JP4892661B2 - Ultrasonic motor vibrator - Google Patents

Ultrasonic motor vibrator Download PDF

Info

Publication number
JP4892661B2
JP4892661B2 JP2006227479A JP2006227479A JP4892661B2 JP 4892661 B2 JP4892661 B2 JP 4892661B2 JP 2006227479 A JP2006227479 A JP 2006227479A JP 2006227479 A JP2006227479 A JP 2006227479A JP 4892661 B2 JP4892661 B2 JP 4892661B2
Authority
JP
Japan
Prior art keywords
vibration
electrode
region
vibrator
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006227479A
Other languages
Japanese (ja)
Other versions
JP2008054407A (en
Inventor
浩二 安藤
幹夫 滝本
昌宏 高野
隆二 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
Nikko Co Ltd
Original Assignee
Ishikawa Prefecture
Nikko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture, Nikko Co Ltd filed Critical Ishikawa Prefecture
Priority to JP2006227479A priority Critical patent/JP4892661B2/en
Publication of JP2008054407A publication Critical patent/JP2008054407A/en
Application granted granted Critical
Publication of JP4892661B2 publication Critical patent/JP4892661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電素子を用いて構成する超音波モータ用振動子に関する。   The present invention relates to a vibrator for an ultrasonic motor configured using a piezoelectric element.

近年、電子・情報産業の急速な発展に伴い、精密部品の更なる微細化、高集積化が求められており、ナノオーダー(10-9mオーダー)での検査や加工に対応する超精密位置決め装置が必要となっている。また、医療やバイオ研究においてタンパク質や細胞の制御による応用技術開発が進み、より微細な領域への位置決めが可能な顕微鏡用ステージに対するニーズが非常に強くなっている。更に近年では高精度化への要求と併せて、検査・加工・測定の対象物が小さくなるに伴い、位置決め装置やその駆動源の小型化・軽量化も求められるようになってきた。 In recent years, with the rapid development of the electronics and information industry, there has been a demand for further miniaturization and higher integration of precision parts, and ultra-precision positioning for nano-order (10 -9 m order) inspection and processing. A device is needed. In addition, the development of applied technology by controlling proteins and cells in medical and bio research has advanced, and the need for a microscope stage that can be positioned in a finer area has become very strong. Furthermore, in recent years, along with the demand for higher accuracy, as the objects to be inspected / processed / measured have become smaller, it has become necessary to reduce the size and weight of the positioning device and its drive source.

従来、位置決め装置の駆動源としては電磁モータが用いられてきた。しかし、電磁モータによる位置決め装置では、電磁モータが持つ種々の間題点に合わせて、減速装置(ギヤ)やボールねじが必要となる等の構造的な間題点も多く、ナノレベルの精度を得ることは困難となっていた。また、占有体積や重量も構造上の制約のために必然的に大きなものになる。電磁モータ方式の位置決め装置の場合、比較的高精度と言われているものでも、位置決め精度は1μm(1.0×10-6m)が限界となっており、マーケット・ニーズであるナノオーダーに比べると1000倍も粗動であるといえる。つまり、電磁モータ方式の位置決め装置でナノオーダーが達成できる可能性は非常に低いと予想される。 Conventionally, an electromagnetic motor has been used as a driving source of the positioning device. However, the positioning device using an electromagnetic motor has many structural issues such as the need for a speed reducer (gear) and a ball screw in accordance with the various issues of the electromagnetic motor. It was difficult to get. Also, the occupied volume and weight are inevitably large due to structural limitations. In the case of an electromagnetic motor type positioning device, even though it is said to be relatively high accuracy, the positioning accuracy is limited to 1 μm (1.0 × 10 −6 m), which is in the nano-order that is a market need It can be said that it is 1000 times as coarse as compared. That is, it is expected that the possibility of achieving nano-order with an electromagnetic motor type positioning device is very low.

そこで、電磁モータ方式の位置決め装置に代わる新しい位置決め装置として超音波モータを駆動源とする位置決め装置が期待され始めている。この超音波モータ方式の位置決め装置は、超音波振動をそのまま摩擦摺動運動に変換するという動作原理を利用したものであり、減速装置やボールネジを必要とせず、また小型軽量、応答性が高い、作動音がない、停止時の保持力が大きい等の優れた特性も付与できると期待されている。このように、超音波モータを駆動源とする技術は、非常に高精度な位置決め装置を作る要素技術として注目され、多くのタイプが提案され研究されている。   Therefore, a positioning apparatus using an ultrasonic motor as a drive source is beginning to be expected as a new positioning apparatus that replaces the electromagnetic motor type positioning apparatus. This ultrasonic motor type positioning device utilizes the operating principle of directly converting ultrasonic vibrations into frictional sliding motion, does not require a speed reducer or a ball screw, is small and light, and has high responsiveness. It is expected that excellent characteristics such as no operating noise and a large holding force at the time of stopping can be imparted. As described above, a technique using an ultrasonic motor as a drive source has been attracting attention as an elemental technique for producing a very high-precision positioning device, and many types have been proposed and studied.

一般的な超音波モータの原理を図2に示す。超音波モータは振動子1とスライダ2(移動体)を含み、振動子はその伸縮と屈曲の組み合わせにより、少なくともその一部が楕円運動をする。例えば、図2(A)中のp点(振動子の左端面の中心点)は、(a)〜(d)の4つの状態を通って同図(B)に示す軌跡を描く(xは振動子の長手方向、yは振動子の上下面に垂直な軸)。振動子の楕円運動をしている部分には、通常、固定摺動部材(ステータ)3となる耐磨耗性材料が接着されている。振動子の楕円運動はステータを介してスライダに伝達され、スライダを動かす駆動力となる。図2では、楕円運動の繰り返しにより移動体は図のガイド4に沿って下方へと送られる。この例では直線的に移動体を駆動しているが、移動体を円環状にすれば回転運動を生じることも可能である。   The principle of a general ultrasonic motor is shown in FIG. The ultrasonic motor includes a vibrator 1 and a slider 2 (moving body), and at least a part of the vibrator makes an elliptical motion due to a combination of expansion and contraction. For example, point p (center point of the left end face of the vibrator) in FIG. 2A draws a locus shown in FIG. 2B through four states (a) to (d) (x is The longitudinal direction of the vibrator, y is an axis perpendicular to the upper and lower surfaces of the vibrator). A wear-resistant material to be a fixed sliding member (stator) 3 is usually bonded to the portion of the vibrator that is moving elliptically. The elliptical motion of the vibrator is transmitted to the slider via the stator and becomes a driving force for moving the slider. In FIG. 2, the moving body is sent downward along the guide 4 in the figure by repeating the elliptical motion. In this example, the moving body is driven linearly. However, if the moving body is formed into an annular shape, it is possible to cause a rotational motion.

後述するように、振動子は圧電素子で構成できるが、この場合、前述の楕円運動の大きさは圧電素子への入力電圧に依存する。すなわち、図3(図2(B)に対応する図。但し、図2(B)のy軸は図3では水平方向として示す。)に模式的に示すように、入力電圧が大きければ楕円運動も大きく、従って、スライダの移動速度も大きくなる。一方、入力電圧が小さければ楕円運動も小さく、従って、スライダの移動速度も小さくなる。
例えば、超音波モータを用いてXYテーブル等で精密位置決めする場合、目的位置に近づくと移動速度を遅くして、少しずつ近づくという動作が必要となるが、移動速度を遅くするためには入力電圧を小さくする必要がある。
As will be described later, the vibrator can be composed of a piezoelectric element. In this case, the magnitude of the aforementioned elliptical motion depends on the input voltage to the piezoelectric element. That is, as schematically shown in FIG. 3 (the figure corresponding to FIG. 2B, where the y-axis of FIG. 2B is shown as the horizontal direction in FIG. 3), if the input voltage is large, elliptical motion Therefore, the moving speed of the slider is also increased. On the other hand, if the input voltage is small, the elliptical motion is small, and therefore the moving speed of the slider is also small.
For example, in the case of precise positioning using an XY table or the like using an ultrasonic motor, an operation of slowing down the moving speed when approaching the target position and approaching gradually is necessary. Need to be small.

一方、固定摺動部材を介してスライダに駆動力を伝達できるのは両者が接触しているからであり、この目的のため、ステータは、適当な圧力でスライダに押し当てられている。しかし、押し当て加重が強すぎると、ステータがスライダに押し当てられ過ぎるため、互いが一瞬たりとも離れる事ができず、弱い入力電圧では全く動かない(図3の楕円運動の横方向の振幅成分がゼロになることに相当、従来の振動子の場合は同時に縦方向の振幅もゼロになる)。入力電圧を上げていくと、ある電圧(しきい電圧)で突然動き出し、このしきい電圧を超えた領域で楕円運動が起こり始める。   On the other hand, the driving force can be transmitted to the slider via the fixed sliding member because they are in contact with each other. For this purpose, the stator is pressed against the slider with an appropriate pressure. However, if the pressing load is too strong, the stator is pressed against the slider too much, so that they cannot be separated from each other even for a moment, and do not move at all with a weak input voltage (the horizontal amplitude component of the elliptical motion in FIG. 3). Is equivalent to zero, and in the case of the conventional vibrator, the longitudinal amplitude is also zero). When the input voltage is increased, the voltage suddenly starts moving at a certain voltage (threshold voltage), and elliptical motion starts to occur in a region exceeding the threshold voltage.

押し当て力をどれだけ弱くしてもしきい電圧が低くなるだけで、しきい電圧は必ず存在し、ある電圧(しきい電圧)で突然動き出すという挙動を無くすことは難しい。すなわち、電圧−移動速度の関係は、図4に示すように、低電圧領域では電圧一移動速度の特性が比例関係ではない上に非常に急峻な曲線を描いており、僅かな電圧の変動によって移動速度が大幅に変化してしまう(入出力特性の非線形性)。
このように、超音波モータを用いて精密位置決めを使用とする場合、入力電圧を低くする必要があるが、入出力特性の非線形性のため、微動領域では制御が困難になる。
No matter how weak the pressing force is, the threshold voltage is always reduced, and there is always a threshold voltage, and it is difficult to eliminate the behavior of sudden movement at a certain voltage (threshold voltage). That is, as shown in FIG. 4, the voltage-moving speed relationship is such that the characteristics of voltage-moving speed are not proportional in the low voltage region, and a very steep curve is drawn. The moving speed changes significantly (non-linearity of input / output characteristics).
As described above, when precise positioning is used using an ultrasonic motor, it is necessary to lower the input voltage. However, because of the nonlinearity of the input / output characteristics, control becomes difficult in the fine movement region.

従来の超音波モータ用振動子として、例えば、特許文献1、2は、矩形状の積層圧電素子に伸縮振動と屈曲振動の2種類の振動を同時に励振させることにより、振動体の所定の位置に楕円運動を発生させ、この楕円運動を移動体(スライダ)へ伝達することで移動体を回転運動もしくは直線運動させるものが開示されている。また、特許文献3、4には、屈曲2次振動を加振するための圧電素子と、伸縮1次振動を加振するための圧電素子とを個別にそれぞれ積層させ、振動子に楕円運動を発生させるものが開示されている。
しかし、従来の超音波モータ用振動子は、入出力特性の非線形性を解消したものではなく、このため、微動領域での振動子の制御性が悪く、精密な位置決めに用いるのは困難であった。
As a conventional ultrasonic motor vibrator, for example, Patent Documents 1 and 2 disclose that a rectangular laminated piezoelectric element is excited at the predetermined position of a vibrating body by simultaneously exciting two types of vibrations of stretching vibration and bending vibration. An apparatus that generates an elliptical motion and transmits the elliptical motion to a moving body (slider) to cause the moving body to rotate or linearly move is disclosed. In Patent Documents 3 and 4, a piezoelectric element for exciting a bending secondary vibration and a piezoelectric element for exciting a stretching primary vibration are individually laminated, and an elliptical motion is applied to the vibrator. What is generated is disclosed.
However, conventional ultrasonic motor vibrators do not eliminate the nonlinearity of the input / output characteristics. For this reason, the controllability of the vibrator in the fine movement region is poor, and it is difficult to use for precise positioning. It was.

また、従来の超音波モータ用振動子の圧電素子は、特許文献5に代表されるように、板状の素子を挟んで、その両面のほぼ全面に電極を形成している。このため、静電容量が大きくなり、必要以上の電流が流れるため、駆動電源に大きな負担がかかるという問題があった。さらに、特許文献3、4では、屈曲2次振動を加振するための圧電素子と、伸縮1次振動を加振するための圧電素子とを個別にそれぞれ積層させるが、振動子全体の半分だけが屈曲振動を、もう半分だけが伸縮振動を加振していることになる。このため、素子全体に占める加振領域の割合が小さくなり、結果的には振動振幅の小さな振動子になってしまうと考えられ、加振効率が悪いという問題があった。   Further, as represented by Patent Document 5, a conventional piezoelectric element of a vibrator for an ultrasonic motor has electrodes formed on almost the entire surface of a plate-like element. For this reason, there is a problem that a large load is applied to the drive power supply because the capacitance increases and more current flows than necessary. Further, in Patent Documents 3 and 4, a piezoelectric element for exciting the bending secondary vibration and a piezoelectric element for exciting the expansion and contraction primary vibration are individually laminated, but only half of the whole vibrator is used. Is bending vibration and only the other half is stretching vibration. For this reason, the proportion of the excitation region in the entire element is reduced, and as a result, it is considered that the vibrator has a small vibration amplitude, and there is a problem that the excitation efficiency is poor.

特許第3311446号明細書Japanese Patent No. 3311446 特開2004−297951号公報JP 2004-297951 A 特開2000−116162号公報JP 2000-116162 A 特開2005−65358号公報JP 2005-65358 A 特許第2722211号明細書Japanese Patent No. 2722211

本発明は、入出力特性の非線形性を緩和し、微動領域での制御性(位置決め精度)の高い超音波モータ用振動子の提供、及び振動効率の高い超音波モータ用振動子の提供を目的とする。   An object of the present invention is to provide a vibrator for an ultrasonic motor with high controllability (positioning accuracy) in a fine movement region, and to provide a vibrator for an ultrasonic motor with high vibration efficiency. And

本発明者らは、上記目的を達成するために鋭意検討した結果、圧電素子において屈曲振動(好ましくは、屈曲2次振動)と伸縮振動(好ましくは、伸縮1次振動)を独立して励振させることで、振動子の制御性が大幅に向上し、また各々の振動を励振させるための分極領域を適切な位置および大きさに最適化することにより振動効率が高まることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の超音波モータ用振動子を提供するものである。
As a result of intensive studies to achieve the above object, the present inventors independently excite bending vibration (preferably bending secondary vibration) and stretching vibration (preferably stretching primary vibration) in the piezoelectric element. As a result, it was found that the controllability of the vibrator was greatly improved, and that the vibration efficiency was improved by optimizing the polarization region for exciting each vibration to an appropriate position and size, and the present invention was completed. It came to do.
That is, the present invention provides the following ultrasonic motor vibrators.

1.圧電素子に、屈曲振動と伸縮振動をそれぞれ独立して励振する分極領域をもち、当該分極領域に電圧信号を印加するための電極を設けたことを特徴とする超音波モータ用振動子。
2.圧電素子の屈曲振動と伸縮振動を励振する分極領域が、それぞれの振動による圧電素子の歪みが最大になる部位を含む前記1記載の超音波モータ用振動子。
3.屈曲振動が屈曲2次振動、伸縮振動が伸縮1次振動である前記1または2記載の超音波モータ用振動子。
4.圧電素子が矩形板であり、伸縮振動を励起する分極領域が、前記矩形板の対向する長辺及び短辺の中点を含む領域に、矩形板の各辺に平行な辺によって画される矩形または十字型領域であり、当該領域における長辺に平行な辺が、前記矩形板の長辺の長さの10%以上、95%以下であり、前記当該領域における矩形板の短辺に平行な辺が、前記矩形板の短辺の長さの10%以上である前記3に記載の超音波モータ用振動子。
5.圧電素子が矩形板であり、屈曲振動を励起する分極領域が、前記矩形板の短辺から長辺に沿って長辺の長さの1/4だけ中心寄りの領域において、それぞれ設けられる各面2対の電極であり、各々の分極領域の長辺に平行な辺が前記長辺の長さの40%以下であり、短辺に平行な辺が前記短辺の長さの40%以下である前記3に記載の超音波モータ用振動子。
6.請求項1〜5のいずれか記載の圧電素子と、外部電極との短絡を目的とする引き出し電極パターンを持つ前記1に記載の電極を積層して構成した積層圧電型超音波モータ用振動子。
1. A transducer for an ultrasonic motor, characterized in that a piezoelectric element has a polarization region for independently exciting bending vibration and stretching vibration, and an electrode for applying a voltage signal to the polarization region is provided.
2. 2. The ultrasonic motor vibrator according to claim 1, wherein the polarization region for exciting the bending vibration and the stretching vibration of the piezoelectric element includes a portion where the distortion of the piezoelectric element due to each vibration is maximized.
3. 3. The ultrasonic motor vibrator according to claim 1 or 2, wherein the bending vibration is a bending secondary vibration and the stretching vibration is a stretching primary vibration.
4). A rectangular shape in which a piezoelectric element is a rectangular plate, and a polarization region that excites stretching vibration is defined by a side parallel to each side of the rectangular plate in a region including the midpoints of the opposing long side and short side of the rectangular plate Or, it is a cross-shaped region, and the side parallel to the long side of the region is 10% or more and 95% or less of the length of the long side of the rectangular plate, and is parallel to the short side of the rectangular plate in the region 4. The ultrasonic motor vibrator according to 3, wherein the side is 10% or more of the length of the short side of the rectangular plate.
5. Each surface provided in a region where the piezoelectric element is a rectangular plate, and the polarization region for exciting the bending vibration is a quarter of the length of the long side along the long side from the short side of the rectangular plate. Two pairs of electrodes, the side parallel to the long side of each polarization region is 40% or less of the length of the long side, and the side parallel to the short side is 40% or less of the length of the short side 4. The ultrasonic motor transducer according to 3 above.
6). 6. A vibrator for a laminated piezoelectric ultrasonic motor comprising a laminate of the electrode according to claim 1 having a lead electrode pattern for short-circuiting the piezoelectric element according to claim 1 and an external electrode.

本発明の超音波モータ用振動子は、従来に比べ制御性、特に微動領域における制御性が大幅に向上するため、精密位置決め装置の駆動源として有用である。さらに、従来よりも高い振動効率の超音波モータ用振動子を得ることができる。   The vibrator for an ultrasonic motor according to the present invention is useful as a driving source for a precision positioning device because controllability, particularly controllability in a fine movement region, is greatly improved as compared with the related art. Furthermore, it is possible to obtain an ultrasonic motor vibrator having a vibration efficiency higher than that of the prior art.

本発明では、圧電素子を用いて構成する超音波モータ用振動子において、1個の素子上に屈曲振動(好ましくは、屈曲2次振動)と伸縮振動(好ましくは、伸縮1次振動)を独立して励振するように電極を設け、その配置を最適にする。なお、屈曲(2次)振動とは、図6(a)に模式的に示す横振動(2次では1波長≒振動子の全長)であり、伸縮(1次)振動とは、同図(b)に模式的に示す縦振動(1次では半波長=振動子の全長))である。
以下本発明を詳細に説明する。
In the present invention, in an ultrasonic motor vibrator configured using a piezoelectric element, bending vibration (preferably, bending secondary vibration) and stretching vibration (preferably, stretching primary vibration) are independently performed on one element. The electrodes are provided so as to be excited, and the arrangement thereof is optimized. Note that the bending (secondary) vibration is the transverse vibration (one wavelength in the second order≈the total length of the vibrator) schematically shown in FIG. 6A, and the expansion / contraction (primary) vibration is the same figure ( It is a longitudinal vibration (half wavelength in the first order = full length of the vibrator) schematically shown in b).
The present invention will be described in detail below.

本発明の圧電素子の加振点(電極位置)は、伸縮振動や屈曲振動を効率よく発生させるため、各振動による歪が最大となる場所に配置する。具体的には、伸縮振動では振動の「節」の位置に、屈曲運動では振動の「腹」の位置に電極を配置する。
例えば、矩形薄板状の圧電素子を用いた場合、屈曲2次振動の振幅分布は図7(a)に示すようになる。屈曲2次振動は圧電素子の全長がほぼ1波長に相当する横振動(素子面内に振幅を有する振動)であるため、歪が最大になる場所は振幅が最大になる箇所であり、振動の自由端である左右の端から1/4位置程度の場所である。実際は圧電素子の全長(L)は屈曲2次振動の1波長(λ2B)よりわずかに長く、歪みが最大になる場所は、左右の端から(1/4)L+α中心に近い所となる。α=(1/4)(L−λ2B)であり、通常、αはLの4.5%〜6.5%程度である。従って、本発明ではこの位置に屈曲(2次)振動用の電極を配置する。
The excitation point (electrode position) of the piezoelectric element of the present invention is disposed at a location where the distortion due to each vibration is maximized in order to efficiently generate stretching vibration and bending vibration. Specifically, the electrode is arranged at the position of the vibration “node” in the stretching vibration, and at the position of the vibration “antinode” in the bending motion.
For example, when a rectangular thin plate-shaped piezoelectric element is used, the amplitude distribution of the bending secondary vibration is as shown in FIG. Since the bending secondary vibration is a transverse vibration (vibration having an amplitude in the element surface) corresponding to the entire length of the piezoelectric element, the place where the distortion is maximum is the place where the amplitude is the maximum. It is a place about 1/4 position from the left and right ends which are free ends. Actually, the total length (L) of the piezoelectric element is slightly longer than one wavelength (λ 2B ) of the bending secondary vibration, and the place where the distortion is maximized is near the (¼) L + α center from the left and right ends. α = (1/4) (L−λ 2B ), and α is usually about 4.5% to 6.5% of L. Therefore, in the present invention, an electrode for bending (secondary) vibration is disposed at this position.

また、同じく矩形薄板状の圧電素子を用いた場合の伸縮1次振動の振幅分布を図7(b)に示す。伸縮1次振動は圧電素子の全長が1/2波長に相当する縦振動(素子の長手方向に振幅を有する振動)であるため、屈曲振動の場合とは異なり、歪が最大になる場所は変位が最小になる箇所であり、素子の中央付近である。従って、本発明ではこの位置に伸縮(1次)振動用の電極を配置する。
伸縮1次振動および屈曲2次振動において、振動の励振効率は共振周波数(fs)と反共振周波数(fp)の差(Δf=fp−fs)で間接的に評価することが出来る事が知られている。図12には伸縮1次振動、図13および図14には屈曲2次振動の、それぞれ分極領域の大きさを変えた場合のΔfの推移を示す。
伸縮1次振動を励振する場合、振動子の伸縮1次振動のΔfは、分極領域の長辺に平行な辺の長さが素子の長辺の長さの70%程度が極大であり、95%を超えると大幅に低下していることが分かる。このことから、伸縮1次振動を励振するための分極領域として、長辺側の長さは素子の長辺の95%以下が好ましいといえる。一方で、55%以下になった場合にもΔfの低下が著しいが、伸縮1次振動は、ステータとスライダを突き離すという補助的な振動が主な役割であるので、励振効率の低下という欠点よりもむしろ電極面積が小さくなることに伴う消費電力の低減化という利点が好まれる場合が多い。このことから、伸縮1次振動を励振するための分極領域として、長辺側の長さは素子の長辺の長さの10%以上が好ましく、振動効率を優先的に設計するならば、55%以上が好ましいといえる。また、短辺側の長さは、屈曲2次振動を励振するための分極領域によって最大値が制限されるが、最小値としては素子の短辺側の長さの10%以上であれば、長辺側の長さと同じ理由で、必要充分であると思われる。
また、屈曲2次振動を励振する場合、振動子の屈曲2次振動のΔfは、各々の分極領域の短辺側の長さが素子の長辺側の側面から素子の短辺側の長さの30%程度が極大であり、40%を超える、または20%以下になると大幅に低下していることが分かる。また、長辺側の長さは素子の長辺側の長さの30%程度が極大であり、40%を超える、または20%以下になると大幅に低下していることが分かる。屈曲2次振動の歪み分布を有限要素解析によって調べてみると、歪みは素子の短辺から長辺に沿って長辺の長さの1/4程度中心寄りの領域において、素子の長辺側の側面近傍に局所的に集中している。したがって、局所的な励振をすることで、幾分は振動効率が低下すると思われるが、必要充分な振幅が得られると考えられる。屈曲2次振動の場合は、スライダの移動速度や駆動力を支配する主導的な役割であるので、励振効率は極力高い方が好まれる場合が多い。しかし、一方では消費電力の低減化に対する要望も多い。つまり、消費電力の低減化のために、歪みが集中する局所に、励振に必要十分な分極領域を設けてもよい。このことから、屈曲2次振動を励振するための分極領域として、各々の分極領域は、短辺側の長さは素子の長辺側側面から40%以下が好ましく、長辺側の長さは40%以下が好ましいといえる。なお、分極領域の下限値は、形状等の条件や求められる特性により変わり得る。有限要素解析等により有効と推定される最小値以上であればよいが、例えば、各1%以上、好ましくは素子の長辺側側面から3%以上、長辺側の長さ10%以上、より好ましくはそれぞれ5%以上、20%以上である。
Further, FIG. 7B shows the amplitude distribution of the expansion and contraction primary vibration when the rectangular thin plate-like piezoelectric element is used. The expansion and contraction primary vibration is a longitudinal vibration (vibration having an amplitude in the longitudinal direction of the element) corresponding to a half wavelength of the entire length of the piezoelectric element. Is a position where the current is minimized and is near the center of the element. Therefore, in the present invention, an electrode for expansion / contraction (primary) vibration is disposed at this position.
It is known that the vibration excitation efficiency can be indirectly evaluated by the difference (Δf = fp−fs) between the resonance frequency (fs) and the anti-resonance frequency (fp) in the expansion / contraction primary vibration and the bending secondary vibration. ing. FIG. 12 shows the transition of Δf in the case where the size of the polarization region of the expansion / contraction primary vibration is changed, and FIGS.
In the case of exciting the expansion and contraction primary vibration, Δf of the expansion and contraction primary vibration of the vibrator is maximum when the length of the side parallel to the long side of the polarization region is about 70% of the length of the long side of the element. It can be seen that when the ratio exceeds%, it is greatly reduced. From this, it can be said that the length of the long side is preferably 95% or less of the long side of the element as the polarization region for exciting the expansion and contraction primary vibration. On the other hand, although Δf is significantly reduced even when it is 55% or less, the primary vibration of expansion and contraction plays a main role of auxiliary vibration that pushes and separates the stator and the slider. Rather, the advantage of reduced power consumption associated with a smaller electrode area is often preferred. Therefore, as the polarization region for exciting the expansion and contraction primary vibration, the length on the long side is preferably 10% or more of the length of the long side of the element. % Or more is preferable. In addition, the maximum value of the length on the short side is limited by the polarization region for exciting the bending secondary vibration, and the minimum value is 10% or more of the length on the short side of the element. It seems necessary and sufficient for the same reason as the length on the long side.
When bending secondary vibration is excited, Δf of the bending secondary vibration of the vibrator is such that the length on the short side of each polarization region is the length on the short side of the element from the side on the long side of the element. It can be seen that about 30% of the maximum is a maximum, and when it exceeds 40% or 20% or less, it is greatly reduced. Further, it can be seen that the length on the long side is about 30% of the length on the long side of the element, and it is greatly reduced when it exceeds 40% or 20% or less. When the strain distribution of the bending secondary vibration is examined by the finite element analysis, the strain is in the region near the center of the length of the long side from the short side to the long side of the device. Concentrate locally in the vicinity of the side. Therefore, it is considered that the vibration efficiency is somewhat lowered by performing local excitation, but a necessary and sufficient amplitude can be obtained. In the case of bending secondary vibration, since it is a leading role that governs the moving speed and driving force of the slider, it is often preferred that the excitation efficiency be as high as possible. However, on the other hand, there are many requests for reducing power consumption. That is, in order to reduce power consumption, a polarization region necessary and sufficient for excitation may be provided in a region where distortion is concentrated. Therefore, as the polarization regions for exciting the bending secondary vibration, the length of each polarization region is preferably 40% or less from the long side surface of the element, and the length of the long side is It can be said that 40% or less is preferable. The lower limit value of the polarization region can vary depending on conditions such as shape and required characteristics. More than the minimum value estimated to be effective by finite element analysis or the like, for example, 1% or more each, preferably 3% or more from the long side surface of the element, 10% or more of the long side length Preferably, they are 5% or more and 20% or more, respectively.

以下では、伸縮1次振動と屈曲2次振動を例として説明するが、伸縮振動と屈曲振動とを独立に励振するものであれば、他の振動モードの組み合わせであってもよい。もっとも、高次モードでは一般に振幅の絶対値が小さくなり、伸縮振動と屈曲振動とを独立に励振するのが困難となる上、電極配置も複雑となるため、伸縮1次振動と屈曲2次振動の組み合わせが好ましい。また、以下の例では、概ね均一な厚みを有する矩形薄板状の圧電素子を用いた場合における矩形板の4辺に平行な辺によって画された分極領域の配置について説明するが、伸縮振動や屈曲振動による歪が最大となる場所に各振動を独立して励振し得るような分極領域の形状であれば、その形状は問わず、適当な解析手法によって決定されるそのような場所に分極領域および電気的信号を印加するための電極を配置した振動子も本発明の範囲に含まれる。   In the following description, the primary and secondary expansion vibrations and the secondary bending vibration will be described as an example. However, other vibration modes may be combined as long as the expansion and contraction vibrations and the bending vibrations are excited independently. However, in the higher order mode, the absolute value of the amplitude is generally small, and it becomes difficult to excite the stretching vibration and the bending vibration independently, and the electrode arrangement is complicated, so that the stretching primary vibration and the bending secondary vibration are complicated. The combination of is preferable. In the following example, the arrangement of the polarization regions defined by the sides parallel to the four sides of the rectangular plate when using a rectangular thin plate-shaped piezoelectric element having a substantially uniform thickness will be described. As long as the shape of the polarization region is such that each vibration can be excited independently at a place where the distortion due to the vibration is maximized, the shape of the polarization region and the region determined by an appropriate analysis method are not limited. A vibrator in which an electrode for applying an electrical signal is arranged is also included in the scope of the present invention.

本発明の超音波モータ用振動子の圧電素子の電極配置の基本構成を図1に示す。
図1に示すように、電極は伸縮1次振動用電極(図中、c)と屈曲2次振動用電極(図中、a及びb)を含む。
伸縮1次振動用電極は、伸縮1次振動を励振するための分極領域の両面、つまり圧電素子(矩形板)の対向する長辺の中点を結ぶ中心線上の少なくとも一部を含む領域に設けられる。図示していないが、cの対電極は素子の裏面に存在し、両者間に交流電圧を印加することにより伸縮1次振動を励振する。
伸縮振動励起用の電極領域は、図1では概ね十字型の領域として示しているが、前記中心線の中点を含む限りにおいて任意の形状でよく、例えば、多角形、円形、楕円形でもよい。もっとも、図1の十字型のほか、圧電素子(矩形板)の各辺に平行な辺によって画される矩形状領域が好ましい。また、圧電素子側面への短絡のため、図1及び8に示すように一辺を素子側面に接触させてもよく、図9に示すように引き出し部分を作ってもよい。なお、引き出し部分は、電極領域間の配置、外部電極や端子の配置、構造等を考慮し、これらの間の干渉や電極等による振動の抑制が最小になるように配置することが好ましい。
FIG. 1 shows the basic configuration of the electrode arrangement of the piezoelectric element of the ultrasonic motor vibrator of the present invention.
As shown in FIG. 1, the electrodes include an expansion / contraction primary vibration electrode (c in the figure) and a bent secondary vibration electrode (a and b in the figure).
The electrode for expansion and contraction primary vibration is provided on both sides of the polarization region for exciting the expansion and contraction primary vibration, that is, the region including at least a part on the center line connecting the midpoints of the opposing long sides of the piezoelectric element (rectangular plate). It is done. Although not shown, the counter electrode of c exists on the back surface of the element, and excites the expansion and contraction primary vibration by applying an alternating voltage between them.
The electrode region for stretching vibration excitation is shown as a substantially cross-shaped region in FIG. 1, but may be any shape as long as it includes the midpoint of the center line, for example, a polygon, a circle, or an ellipse. . However, in addition to the cross shape in FIG. 1, a rectangular region defined by sides parallel to each side of the piezoelectric element (rectangular plate) is preferable. Further, for short circuit to the side surface of the piezoelectric element, one side may be brought into contact with the side surface of the element as shown in FIGS. 1 and 8, and a lead-out portion may be made as shown in FIG. In consideration of the arrangement between the electrode regions, the arrangement of the external electrodes and terminals, the structure, and the like, the lead-out portion is preferably arranged so as to minimize the interference between them and the suppression of vibration due to the electrodes.

本発明においては、前記領域における矩形板の長辺に平行な辺が、前記長辺の長さの10%以上95%以下であることが好ましい。10%以下であっても伸縮振動を励振することは出来るが十分な励振を行なうことが困難である。一方、前述の中心点から外れた位置まで含めて電圧を印加しても励振効率は上がらず、静電容量が増すとともに電極によって却って振幅が抑制される。従って、特に図7に示すように、圧電素子の幅ほぼ全部に及ぶ矩形形状の電極とする場合は、長辺に沿った長さは、長辺全長の95%以下が好ましく、85%以下であることがより好ましい。
また、前記領域における矩形板の短辺に平行な辺が、前記短辺の長さの10%以上であることが好ましい。10%未満では分極領域の面積が小さくなりすぎるために十分な励振を行なうことが困難である。
伸縮1次振動用電極は、上記の通り、素子の分極領域の表裏面に設ける。
In the present invention, the side parallel to the long side of the rectangular plate in the region is preferably 10% or more and 95% or less of the length of the long side. Even if it is 10% or less, the stretching vibration can be excited, but it is difficult to perform sufficient excitation. On the other hand, even if a voltage is applied including a position deviating from the above-mentioned center point, the excitation efficiency does not increase, and the capacitance is increased and the amplitude is suppressed by the electrode. Therefore, as shown in FIG. 7 in particular, in the case of a rectangular electrode that covers almost the entire width of the piezoelectric element, the length along the long side is preferably 95% or less, and 85% or less of the total length of the long side. More preferably.
Moreover, it is preferable that the side parallel to the short side of the rectangular plate in the region is 10% or more of the length of the short side. If it is less than 10%, the area of the polarization region becomes too small, and it is difficult to perform sufficient excitation.
As described above, the expansion and contraction primary vibration electrodes are provided on the front and back surfaces of the polarization region of the element.

また、図1に示すように、屈曲2次振動用電極(図中a及びb)は、屈曲2次振動を励振するための分極領域の両面、つまり圧電素子(矩形板)の短辺から長辺に沿って長辺の長さの1/4だけ中心寄りの領域にそれぞれ設けられる各面2対の電極である。ここで、各対の電極は、前記中心点に対して点対称的に設られる。図示していないが、a及びbの対電極は素子の裏面に存在し、aとbに逆位相の交流電圧を印加することにより屈曲2次振動を励振する。
a及びbの電極は、互いに、また、cとの間で十分に絶縁が確保されるように設ければよいが、a及びbの電極はcとの間に0.2ないし0.5mmの隙間を設けて、充分な絶縁性を確保することが好ましい。
Further, as shown in FIG. 1, the bending secondary vibration electrodes (a and b in the figure) are long from both sides of the polarization region for exciting the bending secondary vibration, that is, from the short side of the piezoelectric element (rectangular plate). These are two pairs of electrodes on each surface provided in a region closer to the center by ¼ of the length of the long side along the side. Here, each pair of electrodes is provided point-symmetrically with respect to the center point. Although not shown, the counter electrodes a and b exist on the back surface of the element, and excite a secondary bending vibration by applying an AC voltage having opposite phases to a and b.
The electrodes a and b may be provided so that sufficient insulation is secured between each other and between c and the electrodes a and b are 0.2 to 0.5 mm between c and c. It is preferable to provide a gap to ensure sufficient insulation.

本発明の振動子を超音波モータに用いる場合、早く動かしたい場合はa−b及びcに大きな交流電圧を印加する。微動領域では、cには通常通りの電圧で、a−bに印加する電圧を弱くすることにより、微調節可能な振動状態を得る。従来の振動子が発生する楕円運動と、本発明の振動子が発生する楕円運動の比較を図5に示す。各振動を独立して励振できる本発明の振動子は、移動体への加圧方向の振動だけ予め充分に励起しておき、さらに送り方向の振動を微弱に励起することができる。そのため、低電圧領域においても比較的線形な特性が得られ、しきい電圧を超えてからの急峻な特性を緩和し、微動領域の制御性を高めることができる。   When the vibrator of the present invention is used in an ultrasonic motor, a large alternating voltage is applied to ab and c if it is desired to move quickly. In the fine movement region, a normal state voltage is applied to c, and a vibration state that can be finely adjusted is obtained by weakening the voltage applied to ab. FIG. 5 shows a comparison between the elliptical motion generated by the conventional vibrator and the elliptical motion generated by the vibrator of the present invention. The vibrator of the present invention capable of exciting each vibration independently can sufficiently excite the vibration in the pressurizing direction to the moving body in advance, and can further excite the vibration in the feeding direction weakly. Therefore, a relatively linear characteristic can be obtained even in the low voltage region, the steep characteristic after exceeding the threshold voltage can be relaxed, and the controllability of the fine movement region can be improved.

各電極は、適宜、電圧印加用のリード部分を有してもよいし、あるいは圧電素子板に電極が設けられたフレキシブル基板を接合してもよい。
また、本発明の超音波モータ用振動子は、単層の振動子に限定されず、上述の振動子を積層したものでもよい。本発明では、圧電体の全ての層に屈曲振動を励振させる部分と伸縮振動を励振させる部分を配置する。そのため、振動子全体に占める加振領域の割合も多くなり、振動効率の良い振動子が得られる。
Each electrode may have a lead portion for applying a voltage as appropriate, or may be joined to a flexible substrate provided with electrodes on a piezoelectric element plate.
The ultrasonic motor vibrator of the present invention is not limited to a single-layer vibrator, and may be a laminate of the above-described vibrators. In the present invention, a portion for exciting bending vibration and a portion for exciting stretching vibration are arranged in all layers of the piezoelectric body. For this reason, the proportion of the excitation area in the entire vibrator increases, and a vibrator with good vibration efficiency can be obtained.

本発明において用いる圧電素子及び電極の材料、振動子上に電極を付与する方法、積層体とする場合の積層方法は、当分野で利用可能な任意の材料及び方法を含む。後で述べる実施例においては圧電素子材料としては、チタン酸ジルコン酸鉛(PZT)を用いたが、他の圧電性材料、例えばニオブ酸リチウム(LiNbO3)、タンタル酸リチウム(LiTaO3)、リチウムテトラボレート(Li247)、ランガサイト(La3Ga5SiO14)、窒化アルミニウム等の無機材料、ポリフッ化ビニリデン(PVDF)等の有機圧電材料を用いても良い。また、後で述べる実施例においては電極材料としては、銀・パラジウム合金電極を用いたが、他の電極材料、例えば銅、銀、金、アルミニウム、白金、パラジウムあるいはこれらを含む合金等を用いても良い。電極付与方法の例としては、導電ペーストの塗布ないし印刷、メッキ、蒸着等が挙げられる。
積層体を形成する手法の例としては、圧電素子材料とバインダーを含むスラリーをシート状に成型、乾燥し、その上に図10に示すように、圧電素子側面への短絡のために引き出される引き出し電極の位置を変えた2種類の電極(内部電極)パターンを付与した後、図11に示すような順序でこれらを積層、本焼成し、さらに外部電極を設ける方法が挙げられる。図15に、個々の圧電体の内部電極と1層おきに短絡する外部電極7a、7b、8a、8bを形成した積層型の振動子を示す。もっとも、以上はいずれも例であり、この他の材料や方法を用いても本発明の振動子を製造することは可能である。
The material of the piezoelectric element and electrode used in the present invention, the method of applying an electrode on a vibrator, and the method of laminating in the case of a laminate include any materials and methods available in the art. In examples described later, lead zirconate titanate (PZT) was used as the piezoelectric element material, but other piezoelectric materials such as lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), lithium An inorganic material such as tetraborate (Li 2 B 4 O 7 ), langasite (La 3 Ga 5 SiO 14 ), aluminum nitride, or an organic piezoelectric material such as polyvinylidene fluoride (PVDF) may be used. In the examples described later, a silver / palladium alloy electrode is used as the electrode material. However, other electrode materials such as copper, silver, gold, aluminum, platinum, palladium or alloys containing these are used. Also good. Examples of the electrode application method include application or printing of conductive paste, plating, vapor deposition, and the like.
As an example of a method of forming a laminate, a slurry containing a piezoelectric element material and a binder is formed into a sheet, dried, and then drawn out for short-circuiting to the side of the piezoelectric element as shown in FIG. There is a method of providing two types of electrode (internal electrode) patterns in which the positions of the electrodes are changed, then laminating them in the order shown in FIG. FIG. 15 shows a laminated vibrator in which internal electrodes of individual piezoelectric bodies and external electrodes 7a, 7b, 8a, and 8b that are short-circuited every other layer are formed. However, the above is only an example, and it is possible to manufacture the vibrator of the present invention using other materials and methods.

なお、本明細書において「超音波モータ」とは、振動子の少なくとも一部の部位が圧電機構によって楕円運動を行い、他の部材を駆動し得るものをすべて含む。また、その振動周波数は、必ずしも超音波域でなくてもよく駆動源として機能し得るものであればよい。   In the present specification, the “ultrasonic motor” includes all of those that can drive at least a part of the vibrator to perform an elliptical motion by a piezoelectric mechanism and drive other members. Further, the vibration frequency does not necessarily have to be in the ultrasonic range as long as it can function as a drive source.

実施例1
厚さ2mm×長さ30mm×幅8.4mmの矩形状の圧電素子板を用意し、図1に準じた形状及び配置の伸縮1次振動用電極及び屈曲2次振動用電極を形成した。伸縮1次振動用電極は長さ20mmの十字型とし、圧電素子の面積の41%の大きさを有する。屈曲2次振動用の電極は、各々、長さ6mm、幅1.5mmとし、2対で圧電素子の面積の14%を有する。短辺中央部にはステータを接着した。
前記圧電振動子の端部に接着したステータの振動状態を測定した結果を図16に示す。電極aとbには位相差180度でそれぞれ100Vp-p、55.2kHzの交流電圧を印加するとともに、電極cには電極aとbに印加する信号と位相が異なる信号として、100Vp-p、同一周波数の交流電圧を印加した。なお、電極aとbに対する電極cの位相差は、端部の振動位相に90度の位相差が生じるように適宜調節した。この結果、図16に示すように、短辺中央に設けたステータは楕円運動を行なうことが確認された。電極aとbと電極cの伸縮1次振動への寄与を調べるため電極aとbの印加電圧の振幅を25Vp-pまで低減したところステータの楕円運動の長径はほぼ変わらないものの(ほぼ100%)、短径は25%まで低減し、非常に微細な独立した制御が可能であることが確認できた。
Example 1
A rectangular piezoelectric element plate having a thickness of 2 mm, a length of 30 mm, and a width of 8.4 mm was prepared, and a stretchable primary vibration electrode and a bent secondary vibration electrode having a shape and arrangement according to FIG. 1 were formed. The expansion / contraction primary vibration electrode is a cross shape having a length of 20 mm and has a size of 41% of the area of the piezoelectric element. Each of the electrodes for bending secondary vibration has a length of 6 mm and a width of 1.5 mm, and two pairs have 14% of the area of the piezoelectric element. A stator was bonded to the center of the short side.
FIG. 16 shows the result of measuring the vibration state of the stator bonded to the end of the piezoelectric vibrator. Electrodes a and b, respectively 100 V pp 180 degrees out of phase in, while applying an AC voltage of 55.2KHz, as a signal to the electrode c to be applied to the electrodes a and b and the signal having different phases, 100 V pp, the same frequency AC voltage was applied. In addition, the phase difference of the electrode c with respect to the electrodes a and b was adjusted as appropriate so that a phase difference of 90 degrees was generated in the vibration phase at the end. As a result, as shown in FIG. 16, it was confirmed that the stator provided at the center of the short side performs an elliptical motion. When the amplitude of the applied voltage of the electrodes a and b is reduced to 25 V pp in order to investigate the contribution of the electrodes a and b and the electrode c to the expansion and contraction primary vibration, the major axis of the elliptical motion of the stator is not substantially changed (almost 100%). The minor axis was reduced to 25%, and it was confirmed that very fine independent control was possible.

実施例2
厚さ2mm×長さ30mm×幅8.4mmの矩形状の圧電素子板を用意し、図8に準じた形状及び配置の伸縮1次振動用電極及び屈曲2次振動用電極を形成した。伸縮1次振動用電極は長さ6mmの矩形とし、圧電素子の面積の19%の大きさを有する。屈曲2次振動用の電極は実施例1と同様に、各々、長さ6mm、幅1.5mmとし、2対で圧電素子の面積の14%を有する。短辺中央部にはステータを接着した。また実施例1と同様に短辺中央部にはステータを接着した。
各々の電極には実施例1と同様の電圧を印加したので、以下には測定結果について実施例1との相違点について主に述べる。測定の結果、伸縮1次振動用の分極領域が素子の長辺の20%という小さな領域になったことに伴う伸縮1次振動の大幅な振幅低下が認められたが、短辺中央に設けたステータには楕円運動の発生が確認された。電極aとbと電極cの伸縮1次振動への寄与を調べるため電極aとbの印加電圧の振幅を25Vp-pまで低減したところステータの楕円運動の長径はほぼ変わらないものの(ほぼ100%)、短径は25%まで低減し、実施例1と同様に、非常に微細な独立した制御が可能であることが確認できた。
Example 2
A rectangular piezoelectric element plate having a thickness of 2 mm, a length of 30 mm, and a width of 8.4 mm was prepared, and a stretchable primary vibration electrode and a bent secondary vibration electrode having a shape and arrangement according to FIG. 8 were formed. The expansion / contraction primary vibration electrode is a rectangle having a length of 6 mm and has a size of 19% of the area of the piezoelectric element. Similar to the first embodiment, each of the electrodes for bending secondary vibration has a length of 6 mm and a width of 1.5 mm, and two pairs have 14% of the area of the piezoelectric element. A stator was bonded to the center of the short side. Further, as in Example 1, a stator was bonded to the central portion of the short side.
Since the same voltage as in Example 1 was applied to each electrode, the difference from Example 1 in the measurement results will be mainly described below. As a result of the measurement, a significant decrease in the amplitude of the expansion / contraction primary vibration was observed as the polarization region for the expansion / contraction primary vibration became a small region of 20% of the long side of the element. Occurrence of elliptical motion was confirmed in the stator. When the amplitude of the applied voltage of the electrodes a and b is reduced to 25 V pp in order to investigate the contribution of the electrodes a and b and the electrode c to the expansion and contraction primary vibration, the major axis of the elliptical motion of the stator is not substantially changed (almost 100%). The minor axis was reduced to 25%, and as in Example 1, it was confirmed that very fine independent control was possible.

実施例3
厚さ2mm×長さ30mm×幅8.4mmの矩形状の圧電素子板を用意し、図9に準じた形状及び配置の伸縮1次振動用電極及び屈曲2次振動用電極を形成した。伸縮1次振動用電極は長さ20mmの矩形とし、圧電素子の面積の29%の大きさを有する。屈曲2次振動用の電極は実施例1と同様に、各々、長さ6mm、幅1.5mmとし、2対で圧電素子の面積の14%を有する。短辺中央部にはステータを接着した。また実施例1と同様に短辺中央部にはステータを接着した。
各々の電極には実施例1と同様の電圧を印加したので、以下には測定結果について実施例1及び実施例2との相違点について主に述べる。測定の結果、伸縮1次振動用の分極領域が実施例1より小さく、また実施例2より大きくなったことに伴う伸縮1次振動の振幅が実施例1より若干小さく、実施例2より大幅に大きくなったことが認められ、短辺中央に設けたステータは楕円運動を行なうことが確認された。電極aとbと電極cの伸縮1次振動への寄与を調べるため電極aとbの印加電圧の振幅を25Vp-pまで低減したところステータの楕円運動の長径はほぼ変わらないものの(ほぼ100%)、短径は25%まで低減し、この場合でも実施例1と同様に、非常に微細な独立した制御が可能であることが確認できた。
Example 3
A rectangular piezoelectric element plate having a thickness of 2 mm, a length of 30 mm, and a width of 8.4 mm was prepared, and a stretchable primary vibration electrode and a bent secondary vibration electrode having a shape and arrangement according to FIG. 9 were formed. The expansion / contraction primary vibration electrode has a rectangular shape with a length of 20 mm, and has a size of 29% of the area of the piezoelectric element. Similar to the first embodiment, each of the electrodes for bending secondary vibration has a length of 6 mm and a width of 1.5 mm, and two pairs have 14% of the area of the piezoelectric element. A stator was bonded to the center of the short side. Further, as in Example 1, a stator was bonded to the central portion of the short side.
Since the same voltage as in Example 1 was applied to each electrode, the following description will mainly describe differences in measurement results from Example 1 and Example 2. As a result of measurement, the amplitude of the expansion and contraction primary vibration due to the fact that the polarization region for the expansion and contraction primary vibration is smaller than that of the first embodiment and larger than that of the second embodiment is slightly smaller than that of the first embodiment. It was confirmed that the stator was large, and the stator provided at the center of the short side was confirmed to perform elliptical motion. When the amplitude of the applied voltage of the electrodes a and b is reduced to 25 V pp in order to investigate the contribution of the electrodes a and b and the electrode c to the expansion and contraction primary vibration, the major axis of the elliptical motion of the stator is not substantially changed (almost 100%). The minor axis was reduced to 25%, and even in this case, it was confirmed that very fine independent control was possible as in Example 1.

実施例4
実施例1〜3の電極配置を持つ、厚み0.08mmの圧電素子を35層積層した積層型の超音波モータ用振動子を形成し、実施例1ないし実施例3と同様に振動状態を測定した。圧電体の1層厚みが薄くなったことに伴い、実施例1ないし実施例3と同程度の振幅を得るために必要な印加電圧は大幅に低下し、約5Vp-pで同程度の振幅が得られた。前記電圧を印加して振動状態を測定したところ、短辺中央に設けたステータは楕円運動を行なうことが確認された。また、電極aとbと電極cの伸縮1次振動への寄与を調べるため電極aとbの印加電圧の振幅を1Vp-pまで低減したところステータの楕円運動の長径はほぼ変わらないものの(ほぼ100%)、短径は20%まで低減し、実施例1ないし実施例3と同様に、各振動モードが互いに独立した制御が可能であることが確認できた。
Example 4
A laminated ultrasonic motor vibrator in which 35 layers of piezoelectric elements having a thickness of 0.08 mm having the electrode arrangements of Examples 1 to 3 are stacked is formed, and the vibration state is measured in the same manner as in Examples 1 to 3. did. As the thickness of one layer of the piezoelectric material is reduced, the applied voltage required to obtain the same amplitude as in the first to third embodiments is greatly reduced, and the same amplitude is obtained at about 5 Vpp. It was. When the vibration state was measured by applying the voltage, it was confirmed that the stator provided at the center of the short side performs an elliptical motion. Further, when the amplitude of the voltage applied to the electrodes a and b was reduced to 1 V pp in order to investigate the contribution of the electrodes a, b, and c to the expansion and contraction primary vibration, the major axis of the elliptical motion of the stator remained almost the same (almost 100 %), The minor axis was reduced to 20%, and it was confirmed that each vibration mode can be controlled independently of each other as in Example 1 to Example 3.

本発明の圧電素子は、最適な電極配置を採ることで、送り方向の振幅(図3の楕円運動の横方向の振幅)と加圧方向の振幅(図3の楕円運動の縦方向の振幅)を独立で制御できる。このため、いわゆる「超音波モータ」の駆動源として広く用いることができる。   The piezoelectric element of the present invention adopts an optimum electrode arrangement, so that the amplitude in the feeding direction (amplitude in the lateral direction of the elliptical motion in FIG. 3) and the amplitude in the pressing direction (the amplitude in the vertical direction of the elliptical motion in FIG. 3). Can be controlled independently. For this reason, it can be widely used as a drive source of a so-called “ultrasonic motor”.

本発明の超音波モータ用振動子の圧電素子における電極配置の一例を示す平面図。The top view which shows an example of electrode arrangement | positioning in the piezoelectric element of the vibrator | oscillator for ultrasonic motors of this invention. 一般的な超音波モータの原理を示す模式図。The schematic diagram which shows the principle of a general ultrasonic motor. 振動子の楕円運動と入力電圧の関係を示す模式図。The schematic diagram which shows the relationship between the elliptical motion of a vibrator | oscillator, and input voltage. 入力電圧と移動速度の関係を示す模式図。The schematic diagram which shows the relationship between an input voltage and a moving speed. 従来の振動子と、本発明の振動子が発生する楕円運動の比較を示す模式図。The schematic diagram which shows the comparison of the elliptical motion which the conventional vibrator | oscillator and the vibrator | oscillator of this invention generate | occur | produce. 屈曲2次振動(a)と伸縮1次振動(b)を示す模式図。The schematic diagram which shows a bending secondary vibration (a) and expansion-contraction primary vibration (b). 屈曲2次振動の振幅分布(a)と伸縮1次振動の振幅分布(b)を示す模式図。The schematic diagram which shows the amplitude distribution (a) of a bending secondary vibration, and the amplitude distribution (b) of an expansion-contraction primary vibration. 本発明の超音波モータ用振動子の圧電素子における電極配置の他の例を示す平面図。The top view which shows the other example of electrode arrangement | positioning in the piezoelectric element of the vibrator | oscillator for ultrasonic motors of this invention. 本発明の超音波モータ用振動子の圧電素子における電極配置の他の例を示す平面図。The top view which shows the other example of electrode arrangement | positioning in the piezoelectric element of the vibrator | oscillator for ultrasonic motors of this invention. 圧電素子の側面への短絡のための引き出し電極の位置のパターンを示す平面図。The top view which shows the pattern of the position of the extraction electrode for the short circuit to the side surface of a piezoelectric element. 積層圧電型超音波モータ用振動子の積層順序の例を示す図。The figure which shows the example of the lamination | stacking order of the vibrator | oscillator for laminated piezoelectric type ultrasonic motors. 伸縮1次振動の分極領域の長さと励振効率の関係を示す図。The figure which shows the relationship between the length of the polarization area | region of expansion-contraction primary vibration, and excitation efficiency. 屈曲2次振動の分極領域の長さ(長辺側)と励振効率の関係を示す図。The figure which shows the relationship between the length (long side) of the polarization area | region of a bending secondary vibration, and excitation efficiency. 屈曲2次振動の分極領域の長さ(短辺側)と励振効率の関係を示す図。The figure which shows the relationship between the length (short side) of the polarization area | region of a bending secondary vibration, and excitation efficiency. 積層圧電型超音波モータ用振動子を示す図。The figure which shows the vibrator | oscillator for laminated piezoelectric type ultrasonic motors. 電極a、bの印加電圧の振幅を変化させた場合のステータの振動状態を示す図。The figure which shows the vibration state of a stator at the time of changing the amplitude of the applied voltage of electrodes a and b.

符号の説明Explanation of symbols

a 屈曲2次振動用電極
b 屈曲2次振動用電極
c 伸縮1次振動用電極
1 振動子
2 スライダ
3 固定摺動部材(ステータ)
4 ガイド
p 振動子の左端面の中心点
6 積層型振動子
7a、b 外部電極
8a、b 外部電極
a flexural secondary vibration electrode b flexual secondary vibration electrode c telescopic primary vibration electrode 1 vibrator 2 slider 3 fixed sliding member (stator)
4 Guide p Center point of left end face of vibrator 6 Stacked vibrator 7a, b External electrode 8a, b External electrode

Claims (4)

屈曲振動と伸縮振動をそれぞれ独立して励振する電圧信号を印加する電極領域を設けた矩形板からなり、前記伸縮振動を励振する電極領域が、前記矩形板の対向する長辺及び短辺の中点を含む各辺に平行な辺によって画される矩形または十字型の領域であり、前記領域の長辺に平行な辺の長さが前記矩形板の長辺の長さの10%以上、95%以下であり、前記領域の短辺に平行な辺の長さが前記矩形板の短辺の長さの10%以上であって、圧電素子側面への短絡のための引き出し電極(内部電極)の位置のみを変えた2種類の電極パターンを有する圧電素子が、交互に複数枚積層され、前記位置の異なる内部電極に対応する外部電極を有する積層圧電型超音波モータ用振動子であって、前記伸縮振動を励振する電極領域に所定の電圧信号を印加して伸縮振動を励起し、前記屈曲振動を励振する電極領域に印加する電圧信号を可変して屈曲振動の励振を調節して、移動体の移動速度を制御する積層圧電型超音波モータ用振動子。It consists of a rectangular plate provided with an electrode region for applying a voltage signal for independently exciting bending vibration and stretching vibration, and the electrode region for exciting the stretching vibration is between the long side and the short side of the rectangular plate facing each other. A rectangular or cross-shaped region defined by sides parallel to each side including the point, and the length of the side parallel to the long side of the region is 10% or more of the length of the long side of the rectangular plate, 95 %, And the length of the side parallel to the short side of the region is 10% or more of the length of the short side of the rectangular plate, and an extraction electrode (internal electrode) for short-circuiting to the side surface of the piezoelectric element A plurality of piezoelectric elements having two types of electrode patterns in which only the positions of the piezoelectric elements are alternately stacked, and a laminated piezoelectric ultrasonic motor vibrator having external electrodes corresponding to the internal electrodes at different positions, A predetermined voltage signal is applied to the electrode region that excites the stretching vibration. The vibration for the laminated piezoelectric ultrasonic motor that controls the moving speed of the moving body by exciting the stretching vibration and changing the voltage signal applied to the electrode region for exciting the bending vibration to adjust the excitation of the bending vibration. Child. 屈曲振動と伸縮振動をそれぞれ独立して励振する電圧信号を印加する電極領域を設けた矩形板からなり、屈曲振動を励振する電極領域が、前記矩形板の短辺から長辺に沿って長辺の長さの1/4だけ中心寄りに、矩形板の中心点に対して点対称的に2対設けられ、各々の分極領域の長辺に平行な辺が前記矩形板の長辺の長さの40%以下であり、短辺に平行な辺が前記矩形板の短辺の長さの40%以下であって、圧電素子側面への短絡のための引き出し電極(内部電極)の位置のみを変えた2種類の電極パターンを有する圧電素子が、交互に複数枚積層され、前記位置の異なる内部電極に対応する外部電極を有する積層圧電型超音波モータ用振動子であって、前記伸縮振動を励振する電極領域に所定の電圧信号を印加して伸縮振動を励起し、前記屈曲振動を励振する電極領域に印加する電圧信号を可変して屈曲振動の励振を調節して、移動体の移動速度を制御する積層圧電型超音波モータ用振動子。It consists of a rectangular plate provided with an electrode region for applying a voltage signal for independently exciting bending vibration and stretching vibration, and the electrode region for exciting bending vibration is a long side from the short side to the long side of the rectangular plate. Two pairs are provided point-symmetrically with respect to the center point of the rectangular plate, and the side parallel to the long side of each polarization region is the length of the long side of the rectangular plate. The side parallel to the short side is 40% or less of the length of the short side of the rectangular plate, and only the position of the extraction electrode (internal electrode) for short-circuiting to the side surface of the piezoelectric element is provided. A plurality of piezoelectric elements having two different electrode patterns, which are alternately stacked, and a laminated piezoelectric ultrasonic motor vibrator having external electrodes corresponding to the internal electrodes at different positions, Apply a predetermined voltage signal to the excited electrode region to excite stretching vibration, Serial voltage signal applied to the electrode region to excite bending vibration by adjusting the excitation of a variable to flexural vibration of the laminated piezoelectric ultrasonic motor oscillator for controlling the moving speed of the moving body. 圧電素子の屈曲振動と伸縮振動を励振する電極領域が、それぞれの振動による圧電素子の歪みが最大になる部位を含む請求項1または2記載の積層圧電型超音波モータ用振動子。   3. The vibrator for a laminated piezoelectric ultrasonic motor according to claim 1, wherein the electrode region for exciting the bending vibration and the stretching vibration of the piezoelectric element includes a portion where the distortion of the piezoelectric element due to each vibration is maximized. 屈曲振動が屈曲2次振動、伸縮振動が伸縮1次振動である請求項1〜3のいずれかに記載の積層圧電型超音波モータ用振動子。   The vibrator for a laminated piezoelectric ultrasonic motor according to any one of claims 1 to 3, wherein the bending vibration is a bending secondary vibration and the stretching vibration is a stretching primary vibration.
JP2006227479A 2006-08-24 2006-08-24 Ultrasonic motor vibrator Active JP4892661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227479A JP4892661B2 (en) 2006-08-24 2006-08-24 Ultrasonic motor vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227479A JP4892661B2 (en) 2006-08-24 2006-08-24 Ultrasonic motor vibrator

Publications (2)

Publication Number Publication Date
JP2008054407A JP2008054407A (en) 2008-03-06
JP4892661B2 true JP4892661B2 (en) 2012-03-07

Family

ID=39237922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227479A Active JP4892661B2 (en) 2006-08-24 2006-08-24 Ultrasonic motor vibrator

Country Status (1)

Country Link
JP (1) JP4892661B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7837370B2 (en) * 2008-10-10 2010-11-23 Koninklijke Philips Electronics N.V. Low profile side emission TIR lens for LED
JP2011104689A (en) * 2009-11-16 2011-06-02 Denso Corp Electric discharge machine and method for manufacturing nozzle body using electric discharge machine
JP4830165B2 (en) * 2010-01-27 2011-12-07 石川県 Ultrasonic motor vibrator
JP5586252B2 (en) * 2010-01-29 2014-09-10 オリンパス株式会社 Ultrasonic motor
JP5643957B2 (en) 2010-02-17 2014-12-24 石川県 Piezoelectric actuator mechanism
JP5760748B2 (en) * 2011-06-29 2015-08-12 セイコーエプソン株式会社 Piezoelectric actuator driving method and driving unit
DE102014205577B4 (en) * 2014-03-26 2021-05-12 Physik Instrumente (Pi) Gmbh & Co. Kg Ultrasonic motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722211B2 (en) * 1988-07-30 1998-03-04 本多電子株式会社 Ultrasonic drive
DE19938954A1 (en) * 1999-08-17 2001-03-08 Pi Ceramic Gmbh Keramische Tec Piezoelectric drive, in particular for generating rotational or translational movements that can take place continuously or step by step
JP2004297951A (en) * 2003-03-27 2004-10-21 Olympus Corp Ultrasonic vibrator and ultrasonic motor
JP4628017B2 (en) * 2003-05-22 2011-02-09 セイコーインスツル株式会社 Multilayer piezoelectric element, ultrasonic motor, electronic device, stage, and multilayer piezoelectric element manufacturing method

Also Published As

Publication number Publication date
JP2008054407A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US7932661B2 (en) Piezoelectric vibrator for ultrasonic motor
JP4892661B2 (en) Ultrasonic motor vibrator
US7592738B2 (en) Ultrasonic motor
JP4795158B2 (en) Ultrasonic motor
US7508114B2 (en) Ultrasonic motor
JP4795162B2 (en) Ultrasonic motor and vibration detection method of ultrasonic motor
US20060061235A1 (en) Ultrasonic motor and method for operating the same
US20130140951A1 (en) Piezoelectric motor, drive unit, robot hand, robot, electronic component transporting apparatus, electronic component inspecting apparatus, and printer
US20120153774A1 (en) Vibrating body of vibratory drive unit and vibratory drive unit
JP2008160913A (en) Ultrasonic motor
CN107438942B (en) The control method of ultrasonic motor and corresponding control mechanism
CN111313747A (en) Multi-layer ceramic co-fired piezoelectric driver, piezoelectric motor and preparation method thereof
US8304962B2 (en) Ultrasonic motor
CN111262471B (en) Annular piezoelectric driver and piezoelectric motor
Li et al. A double B 1-mode 4-layer laminated piezoelectric linear motor
Hsiao et al. Single-phase drive linear ultrasonic motor with perpendicular electrode vibrator
JPH09215349A (en) Vibrating actuator and adjustment thereof
JP4454930B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2006304425A (en) Operation method of ultrasonic motor
JP2008067539A (en) Ultrasonic actuator and method of manufacturing its vibrator
JP4818853B2 (en) Ultrasonic motor element
Kim et al. Design and driving characteristics of ultrasonic linear motor
JPS60162487A (en) Piezoelectric driving device
JP5491718B2 (en) Ultrasonic motor
JP2006352989A (en) Drive unit of ultrasonic motor, its method and ultrasonic motor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111028

R150 Certificate of patent or registration of utility model

Ref document number: 4892661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250