモータ13のポンプ容量を次第に増大させると、第2ポンプモータ13が圧油を発生するとともに、それに伴う反力が発生し、第2遊星歯車機構4のサンギヤ4Sの回転を止めるようにその反力が作用する。その状態を図10の(A)に示してあり、サンギヤ4Sの逆回転方向の回転数が次第に低下することにより、出力要素であるキャリヤ4Cおよびこれに連結されている第2中間軸10の回転数が次第に増大する。言い換えれば、動力源1の回転数がアップシフトに伴って相対的に低下する。   When the pump capacity of the second pump motor 13 is gradually increased in the upshift standby state at the second speed set in this way, the second pump motor 13 generates pressure oil and a reaction force associated therewith. Then, the reaction force acts so as to stop the rotation of the sun gear 4S of the second planetary gear mechanism 4. This state is shown in FIG. 10A, and the rotation of the sun gear 4S in the reverse rotation direction gradually decreases, so that the rotation of the carrier 4C as the output element and the second intermediate shaft 10 connected thereto is rotated. The number increases gradually. In other words, the rotational speed of the power source 1 relatively decreases with the upshift.

また、第2ポンプモータ13で発生した圧油が、第1速から第2速への変速の場合と同様に、第1ポンプモータ12に供給されて第1ポンプモータ12がモータとして機能する。そして、その出力トルクが第1遊星歯車機構3のサンギヤ3Sに伝達され、このトルクと動力源1からのトルクとが合成されて第2速用のギヤ対20を介して出力軸18に伝達される。その状態における第1遊星歯車機構3についての共線図を図10の(B)に示してある。   In addition, the pressure oil generated by the second pump motor 13 is supplied to the first pump motor 12 as in the case of the shift from the first speed to the second speed, and the first pump motor 12 functions as a motor. Then, the output torque is transmitted to the sun gear 3S of the first planetary gear mechanism 3, and this torque and the torque from the power source 1 are combined and transmitted to the output shaft 18 via the gear pair 20 for the second speed. The A collinear diagram for the first planetary gear mechanism 3 in this state is shown in FIG.

第2ポンプモータ13からの圧油の吐出を完全に止めてロック状態とすることにより第3速が達成される。その状態における第2遊星歯車機構4についての共線図を図11の(A)に示してある。また、第3速が達成されると、第1ポンプモータ12は容量がゼロで自由回転の可能なフリー状態に制御される。すなわち、第1遊星歯車機構3のサンギヤ3Sおよびこれに連結されている第1ポンプモータ12は、動力源1の回転数および出力軸18の回転数に応じた所定の回転数が正回転する。この状態を図11の(B)に共線図として示してある。そして、第3シンクロ27を中立位置に戻して第2速駆動ギヤ20Aと第1中間軸8との連結を解くことにより、アップシフトおよびダウンシフトのいずれにも備えていない安定的な第3速状態が設定される。その状態における各遊星歯車機構3,4についての共線図を図12の(A)および(B)に示してある。   The third speed is achieved by completely stopping the discharge of the pressure oil from the second pump motor 13 and setting the locked state. A collinear diagram of the second planetary gear mechanism 4 in this state is shown in FIG. When the third speed is achieved, the first pump motor 12 is controlled to a free state in which the capacity is zero and free rotation is possible. That is, the sun gear 3 </ b> S of the first planetary gear mechanism 3 and the first pump motor 12 connected to the sun gear 3 </ b> S rotate forward at a predetermined number of rotations according to the number of rotations of the power source 1 and the number of rotations of the output shaft 18. This state is shown as an alignment chart in FIG. Then, by returning the third synchro 27 to the neutral position and releasing the connection between the second speed drive gear 20A and the first intermediate shaft 8, a stable third speed that is not provided for either upshifting or downshifting. The state is set. A collinear diagram for the planetary gear mechanisms 3 and 4 in this state is shown in FIGS.

以下、同様にして第3速と第4速との間の変速、および第4速と第5速との間の変速が実行される。なお、それぞれの場合、各シンクロ25,26,27を図2に示すように、図1の右側あるいは左側に移動させ、また各ポンプモータ12,13をポンプあるいはモータとして機能させ、あるいは「OFF」状態と「LOCK」状態とに適宜設定する。   Thereafter, similarly, a shift between the third speed and the fourth speed and a shift between the fourth speed and the fifth speed are executed. In each case, as shown in FIG. 2, each sync 25, 26, 27 is moved to the right or left in FIG. 1, and each pump motor 12, 13 is functioned as a pump or motor, or “OFF”. Set to the state and “LOCK” state as appropriate.

したがって、各ギヤ対19,20,21,22,23の変速比に基づいて設定されるいわゆる固定変速比は、一方のポンプモータ12(もしくは13)を「LOCK」状態とするとともに、他方のポンプモータ13(もしくは12)を「OFF」状態にして設定されるから、圧油を介することなくその変速比を設定でき、そのため動力の消費がなく、燃費を向上させることができる。また、これらの固定変速比の間では、変速比およびトルクが連続的に変化するので、いわゆる無段変速を達成することができる。   Therefore, the so-called fixed transmission ratio set based on the transmission ratios of the gear pairs 19, 20, 21, 22, and 23 sets one pump motor 12 (or 13) to the “LOCK” state and the other pump. Since the motor 13 (or 12) is set in the “OFF” state, the gear ratio can be set without using pressure oil, so that no power is consumed and fuel consumption can be improved. Further, between these fixed speed ratios, the speed ratio and torque continuously change, so that a so-called continuously variable speed can be achieved.

なおここで、後進段について説明すると、図1に示す構成では、第1ポンプモータ12が正回転と逆回転とのいずれも可能であるから、その機能を利用して後進段が設定されるようになっている。すなわち、先ず、車両が停止していて出力軸18が回転していない状態で、第1および第2のシンクロ25,26のスリーブを図1の左側に移動させ、発進従動ギヤ24Bを出力軸18に連結するとともに、第1速駆動ギヤ22Aを第2中間軸10に連結する。これは、前述した発進時の状態あるいは停止に備えた停止待機時の第1速を設定する状態と同じである。したがって、第2遊星歯車機構4についての共線図は図13に線L1で示すようになり、サンギヤ4Sおよびこれに連結されている第2ポンプモータ13が逆回転する。   Here, the reverse speed will be described. In the configuration shown in FIG. 1, the first pump motor 12 can perform either forward rotation or reverse rotation, so that the reverse speed is set using the function. It has become. That is, first, with the vehicle stopped and the output shaft 18 not rotating, the sleeves of the first and second synchros 25 and 26 are moved to the left in FIG. And the first speed drive gear 22 </ b> A is connected to the second intermediate shaft 10. This is the same as the state at the time of starting described above or the state of setting the first speed at the time of stop standby in preparation for stop. Therefore, the alignment chart for the second planetary gear mechanism 4 is as shown by a line L1 in FIG. 13, and the sun gear 4S and the second pump motor 13 connected thereto are rotated in reverse.

後進方向に発進するべくその第2ポンプモータ13のポンプ容量を増大させると、その吐出口13Dから圧油が吐出され、これが第1ポンプモータ12の吐出口12Dに供給される。したがって、第1ポンプモータ12での圧油の流動方向は第2ポンプモータ13とは反対になるので、第1ポンプモータ12を構成している斜板や斜軸の角度(傾転角)あるいはラジアルピストンポンプの場合はカムリングの位相などを、前進走行時とは反対の状態に設定すること(すなわち逆振りすること)により、第1ポンプモータ12が、第2ポンプモータ13から供給された圧油によって逆回転する。これは、第2ポンプモータ13と同じ回転方向である。その結果、発進用ギヤ対24を介して出力軸18にトルクが伝達されると、出力軸18が正回転する。その状態を図13に線L2で記載してある。すなわち、動力源1のトルクおよび第2ポンプモータ13からの反力トルクによって、第2遊星歯車機構4のキャリヤ4Cおよびこれに連結されている第2中間軸10には、出力軸18を逆回転させる方向のトルクが掛かっているが、第1ポンプモータ12から出力され、かつ発進用のギヤ対24を介して出力軸18に加えられる正回転方向のトルクが勝ることにより、出力軸18が正回転する。出力軸18の正回転は、前進走行時の回転方向とは反対の回転であるから、後進段を達成することができる。   When the pump capacity of the second pump motor 13 is increased so as to start in the reverse direction, the pressure oil is discharged from the discharge port 13D and supplied to the discharge port 12D of the first pump motor 12. Accordingly, the flow direction of the pressure oil in the first pump motor 12 is opposite to that of the second pump motor 13, so the angle of the swash plate and the oblique shaft (tilt angle) constituting the first pump motor 12 or In the case of a radial piston pump, the pressure of the first pump motor 12 supplied from the second pump motor 13 is set by setting the phase of the cam ring or the like to a state opposite to that during forward running (that is, reversely swinging). Reverse rotation with oil. This is the same rotational direction as the second pump motor 13. As a result, when torque is transmitted to the output shaft 18 via the starting gear pair 24, the output shaft 18 rotates forward. This state is indicated by a line L2 in FIG. That is, due to the torque of the power source 1 and the reaction torque from the second pump motor 13, the output shaft 18 is reversely rotated on the carrier 4 </ b> C of the second planetary gear mechanism 4 and the second intermediate shaft 10 connected thereto. The torque in the direction to be applied is applied, but when the torque in the positive rotation direction output from the first pump motor 12 and applied to the output shaft 18 via the starting gear pair 24 is won, the output shaft 18 is positive. Rotate. Since the forward rotation of the output shaft 18 is the rotation opposite to the rotation direction during forward travel, a reverse gear can be achieved.

このようにして設定される後進段での出力軸トルクToは、
To≒{−(1+ρ2)κ1+q1・ρ2・κs/q2}×Tin
であり、また吐出口12D,13D同士を連通させている油路15の圧力Pは、
P≒(2π・ρ2/q2)×Tin
となる。なお、上記の出力軸トルクToの式から明らかなように、第2中間軸10から出力軸18に伝達されるトルクは、後進走行のためのトルクを減殺するように作用する。したがって、第2シンクロ26を図1の左側に移動させて第1速駆動ギヤ22Aを第2中間軸10に連結する替わりに、その第2シンクロ26を図1の右側に移動させて、第3速駆動ギヤ21Aを第2中間軸10に連結し、第3速用のギヤ対21を介して第2中間軸10と出力軸18とを連結するようにしてもよい。このようにすれば、上記の出力軸トルクToの式における{−(1+ρ2)κ1}が、{−(1+ρ2)κ3}になり、κ3<κ1であるから、この項の値、すなわち後進トルクを減殺するトルクが小さくなって、後進走行のための駆動トルクを大きくすることができる。
The output shaft torque To at the reverse speed set in this way is
To ≒ {-(1 + ρ2) κ1 + q1, ρ2, κs / q2} × Tin
The pressure P of the oil passage 15 that connects the discharge ports 12D and 13D is
P ≒ (2π ・ ρ2 / q2) × Tin
It becomes. As is clear from the above equation of the output shaft torque To, the torque transmitted from the second intermediate shaft 10 to the output shaft 18 acts to reduce the torque for reverse travel. Therefore, instead of moving the second sync 26 to the left side of FIG. 1 and connecting the first speed drive gear 22A to the second intermediate shaft 10, the second sync 26 is moved to the right side of FIG. The high speed drive gear 21A may be connected to the second intermediate shaft 10 and the second intermediate shaft 10 and the output shaft 18 may be connected via the gear pair 21 for the third speed. In this way, {− (1 + ρ2) κ1} in the above equation of output shaft torque To becomes {− (1 + ρ2) κ3}, and κ3 <κ1, so the value of this term, that is, the reverse torque is The torque to be reduced can be reduced, and the drive torque for reverse running can be increased.

ここで、上述した発進時および後進時における各ポンプモータ12,13の押し出し容積の制御の態様について説明する。前述したように、第1速や後進段が設定されるまでの過渡時には、圧油を介して動力の一部を伝達するので、圧油をドレーンさせるなどのことによっていわゆるダブルロック状態などを回避できる。そのために、各ポンプモータ12,13の押し出し容積を順に変化させることができ、また同時に変化させることもできる。   Here, an aspect of controlling the pushing volume of each of the pump motors 12 and 13 at the time of start and reverse will be described. As mentioned above, since a part of the power is transmitted through the pressure oil at the time of transition until the first speed or reverse gear is set, the so-called double lock state is avoided by draining the pressure oil. it can. Therefore, the extrusion volumes of the pump motors 12 and 13 can be changed in order, and can be changed simultaneously.

図14は、発進時に、各ポンプモータ12,13の押し出し容積q1,q2を順に変化させた場合の各押し出し容積q1,q2の変化、および変速比(トルク比)γの変化、ならびに前記油路15の油圧PAの変化を示す図であり、第1ポンプモータ12の押し出し容積q1を大きい容積に設定した状態で、第2ポンプモータ13の押し出し容積q2を次第に増大させると、発進用のギヤ対24を介したトルクの伝達が生じ、そのギヤ対24の変速比が第1速用のギヤ対22の変速比より大きいから、発進直後には大きい変速比(トルク比)γsが得られる。その後、第2ポンプモータ13の押し出し容積q2が次第に増大するものの、圧油の吐出量が絞られるために、第1ポンプモータ12に供給される圧油の量が減少し、それに伴って発進用のギヤ対24が負担する伝達トルクが減少し、変速比もそれに応じて小さくなる。   FIG. 14 shows changes in the push-out volumes q1, q2 and changes in the transmission ratio (torque ratio) γ when the push-out volumes q1, q2 of the pump motors 12, 13 are changed in order, and the oil passage. 15 is a diagram showing a change in the hydraulic pressure PA, and when the pushing volume q2 of the second pump motor 13 is gradually increased in a state where the pushing volume q1 of the first pump motor 12 is set to a large volume, the starting gear pair Since torque is transmitted through the gear pair 24 and the gear ratio of the gear pair 24 is larger than the gear ratio of the gear pair 22 for the first speed, a large gear ratio (torque ratio) γs is obtained immediately after starting. Thereafter, although the push-out volume q2 of the second pump motor 13 gradually increases, the amount of pressure oil supplied to the first pump motor 12 decreases due to the pressure oil discharge amount being reduced, and accordingly the vehicle is started. The transmission torque borne by the gear pair 24 decreases, and the gear ratio decreases accordingly.

第2ポンプモータ13の押し出し容積q2が、第1ポンプモータ12の押し出し容積q2と等しい容積になると、第2ポンプモータ13についてはその容積が維持され、これに替えて第1ポンプモータ12の押し出し容積q1が次第に減少させられる。すなわち、第2ポンプモータ13の押し出し容積q2の増大制御の後に第1ポンプモータ12の押し出し容積q1の減少制御が開始される。この第1ポンプモータ12についての押し出し容積q1の減少制御の過程においても第1速に向けた変速が進行し、変速比(トルク比)γが次第に低下する。そして、第1ポンプモータ12の押し出し容積q1がゼロになって第1ポンプモータ12がフリー状態となると、出力軸18に対しては第2中間軸10および第1速用のギヤ対22のみを介してトルクが伝達され、第1速の変速比(トルク比)γ1が達成される。このような変速の過程における前記油圧PAは、図14に付記してある式で示される一定圧に維持される。   When the pushing volume q2 of the second pump motor 13 becomes equal to the pushing volume q2 of the first pump motor 12, the volume of the second pump motor 13 is maintained, and instead the pushing of the first pump motor 12 is maintained. The volume q1 is gradually reduced. That is, after the increase control of the extrusion volume q2 of the second pump motor 13, the decrease control of the extrusion volume q1 of the first pump motor 12 is started. Even in the process of decreasing the push-out volume q1 for the first pump motor 12, the gear shift toward the first speed proceeds, and the gear ratio (torque ratio) γ gradually decreases. When the pushing volume q1 of the first pump motor 12 becomes zero and the first pump motor 12 is in a free state, only the second intermediate shaft 10 and the first speed gear pair 22 are connected to the output shaft 18. Torque is transmitted to achieve the first speed gear ratio (torque ratio) γ1. The hydraulic pressure PA in the process of such a shift is maintained at a constant pressure represented by the formula attached to FIG.

図14に示す制御によれば、各ポンプモータ12,13の押し出し容積q1,q2の変更制御を協調して実行する必要がないので、制御が容易になる。   According to the control shown in FIG. 14, since it is not necessary to coordinately execute the change control of the pushing volumes q1 and q2 of the pump motors 12 and 13, the control becomes easy.

これに対して図15に示す例は、発進時に、各ポンプモータ12,13の押し出し容積q1,q2を同時に変更する制御例である。すなわち、発進の判断の成立に基づいて、第1ポンプモータ12の押し出し容積q1を次第に低下させると同時に、第2ポンプモータ13の押し出し容積q2を次第に増大させる。この制御の開始と同時に第2ポンプモータ13から第1ポンプモータ12に圧油が供給されて、発進用のギヤ対24を介したトルクの伝達が生じるので、前述した図14に示すいわゆる逐次制御の場合と同様に、変速比(トルク比)γが発進用のギヤ対24の変速比に基づく大きい値γsを示す。各押し出し容積q1,q2の増大および減少が継続することにより、変速比(トルク比)γが第1速の値γ1に向けて次第に低下し、第1ポンプモータ12がフリー状態となり、また第2ポンプモータ13がロック状態となることにより、第1速が達成される。このような変速の過程における前記油圧PAは、図15に付記してある式で示される一定圧に維持される。   On the other hand, the example shown in FIG. 15 is a control example in which the pushing volumes q1 and q2 of the pump motors 12 and 13 are simultaneously changed when starting. That is, based on the establishment of the start determination, the push-out volume q1 of the first pump motor 12 is gradually reduced and at the same time the push-out volume q2 of the second pump motor 13 is gradually increased. Simultaneously with the start of this control, pressure oil is supplied from the second pump motor 13 to the first pump motor 12 to transmit torque via the starting gear pair 24, so that the so-called sequential control shown in FIG. As in the case of, the gear ratio (torque ratio) γ exhibits a large value γs based on the gear ratio of the starting gear pair 24. As the push volumes q1 and q2 continue to increase and decrease, the gear ratio (torque ratio) γ gradually decreases toward the first speed value γ1, the first pump motor 12 becomes free, and the second The first speed is achieved by the pump motor 13 being locked. The hydraulic pressure PA in the process of such a shift is maintained at a constant pressure represented by the formula attached to FIG.

したがって図15に示す制御によれば、各ポンプモータ12,13の押し出し容積q1,q2の変更制御が同時に進行するので、変速に要する時間が短くなり、変速応答性が向上する。   Therefore, according to the control shown in FIG. 15, since the change control of the pushing volumes q1 and q2 of the pump motors 12 and 13 proceeds at the same time, the time required for the shift is shortened and the shift response is improved.

さらに、図16は、後進時の制御例を示しており、これはいわゆる逐次制御の例である。前述したように、後進段は、第1ポンプモータ12を逆回転するモータとして機能させて設定するので、その押し出し容積q1は負の値に設定される。いわゆる逆振りの状態である。その状態で第2ポンプモータ13の押し出し容積q2を次第に増大させると、第2ポンプモータ13から吐出された圧油によって第1ポンプモータ12がモータとして動作し、その出力トルクが発進用のギヤ対24を介して出力軸18に伝達されるので、第1ポンプモータ12が出力するトルクに応じた変速比(トルク比)γsが設定される。   Further, FIG. 16 shows an example of control during reverse travel, which is an example of so-called sequential control. As described above, the reverse speed is set by causing the first pump motor 12 to function as a reverse rotating motor, so that the pushing volume q1 is set to a negative value. This is a so-called reverse state. In this state, when the pushing volume q2 of the second pump motor 13 is gradually increased, the first pump motor 12 operates as a motor by the pressure oil discharged from the second pump motor 13, and the output torque of the first pump motor 13 is a gear pair for starting. Therefore, the transmission ratio (torque ratio) γs corresponding to the torque output from the first pump motor 12 is set.

第2ポンプモータ13の押し出し容積q2が次第に増大するのに併せて圧油の吐出量が削減されるので、第1ポンプモータ12の出力トルクが次第に低下し、それに応じて変速比(トルク比)γが次第に低下する。そして、第2ポンプモータ13の押し出し容積q2が所定値まで増大した時点でその容積q2が維持される一方、第1ポンプモータ12の押し出し容積q1が次第に低下させられる。そして、目標とする容量に達した時点でその容量に維持される。その結果、変速比(トルク比)γが目標値γRに設定される。このような変速の過程における前記油圧PAは、図16に付記してある式で示される一定圧に維持される。   As the pushing volume q2 of the second pump motor 13 gradually increases, the discharge amount of pressure oil is reduced, so that the output torque of the first pump motor 12 gradually decreases, and the gear ratio (torque ratio) is accordingly reduced. γ gradually decreases. When the pushing volume q2 of the second pump motor 13 increases to a predetermined value, the volume q2 is maintained, while the pushing volume q1 of the first pump motor 12 is gradually reduced. When the target capacity is reached, the capacity is maintained. As a result, the gear ratio (torque ratio) γ is set to the target value γR. The hydraulic pressure PA in the process of such a shift is maintained at a constant pressure represented by the formula attached to FIG.

つぎのこの発明の他の例を説明する。上述した図1に示す構成では、後進段を設定した際に、発進用のギヤ対24を介して出力軸18に伝達されるトルクと、第1速用のギヤ対22もしくは第3速用のギヤ対21を介して出力軸18に伝達されるトルクとが、互いに減殺する方向に作用する。また、第2ポンプモータ13として傾転角が両振り、つまり正逆回転可能な構成のものを採用する必要がある。これとは異なり、図17に示す変速機は、後進段でのトルク伝達効率を向上させ、また傾転角が片振り、つまり回転方向が一方向のみのポンプモータを使用できるように構成されている。   Another example of the present invention will be described below. In the configuration shown in FIG. 1 described above, when the reverse gear is set, the torque transmitted to the output shaft 18 via the starting gear pair 24 and the first speed gear pair 22 or the third speed gear pair are set. The torque transmitted to the output shaft 18 via the gear pair 21 acts in the direction of reducing each other. Moreover, it is necessary to employ | adopt the 2nd pump motor 13 as a structure in which the tilt angle can be swung, that is, forward / reverse rotation is possible. Unlike this, the transmission shown in FIG. 17 is configured to improve the torque transmission efficiency in the reverse speed, and to use a pump motor whose tilt angle is one swing, that is, the rotation direction is only one direction. Yes.

具体的に説明すると、図17に示す変速機は、前述した図1に示す構成の一部を変更したものであって、前述した第5速用のギヤ対23に替えて、ポンプ軸11と第2中間軸10とを選択的に連結する係合装置が設けられている。この係合装置は、係合した状態で第2遊星歯車機構4の全体を一体回転させるように機能するので直結クラッチと称することのできるもであり、ドグクラッチや同期連結機構(シンクロナイザー)などを採用できる。図17には、同期連結機構を用いた例が示されており、以下の説明ではこの係合装置をリバース(R)シンクロ40と記す。   More specifically, the transmission shown in FIG. 17 is obtained by changing a part of the configuration shown in FIG. 1 described above. The transmission shown in FIG. An engagement device for selectively connecting the second intermediate shaft 10 is provided. Since this engaging device functions to rotate the entire second planetary gear mechanism 4 integrally in an engaged state, it can also be called a direct coupling clutch. A dog clutch, a synchronous coupling mechanism (synchronizer), etc. Can be adopted. FIG. 17 shows an example using a synchronous coupling mechanism. In the following description, this engagement device is referred to as reverse (R) synchro 40.

また、図17に示す変速機では、第1ポンプモータ12として、第2ポンプモータ13と同様に、一方向に回転する可変容量型ポンプモータが採用されている。他の構成は、図1に示す構成と同様であるから、図1における構成と同一の部分には図1と同じ符号を付してその説明を省略する。   In the transmission shown in FIG. 17, a variable displacement pump motor that rotates in one direction is employed as the first pump motor 12, similarly to the second pump motor 13. Since the other configuration is the same as the configuration shown in FIG. 1, the same parts as those in FIG. 1 are denoted by the same reference numerals as those in FIG.

図17に示す変速機では、発進状態から第4速用のギヤ対19で決まる変速までの間の変速比を連続的に設定することができ、また後進段を設定することができる。そのための各シンクロ25,26,27,40および各ポンプモータ12,13の動作状態を図18にまとめて示してある。この図18は、前述した図2とほぼ同じであり、第5速の欄がないこと、リバースシンクロ40の欄が追加されていること、後進段を設定するための動作内容が異なっていることの点で、図2とは相違しており、それ以外は図2と同じである。   In the transmission shown in FIG. 17, the speed ratio from the start state to the speed determined by the gear pair 19 for the fourth speed can be set continuously, and the reverse speed can be set. The operation states of the syncs 25, 26, 27, and 40 and the pump motors 12 and 13 for that purpose are collectively shown in FIG. This FIG. 18 is almost the same as FIG. 2 described above, that there is no fifth speed column, that a reverse sync 40 column is added, and that the operation content for setting the reverse gear is different. This is different from FIG. 2, and the rest is the same as FIG. 2.

したがって、ニュートラル、ならびに発進から第4速までの動作状態は、図1に示す変速機と同様であり、その説明を省略する。これに対して、後進段は、第1シンクロ25のスリーブを図17の左側に移動させて第1速駆動ギヤ22Aを第2中間軸10に連結し、かつリバースシンクロ40のスリーブを図17の右側に移動してポンプ軸11あるいはこれが連結されているサンギヤ4Sと第2中間軸10もしくはこれが連結されているキャリヤ4Cとを連結する。すなわち、第2遊星歯車機構4における二つの回転要素を一体化するように連結して、第2遊星歯車機構4の全体を一体化する。   Therefore, the neutral and the operation state from the start to the fourth speed are the same as those of the transmission shown in FIG. 1, and the description thereof is omitted. On the other hand, in the reverse gear, the sleeve of the first sync 25 is moved to the left side of FIG. 17 to connect the first speed drive gear 22A to the second intermediate shaft 10, and the sleeve of the reverse sync 40 is shown in FIG. Moving to the right side, the pump shaft 11 or the sun gear 4S to which it is connected and the second intermediate shaft 10 or the carrier 4C to which it is connected are connected. That is, the two planetary gear mechanisms 4 are integrated by connecting the two rotating elements in the second planetary gear mechanism 4 so as to be integrated.

したがって、動力源1から第2遊星歯車機構4に伝達されたトルクは、そのまま第2ポンプモータ13に伝達され、この第2ポンプモータ13が正回転する。その第2ポンプモータ13の押し出し容積q2を次第に増大させると、その吐出口13Dから圧油を吐出し、これが第1ポンプモータ12の吐出口12Dに供給される。そのため、第1ポンプモータ12の押し出し容積q1(ポンプ容量)をある程度大きい値に設定しておくと、第1ポンプモータ12がモータとして機能してトルクを出力する。その場合、第1ポンプモータ12における圧油の流動方向は、第2ポンプモータ13とは反対になるので、第1ポンプモータ12の回転方向は、第2ポンプモータ13とは逆の逆回転方向となる。そして、この第1ポンプモータ12が出力するトルクが、モータ軸9および発進用のギヤ対24を介して出力軸18に伝達されるので、出力軸18が正回転し、前述した図1に示す例と同様に後進段が設定される。   Therefore, the torque transmitted from the power source 1 to the second planetary gear mechanism 4 is directly transmitted to the second pump motor 13 and the second pump motor 13 rotates forward. When the pushing volume q2 of the second pump motor 13 is gradually increased, the pressure oil is discharged from the discharge port 13D and supplied to the discharge port 12D of the first pump motor 12. Therefore, if the pushing volume q1 (pump capacity) of the first pump motor 12 is set to a certain large value, the first pump motor 12 functions as a motor and outputs torque. In that case, since the flow direction of the pressure oil in the first pump motor 12 is opposite to that of the second pump motor 13, the rotation direction of the first pump motor 12 is the reverse rotation direction opposite to that of the second pump motor 13. It becomes. The torque output by the first pump motor 12 is transmitted to the output shaft 18 via the motor shaft 9 and the starting gear pair 24, so that the output shaft 18 rotates forward and is shown in FIG. The reverse gear is set as in the example.

このように図17に示す構成の変速機では、後進段を設定する場合、実質上、動力源1の動力で第2ポンプモータ13を直接駆動し、その圧油を第1ポンプモータ12に供給してこれを逆回転するモータとして機能させる。すなわち、油圧を介した動力の伝達を行い、そのモータ軸9から出力軸18にトルクを伝達して後進段を設定する。そのため、その油圧を制御することにより、後進走行をスムースに開始することができる。また、出力軸18に伝達する後進走行のためのトルクを減殺する作用が生じないので、後進時のトルクの伝達効率が向上し、大きい駆動トルクを得ることができる。   As described above, in the transmission configured as shown in FIG. 17, when the reverse speed is set, the second pump motor 13 is substantially directly driven by the power of the power source 1 and the pressure oil is supplied to the first pump motor 12. And this is made to function as a motor which reversely rotates. That is, power is transmitted via hydraulic pressure, and torque is transmitted from the motor shaft 9 to the output shaft 18 to set the reverse gear. Therefore, the reverse travel can be smoothly started by controlling the hydraulic pressure. Further, since there is no effect of reducing the torque for the reverse travel transmitted to the output shaft 18, the torque transmission efficiency during the reverse travel is improved, and a large drive torque can be obtained.

なお、図17に示す変速機においても、後進方向に発進する際の各ポンプモータ12,13の押し出し容積q1,q2の変更制御は、前述した図1に示す例と同様に、いわゆる逐次制御で行ってもよく、あるいは同時制御で行ってもよい。   In the transmission shown in FIG. 17 as well, the change control of the pushing volumes q1 and q2 of the pump motors 12 and 13 when starting in the reverse direction is the so-called sequential control as in the example shown in FIG. May be performed, or may be performed by simultaneous control.

この発明の更に他の具体例を図19に示してある。ここに示す例は、上述した図17に示す構成に加えて、直結ギヤ対41を設けた例である。この直結ギヤ対41は、第2遊星歯車機構4の全体が一体となって回転する場合にこの第2遊星歯車機構4に入力されたトルクを出力軸18に伝達する増速ギヤ対であり、具体的には、前記ポンプ軸11と出力軸18との間に設けられている。すなわち、出力軸18上において、駆動ギヤ41Aが、前記第1シンクロ25を挟んで発進従動ギヤ24Bとは反対側に配置され、第1シンクロ25によってその従動ギヤ41Bを出力軸18に選択的に連結するようになっている。また、この従動ギヤ41Bに噛み合っている駆動ギヤ41Aがポンプ軸11に一体となって回転するように取り付けられている。この駆動ギヤ41Aの歯数に対する従動ギヤ41Bの歯数の比である変速比は、直結ギヤ対41による変速段より一段低速側の変速段である第4速を設定するギヤ対19の変速比より小さく設定されている。したがって、車両が走行している際の使用頻度が高い最高速段を、この直結ギヤ対41によって設定するようになっている。   Still another embodiment of the present invention is shown in FIG. The example shown here is an example in which a directly coupled gear pair 41 is provided in addition to the configuration shown in FIG. 17 described above. This direct connection gear pair 41 is a speed increasing gear pair that transmits the torque input to the second planetary gear mechanism 4 to the output shaft 18 when the entire second planetary gear mechanism 4 rotates as a unit. Specifically, it is provided between the pump shaft 11 and the output shaft 18. That is, on the output shaft 18, the drive gear 41 </ b> A is disposed on the opposite side of the start driven gear 24 </ b> B across the first sync 25, and the driven gear 41 </ b> B is selectively used as the output shaft 18 by the first sync 25. It comes to be connected. A drive gear 41A meshing with the driven gear 41B is attached so as to rotate integrally with the pump shaft 11. The gear ratio, which is the ratio of the number of teeth of the driven gear 41B to the number of teeth of the drive gear 41A, is the gear ratio of the gear pair 19 that sets the fourth speed, which is one speed lower than the gear speed of the direct-coupled gear pair 41. It is set smaller. Therefore, the maximum speed stage that is frequently used when the vehicle is traveling is set by the direct-coupled gear pair 41.

この直結ギヤ対41を使用した最高速段は、第1シンクロ25のスリーブを図19の左側に移動させてその従動ギヤ41Bを出力軸18に連結し、ポンプ軸11と出力軸18との間でトルクを伝達できる状態とする。また一方、リバースシンクロ40のスリーブを図19の右側に移動してポンプ軸11と第2中間軸10とを連結することにより第2遊星歯車機構4の全体を一体回転する状態とする。したがって動力源1から第2遊星歯車機構4に伝達されたトルクは、そのままポンプ軸11に伝達され、ここから直結ギヤ対41を介して出力軸18に伝達される。そして、その直結ギヤ対41の変速比に基づく変速比が設定される。   In the highest speed stage using the directly coupled gear pair 41, the sleeve of the first sync 25 is moved to the left side in FIG. 19 and the driven gear 41B is connected to the output shaft 18, and the pump shaft 11 and the output shaft 18 are connected. To make it possible to transmit torque. On the other hand, the reverse synchro 40 sleeve is moved to the right in FIG. 19 to connect the pump shaft 11 and the second intermediate shaft 10 so that the entire second planetary gear mechanism 4 rotates integrally. Therefore, the torque transmitted from the power source 1 to the second planetary gear mechanism 4 is transmitted to the pump shaft 11 as it is, and is transmitted from here to the output shaft 18 via the direct connection gear pair 41. Then, a gear ratio based on the gear ratio of the directly connected gear pair 41 is set.

このように直結ギヤ対41を使用する最高速段では、全て機械的手段によるトルク伝達が行われ、しかも第2遊星歯車機構4の全体が一体回転して回転要素同士あるいは回転部材同士の摩擦が低減されるから、効率の良い動力伝達が可能になり、それに伴って燃費を向上させることができる。また、直結ギヤ対41と、これより一段低速側の第4速を設定する第4速用ギヤ対19とが、異なる中間軸8,10側に配置されているので、他の固定変速比同士の間での変速の場合と同様に、各ポンプモータ12,13の押し出し容量q1,q2を連続的に変化させることによる変速が可能であり、したがってショックのないスムースな変速を行うことができる。   In this way, in the highest speed stage using the direct connection gear pair 41, torque is transmitted by mechanical means, and the entire second planetary gear mechanism 4 rotates integrally to cause friction between the rotating elements or the rotating members. Therefore, efficient transmission of power is possible, and fuel efficiency can be improved accordingly. In addition, since the direct-coupled gear pair 41 and the fourth-speed gear pair 19 that sets the fourth speed on the lower side of the first gear are arranged on different intermediate shafts 8 and 10 side, As in the case of shifting between the two, the shifting by continuously changing the push-out capacities q1 and q2 of the pump motors 12 and 13 is possible, so that a smooth shifting without shock can be performed.

なお、この発明は上述した具体例に限定されないのであって、各伝動機構は、歯車による機構以外に巻き掛け伝動機構によって構成してもよい。その例を示すと図20のとおりである。すなわちここに示す変速機では、図1に示す構成のうち、各固定変速比を設定するためのギヤ対19,20,21,22,23と発進用のギヤ対24、および入力部材2と第2遊星歯車機構4のリングギヤ4Rとを連結するカウンタギヤ対5,6,7、ならびに出力軸18とデファレンシャル29とを連結するギヤ対28に替えて、それぞれチェーンドライブ機構119,120,121,122,124,150,128が採用されている。なお、図20に示す変速機は第4速を最高速段とするように構成され、したがって図1に示す第5速に相当する固定変速比を設定するための機構は設けられていない。図20における他の構成は図1に示す構成と同様であり、したがって図20に図1と同様の符号を付してその説明を省略する。   In addition, this invention is not limited to the specific example mentioned above, Each transmission mechanism may be comprised by a winding transmission mechanism other than the mechanism by a gearwheel. An example is shown in FIG. That is, in the transmission shown here, in the configuration shown in FIG. 1, the gear pairs 19, 20, 21, 22, 23 and the starting gear pair 24 for setting the respective fixed gear ratios, the input member 2 and the first gear The chain drive mechanisms 119, 120, 121, and 122 are replaced with the counter gear pairs 5, 6, and 7 that connect the ring gear 4R of the two planetary gear mechanism 4 and the gear pair 28 that connects the output shaft 18 and the differential 29, respectively. , 124, 150, 128 are employed. Note that the transmission shown in FIG. 20 is configured so that the fourth speed is the highest speed stage, and therefore a mechanism for setting a fixed gear ratio corresponding to the fifth speed shown in FIG. 1 is not provided. Other configurations in FIG. 20 are the same as the configurations shown in FIG. 1, and therefore, the same reference numerals as those in FIG.

また、この発明においては、差動機構に相当する各遊星歯車機構3,4は、シングルピニオン型遊星歯車機構に替えてダブルピニオン型遊星歯車機構によって構成することもでき、あるいは更に他の構成の差動歯車機構によって構成することもできる。また、出力部材との間に設けられる伝動機構は、適宜の変速比を設定することができればよいのであって、全体としての固定変速比の数は、五速あるいは四速以外に、これより少なくてもよく、あるいは反対に六速以上であってもよく、さらには変速比が連続的に変化する伝動機構であってもよい。さらに、動力源は一方の差動機構に直接連結する替わりに、前述したアイドルギヤに連結してもよい。   In the present invention, the planetary gear mechanisms 3 and 4 corresponding to the differential mechanism can be constituted by a double pinion type planetary gear mechanism instead of the single pinion type planetary gear mechanism. It can also be configured by a differential gear mechanism. Further, the transmission mechanism provided between the output member and the output member only needs to be able to set an appropriate speed ratio, and the total number of fixed speed ratios is less than this other than the fifth speed or the fourth speed. Alternatively, on the contrary, it may be 6th speed or more, and further, a transmission mechanism in which the gear ratio continuously changes may be used. Further, the power source may be connected to the aforementioned idle gear instead of being directly connected to one of the differential mechanisms.

この発明の一例を模式的に示すスケルトン図である。It is a skeleton figure which shows an example of this invention typically. 図1に示す変速機の動作状態をまとめて示す図表である。FIG. 2 is a chart collectively showing an operation state of the transmission shown in FIG. 1. FIG. 発進から第1速が設定されるまでの各遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of each planetary gear mechanism from the start to the first speed being set. 第1速での停止待機状態における各遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of each planetary gear mechanism in the stop standby state in 1st speed. 第1速での第2速への待機状態における各遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of each planetary gear mechanism in the standby state to the 2nd speed in 1st speed. 第1速から第2速への無段変速状態における各遊星歯車機構の状態を示す共線図である。FIG. 6 is a collinear diagram showing a state of each planetary gear mechanism in a continuously variable transmission state from the first speed to the second speed. 第2速での第1速への待機状態における各遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of each planetary gear mechanism in the standby state to the 1st speed in 2nd speed. 第2速状態における各遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of each planetary gear mechanism in a 2nd speed state. 第2速での第3速への待機状態における各遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of each planetary gear mechanism in the standby state to the 3rd speed in 2nd speed. 第2速から第3速への無段変速状態における各遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of each planetary gear mechanism in the continuously variable transmission state from 2nd speed to 3rd speed. 第3速での第2速への待機状態における各遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of each planetary gear mechanism in the standby state to the 2nd speed in 3rd speed. 第3速状態における各遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of each planetary gear mechanism in a 3rd speed state. 後進段での第2遊星歯車機構の状態を示す共線図である。It is a collinear diagram which shows the state of the 2nd planetary gear mechanism in a reverse gear. 発進時に各ポンプモータの押し出し容積を逐次制御した場合の押し出し容積、変速比(トルク比)、油圧の変化を示すタイムチャートである。It is a time chart which shows the change of the pushing volume, gear ratio (torque ratio), and oil pressure at the time of controlling sequentially the pushing volume of each pump motor at the time of start. 発進時に各ポンプモータの押し出し容積を同時制御した場合の押し出し容積、変速比(トルク比)、油圧の変化を示すタイムチャートである。It is a time chart which shows the change of extrusion volume, gear ratio (torque ratio), and oil pressure when the extrusion volume of each pump motor is simultaneously controlled at the time of start. 後進時に各ポンプモータの押し出し容積を逐次制御した場合の押し出し容積、変速比(トルク比)、油圧の変化を示すタイムチャートである。It is a time chart which shows the change of the pushing volume, gear ratio (torque ratio), and oil_pressure | hydraulic at the time of controlling the pushing volume of each pump motor at the time of reverse drive. この発明の他の例を示すスケルトン図である。It is a skeleton figure which shows the other example of this invention. 図17に示す変速機の動作状態をまとめて示す図表である。FIG. 18 is a chart collectively showing the operating state of the transmission shown in FIG. 17. この発明の更に他の例を示すスケルトン図である。It is a skeleton figure which shows another example of this invention. 伝動機構を巻き掛け伝動機構によって構成したこの発明の一例を示すスケルトン図である。It is a skeleton figure which shows an example of this invention which comprised the transmission mechanism by the winding transmission mechanism.

符号の説明Explanation of symbols

1…動力源、 2…入力部材、 3,4…遊星歯車機構、 8…第1中間軸、 9…モータ軸、 10…第2中間軸、 11…ポンプ軸、 12…第1ポンプモータ、 13…第2ポンプモータ、 18…出力軸、 19…第4速用ギヤ対、 20…第2速用ギヤ対、 21…第3速用ギヤ対、 22…第1速用ギヤ対、 23…第5速用ギヤ対、 24…発進用ギヤ対、 25,26,27…同期連結機構(シンクロ)、 40…リバースシンクロ、 41…直結ギヤ対、 119,120,121,122,124,128,150…チェーンドライブ機構。   DESCRIPTION OF SYMBOLS 1 ... Power source 2 ... Input member 3, 4 ... Planetary gear mechanism, 8 ... 1st intermediate shaft, 9 ... Motor shaft, 10 ... 2nd intermediate shaft, 11 ... Pump shaft, 12 ... 1st pump motor, 13 2nd pump motor, 18 ... Output shaft, 19 ... 4th speed gear pair, 20 ... 2nd speed gear pair, 21 ... 3rd speed gear pair, 22 ... 1st speed gear pair, 23 ... 1st gear pair 5-speed gear pair, 24 ... starting gear pair, 25, 26, 27 ... synchronous coupling mechanism (synchronized), 40 ... reverse sync, 41 ... directly coupled gear pair, 119,120,121,122,124,128,150 ... Chain drive mechanism.

Claims (6)

動力源から出力部材に伝達されるトルクを、モータの機能を兼ね備えた流体圧ポンプの吐出量もしくは吐出圧に応じて変化させることのできる変速機において、
前記動力源からトルクが伝達される入力要素と前記出力部材に対してトルクを出力する出力要素と前記流体圧ポンプに連結された反力要素との少なくとも三つの回転要素を備えて差動作用をなす第1の差動機構と、
前記出力要素と出力部材との間に配置され、かつ所定の変速比を設定する第1の伝動機構と、
その第1の伝動機構を前記出力要素と前記出力部材との間で選択的にトルク伝達可能な状態にする第1の係合機構と、
前記流体圧ポンプが吐出した圧力流体が供給されて動作することによるトルクを出力する流体圧モータと、
その流体圧モータの出力軸と前記出力部材との間に設けられた第2の伝動機構と
前記流体圧モータの出力軸が連結された反力要素と前記動力源からトルクが伝達される入力要素と前記出力部材に対してトルクを出力する出力要素との少なくとも三つの回転要素を備えて差動作用をなす第2の差動機構と、
その第2の差動機構における出力要素と前記出力部材との間に配置され、かつ所定の変速比を設定する第3の伝動機構と、
その第3の伝動機構を前記第2の差動機構における出力要素と前記出力部材との間で選択的にトルク伝達可能な状態にする第2の係合機構と
を備えていることを特徴とする変速機。
In the transmission that can change the torque transmitted from the power source to the output member in accordance with the discharge amount or discharge pressure of the fluid pressure pump having the function of the motor,
A differential action is provided by including at least three rotating elements: an input element to which torque is transmitted from the power source, an output element for outputting torque to the output member, and a reaction force element connected to the fluid pressure pump. A first differential mechanism formed;
A first transmission mechanism that is disposed between the output element and the output member and sets a predetermined gear ratio;
A first engagement mechanism for the first transmission mechanism selectively torquable state between the output member and the output element,
A fluid pressure motor that outputs torque generated by operating the fluid supplied by the fluid pressure pump; and
A second transmission mechanism provided between the output shaft of the fluid pressure motor and the output member ;
A difference comprising at least three rotating elements, a reaction force element to which an output shaft of the fluid pressure motor is connected, an input element to which torque is transmitted from the power source, and an output element for outputting torque to the output member. A second differential mechanism for operation;
A third transmission mechanism disposed between the output element and the output member in the second differential mechanism, and setting a predetermined gear ratio;
A second engagement mechanism that allows the third transmission mechanism to selectively transmit torque between the output element of the second differential mechanism and the output member . A transmission characterized by that.
前記流体圧モータは、前記流体圧ポンプから圧力流体が供給されることにより正回転する状態と逆回転する状態とに切り替え可能な正逆転型流体圧モータから構成されていることを特徴とする請求項1に記載の変速機。 The fluid pressure motor comprises a forward / reverse fluid pressure motor that can be switched between a forward rotation state and a reverse rotation state when a pressure fluid is supplied from the fluid pressure pump. Item 2. The transmission according to Item 1. 前記第1の差動機構の全体を一体回転する状態で前記動力源が出力したトルクを前記流体圧ポンプに伝達する伝達手段を更に備えていることを特徴とする請求項1に記載の変速機。 2. The transmission according to claim 1 , further comprising a transmission unit configured to transmit torque output from the power source to the fluid pressure pump in a state in which the entire first differential mechanism rotates integrally. . 前記伝達手段は、前記第1の差動機構の少なくとも二つの回転要素同士を連結して第1の差動機構の全体を一体回転させる他の係合機構によって構成されていることを特徴とする請求項3に記載の変速機。 The transmission means is configured by another engagement mechanism that connects at least two rotating elements of the first differential mechanism and rotates the entire first differential mechanism integrally. The transmission according to claim 3 . 前記第1の差動機構におけるいずれかの回転要素と前記出力部材との間に設けられ、前記第1ないし第3の各伝動機構による変速比より小さい変速比を設定する第4の伝動機構と、
その第4の伝動機構を前記第1の差動機構における前記いずれかの回転要素と前記出力部材との間で選択的にトルク伝達可能な状態にする更に他の係合機構と
を更に備えていることを特徴とする請求項4に記載の変速機。
A fourth transmission mechanism that is provided between any one of the rotating elements in the first differential mechanism and the output member, and sets a transmission gear ratio smaller than the transmission gear ratios of the first to third transmission mechanisms; ,
Still another engagement mechanism that allows the fourth transmission mechanism to selectively transmit torque between any of the rotating elements in the first differential mechanism and the output member;
The transmission according to claim 4, further comprising:
前記第3の伝動機構は、前記第4の伝動機構に次いで変速比が小さい伝動機構を含むことを特徴とする請求項5に記載の変速機。 The transmission according to claim 5, wherein the third transmission mechanism includes a transmission mechanism having a gear ratio smaller than that of the fourth transmission mechanism .
JP2005223093A 2005-08-01 2005-08-01 transmission Expired - Fee Related JP4892885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223093A JP4892885B2 (en) 2005-08-01 2005-08-01 transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223093A JP4892885B2 (en) 2005-08-01 2005-08-01 transmission

Publications (2)

Publication Number Publication Date
JP2007040341A JP2007040341A (en) 2007-02-15
JP4892885B2 true JP4892885B2 (en) 2012-03-07

Family

ID=37798526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223093A Expired - Fee Related JP4892885B2 (en) 2005-08-01 2005-08-01 transmission

Country Status (1)

Country Link
JP (1) JP4892885B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101675273B (en) * 2007-04-26 2011-12-14 安东尼·理查德·埃斯普林 A continuous variable transmission assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159061A (en) * 1984-08-29 1986-03-26 Shimadzu Corp Hydraulic machine type transmission
JP4439223B2 (en) * 2003-09-01 2010-03-24 株式会社小松製作所 Hydraulic-mechanical transmission

Also Published As

Publication number Publication date
JP2007040341A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US8771139B2 (en) Power transmission unit
US20090170649A1 (en) Power split dual input shaft transmission for vehicle
JP4281764B2 (en) Vehicle transmission
JP4396602B2 (en) Vehicle transmission
JP4892885B2 (en) transmission
JP4742732B2 (en) Vehicle transmission
JP4830702B2 (en) Vehicle transmission
JP2009293745A (en) Control device of variable displacement pump motor type transmission
JP2008039010A (en) Transmission
JP2007327532A (en) Transmission
JP2007327530A (en) Controller for transmission
JP4923854B2 (en) Transmission control device
JP4961886B2 (en) Vehicle transmission
JP2009275854A (en) Variable displacement pump motor type transmission
JP4830703B2 (en) Vehicle transmission
JP2008039004A (en) Vehicle transmission
JP2008039005A (en) Vehicle transmission
JP2007333196A (en) Transmission
JP4872515B2 (en) Fluid pressure mechanical power transmission device
JP4232799B2 (en) Vehicle transmission
JP2008051150A (en) Controller of transmission
JP2008039008A (en) Transmission for vehicle
JP2010014264A (en) Controller of variable displacement pump motor type transmission
JP2009236237A (en) Variable displacement pump motor type transmission and its control device
JP2009121639A (en) Variable displacement pump motor type transmission and its control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees