JP4890353B2 - Method for preserving insect bodies having the ability to produce fruit bodies of insect parasitic fungi - Google Patents

Method for preserving insect bodies having the ability to produce fruit bodies of insect parasitic fungi Download PDF

Info

Publication number
JP4890353B2
JP4890353B2 JP2007150345A JP2007150345A JP4890353B2 JP 4890353 B2 JP4890353 B2 JP 4890353B2 JP 2007150345 A JP2007150345 A JP 2007150345A JP 2007150345 A JP2007150345 A JP 2007150345A JP 4890353 B2 JP4890353 B2 JP 4890353B2
Authority
JP
Japan
Prior art keywords
insect
bodies
fruit
container
fruiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007150345A
Other languages
Japanese (ja)
Other versions
JP2008301738A (en
Inventor
幸盛 近藤
義広 田口
Original Assignee
幸盛 近藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 幸盛 近藤 filed Critical 幸盛 近藤
Priority to JP2007150345A priority Critical patent/JP4890353B2/en
Publication of JP2008301738A publication Critical patent/JP2008301738A/en
Application granted granted Critical
Publication of JP4890353B2 publication Critical patent/JP4890353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mushroom Cultivation (AREA)

Description

本発明は、健康食品、医薬品、化粧品等として利用される冬虫夏草菌類等の昆虫寄生菌の子実体(キノコ)の生産能を有する昆虫体の保存方法に関するものである。   The present invention relates to a method for preserving an insect body having the ability to produce fruit bodies (mushrooms) of insect parasitic fungi such as Cordyceps fungus used as health foods, pharmaceuticals, cosmetics and the like.

昆虫寄生菌類(昆虫病原菌類)は、冬虫夏草菌などのように漢方薬の原材料や高級食材として利用されている。通常、冬虫夏草菌のような子実体は天然に生息しているものを採取するため絶対数が少なく、また、大きさが揃わず、品質も一定していないことが多い。昆虫寄生菌類は、例えばサナギタケのような同一の属種であっても、生育速度、菌叢の生育及び病原性に差が現れるのが普通であった。このため、優良な昆虫寄生菌の探索や人工培養法の研究が盛んに行われてきた。   Insect parasitic fungi (insect pathogenic fungi) are used as raw materials and high-grade foods for traditional Chinese medicine, such as Cordyceps fungus. Usually, fruit bodies such as Cordyceps fungus are collected in nature, so there are few absolute numbers, they are not uniform in size, and the quality is often not constant. Insect parasitic fungi, even in the same genus species such as sanagitake, usually showed differences in growth rate, fungal growth and pathogenicity. For this reason, search for excellent insect parasites and research on artificial culture methods have been actively conducted.

例えば、冬虫夏草菌を寄主昆虫に人工接種し、寄主昆虫が発育しない程度の低温で温度管理しつつ飼育し、子実体を得る方法が知られている(例えば、特許文献1を参照)。この方法では、冬虫夏草菌の子嚢胞子の懸濁液に寄主昆虫の蛹を浸漬する方法により接種が行われている。しかし、常温でこの方法を行うと殆どの蛹が羽化してしまうか、又は細菌の発生が著しく、求める子実体が得られる確率が著しく低い場合が多い。懸濁液による接種感染方法は感染個体にむらを生じ、感染までの時間が著しく長い。一方、低温で管理すると、子嚢胞子に由来する子実体を形成するまでに著しく長い時間を要していた。   For example, a method is known in which a host insect is artificially inoculated with a caterpillar fungus and bred while being temperature-controlled at such a low temperature that the host insect does not develop to obtain a fruiting body (see, for example, Patent Document 1). In this method, inoculation is performed by immersing the host insect moth in a suspension of Cordyceps ascospore spores. However, when this method is performed at room temperature, most of the wrinkles will emerge or bacteria will be remarkably generated, and the probability of obtaining the desired fruiting body is often extremely low. The inoculation method by suspension causes unevenness in infected individuals, and the time until infection is extremely long. On the other hand, when managed at a low temperature, it took a significantly long time to form fruit bodies derived from ascospores.

また、蚕の蛹の抽出液を使用して培地を作製し、この培地を用いて冬虫夏草菌の子実体を形成させ、その子嚢胞子を利用する方法も提案されている(例えば、特許文献2を参照)。この場合、子嚢胞子懸濁液に蛹を浸漬したり、菌糸を蛹に触れさせて接種したりする他、子嚢胞子懸濁液を蛹に直接接種する方法も行われている。これらの方法に加え、冬虫夏草菌などの昆虫寄生菌のハイファルボディを含む接種剤を作製して、これを昆虫体内に注射接種して導入し、この昆虫を昆虫菌床として子実体を形成させる方法も知られている。   In addition, a method has been proposed in which a medium is prepared using an extract of cocoon moth, a fruit body of Cordyceps fungus is formed using this medium, and the ascospores are used (for example, Patent Document 2). reference). In this case, in addition to immersing the cocoon in the ascospore suspension, inoculating the mycelium with the cocoon, and inoculating the ascospore suspension directly into the cocoon, there are also methods. In addition to these methods, an inoculum containing hyphalbodies of insect parasites such as Cordyceps fungus is prepared and introduced by injecting it into the insect body to form fruit bodies using this insect as an insect fungus bed Methods are also known.

昆虫寄生菌の継代は培地を用いた培養により行われ、培養菌糸を低温で貯蔵する方法が一般に行われている。しかし、ハイファルボディを用いて培養しても子嚢胞子の形成はできなかった。また、上記のいずれの子実体の生産方法も昆虫寄生菌の接種及び感染から子実体の形成までは一連の休みのない作業として行われ、途中で停止し、保留しておくことができなかった。   Insect parasites are subcultured by culturing using a medium, and a method of storing cultured mycelia at a low temperature is generally performed. However, no ascospores could be formed even when cultured with hyphalbodies. In addition, any of the above-mentioned production methods of fruiting bodies were carried out as a series of work from the inoculation and infection of insect parasites to the formation of fruiting bodies, which were stopped on the way and could not be put on hold .

昆虫寄生菌の子実体を形成させる方法として、本発明者らは既に寄主昆虫の表皮に傷を付けて昆虫寄生菌を感染させる方法を提案した(特許文献3を参照)。この方法によれば、昆虫寄生菌の感染が早く、昆虫体内に菌糸が蔓延しやすく、子実体の揃いが良く、安定した子実体を確保することができる。また、昆虫寄生菌は、子実体から得られた子嚢胞子を培地上に落下させた後、冷凍又は冷蔵して保存することができる。
特開平8−75号公報(第2頁及び第3頁) 特開平10−42691号公報(第2頁、第4頁及び第5頁) 特許第3902216号公報(第1頁、第2頁及び第8頁)
As a method for forming a fruit body of an insect parasitic fungus, the present inventors have already proposed a method for infecting an insect parasitic fungus by scratching the epidermis of a host insect (see Patent Document 3). According to this method, infection with insect parasites is fast, hyphae are likely to spread within the insect body, the fruit bodies are well aligned, and stable fruit bodies can be secured. Insect parasites can be stored frozen or refrigerated after ascospores obtained from fruiting bodies are dropped onto the medium.
JP-A-8-75 (Pages 2 and 3) Japanese Patent Application Laid-Open No. 10-42691 (Pages 2, 4, and 5) Japanese Patent No. 3902216 (first page, second page and eighth page)

ところで、昆虫体内にはもともと腸内細菌などが存在しており、もとより無菌的培養が難しい性質を有している。冬虫夏草菌のような昆虫寄生菌を昆虫に接種する場合でも、工程のすべてを無菌的に経過させることは困難であった。特に、昆虫寄生菌の分離時に発生する細菌は昆虫寄生菌に親和性が高く、又は共生関係にあり、多くの場合細菌を除菌することは困難であった。そのため、このような有菌的状況下にあったとしても子実体を形成させる必要があった。さらには、昆虫に産卵させて人工餌を与えるときに、餌に抗菌物質を混ぜることも多く、これらが昆虫寄生菌の感染を阻んでいた。   By the way, intestinal bacteria and the like originally exist in the insect body, and have the property that aseptic culture is difficult. Even when insects were inoculated with insect parasites such as Cordyceps fungus, it was difficult to go through the entire process aseptically. In particular, the bacteria generated during the isolation of the insect parasites have a high affinity for the insect parasites or are in a symbiotic relationship, and in many cases, it was difficult to sterilize the bacteria. Therefore, it was necessary to form fruit bodies even under such microbial conditions. In addition, when insects are laid eggs and given artificial feed, antibacterial substances are often mixed with the feed, which has prevented infection by insect parasites.

また、一般に昆虫寄生菌の子実体形成までの期間は著しく長く、例えば鱗翅目昆虫蛹としてのハスモンヨトウ蛹では羽化させないように10℃程度の温度で管理するため、蛹内に昆虫寄生菌が蔓延するまでに2〜3ヶ月の期間を要していた。しかし、これでは感染個体を得るまでの見通しが立たず、次の子実体を発生させる工程へ移ることができないばかりか、この作業工程の間で停止することすらできなかった。   In general, the period until the fruit body formation of insect parasitic fungi is remarkably long. For example, in order to prevent emergence of the moth Lepidoptera as a lepidopterous insect moth, it is controlled at a temperature of about 10 ° C., so that the insect parasitic fungus spreads in the moth. It took a few months to complete. However, this did not give a prospect until an infected individual was obtained, and it was not only possible to move to the process of generating the next fruiting body, but also to stop during this work process.

前記特許文献1及び2に記載された子実体の生産方法も昆虫寄生菌の接種及び感染から子実体の形成までは、一連の休みのない作業として行われ、途中で停止や中断することができなかった。また、特許文献3に記載されている冷凍又は冷蔵による菌糸の保存では、冷凍又は冷蔵を解除して子実体を得るには必要な養分を補給するなど適切な条件を設定しなければならず、所望の子実体を得ることが難しいという状況であった。従って、昆虫寄生菌の子実体の形成を一旦中止し、その後適切な時期に子実体の形成を再開でき、子実体の生産を効率良く行う技術が期待されていた。   The production methods of fruiting bodies described in Patent Documents 1 and 2 are also performed as a series of non-breaking operations from the inoculation and infection of insect parasites to the formation of fruiting bodies, and can be stopped or interrupted on the way. There wasn't. In addition, in the preservation of mycelia by freezing or refrigeration described in Patent Document 3, it is necessary to set appropriate conditions such as replenishing necessary nutrients to release the freezing or refrigeration to obtain fruit bodies, It was a situation where it was difficult to obtain a desired child entity. Therefore, there has been a demand for a technique that can stop the formation of the fruit body of an insect parasitic fungus and then restart the formation of the fruit body at an appropriate time, thereby efficiently producing the fruit body.

そこで、本発明の目的とするところは、昆虫寄生菌を昆虫に接種、感染させた後に、昆虫寄生菌の子実体の形成を一定期間停止させ、その後子実体の形成を再開して子実体を容易に形成することができ、子実体の生産を効率良く行うことができる昆虫寄生菌の子実体生産能を有する昆虫体の保存方法を提供することにある。   Accordingly, the object of the present invention is to inoculate and infect insects with insect parasites, stop the formation of fruit bodies of insect parasites for a certain period of time, and then restart the formation of fruit bodies to It is an object of the present invention to provide a method for preserving an insect body having the ability to produce fruit bodies of insect parasitic fungi that can be easily formed and can efficiently produce fruit bodies.

上記の目的を達成するために、請求項1に係る昆虫寄生菌の子実体生産能を有する昆虫体の保存方法は、昆虫に昆虫寄生菌が接種され、感染されて硬化された昆虫体又は子実体原基が形成された昆虫体を、温度が20〜25℃で相対湿度が55〜75%の容器内に保管し、昆虫体の水分量が5〜15%になるように予備乾燥した後、0〜6℃の冷蔵又は冷凍条件下で保存することを特徴とする。   In order to achieve the above object, the method for preserving an insect body having a fruit body producing ability of an insect parasitic fungus according to claim 1 comprises infecting an insect with an insect parasitic fungus, and infecting and curing the insect body or child. After storing the insect body in which the primordial primordium is formed in a container having a temperature of 20 to 25 ° C. and a relative humidity of 55 to 75%, and pre-drying so that the moisture content of the insect body is 5 to 15%. , Stored under refrigerated or frozen conditions of 0 to 6 ° C.

請求項2に係る昆虫寄生菌の子実体生産能を有する昆虫体の保存方法は、請求項1に係る発明において、前記予備乾燥した昆虫体を容器内に充填された乾燥剤中に投入した後、容器内の相対湿度を0〜55%に維持し、次いで0〜6℃の冷蔵又は冷凍条件下で保存することを特徴とする。   The method for preserving an insect body having an ability to produce fruit bodies of an insect parasitic fungus according to claim 2 is the invention according to claim 1, wherein the pre-dried insect body is put into a desiccant filled in a container. The container is characterized in that the relative humidity in the container is maintained at 0 to 55% and then stored under refrigerated or frozen conditions at 0 to 6 ° C.

請求項3に係る昆虫寄生菌の子実体生産能を有する昆虫体の保存方法は、請求項2に係る発明において、前記乾燥剤はシリカゲルであることを特徴とする。
請求項4に係る昆虫寄生菌の子実体生産能を有する昆虫体の保存方法は、請求項1から請求項3のいずれかに係る発明において、前記昆虫体の複数個体を容器内に保管することを特徴とする。
According to a third aspect of the present invention, there is provided a method for preserving an insect body having a fruit body producing ability of an insect parasitic fungus, wherein the desiccant is silica gel in the invention according to the second aspect.
The method for preserving an insect body having an ability to produce fruit bodies of insect parasitic fungi according to claim 4 is the invention according to any one of claims 1 to 3, wherein a plurality of insect bodies are stored in a container. It is characterized by.

請求項5に係る昆虫寄生菌の子実体生産能を有する昆虫体の保存方法は、請求項1から請求項4のいずれかに係る発明において、前記昆虫寄生菌は冬虫夏草菌類であることを特徴とする。   The method for preserving an insect body having an ability to produce fruit bodies of an insect parasitic fungus according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the insect parasitic fungus is Cordyceps fungus. To do.

本発明によれば、次のような効果を発揮することができる。
請求項1に記載の発明では、昆虫に昆虫寄生菌が接種され、感染されて硬化された昆虫体又は子実体原基が形成された昆虫体を、温度が20〜25℃で相対湿度が55〜75%の容器内に保管し、昆虫体の水分量が5〜15%になるように予備乾燥を行う。その後、0〜6℃の冷蔵又は冷凍条件下で昆虫体を保存するものである。このため、前記昆虫体は容器内の温度及び相対湿度の条件により、その表面の水分が除去された後、昆虫体内部の水分が徐々に表面に移行して除去され、昆虫体の水分量が菌糸の成長と保存に適した状態となる。続いて、冷蔵又は冷凍保存されることにより、昆虫体は腐敗することなく、長期間に渡って保存される。従って、昆虫寄生菌を昆虫に接種、感染させた後に、昆虫寄生菌の子実体の形成を一定期間停止させ、その後子実体の形成を再開して子実体を容易に形成することができ、子実体の生産を効率良く行うことができる。
According to the present invention, the following effects can be exhibited.
In the invention according to claim 1, an insect body in which an insect parasitic fungus is inoculated to an insect and infected and cured, or an insect body base is formed, the temperature is 20 to 25 ° C. and the relative humidity is 55. Store in a ~ 75% container and pre-dry so that the moisture content of the insect body is 5-15%. Thereafter, the insect body is preserved under refrigerated or frozen conditions of 0 to 6 ° C. For this reason, after the moisture on the surface of the insect body is removed according to the temperature and relative humidity conditions in the container, the moisture inside the insect body gradually moves to the surface and is removed. It becomes a state suitable for the growth and storage of mycelium. Subsequently, the insect body is preserved for a long time without being spoiled by being refrigerated or frozen. Therefore, after inoculating and infecting insect parasitic fungi, the fruiting body of insect parasitic fungi can be stopped for a certain period of time, and then the fruiting body can be restarted to form the fruiting body easily. Entity production can be performed efficiently.

請求項2に記載の発明では、予備乾燥した昆虫体を容器内に充填された乾燥剤中に投入した後、容器内の相対湿度を0〜55%に維持し、次いで0〜6℃の冷蔵又は冷凍条件下で保存するものである。このため、請求項1に係る発明の効果に加えて、予備乾燥後に昆虫体の乾燥を促進することができ、子実体の形成を再開したときに子実体の形成率を向上させることができる。   In the invention according to claim 2, after putting the pre-dried insect body into the desiccant filled in the container, the relative humidity in the container is maintained at 0 to 55%, and then refrigerated at 0 to 6 ° C. Or it preserve | saves on freezing conditions. For this reason, in addition to the effect of the invention according to claim 1, the drying of the insect body can be promoted after the preliminary drying, and the formation rate of the fruiting body can be improved when the formation of the fruiting body is resumed.

請求項3に記載の発明では、乾燥剤はシリカゲルであることから、請求項2に係る発明の効果に加えて、乾燥能力を容易に高めることができる。
請求項4に記載の発明では、昆虫体の複数個体を容器内に保管することから、請求項1から請求項3のいずれかに係る発明の効果に加えて、昆虫体の複数個体を同時に保存することができ、昆虫寄生菌の子実体の生産性を向上させることができる。
In the invention according to claim 3, since the desiccant is silica gel, in addition to the effect of the invention according to claim 2, the drying ability can be easily increased.
In the invention according to claim 4, since a plurality of insect bodies are stored in a container, in addition to the effects of the invention according to any one of claims 1 to 3, a plurality of insect bodies are stored simultaneously. And can improve the productivity of the fruit bodies of insect parasitic fungi.

請求項5に記載の発明では、昆虫寄生菌は冬虫夏草菌類であることから、冬虫夏草菌類について請求項1から請求項4のいずれかに係る発明の効果を発揮することができ、その利用価値を高めることができる。   In the invention according to claim 5, since the insect parasitic fungus is Cordyceps fungus, the effect of the invention according to any one of Claims 1 to 4 can be exerted on Cordyceps fungus, and its utility value is increased. be able to.

以下、本発明の最良と思われる実施形態について詳細に説明する。
本実施形態における昆虫寄生菌の子実体生産能を有する昆虫体の保存方法は、昆虫に昆虫寄生菌が接種され、感染されて硬化された昆虫体又は子実体原基が形成された昆虫体を予備乾燥した後、冷蔵又は冷凍条件下で保存するものである。予備乾燥では、温度が20〜25℃で相対湿度(単に湿度ともいう)が55〜75%の容器内に保管し、昆虫体の水分量が5〜15%になるように乾燥が行われる。冷蔵は0〜6℃の条件で行われる。この保存方法により、昆虫寄生菌の子実体の保存性が良く、その後子実体の形成を再開したとき子実体を容易に形成することができる。
In the following, embodiments that are considered to be the best of the present invention will be described in detail.
In this embodiment, the method for preserving an insect body having the ability to produce fruit bodies of insect parasitic fungi is obtained by infecting insects with an insect parasitic fungus and infecting and hardening insect bodies or insect bodies having fruit body primordium formed. After pre-drying, it is stored under refrigerated or frozen conditions. In the preliminary drying, the temperature is 20 to 25 ° C. and the relative humidity (also simply referred to as humidity) is stored in a container having 55 to 75%, and drying is performed so that the moisture content of the insect body is 5 to 15%. Refrigeration is performed on the conditions of 0-6 degreeC. By this preservation method, the fruit body of the insect parasitic fungus is well preserved, and the fruit body can be easily formed when the fruit body formation is resumed.

前記昆虫は特に制限されないが、鱗翅目の昆虫、甲虫目の昆虫等が用いられる。鱗翅目の昆虫としては、ハスモンヨトウ、タバコガ、カイコガ、コナガ、ネキリムシ、コウモリガ等が挙げられる。甲虫目の昆虫としては、コガネムシ、カミキリムシ、コメツキムシ等が挙げられる。ここで、昆虫とは幼虫、蛹、成虫等の成長過程におけるいずれの形態(生態)をも含む概念であるが、取り扱いのよさから蛹の形態が好ましい。   The insects are not particularly limited, but lepidopteran insects, Coleoptera insects, and the like are used. Examples of the lepidopteran insect include Lotus moth, tobacco moth, silkworm moth, diamondback moth, bark beetle, bat moth and the like. Examples of Coleoptera insects include scarab beetles, longhorn beetles, and beetles. Here, the term “insect” is a concept including any form (ecology) in the growth process of larvae, pupae, adults, and the like, but the form of pupae is preferable because of ease of handling.

対象となる昆虫寄生菌としては、アカントケミス属、ギベルラ属、コルディセプス属、スティルペラ属、ティラクリディウム属、トリポクラディウム属、トルビエラ属、ノムラエア属、パライサリア属、ヒメノスティルベ属、ヒルステラ属、ペキロマイセス属、ボーベリア属及びメタリジウム属等の菌類が挙げられる。ここで、冬虫夏草菌類は、子嚢菌門、麦角(バッカク)菌目、麦角(バッカク)菌科の一属(冬虫夏草属)に該当する菌類である。冬虫夏草菌類として具体的には、麦角菌科のコルディセプス属、ギルベラ属、トルビエラ属及びヒルステラ属に属する菌類である。また、冬虫夏草菌類のうち、例えばコルディセプス属のサナギタケ(Cordyceps militaris)、ウスキサナギタケ等が挙げられる。   Examples of insect parasitic fungi include the genus Acantochemis, the genus Giberla, the genus Cordyceps, the genus Stillopera, the genus Tillacridium, the genus Tripocladium, the genus Torviera, the genus Nomuraea, the genus Hymenostyrbe, the genus Hilostella, Examples include fungi such as Pekyromyces, Bobelia and Metalidium. Here, Cordyceps fungus is a fungus that falls under the genus Ascomycota, ergot (Bacaku), and a genus (Cycium genus) of the ergot family. Specific examples of cordyceps fungi are fungi belonging to the genus Cordyceps, Gilbera, Torviera and Hiltella in the ergot family. Examples of Cordyceps fungi include Cordyceps militaris, Usxanagitake and the like.

前記昆虫に昆虫寄生菌を接種する方法は特に制限されないが、容易かつ有効に行うために、昆虫の表皮に傷を付ける方法が好ましい。その方法としては、針、金属片、ガラス、セラミック等の硬い鋭利な刃物又はレーザー光を利用して行うことができる。昆虫の傷付けられた部分(以下、付傷部という)に昆虫寄生菌が接種されることで、昆虫寄生菌の感染が促進され、昆虫の体内で寄生菌の増殖が容易に行われ、昆虫が硬化し、又は子実体原基が形成される。ここで、子実体原基とは子実体の元になる粒状の部分(芽)を指す。付傷させた昆虫の付傷部に昆虫寄生菌を接種すると、昆虫の体内で繁殖し昆虫は菌糸体となり、昆虫の表皮に子実体原基が形成される。   The method for inoculating the insects with insect parasites is not particularly limited, but in order to carry out easily and effectively, a method of scratching the insect epidermis is preferable. As the method, it can be carried out using a hard, sharp blade such as a needle, a metal piece, glass or ceramic, or laser light. Insect parasites are inoculated into the wounded part of the insect (hereinafter referred to as the wounded part), so that the infection of the insect parasites is promoted, and the insects are easily propagated in the body of the insects. Cured or fruit body primordium is formed. Here, the fruit body primordium refers to a granular part (bud) that is the basis of the fruit body. When an insect parasite is inoculated into the wounded part of an injured insect, it propagates in the body of the insect, the insect becomes a mycelium, and a fruiting body primordium is formed on the epidermis of the insect.

例えば、昆虫寄生菌のサナギタケを用い、22℃の条件で寒天培地としてのPDA培地(Potato Dextrose Agar、馬鈴薯砂糖寒天培地)上でサナギタケを純粋培養してその菌糸を蔓延させる。一方、非休眠のハスモンヨトウ蛹に先端が鋭利なピンセットで傷を付け、PDA培地上に置いてサナギタケを接種し、数日間保存して感染させる。その後、蛹の動きが止まり硬化させることができる。通常、昆虫の皮膚には、寄生菌に対する防御機構があるため寄生菌が感染しにくいが、昆虫の表皮に軽度の付傷部を形成し、そこに昆虫寄生菌を接種すると感染速度が高まり、昆虫の体内で寄生菌の増殖を速やかに行うことができる。培地としては、籾米、小麦、大麦等を使用した穀物培地等を用いることもできる。   For example, using Sanagitake, an insect parasitic fungus, purely cultivates Sanagitake on a PDA medium (Potato Dextrose Agar, potato sugar agar) as an agar medium at 22 ° C. to invade the mycelium. On the other hand, a non-dormant lotus beetle is injured with sharp tweezers, placed on a PDA medium, inoculated with sanagitake, and stored for several days for infection. Thereafter, the movement of the heel stops and can be cured. Insect skin usually has a defense mechanism against parasitic fungi, so it is difficult for the parasitic fungus to infect, but when the insect epidermis is inoculated with mildly injured parts, the speed of infection increases. Parasitic bacteria can be rapidly propagated in the body of insects. As the medium, a grain medium using sticky rice, wheat, barley, or the like can be used.

このように、培地上に昆虫寄生菌の菌糸(菌叢)が形成された状態、特に菌糸が蔓延した状態で昆虫を置いて接種することにより、昆虫が本来保持している細菌等の影響を排除し、昆虫寄生菌の速やかな感染を得ることが可能である。この結果、昆虫寄生菌の感染確率も高く、歩留まりの向上が可能である。   In this way, by inoculating insects in a state where mycelia (mycosis) of insect parasitic fungi are formed on the medium, especially in a state where the hyphae are prevalent, the effects of bacteria originally held by the insects can be reduced. It is possible to eliminate and obtain a quick infection of insect parasites. As a result, the infection probability of insect parasites is high, and the yield can be improved.

次に、前記昆虫体の予備乾燥について説明する。
この予備乾燥は、前記昆虫体を温度が20〜25℃で相対湿度が55〜75%の容器(密閉容器)内に保管し、昆虫体の水分量が5〜15%になるように行われる。該予備乾燥では、上記温度及び相対湿度の容器内に7〜10日間保管することが望ましい。係る予備乾燥により、昆虫体表面の水分又は水滴が除去されると共に、昆虫体内から表面に移行しつつある水分も除去され、昆虫体の体内水分を低下させることができる。温度が20℃未満の場合には温度が低く、乾燥の効率が悪くなり、25℃を超える場合には乾燥の進行が速くなり、昆虫体の水分量が少なくなる。相対湿度が55%より低いときには乾燥が速く進行し、昆虫体の水分量が不足し、75%より高いときには昆虫体の乾燥が遅れ、昆虫体の水分量が過剰になる。加えて、容器内での昆虫体の保管期間が7日に満たない場合には昆虫体の水分量の低減を図ることが難しくなり、10日を越える場合には昆虫体の水分量が過度に低下する傾向を示す。予備乾燥で昆虫体の水分量は5〜15%に設定されるが、5%を下回る場合には昆虫体の保存後、子実体の形成を再開したときに所望とする子実体の形成が得られなくなる。その一方、15%を上回る場合には、昆虫体の水分量が多くなり過ぎて、昆虫体の保存中に昆虫体が腐敗する結果を招く。
Next, preliminary drying of the insect body will be described.
The preliminary drying is performed so that the insect body is stored in a container (sealed container) having a temperature of 20 to 25 ° C. and a relative humidity of 55 to 75% so that the moisture content of the insect body is 5 to 15%. . In the preliminary drying, it is desirable to store in a container having the above temperature and relative humidity for 7 to 10 days. By such preliminary drying, moisture or water droplets on the surface of the insect body are removed, and moisture that is moving from the body of the insect to the surface is also removed, so that the body water of the insect body can be lowered. When the temperature is lower than 20 ° C., the temperature is low and the drying efficiency is deteriorated. When the temperature is higher than 25 ° C., the drying progresses faster and the moisture content of the insect body decreases. When the relative humidity is lower than 55%, the drying proceeds fast and the moisture content of the insect body is insufficient. When the relative humidity is higher than 75%, the drying of the insect body is delayed and the moisture content of the insect body becomes excessive. In addition, when the storage period of the insect body in the container is less than 7 days, it is difficult to reduce the moisture content of the insect body, and when it exceeds 10 days, the moisture content of the insect body is excessive. Shows a downward trend. In pre-drying, the moisture content of the insect body is set to 5 to 15%. However, if the insect body is less than 5%, the formation of the desired fruit body is obtained when the formation of the fruit body is resumed after storage of the insect body. It becomes impossible. On the other hand, when it exceeds 15%, the moisture content of the insect body becomes too large, resulting in the decay of the insect body during the preservation of the insect body.

また、前記予備乾燥した昆虫体を容器内に充填された乾燥剤中に投入した後、容器内の相対湿度を0〜55%に維持することが望ましい。この場合、昆虫体を容器内に投入した直後における容器内の相対湿度を0〜20%に保持することが好ましい。容器内の相対湿度が55%を超える場合、昆虫体の保管中に昆虫体が腐敗したり、冷蔵又は冷凍保存後に昆虫寄生菌の子実体の形成率が低下する。また、昆虫体を容器内に投入した直後における容器内の相対湿度が20%を超える場合、容器内の相対湿度を55%以下に維持することが難しくなる。   Moreover, it is desirable to maintain the relative humidity in the container at 0 to 55% after the pre-dried insect body is put into a desiccant filled in the container. In this case, it is preferable to maintain the relative humidity in the container immediately after the insect body is put in the container at 0 to 20%. When the relative humidity in the container exceeds 55%, the insect body decays during storage of the insect body, and the fruit body formation rate of the insect parasitic fungus decreases after refrigeration or frozen storage. Further, when the relative humidity in the container immediately after the insect body is put into the container exceeds 20%, it is difficult to maintain the relative humidity in the container at 55% or less.

この乾燥処理により、昆虫体のもつ水分を速やかに吸収して乾燥を促し、子実体の形成を再開した際に子実体の形成率を高めることができる。乾燥剤としては、シリカゲル(SiO・nHO)、モレキュラーシーブ(分子篩)、塩化カルシウム、生石灰、活性アルミナ等が用いられるが、これらのうち乾燥能力を容易に高めることができる点からシリカゲルが好ましい。係る乾燥処理に当たっては、密閉性の高いガラス容器を用い、そのガラス容器内に乾燥剤を好ましくは60%以上、より好ましくは80%以上充填する。この場合には、乾燥剤による水分吸収量を増大させることができる。さらに、乾燥処理に際し、昆虫体を乾燥剤中に埋没させて乾燥剤による昆虫体の水分吸収効果を上げることが望ましい。 By this drying treatment, the moisture content of the insect body can be quickly absorbed to promote drying, and the formation rate of the fruit body can be increased when the formation of the fruit body is resumed. As the desiccant, silica gel (SiO 2 · nH 2 O), molecular sieve (molecular sieve), calcium chloride, quicklime, activated alumina and the like are used, and silica gel is used because it can easily increase the drying capacity. preferable. In the drying treatment, a glass container with high airtightness is used, and the desiccant is preferably filled in 60% or more, more preferably 80% or more in the glass container. In this case, the amount of moisture absorbed by the desiccant can be increased. Furthermore, it is desirable to increase the moisture absorption effect of the insect body by drying the insect body in the desiccant during the drying treatment.

このような操作により、昆虫体内から排出される水分を乾燥剤が吸収するため、昆虫体表面には水滴が存在しなくなる。その結果、昆虫体の表面に糸状菌や細菌が繁殖することを防止することができる。例えば、シリカゲル100gに対して、昆虫体の質量15gの状態で保持すると、容器内の相対湿度を20%以下に保持することが可能となり、最大の相対湿度を55%以下で管理することが可能となる。この方法は、さらに冷蔵又は冷凍保管を助けるという効果を発揮することができる。   By such an operation, since the desiccant absorbs the water discharged from the insect body, no water droplets are present on the insect body surface. As a result, it is possible to prevent the growth of filamentous fungi and bacteria on the surface of the insect body. For example, if the insect body mass is 15 g against silica gel 100 g, the relative humidity in the container can be kept below 20%, and the maximum relative humidity can be controlled below 55%. It becomes. This method can further exert an effect of assisting refrigeration or freezing storage.

乾燥剤の使用量は、乾燥剤としてシリカゲルを用いたとき、容器の単位体積当たりのシリカゲルの質量として0.1〜0.13g/cmであることが好ましい。また、冬虫夏草菌を保菌した昆虫体の場合、昆虫体の質量に対してシリカゲルの質量は、7〜17倍であることが好ましく、13〜17倍であることがより好ましい。シリカゲルの使用量が0.1g/cm未満又は7倍未満の場合には、容器内の湿度を十分に低下させることができず、ひいては昆虫体の水分を15%以下にすることが容易ではない。一方、0.13g/cmを超える場合又は17倍を超える場合には、過剰のシリカゲルによって容器内の湿度が過度に低下し、昆虫体の水分を5%を下回るおそれがある。乾燥剤を容器内に入れるとき、そのまま入れておくこともできるが、網袋などに入れておくことが望ましい。なお、シリカゲル等の乾燥剤が昆虫体に直接触れても何ら問題になることはない。 The amount of the desiccant used is preferably 0.1 to 0.13 g / cm 3 as the mass of silica gel per unit volume of the container when silica gel is used as the desiccant. Moreover, in the case of an insect body carrying Cordyceps fungus, the mass of silica gel is preferably 7 to 17 times, more preferably 13 to 17 times the mass of the insect body. If the amount of silica gel used is less than 0.1 g / cm 3 or less than 7 times, the humidity in the container cannot be lowered sufficiently, and it is not easy to reduce the moisture content of the insect body to 15% or less. Absent. On the other hand, when it exceeds 0.13 g / cm 3 or when it exceeds 17 times, the humidity in the container is excessively lowered by excessive silica gel, and there is a possibility that the moisture of the insect body is less than 5%. When the desiccant is put into the container, it can be put as it is, but it is desirable to put it in a net bag or the like. In addition, there is no problem even if a desiccant such as silica gel directly touches the insect body.

続いて、予備乾燥後の保存は、0〜6℃の冷蔵又は冷凍(凍結)にて行われる。係る保存条件によって予備乾燥後の状態が保持され、長期間例えば1年以上、最良の場合には4年間以上に渡って子実体生産能を保持することができる。冷蔵の場合、その温度6℃より高くなると保存状態が悪く、昆虫体が腐敗を生ずる。冷蔵の温度は、0〜2℃であることが好ましい。また、冷凍の温度は、0℃未満で−70℃程度以上であることが好ましく、−10〜−30℃であることがさらに好ましい。冷凍温度を−70℃より低くすることは、冷凍条件が厳しくなり、現実的ではない。   Subsequently, the storage after the preliminary drying is performed by refrigeration or freezing (freezing) at 0 to 6 ° C. The state after preliminary drying is maintained by such storage conditions, and the fruit body production ability can be maintained for a long period of time, for example, 1 year or more, and in the best case, 4 years or more. In the case of refrigeration, if the temperature is higher than 6 ° C., the storage state is poor and the insect body rots. It is preferable that the temperature of refrigeration is 0-2 degreeC. The freezing temperature is preferably less than 0 ° C. and about −70 ° C. or more, more preferably −10 to −30 ° C. Making the freezing temperature lower than −70 ° C. is not realistic because the freezing condition becomes severe.

昆虫体を冷凍条件下に置く場合には、子実体原基を形成する直前の保菌昆虫体を用いることが望ましい。子実体原基を形成している場合には、これが凍結により壊死しやすいため、子実体を再度生産しようとした場合に子実体の発生数が少なくなる傾向がある。   When placing an insect body under freezing conditions, it is desirable to use the insect-bearing insect body just before the formation of the fruiting body primordium. When the fruiting body primordium is formed, it tends to be necrotized by freezing. Therefore, when the fruiting body is produced again, the number of fruiting bodies tends to decrease.

保存に際しては、昆虫体を大量に生産できると共に、低温に維持できかつ湿度調整が可能な容器内に入れることが好ましい。この方法は、大量生産した昆虫体を密閉できる容器、具体的にはガラス瓶又はプラスチック容器に乾燥剤と同時に入れた後、大型の冷蔵室内において保存することも可能である。この方法で再度子実体を発生させるために供用するまで維持することができる。   During storage, it is preferable to place the insect body in a container that can produce a large amount of insects and that can be maintained at a low temperature and the humidity can be adjusted. In this method, a mass-produced insect body can be sealed, specifically, put in a glass bottle or a plastic container at the same time as the desiccant, and then stored in a large refrigerator. This method can be maintained until it is used for generating fruit bodies again.

昆虫を冷蔵又は冷凍条件下で保存するためには、子実体原基の成長がないことが必要であり、子実体が形成されつつあるものは、これらの保存により障害又は損傷を受けるのでこれらの方法は適していない。障害又は損傷というのは、具体的には、凍結による子実体原基組織の壊死であり、損傷とは先端の破損又は昆虫体からの欠落等、ひいては生育の遅延、生育の不良をいう。しかし、冷凍に供する昆虫体の形態は、子実体を形成する直前の状態の昆虫体内に冬虫夏草菌が十分に蔓延した保菌状態が望ましい。この状態の昆虫体の生産には14〜20日程度が目安であるが、子実体原基が形成されていない昆虫体の硬化の程度で判断することができる。   In order to preserve insects under refrigerated or frozen conditions, it is necessary that there is no growth of fruiting body primordia, and those where fruiting bodies are being formed are damaged or damaged by these preservations, The method is not suitable. The disorder or damage is specifically necrosis of the fruiting body primordial tissue due to freezing, and the damage refers to breakage of the tip or loss from the insect body, and thus growth delay or growth failure. However, it is desirable that the form of the insect body to be subjected to freezing is a state in which the Cordyceps fungus is sufficiently spread in the insect body just before the formation of the fruiting body. In general, 14 to 20 days is a standard for producing an insect body in this state, but it can be determined by the degree of hardening of an insect body in which no fruit body primordium is formed.

図1は、昆虫寄生菌の子実体生産能を有する昆虫体の保存装置を模式的に示す説明図である。この図1に示すように、冷蔵庫又は冷凍庫11内には、冬虫夏草菌を保菌した複数個体の昆虫体12が収容され、蓋体13が被せられた複数(図1では2つ)の密閉容器14が保管されている。密閉容器14内には、乾燥剤としてのシリカゲル15が充填され、その中に多数の昆虫体12が埋め込まれている。密閉容器14内の乾燥は予め行っておくことが好ましい。すなわち、昆虫体12の表面に発生した微細な水滴は、昆虫体12をエアーコンディショナー稼働室内に置いて除去した後に密閉容器14内に入れることが好ましい。   FIG. 1 is an explanatory view schematically showing an insect body storage device having the ability to produce fruit bodies of insect parasitic fungi. As shown in FIG. 1, in a refrigerator or freezer 11, a plurality of (two in FIG. 1) sealed containers 14 that contain a plurality of insect bodies 12 that carry Cordyceps fungus and are covered with lids 13. Is stored. The sealed container 14 is filled with silica gel 15 as a desiccant, and a large number of insect bodies 12 are embedded therein. It is preferable to dry the sealed container 14 in advance. That is, it is preferable that the fine water droplets generated on the surface of the insect body 12 are placed in the sealed container 14 after the insect body 12 is removed by placing it in the air conditioner operating chamber.

冷蔵又は冷凍後には、常態、例えば温度20〜25℃、湿度30〜70%に戻して保湿することにより子実体の形成が再開され、所望とする昆虫寄生菌の子実体が容易に得られる。昆虫体は、冷蔵室又は冷凍室から取り出したばかりのときには表面に濡れなどがあり、この表面の水分の乾燥を速やかに行うため、エアーコンディショナーなどで乾燥させた無菌室内に上記密閉容器を配置し、冬虫夏草菌を保菌した昆虫体の表面の微小水滴を蒸発させ湿度を下げることが好ましい。このような操作によって早急に乾燥を行うことができるため、保管した昆虫体の個体品質の向上を図ることができる。また、子実体の大きさは昆虫体からの子実体の発生数に左右されることから、1本の子実体が欠落しても他の子実体が残っていれば事実上の生産には支障がないことが多い。これらの方法により大量の品質の揃った昆虫体が確保できるようになり、子実体の形成に当たって一斉に生産できるという効果を発揮する。   After refrigeration or freezing, the formation of fruiting bodies is resumed by returning to a normal state, for example, by returning to a temperature of 20 to 25 ° C. and a humidity of 30 to 70%, whereby the fruiting body of the desired insect parasitic fungus is easily obtained. Insect bodies have wet surfaces when they are just removed from the refrigerator compartment or freezer compartment, and in order to quickly dry the moisture on the surface, place the sealed container in a sterile room dried with an air conditioner, etc. It is preferable to reduce the humidity by evaporating fine water droplets on the surface of insect bodies carrying Cordyceps fungus. Since drying can be performed quickly by such an operation, the individual quality of the stored insect body can be improved. In addition, since the size of the fruiting body depends on the number of fruiting bodies generated from the insect body, even if one fruiting body is missing, if other fruiting bodies remain, it will hinder the actual production. There is often no. By these methods, it becomes possible to secure a large number of insect bodies with uniform quality, and the effect of being able to produce all at the same time in the formation of fruit bodies is exhibited.

上記のように、本実施形態の昆虫寄生菌の子実体生産能を有する昆虫体の保存方法では、乾燥条件と低温条件とを最適に組合せることで、昆虫体内の菌糸が安定して保存されるため、保存後の子実体の形成率も高く、子実体を速やかに形成させることが可能になる。通常、昆虫寄生菌である冬虫夏草菌の菌糸を人工的に繁殖させて昆虫に感染させると、昆虫が硬化して子実体原基を形成し、該昆虫体は引き続き子実体を形成させる工程に入る。しかし、生産の都合上から昆虫体を一時的に保留しておく必要が生じた場合には、前記冷蔵又は冷凍条件下に保存することにより、長期間例えば1年以上、さらに保存状態が良好な場合には4年以上の保存が可能となる。該昆虫体内の水分を一定の水分量、すなわち昆虫体の水分量を保存可能な程度まで低下させ、菌糸を十分に蔓延させることができる。さらに、昆虫体の中に冬虫夏草菌の菌糸を蔓延させるときに水分が排出されるが、前記乾燥条件によってその水分が吸収され、この工程を円滑に進行させることができる。   As described above, in the method for preserving insect bodies having the fruit body production ability of insect parasitic fungi according to this embodiment, hyphae in insect bodies can be stably preserved by optimally combining dry conditions and low temperature conditions. Therefore, the formation rate of the fruiting body after storage is high, and it becomes possible to quickly form the fruiting body. Normally, when an insect parasite fungus mycosis fungus hyphae is artificially propagated and infected with an insect, the insect hardens to form a fruit body primordium, and the insect body continues to form a fruit body. . However, if it becomes necessary to temporarily hold the insect body for the convenience of production, it can be stored for a long period of time, for example one year or more, and further in a good condition by storing it under the refrigerated or frozen conditions. In some cases, it can be stored for more than 4 years. The moisture content in the insect body can be reduced to a certain amount of moisture, that is, the moisture content of the insect body to a level where it can be preserved, and the mycelium can be sufficiently spread. Furthermore, water is discharged when the mycelia of Cordyceps fungus are spread in the insect body, but the water is absorbed by the drying conditions, and this process can be carried out smoothly.

このことは冬虫夏草菌の子実体の発生を人工的に制御でき、子実体の生産を遅延させることができることを意味する。つまり、冬虫夏草菌を保菌した昆虫体による冬虫夏草菌の子実体の生産制御を可能ならしめるものである。実際の昆虫は気温の上昇により生育が進み、特有の定められた積算温度になれば、幼虫から蛹化、又は蛹から羽化の段階に進む。これを制御して冬虫夏草菌を保菌させ、子実体の生産を行うためには、昆虫の生産量に合わせた子実体の生産が必要となる。冬虫夏草菌子実体の生産が昆虫体のストックという形で計画的に実施できるようになる。   This means that the fruit body of Cordyceps can be artificially controlled and the production of fruit bodies can be delayed. In other words, it makes it possible to control the production of Cordyceps sinensis fruit bodies by insect bodies carrying Cordyceps fungus. An actual insect grows due to an increase in temperature, and when it reaches a specific predetermined integrated temperature, it proceeds to the stage of hatching from larvae or hatching from hatching. In order to control this and retain Cordyceps fungus to produce fruit bodies, it is necessary to produce fruit bodies according to the amount of insects produced. The production of Cordyceps fungus fruit bodies can be implemented systematically in the form of insect stock.

以上詳述した本実施形態によれば、次のような作用及び効果が発揮される。
・ 本実施形態における昆虫に昆虫寄生菌が接種され、感染されて硬化された昆虫体又は子実体原基が形成された昆虫体を、温度が20〜25℃で相対湿度が55〜75%の容器内に保管し、昆虫体の水分量が5〜15%になるように予備乾燥を行う。その後、0〜6℃の冷蔵又は冷凍条件下で昆虫体を保存するものである。このため、前記昆虫体は容器内の温度及び相対湿度の条件により、その表面の水分が除去された後、昆虫体内部の水分が徐々に表面に移行して除去され、昆虫体の水分量が菌糸の成長と保存に適した状態となる。続いて、冷蔵又は冷凍保存されることにより、昆虫体は腐敗することなく、長期間に渡って保存される。
According to the embodiment described above in detail, the following operations and effects are exhibited.
-Insect parasites are inoculated into insects in this embodiment, and infected insect bodies or insect bodies in which fruit body primordia are formed have a temperature of 20 to 25 ° C and a relative humidity of 55 to 75%. Store in a container and perform preliminary drying so that the moisture content of the insect body is 5-15%. Thereafter, the insect body is preserved under refrigerated or frozen conditions of 0 to 6 ° C. For this reason, after the moisture on the surface of the insect body is removed according to the temperature and relative humidity conditions in the container, the moisture inside the insect body gradually moves to the surface and is removed. It becomes a state suitable for the growth and storage of mycelium. Subsequently, the insect body is preserved for a long time without being spoiled by being refrigerated or frozen.

従って、昆虫寄生菌を昆虫に接種、感染させた後に、昆虫寄生菌の子実体の形成を一定期間停止させ、その後子実体の形成を再開して子実体を容易に形成することができ、子実体の生産を効率良く行うことができる。すなわち、昆虫に対する昆虫寄生菌の感染、子実体の形成という一連の作業工程を途中で停止させて昆虫体を保存し、再度子実体を形成させる作業工程に入ることができる。言い換えれば、昆虫体に対する昆虫寄生菌の感染時期を揃えることが可能になり、昆虫寄生菌の子実体の生産を途中で制御することができ、子実体生産の調整が可能になり、昆虫体を保存して蓄積管理し、必要な個体数が確保できた段階で子実体生産工程に移ることができるようになる。   Therefore, after inoculating and infecting insect parasitic fungi, the fruiting body of insect parasitic fungi can be stopped for a certain period of time, and then the fruiting body can be restarted to form the fruiting body easily. Entity production can be performed efficiently. That is, it is possible to enter a work process in which a series of work processes such as infection of insect parasites to insects and formation of fruiting bodies are stopped halfway to preserve insect bodies and form fruiting bodies again. In other words, it becomes possible to arrange the insect parasite infection time on the insect body, control the production of the fruit body of the insect parasite, and adjust the production of the fruit body. It can be stored, managed, and transferred to the fruit production process when the necessary number of individuals has been secured.

・ 前記予備乾燥した昆虫体を容器内に充填された乾燥剤中に投入した後、容器内の相対湿度を0〜55%に維持し、次いで0〜6℃の冷蔵又は冷凍条件下で保存することが好ましい。この場合、予備乾燥後に昆虫体の乾燥を促進することができ、子実体の形成を再開したときに子実体の形成率を向上させることができる。   -After the pre-dried insect body is put into a desiccant filled in a container, the relative humidity in the container is maintained at 0 to 55%, and then stored under refrigerated or frozen conditions at 0 to 6 ° C. It is preferable. In this case, drying of the insect body can be promoted after preliminary drying, and the formation rate of the fruit body can be improved when the formation of the fruit body is resumed.

・ 前記乾燥剤がシリカゲルであることにより、乾燥能力を容易に高めることができる。
・ 昆虫体の複数個体を容器内に保管することにより、昆虫体の複数個体を同時に保存することができ、昆虫寄生菌の子実体の生産性を向上させることができる。
-Since the said desiccant is a silica gel, a drying capability can be improved easily.
-By storing a plurality of insect bodies in a container, a plurality of insect bodies can be stored at the same time, and productivity of fruit bodies of insect parasitic fungi can be improved.

・ 昆虫寄生菌が冬虫夏草菌類であることにより、前述の効果を発揮することができ、その利用価値を高めることができる。   -When the insect parasitic fungus is Cordyceps fungus, the above-mentioned effects can be exhibited and the utility value can be increased.

以下、参考例及び実施例を挙げて前記実施形態をさらに具体的に説明するが、本発明はこれら実施例の範囲に限定されるものではない。
(参考例1〜4及び実施例1、2、保存条件の相違による子実体形成試験)
冬虫夏草菌を主とする昆虫寄生菌(サナギタケ(Cordyceps militalis)、以下の試験は全てサナギタケで行った)の菌糸を人工的に繁殖させてハスモンヨトウ蛹(以下の試験は全てハスモンヨトウ蛹で行った)に感染させ、硬化させた昆虫体又は昆虫体が硬化して子実体原基を形成した昆虫体を用いた。参考例1(乾燥のみ)では、この昆虫体を、乾燥条件として相対湿度80、60、50、40、30、20及び10%以下の乾燥室に置き、定期的に取り出して子実体の形成状態を調べた。参考例2(冷蔵のみ)では、昆虫体を、冷蔵条件として0〜2℃、4〜6℃及び8℃の冷蔵庫内に置き、定期的に取り出して子実体の形成状態を調べた。参考例3(冷凍のみ)では、昆虫体を、冷凍条件として−1、−10及び−70℃の冷凍庫内に置き、定期的に取り出して子実体の形成状態を調べた。なお、参考例4として、無処理の場合の昆虫体について、子実体の形成状態を調べた。
Hereinafter, although the embodiment will be described more specifically with reference examples and examples, the present invention is not limited to the scope of these examples.
(Reference Examples 1 to 4 and Examples 1 and 2, fruit body formation test by difference in storage conditions)
Insect parasites (Cordyceps militalis), which mainly consist of Cordyceps sinensis fungi, were artificially bred with mycelia, and all of the following tests were done with Lotus moth. Infected and cured insect bodies or insect bodies in which insect bodies hardened to form fruit body primordium were used. In Reference Example 1 (drying only), this insect body is placed in a drying room having a relative humidity of 80, 60, 50, 40, 30, 20, and 10% or less as a drying condition, and is periodically removed to form a fruiting body. I investigated. In Reference Example 2 (only refrigeration), the insect body was placed in a refrigerator at 0 to 2 ° C., 4 to 6 ° C., and 8 ° C. as refrigeration conditions, and periodically removed to examine the formation state of fruit bodies. In Reference Example 3 (freezing only), the insect body was placed in a freezer at -1, -10 and -70 ° C as freezing conditions, and removed periodically to examine the formation state of fruiting bodies. As Reference Example 4, the formation state of fruiting bodies was examined for insect bodies that were not treated.

実施例1及び2では、予備乾燥として、昆虫体を温度20℃、相対湿度60%とした容器内に10日間保存し、昆虫体の水分量を10%(昆虫体中の水分減少率が90%)とした。そして、実施例1では、予備乾燥した昆虫体を温度2℃で冷蔵保存した。実施例2では、予備乾燥した昆虫体を−20℃で冷凍保存した。保存期間中に定期的に取り出して常態(温度25℃、湿度50%、以下同じ)に戻し、子実体の形成状態を調べた。それらの結果を表1に示した。なお、試験には各々の区に10個体の冬虫夏草菌を保菌した昆虫体を供試した。   In Examples 1 and 2, as pre-drying, the insect body was stored in a container at a temperature of 20 ° C. and a relative humidity of 60% for 10 days, and the moisture content of the insect body was 10% (the moisture reduction rate in the insect body was 90%). %). In Example 1, the pre-dried insect body was refrigerated at a temperature of 2 ° C. In Example 2, the pre-dried insect body was stored frozen at -20 ° C. During the storage period, it was taken out periodically and returned to the normal state (temperature 25 ° C., humidity 50%, the same applies hereinafter), and the formation state of the fruiting bodies was examined. The results are shown in Table 1. In addition, for the test, insect bodies carrying 10 individuals of Cordyceps fungus in each group were used.

Figure 0004890353
表1に示した結果より、参考例1においては、湿度80、60、50、40、30、20及び10%以下の恒湿度室で保存した昆虫体の発芽は、湿度80%では形成されなかった。湿度60%では1ヶ月後に子実体が一部形成された。湿度50%と40%区では2ヶ月以上安定して1個体から1〜3本以上の子実体が安定して形成された。しかし、3ヶ月を経過すると発生する子実体が0本となるものも発生し、安定しなくなった。湿度30%、20%及び10%以下の条件では3ヶ月間安定して子実体の形成が認められたが、4ヶ月以降はやや不安定となった。従って、湿度の低下に伴って保存の安定化を助長できることが判明した。
Figure 0004890353
From the results shown in Table 1, in Reference Example 1, germination of insect bodies stored in a constant humidity room at a humidity of 80, 60, 50, 40, 30, 20, and 10% or less is not formed at a humidity of 80%. It was. At 60% humidity, some fruiting bodies were formed after one month. In the 50% and 40% humidity groups, 1 to 3 or more fruiting bodies were stably formed from 1 to 2 months. However, after 3 months, there were also cases where the number of fruiting bodies was zero, which became unstable. Under the conditions of humidity of 30%, 20% and 10% or less, the formation of fruit bodies was recognized stably for 3 months, but after 4 months it became slightly unstable. Therefore, it has been found that stabilization of storage can be promoted with a decrease in humidity.

参考例2において、0〜2℃に保管した昆虫体は6ヶ月後でも子実体の形成が認められ、4〜6℃に保管した昆虫体は3ヶ月後でも子実体の形成が認められた。しかし、8℃の条件で冷蔵保管した場合には、2ヶ月の間は子実体の形成が認められたが、3ヶ月以降では子実体の形成が認められなかった。この結果、2℃以下であれば保管が6ヶ月以上の長期に渡って安定してできることが判明した。   In Reference Example 2, formation of fruit bodies was observed after 6 months in insect bodies stored at 0 to 2 ° C., and formation of fruit bodies was observed after 3 months in insect bodies stored at 4 to 6 ° C. However, when stored refrigerated at 8 ° C., formation of fruiting bodies was observed for 2 months, but formation of fruiting bodies was not observed after 3 months. As a result, it was found that if it is 2 ° C. or lower, the storage can be stably performed over a long period of 6 months or longer.

参考例3において、−1、−10、−20及び−70℃に保存した昆虫体は6ヶ月間子実体の形成が認められた。さらに、−70℃に保管した昆虫体は24ヶ月後に子実体の形成が良好で、40ヶ月後も子実体の形成が認められた。この結果、冷蔵よりも冷凍の方が長期間の保存に耐え得ることが判明した。   In Reference Example 3, formation of fruiting bodies was observed in insect bodies stored at -1, -10, -20 and -70 ° C for 6 months. In addition, insect bodies stored at −70 ° C. showed good formation of fruit bodies after 24 months, and formation of fruit bodies was observed after 40 months. As a result, it was found that refrigeration can withstand long-term storage rather than refrigeration.

参考例4において、無処理では1ヶ月程度で子実体の形成が認められなくなった。
実施例1においては、18ヶ月後までの昆虫体は安定して昆虫体から1〜3本の子実体を形成し、1本の子実体を形成した場合には比較的大型の子実体となった。18ヶ月を過ぎるとそれまでよりはやや不安定であったが、27ヶ月後まで昆虫体からは子実体の形成が認められた。この結果、予備乾燥と冷蔵とを組み合わせることにより、長期間に渡って安定した状態で保存できることが判明した。
In Reference Example 4, the formation of fruit bodies was not recognized in about one month without treatment.
In Example 1, the insect body up to 18 months later stably forms 1 to 3 fruiting bodies from the insect body, and when one fruiting body is formed, it becomes a relatively large fruiting body. It was. After 18 months, it was slightly more unstable than before, but the formation of fruiting bodies was observed from the insect body until 27 months later. As a result, it has been found that a combination of pre-drying and refrigeration can be stored in a stable state for a long period of time.

実施例2においては、48ヶ月間安定して子実体の形成が認められた。従って、長期に渡って保存しようとすれば予備乾燥した後、冷凍する方法が適していることが明らかになった。
(実施例3、子実体原基の形成と冷蔵及び冷凍保存との関係)
昆虫体の保存時に子実体原基が形成され、大きくなっているか否かで冷凍保存後の子実体の形成が影響を受けるか否かについて調べた。子実体原基が形成されていない昆虫体20個体と、子実体原基が形成されて1mm以上の大きさになった昆虫体20個体を各々乾燥冷凍(−70℃)と保管湿度10%の乾燥冷蔵(2℃)をして保存し、3ヶ月後に子実体原基の状況を調べると共に、取り出して常態下で子実体の形成を調べた。
In Example 2, formation of fruiting bodies was recognized stably for 48 months. Therefore, it has become clear that a method of freezing after pre-drying is suitable for long-term storage.
(Example 3, relationship between formation of fruit body primordium and refrigeration and frozen storage)
Whether or not the fruiting body primordia were formed during the preservation of the insect body and whether the fruiting body formation after freezing was affected or not was examined. Twenty insect bodies with no fruiting body primordium and 20 insect bodies with a fruiting body primordium having a size of 1 mm or more were dried and frozen (−70 ° C.) and stored at a humidity of 10%. It was stored after drying and refrigeration (2 ° C.), and after 3 months, the state of the fruiting body primordium was examined and taken out to examine the formation of fruiting bodies under normal conditions.

この結果、予備乾燥後に冷蔵処理した場合には、子実体原基の形成の如何を問わず子実体の形成に差がなく、子実体も1本から数本形成された。一方、予備乾燥後に冷凍処理した場合には、子実体原基が1mm以上になっているものは組織が壊死し、子実体の形成は悪かった。しかし、この子実体が壊死しても、僅かに認められる子実体原基からは子実体が形成され、これが1本の場合には比較的大型の子実体に成長した。このような結果は予備乾燥後の冷蔵でも同様であった。これらの結果から、昆虫体の保存は子実体原基形成直前までの昆虫体が適していることが判明した。
(実施例4、乾燥剤の処理条件による子実体形成試験)
密閉した保存容器(縦20cm、横20cm及び高さ10cm)内にシリカゲルを50、100、200、300、400及び500gを入れた区を作り、予備乾燥を終了させた昆虫体300個体を同時に入れ、湿度の推移を調べた。400及び500g区は量が多いため、シリカゲル内に昆虫体を埋没させた。その後、温度−20℃の冷凍庫内に昆虫体を保存し、定期的に取り出して常態に戻し、子実体を形成させてその形成率を調べた。
As a result, when the refrigeration treatment was performed after the preliminary drying, there was no difference in the formation of the fruit bodies regardless of the formation of the fruit body primordium, and from one to several fruit bodies were formed. On the other hand, when the freezing treatment was performed after the pre-drying, when the fruit body primordium was 1 mm or more, the tissue was necrotized and the fruit body formation was poor. However, even if this fruiting body was necrotic, a fruiting body was formed from a slightly recognized fruiting body primordium, and in the case of one, it grew into a relatively large fruiting body. Such a result was the same also in refrigeration after preliminary drying. From these results, it was found that the insect body is suitable for preserving the insect body until just before the formation of the fruit body primordia.
(Example 4, fruit body formation test by processing conditions of desiccant)
Create a section containing 50, 100, 200, 300, 400, and 500 g of silica gel in a closed storage container (20 cm long, 20 cm wide and 10 cm high), and simultaneously put 300 insect bodies that have finished preliminary drying. The change of humidity was examined. Since the 400 and 500 g sections were large in quantity, insect bodies were buried in silica gel. Thereafter, insect bodies were stored in a freezer at a temperature of −20 ° C., periodically taken out and returned to a normal state, fruit bodies were formed, and the formation rate was examined.

その結果、50及び100g区では、湿度が一時的に低下したが、昆虫体内から水分が排出されると湿度が70%以上まで達したため、シリカゲルの量が少ないことが明らかになった。200g区では湿度が一時的に20%程度まで下がり、その後55%程度まで上昇した。300g区では湿度が10%程度まで低下し、その後40〜50%まで上昇した。400及び500g区では湿度が早期に10%以下となり、その後緩やかに40%程度まで上昇した。これらの昆虫体を取り出して子実体の形成を調べた結果、400〜500g区で安定して80%以上の子実体形成率を示した。また、腐敗昆虫体もなかった。   As a result, in the 50 and 100 g sections, the humidity decreased temporarily, but when the moisture was discharged from the insect body, the humidity reached 70% or more, and it became clear that the amount of silica gel was small. In the 200 g section, the humidity temporarily decreased to about 20% and then increased to about 55%. In the 300 g section, the humidity decreased to about 10% and then increased to 40-50%. In the 400 and 500 g sections, the humidity quickly reached 10% or less and then gradually increased to about 40%. As a result of taking out these insect bodies and examining the formation of fruit bodies, the fruit body formation rate was stably 80% or more in the 400 to 500 g section. There were also no rotting insect bodies.

このことから、容器の体積当たりのシリカゲル量が400〜500g/4000cm、すなわち0.1〜0.125g/cmのシリカゲル量が適当であると判明した。さらに、昆虫体1個体は約0.1gであることから、昆虫体の質量に対してシリカゲルの質量は、(400〜500)/(300×0.1)=13.3〜16.7、すなわち13〜17倍が適当であると判明した。
(参考例5、冬虫夏草菌を保菌した昆虫体の予備乾燥)
冬虫夏草菌が感染して硬化しはじめたハスモンヨトウの蛹を、15、18、20、23、25及び27℃で、相対湿度50、60、70、80及び90%とした容器内に10日間保存し、昆虫体表面の水分を除去すると共に体内水分を減らし、蛹の重さを量って水分減少量(%)を測定し、その後保湿して子実体を形成させてその形成率(%)を測定した。昆虫体の水分減少量(%)を表2に示し、子実体の形成率(%)を表3に示した。なお、昆虫体の水分減少率は、昆虫体をミイラ化することによって昆虫体のもつ水分絶対量を測定することにより算出した。
Therefore, silica gel per volume of the vessel is found to 400 to 500 g / 4000 cm 3, i.e. silica gel of 0.1~0.125g / cm 3 are suitable. Furthermore, since one insect body is about 0.1 g, the mass of the silica gel is (400 to 500) / (300 × 0.1) = 13.3 to 16.7, relative to the mass of the insect body. That is, 13 to 17 times was found to be appropriate.
(Reference Example 5, pre-drying of insect body carrying Cordyceps fungus)
The Spodoptera litura, which has begun to become infected with Cordyceps sinensis, is stored at 15, 18, 20, 23, 25 and 27 ° C in a relative humidity of 50, 60, 70, 80 and 90% for 10 days. , Remove the moisture on the surface of the insect body, reduce the moisture in the body, weigh the moth and measure the amount of water loss (%), then moisturize to form the fruiting body (%) It was measured. The amount of water loss (%) of insect bodies is shown in Table 2, and the fruit body formation rate (%) is shown in Table 3. In addition, the moisture reduction rate of the insect body was calculated by measuring the absolute amount of moisture of the insect body by mummifying the insect body.

Figure 0004890353
Figure 0004890353

Figure 0004890353
表2に示した結果より、昆虫体の水分減少量(%)は温度20〜25℃、湿度60〜70%で95〜85%減少した(昆虫体中の水分量は5〜15%)。また、表3に示した結果より、前記条件下での子実体形成率も89〜91%と高かった。一方、湿度が80%以上、又は温度が27℃では腐敗個体が増加した。この結果、冬虫夏草菌が感染して硬化しはじめたハスモンヨトウの蛹は所定の予備乾燥を行うことにより菌糸が蔓延して水分が排出され、腐敗が少なくなり、子実体の形成率が高まることが判明した。
(実施例5、6及び参考例6、乾燥処理による水分除去)
冬虫夏草菌を主とする昆虫寄生菌(サナギタケ)の菌糸を人工的に繁殖させてハスモンヨトウ蛹に感染させ、硬化させた昆虫体を用いた。予備乾燥として、昆虫体を温度20℃、相対湿度60%とした容器内に10日間保存し、昆虫体の水分量を10%(昆虫体中の水分減少率が90%)とした。予備乾燥した昆虫体を、ガラス容器(1000ml)に充填されたシリカゲル10、50、100、200、300及び400gにそれぞれ投入した。そして、参考例6では、常温(25℃)で保存、実施例5では4〜6℃の冷蔵庫内で冷蔵保存、及び実施例6では−20℃の冷凍庫内で冷凍保存し、定期的に昆虫体を取り出して常態に戻し、子実体の形成状態を調べた。それらの結果を表4に示した。
Figure 0004890353
From the results shown in Table 2, the water loss (%) of the insect body was reduced by 95 to 85% at a temperature of 20 to 25 ° C. and a humidity of 60 to 70% (the water content in the insect body was 5 to 15%). Moreover, from the results shown in Table 3, the fruiting body formation rate under the above conditions was as high as 89 to 91%. On the other hand, when the humidity was 80% or more or the temperature was 27 ° C., the number of spoilage individuals increased. As a result, it became clear that the moths of Spodoptera litura, which began to infect with Cordyceps sinensis, spread the hyphae and drain water by performing the prescribed preliminary drying, resulting in less spoilage and higher fruit body formation rate. did.
(Examples 5 and 6 and Reference Example 6, water removal by drying treatment)
Insect bodies that were artificially propagated by hyphae of insect parasites (Sanagitake), mainly Cordyceps fungus, were infected with Spodoptera litura and cured. As pre-drying, the insect body was stored in a container at a temperature of 20 ° C. and a relative humidity of 60% for 10 days, and the moisture content of the insect body was 10% (the moisture reduction rate in the insect body was 90%). The pre-dried insect body was put into silica gel 10, 50, 100, 200, 300 and 400 g filled in a glass container (1000 ml), respectively. In Reference Example 6, stored at room temperature (25 ° C.), in Example 5, refrigerated in a refrigerator at 4-6 ° C., and in Example 6, stored in a freezer at −20 ° C. The body was removed and returned to normal, and the formation of the fruiting bodies was examined. The results are shown in Table 4.

Figure 0004890353
上記の結果、蛹を入れる前の容器内の相対湿度は0〜20%の範囲で推移した。その後、蛹を容器内に入れると湿度は0〜70%の範囲で推移した。シリカゲルが200gを越すと湿度は55%以下で推移し、10gでは70%まで上昇した。10gの区では蛹の腐敗が起こり、水分を十分除去することができなかった。しかし、湿度が55%以下で推移すると腐敗はなくなった。このことから、蛹を容器内に入れるときの湿度は0〜20%で、その後の相対湿度は0〜55%に保持されと腐敗は生じないことが判明した。
Figure 0004890353
As a result of the above, the relative humidity in the container before the soot was put in a range of 0 to 20%. After that, when the bag was placed in the container, the humidity changed in the range of 0 to 70%. When the silica gel exceeded 200 g, the humidity was maintained at 55% or less, and at 10 g, the humidity increased to 70%. In the 10 g section, spoilage of sputum occurred and water could not be removed sufficiently. However, when the humidity remained below 55%, the rot disappeared. From this, it was found that the humidity when the cocoon was put in the container was 0 to 20%, and the relative humidity thereafter was kept at 0 to 55%, and no rot occurred.

また、表4に示した結果より、参考例6の常温で保存したときには、子実体の形成は不良又は子実体は形成されなかった。その一方、実施例5の冷蔵保存した場合には、シリカゲルが300g又は400gで、保存期間が12ヶ月までのとき子実体の形成が良好であった。実施例6の冷凍保存した場合には、シリカゲルが300g又は400gで、保存期間が48ヶ月までのとき子実体の形成が良好であった。   Further, from the results shown in Table 4, when stored at room temperature in Reference Example 6, formation of the fruiting body was poor or no fruiting body was formed. On the other hand, when the refrigerated storage of Example 5 was performed, the formation of fruit bodies was good when the silica gel was 300 g or 400 g and the storage period was up to 12 months. When cryopreserved in Example 6, the formation of fruit bodies was good when the silica gel was 300 g or 400 g and the storage period was up to 48 months.

なお、前記実施形態を次のように変更して具体化することも可能である。
・ 前記容器として、自動的に恒温、恒湿状態を確保できる装置を備えた容器を用い、予備乾燥などの乾燥を自動的に行うこともできる。
It should be noted that the embodiment described above can be modified and embodied as follows.
-As the said container, the container provided with the apparatus which can ensure a constant temperature and humidity state automatically can be used, and drying, such as preliminary drying, can also be performed automatically.

・ 昆虫の1固体毎に分けて容器に入れ、1固体に必要な乾燥剤を収容し、各昆虫体の水分量が速やかに5〜15%になるように構成することもできる。
・ 昆虫寄生菌による昆虫の感染度に応じて、昆虫体の予備乾燥の条件を設定することも可能である。
-Each insect solid can be divided into containers and accommodated with the desiccant necessary for each solid so that the moisture content of each insect body can be quickly reduced to 5-15%.
・ It is also possible to set conditions for pre-drying insect bodies according to the degree of insect infection by insect parasites.

・ 予備乾燥中に昆虫体の水分量(又は水分減少量)を測定し、予備乾燥条件を変更して予備乾燥期間を短縮するように構成することも可能である。
次に、前記実施形態から把握できる技術的思想について以下に記載する。
-It is also possible to measure the moisture content (or moisture reduction amount) of the insect body during preliminary drying, and to change the preliminary drying conditions to shorten the preliminary drying period.
Next, the technical idea that can be grasped from the embodiment will be described below.

・ 前記昆虫体を、温度が20〜25℃で相対湿度が55〜75%の容器内に7〜10日間保管することを特徴とする請求項1から請求項5のいずれか一項に記載の昆虫寄生菌の子実体生産能を有する昆虫体の保存方法。このように構成した場合、請求項1から請求項5のいずれかに係る発明の効果に加え、予備乾燥で昆虫体の水分量を容易に5〜15%にすることができる。   The said insect body is stored for 7 to 10 days in a container having a temperature of 20 to 25 ° C and a relative humidity of 55 to 75%, according to any one of claims 1 to 5. A method for preserving insect bodies having the ability to produce fruit bodies of insect parasitic fungi. When comprised in this way, in addition to the effect of the invention which concerns on any one of Claims 1-5, the moisture content of an insect body can be easily made into 5 to 15% by preliminary drying.

・ 前記昆虫体を容器内に投入した直後における容器内の相対湿度を0〜20%に保持することを特徴とする請求項2から請求項5のいずれか1項に記載の昆虫寄生菌の子実体生産能を有する昆虫体の保存方法。このように構成した場合、請求項2から請求項5のいずれかに係る発明の効果に加えて、容器内の相対湿度を0〜55%に容易に維持することができる。   The insect parasite fungus according to any one of claims 2 to 5, wherein the relative humidity in the container immediately after the insect body is put in the container is maintained at 0 to 20%. A method for preserving insect bodies having an entity-producing ability. When comprised in this way, in addition to the effect of the invention which concerns on any one of Claims 2-5, the relative humidity in a container can be easily maintained at 0-55%.

・ 前記予備乾燥した昆虫体を容器内に充填された乾燥剤中に、昆虫体が埋没されるように投入することを特徴とする請求項2から請求項5のいずれか1項に記載の昆虫寄生菌の子実体生産能を有する昆虫体の保存方法。このように構成した場合、請求項2から請求項5のいずれかに係る発明の効果に加えて、昆虫体内から表面に移行する水分を効果的に吸収することができる。   The insect according to any one of claims 2 to 5, wherein the insect body is put into a desiccant filled in a container so that the insect body is buried. A method for preserving insect bodies having the ability to produce fruit bodies of parasitic fungi. When comprised in this way, in addition to the effect of the invention which concerns on any one of Claims 2-5, the water | moisture content which transfers to the surface from an insect body can be absorbed effectively.

昆虫寄生菌の子実体生産能を有する昆虫体の保存装置を模式的に示す説明図。Explanatory drawing which shows typically the preservation | save apparatus of the insect body which has the fruit body production ability of an insect parasitic fungus.

符号の説明Explanation of symbols

12…昆虫体、14…容器としての密閉容器、15…乾燥剤としてのシリカゲル。   12 ... Insect body, 14 ... Sealed container as container, 15 ... Silica gel as desiccant.

Claims (5)

昆虫に昆虫寄生菌が接種され、感染されて硬化された昆虫体又は子実体原基が形成された昆虫体を、温度が20〜25℃で相対湿度が55〜75%の容器内に保管し、昆虫体の水分量が5〜15%になるように予備乾燥した後、0〜6℃の冷蔵又は冷凍条件下で保存することを特徴とする昆虫寄生菌の子実体生産能を有する昆虫体の保存方法。 Insect parasites are inoculated into insects, and infected and cured insect bodies or insect body primordial primordial bodies are stored in a container having a temperature of 20 to 25 ° C. and a relative humidity of 55 to 75%. Insect body having the ability to produce fruit bodies of insect parasites, characterized by being pre-dried so that the moisture content of the insect body is 5 to 15% and then stored under refrigerated or frozen conditions at 0 to 6 ° C. How to save. 前記予備乾燥した昆虫体を容器内に充填された乾燥剤中に投入した後、容器内の相対湿度を0〜55%に維持し、次いで0〜6℃の冷蔵又は冷凍条件下で保存することを特徴とする請求項1に記載の昆虫寄生菌の子実体生産能を有する昆虫体の保存方法。 After the pre-dried insect body is put into a desiccant filled in a container, the relative humidity in the container is maintained at 0 to 55%, and then stored under refrigerated or frozen conditions of 0 to 6 ° C. The method for preserving an insect body having an ability to produce fruit bodies of an insect parasitic fungus according to claim 1. 前記乾燥剤はシリカゲルであることを特徴とする請求項2に記載の昆虫寄生菌の子実体生産能を有する昆虫体の保存方法。 The method for preserving an insect body having an ability to produce fruit bodies of insect parasitic fungi according to claim 2, wherein the desiccant is silica gel. 前記昆虫体の複数個体を容器内に保管することを特徴とする請求項1から請求項3のいずれか1項に記載の昆虫寄生菌の子実体生産能を有する昆虫体の保存方法。 The method for preserving an insect body having a fruit body producing ability of an insect parasitic fungus according to any one of claims 1 to 3, wherein a plurality of the insect bodies are stored in a container. 前記昆虫寄生菌は冬虫夏草菌類であることを特徴とする請求項1から請求項4のいずれか1項に記載の昆虫寄生菌の子実体生産能を有する昆虫体の保存方法。 The method for preserving an insect body having a fruit body production ability of an insect parasitic fungus according to any one of claims 1 to 4, wherein the insect parasitic fungus is a Cordyceps fungus.
JP2007150345A 2007-06-06 2007-06-06 Method for preserving insect bodies having the ability to produce fruit bodies of insect parasitic fungi Expired - Fee Related JP4890353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150345A JP4890353B2 (en) 2007-06-06 2007-06-06 Method for preserving insect bodies having the ability to produce fruit bodies of insect parasitic fungi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150345A JP4890353B2 (en) 2007-06-06 2007-06-06 Method for preserving insect bodies having the ability to produce fruit bodies of insect parasitic fungi

Publications (2)

Publication Number Publication Date
JP2008301738A JP2008301738A (en) 2008-12-18
JP4890353B2 true JP4890353B2 (en) 2012-03-07

Family

ID=40231009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150345A Expired - Fee Related JP4890353B2 (en) 2007-06-06 2007-06-06 Method for preserving insect bodies having the ability to produce fruit bodies of insect parasitic fungi

Country Status (1)

Country Link
JP (1) JP4890353B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101661903B1 (en) 2015-10-27 2016-10-05 영남대학교 산학협력단 Long-term storage method of aphidius colemani

Also Published As

Publication number Publication date
JP2008301738A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
Homolka Preservation of live cultures of Basidiomycetes–recent methods
CN101104005B (en) Biological freeze drying method for Chinese caterpillar fungus
US10131586B2 (en) Solid inoculum carried in a superabsorbent agro-pellet with a variable volume, operating in a natural minifermenter, and production method
ZA200208692B (en) A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same.
Zhang et al. Biological control of postharvest blue mold of oranges by Cryptococcus laurentii (Kufferath) Skinner
Mercier et al. Effect of wound moisture on the biocontrol by Candida oleophila of gray mold rot (Botrytis cinerea) of apple
JPH01165369A (en) Microbe inoculation material and method for production thereof
CN107788099A (en) A kind of composite fresh-keeping method for eating rhizoma Gastrodiae raw
JP3902216B1 (en) Method for producing fruit body of insect parasitic fungus
Edney The rotting of apples by Gloeosporium perennans Zeller & Childs
JP4890353B2 (en) Method for preserving insect bodies having the ability to produce fruit bodies of insect parasitic fungi
US20140193456A1 (en) Method for Drying-Conservation of Natural Substances
Adetunji et al. Effects of edible coatings from xanthum gum produced from Xanthomonas campestris pammel on the shelf life of Carica papaya linn fruits
WO2017080497A1 (en) Method for retaining freshness of medicinal materials
Fauzi et al. The RustPuccinia abruptavar. partheniicola, a Potential Biocontrol Agent of Parthenium Weed: Environmental Requirements for Disease Progress
Pershakova et al. Investigation of antagonistic properties of bacteria bacillus subtilis against carrot phytopathogenes in vitro and in vivo experiments
CN109055248A (en) A kind of bio-control yeast bacterium activated freeze dried powder and preparation method thereof
Pershakova et al. Studying the antagonistic properties of bacillus subtilis bacteria to pathogens of fruits in in vitro and in vivo experiments
JP4917973B2 (en) Method for producing fruit body of insect parasitic fungus
Hawthorne et al. Wound repair processes in fruit of the Cucurbita maxima hybrid ‘Delica’and the role of scar tissue in the development of fungal rots on stored fruit
CN109055257B (en) Antagonistic bacterium for producing volatile antibacterial substance and application thereof
JPH0398575A (en) Freeze preservation of basidiomycetes or the like
Metwally et al. Chemical and Biological Control of Pathogenic Fungi Associated with Imported Potato Tubers
ER et al. EFFECT OF FEEDING BEHAVIOR OF RHYZOPERTHA DOMINICA ON ITS SENSITIVITY TO BEAUVERIA BASSIANA INFECTIONS
Tahvonen Botrytis porri Buchw. on leek as an important storage fungus in Finland

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Ref document number: 4890353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees