JP4888832B2 - Wet road surface testing machine - Google Patents

Wet road surface testing machine Download PDF

Info

Publication number
JP4888832B2
JP4888832B2 JP2007011159A JP2007011159A JP4888832B2 JP 4888832 B2 JP4888832 B2 JP 4888832B2 JP 2007011159 A JP2007011159 A JP 2007011159A JP 2007011159 A JP2007011159 A JP 2007011159A JP 4888832 B2 JP4888832 B2 JP 4888832B2
Authority
JP
Japan
Prior art keywords
road surface
water film
film thickness
water
simulated road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007011159A
Other languages
Japanese (ja)
Other versions
JP2008175757A (en
Inventor
一徳 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2007011159A priority Critical patent/JP4888832B2/en
Publication of JP2008175757A publication Critical patent/JP2008175757A/en
Application granted granted Critical
Publication of JP4888832B2 publication Critical patent/JP4888832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば舗装路と同等の表面状態を有する擬似路面上に水膜を形成し、水膜が形成された擬似路面上におけるタイヤの特性を測定するためのウェット路面試験機に関するものである。   The present invention relates to a wet road surface testing machine for forming a water film on a simulated road surface having a surface condition equivalent to that of a paved road, for example, and measuring the characteristics of a tire on the simulated road surface on which the water film is formed. .

一般に、この種のウェット路面試験機としては、タイヤ等の試験対象物を回転可能に支持する支持装置と、支持装置に支持された試験対象物の外周面に下方から接触するように設けられた円筒状の擬似路面部材とを備え、擬似路面部材の内周面に水膜を形成するとともに、擬似路面部材の内周面に試験対象物の外周面を接触させ、さらに擬似路面部材を回転させることにより、ウェット路面上における試験対象物の特性を測定するようにしたものが知られている(例えば、特許文献1参照。)。   Generally, this type of wet road surface testing machine is provided so as to be in contact with a support device that rotatably supports a test object such as a tire and an outer peripheral surface of the test object supported by the support device from below. And a cylindrical simulated road surface member, forming a water film on the inner peripheral surface of the simulated road surface member, bringing the outer peripheral surface of the test object into contact with the inner peripheral surface of the simulated road surface member, and further rotating the simulated road surface member By this, what measured the characteristic of the test subject on a wet road surface is known (for example, refer to patent documents 1).

また、他のウェット路面試験機としては、タイヤ等の試験対象物を回転可能に支持する支持装置と、支持装置に支持された試験対象物の外周面に下方から接触するように設けられた円板状の擬似路面部材と、擬似路面部材の上面に水膜を形成可能な水膜形成装置とを備え、擬似路面部材の上面の径方向任意の位置に試験対象物の外周面を接触させるとともに、擬似路面部材を回転させ、さらに水膜形成装置によって擬似路面部材の上面に水膜を形成することにより、ウェット路面上における試験対象物の特性を測定するようにしたものが知られている(例えば、特許文献2参照。)。
特開平11−326142号公報 特開2006−208095号公報
In addition, as another wet road surface testing machine, a support device that rotatably supports a test object such as a tire, and a circle provided so as to come into contact with the outer peripheral surface of the test object supported by the support device from below. A plate-like simulated road surface member and a water film forming device capable of forming a water film on the upper surface of the simulated road surface member are provided, and the outer peripheral surface of the test object is brought into contact with an arbitrary radial position on the upper surface of the simulated road surface member. Further, it is known that the characteristics of the test object on the wet road surface are measured by rotating the simulated road surface member and further forming a water film on the upper surface of the simulated road surface member by the water film forming apparatus ( For example, see Patent Document 2.)
JP-A-11-326142 JP 2006-208095 A

ところで、前者のウェット路面試験機では、擬似路面部材の内周面に形成された水膜の厚さを調整する手段を持っていないので、水膜の厚さと試験対象物の特性との関係を測定することができない。   By the way, the former wet road surface testing machine does not have means for adjusting the thickness of the water film formed on the inner peripheral surface of the simulated road surface member, so the relationship between the thickness of the water film and the characteristics of the test object is shown. It cannot be measured.

また、後者のウェット路面試験機では、擬似路面部材の上面の径方向所定範囲に向かって水を吐出する複数のスプレーノズルと、擬似路面部材の上面との間に所定の大きさの隙間を形成し、各スプレーノズルから吐出されて擬似路面上に形成される水膜の厚さを前記隙間によって調整する水膜厚さ調整部材とを水膜形成手段に設け、水膜厚さ調整部材によって水膜の厚さを調整し、水膜の厚さと試験対象物の特性との関係を測定するようになっている。   In the latter wet road surface testing machine, a gap of a predetermined size is formed between a plurality of spray nozzles that discharge water toward a predetermined radial range of the upper surface of the simulated road surface member and the upper surface of the simulated road surface member. And a water film thickness adjusting member that adjusts the thickness of the water film discharged from each spray nozzle and formed on the simulated road surface by the gap. The thickness of the membrane is adjusted, and the relationship between the thickness of the water membrane and the characteristics of the test object is measured.

しかしながら、擬似路面部材の上面と水膜厚さ調整部材との隙間を通過した後の水膜の厚さは、擬似路面部材の回転速度、擬似路面部材の表面状態等によって変化するので、前記隙間の大きさと水膜の厚さとが常に対応するものではなく、水膜の厚さと試験対象物の特性との関係を正確に測定することができないという問題点があった。   However, the thickness of the water film after passing through the gap between the upper surface of the simulated road surface member and the water film thickness adjusting member varies depending on the rotational speed of the simulated road surface member, the surface condition of the simulated road surface member, etc. There is a problem that the size of the water film does not always correspond to the thickness of the water film, and the relationship between the thickness of the water film and the characteristics of the test object cannot be measured accurately.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、水膜厚さと試験対象物の特性との関係を正確に測定することができるウェット路面試験機を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a wet road surface testing machine capable of accurately measuring the relationship between the water film thickness and the characteristics of the test object. It is in.

本発明は前記目的を達成するために、ゴム製の外周面を有する試験対象物のウェット路面上における特性を測定するウェット路面試験機において、前記試験対象物を回転可能に支持する支持装置と、支持装置に支持された試験対象物の外周面に下方から接触するように設けられ、試験対象物に対して所定方向に移動可能な擬似路面と、擬似路面上に水膜を形成する水膜形成装置と、支持装置に支持された試験対象物が擬似路面に接触するとともに、擬似路面が試験対象物に対して所定方向に移動している状態で、試験対象物に接触する前の擬似路面に向かって赤外線を照射するとともに擬似路面によって反射した赤外線を受光し、受光した赤外線の所定波長または所定波長帯における吸光度に基づき擬似路面上に形成された水膜の厚さを検出する水膜厚さ検出装置とを備え、前記水膜形成装置に、擬似路面上に水を供給する水供給装置と、擬似路面との間に任意の大きさの隙間を形成可能に配置され、擬似路面上の水膜厚さを前記隙間の大きさによって調整可能な隙間形成部材とを設けている。 In order to achieve the above object, the present invention provides a wet road surface testing machine for measuring characteristics on a wet road surface of a test object having a rubber outer peripheral surface, and a support device for rotatably supporting the test object; A pseudo road surface that is provided so as to come into contact with the outer peripheral surface of the test object supported by the support device from below, and that forms a water film on the pseudo road surface. The test object supported by the apparatus and the support device is in contact with the simulated road surface, and the simulated road surface is moving in a predetermined direction with respect to the test object, and the pseudo road surface before the test object is contacted. Irradiates infrared rays and receives infrared rays reflected by the simulated road surface, and detects the thickness of the water film formed on the simulated road surface based on the absorbance of the received infrared rays at a predetermined wavelength or a predetermined wavelength band. Rumizumaku a thickness detecting device, to the water film forming apparatus, a water supply device for supplying water to the simulated road surface, is formed capable of placing a gap any size between the simulated road surface, A gap forming member capable of adjusting the water film thickness on the pseudo road surface by the size of the gap is provided .

これにより、試験対象物が支持装置に回転可能に支持されるとともに、支持装置に支持された試験対象物の外周面に擬似路面が下方から接触し、水膜形成装置が擬似路面上に水膜を形成するとともに、試験対象物が擬似路面に接触している状態で擬似路面が試験対象物に対して所定方向に移動することから、水膜が形成された擬似路面上を試験対象物が転がる状態を形成することができる。また、水膜が形成された擬似路面上を試験対象物が転がっている状態で、試験対象物に接触する前の擬似路面に向かって赤外線を照射するとともに擬似路面によって反射した赤外線を受光し、受光した赤外線の所定波長または所定波長帯における吸光度に基づき擬似路面上に形成された水膜の厚さが検出されることから、試験対象物に接触する前の擬似路面上の水膜厚さを非接触で測定することができ、水膜厚さと試験対象物の特性との関係が正確に測定される。更に、水膜形成装置に、擬似路面上に水を供給する水供給装置と、擬似路面との間に任意の大きさの隙間を形成可能な隙間形成部材が設けられていることから、水供給装置から擬似路面上に供給する水量を変化させることにより水膜厚さを調整することができるとともに、隙間形成部材による隙間の大きさを変化させることにより水膜厚さを調整することもできる。 As a result, the test object is rotatably supported by the support device, the simulated road surface comes into contact with the outer peripheral surface of the test object supported by the support device from below, and the water film forming device is placed on the simulated road surface. The test object rolls on the simulated road surface on which the water film is formed because the simulated road surface moves in a predetermined direction with respect to the test object while the test object is in contact with the simulated road surface. A state can be formed. In addition, in a state where the test object is rolling on the pseudo road surface on which the water film is formed, the infrared ray is irradiated toward the pseudo road surface before contacting the test object and the infrared ray reflected by the pseudo road surface is received, Since the thickness of the water film formed on the simulated road surface is detected based on the absorbance of the received infrared light at a predetermined wavelength or a predetermined wavelength band, the water film thickness on the simulated road surface before contacting the test object is determined. It can be measured without contact, and the relationship between the water film thickness and the characteristics of the test object is accurately measured. Furthermore, the water film forming device is provided with a water supply device for supplying water on the simulated road surface and a gap forming member capable of forming a gap of any size between the simulated road surface. The water film thickness can be adjusted by changing the amount of water supplied from the apparatus onto the simulated road surface, and the water film thickness can also be adjusted by changing the size of the gap formed by the gap forming member.

本発明によれば、水膜厚さと試験対象物の特性との関係を正確に測定することができるので、試験対象物の水膜厚さに応じた特性を詳細に測定することが可能となる。また、水供給装置から擬似路面上に供給する水量を変化させることにより水膜厚さを調整することができるとともに、隙間形成部材による隙間の大きさを変化させることにより水膜厚さを調整することもできるので、水膜厚さ調整を容易に行うことができる。 According to the present invention, since the relationship between the water film thickness and the characteristics of the test object can be accurately measured, the characteristics corresponding to the water film thickness of the test object can be measured in detail. . In addition, the water film thickness can be adjusted by changing the amount of water supplied from the water supply device onto the simulated road surface, and the water film thickness can be adjusted by changing the size of the gap formed by the gap forming member. Therefore, it is possible to easily adjust the water film thickness.

図1乃至図8は本発明の第1実施形態を示すもので、図1はウェット路面試験機の正面図、図2はウェット路面試験機の平面図、図3は図2のA−A線断面における動作説明図、図4は水膜厚さ検出装置によって受光する赤外線の吸光状態を示すグラフ、図5は吸光度と水膜厚さの関係を示すグラフ、図6はウェット路面試験機のブロック図、図7及び図8は制御部の動作を示すフローチャートである。   1 to 8 show a first embodiment of the present invention. FIG. 1 is a front view of a wet road surface testing machine, FIG. 2 is a plan view of the wet road surface testing machine, and FIG. 3 is a line AA in FIG. FIG. 4 is a graph showing the absorption state of infrared rays received by the water film thickness detector, FIG. 5 is a graph showing the relationship between absorbance and water film thickness, and FIG. 6 is a block diagram of a wet road surface testing machine. FIG. 7, FIG. 7 and FIG. 8 are flowcharts showing the operation of the control unit.

このウェット路面試験機は、試験対象物としてのタイヤTAを回転可能に支持する支持装置10と、支持装置10に支持されたタイヤTAの外周面に下方から接触する擬似路面20aが上面に形成された円板状部材20と、円板状部材20の上面の擬似路面20aに水膜を形成可能な水膜形成装置30と、擬似路面20a上の水膜の厚さを検出可能な水膜厚さ検出装置40とを備えている。   In this wet road surface testing machine, a support device 10 that rotatably supports a tire TA as an object to be tested, and a pseudo road surface 20a that contacts the outer peripheral surface of the tire TA supported by the support device 10 from below are formed on the upper surface. The disc-shaped member 20, the water film forming device 30 capable of forming a water film on the simulated road surface 20 a on the upper surface of the disk-shaped member 20, and the water film thickness capable of detecting the thickness of the water film on the simulated road surface 20 a And a height detecting device 40.

支持装置10は、タイヤTAを先端に取付可能なシャフト11と、シャフト11を回転可能に支持するベース12とを有する。また、ベース12はシャフト11を上下方向に移動可能であり、シャフト11を上下方向に移動することにより、シャフト11に取付けられたタイヤTAを円板状部材20の上面の擬似路面20aに任意の押付力で押付けることができる。また、支持装置10は図示しないブレーキによってシャフト11に任意の制動力を付与可能であり、図示しないモータによってシャフト11に任意の回転力を付与可能である。さらに、支持装置10はシャフト11に加わる各方向の力を測定可能である。   The support device 10 includes a shaft 11 on which the tire TA can be attached to the tip, and a base 12 that rotatably supports the shaft 11. Further, the base 12 can move the shaft 11 in the vertical direction. By moving the shaft 11 in the vertical direction, the tire TA attached to the shaft 11 can be arbitrarily attached to the pseudo road surface 20 a on the upper surface of the disk-shaped member 20. Can be pressed with pressing force. The support device 10 can apply an arbitrary braking force to the shaft 11 by a brake (not shown), and can apply an arbitrary rotational force to the shaft 11 by a motor (not shown). Further, the support device 10 can measure the force in each direction applied to the shaft 11.

円板状部材20の上面に形成された擬似路面20aは例えば舗装路と同等の表面状態を有する。また、円板状部材20の下面は駆動装置21によって支持されており、円板状部材20は駆動装置21によって所定方向に回転可能である。即ち、円板状部材20が回転することにより、擬似路面20aが支持装置10に支持されたタイヤTAに対して所定方向に移動するようになっている。   The pseudo road surface 20a formed on the upper surface of the disk-shaped member 20 has a surface state equivalent to, for example, a paved road. Further, the lower surface of the disk-shaped member 20 is supported by a driving device 21, and the disk-shaped member 20 can be rotated in a predetermined direction by the driving device 21. That is, when the disk-shaped member 20 rotates, the pseudo road surface 20a moves in a predetermined direction with respect to the tire TA supported by the support device 10.

水膜形成装置30は、擬似路面20a上に水を供給する水供給装置31と、擬似路面20aとの間に任意の大きさの隙間GAを形成可能な隙間形成部材32とを有する。水供給装置31は下側に複数の吐出孔31aが形成された管状部材から成り、図示しない水供給源から水が供給されるようになっている。また、水供給装置31は擬似路面20aの上方に配置され、円板状部材20の径方向に延びるように配置されている。さらに、水供給装置31は各吐出孔31aから擬似路面20aに供給する水量を電磁弁等の周知の機構によって任意に調整可能である。隙間形成部材32は擬似路面20aの上方に配置され、円板状部材20の径方向に延びるように配置されている。また、隙間形成部材32は周知のシリンダ32aによって上下方向に移動可能であり、シリンダ32aによって隙間形成部材32が上下方向に移動すると、隙間形成部材32と擬似路面20aとの隙間GAの大きさが変化する。シリンダ32aは図示しないフレームに固定されている。隙間形成部材32は水供給装置31よりも擬似路面20aの移動方向下流側に配置されている。即ち、水供給装置31から擬似路面20aに供給する水量を変化させることにより、擬似路面20a上の水膜厚さを調整することができ、擬似路面20aとの隙間GAの大きさによって水膜厚さを調整することもできる。また、支持装置10に支持されたタイヤTAと擬似路面20aとが接触する特性測定位置は隙間形成部材32よりも擬似路面20aの移動方向下流側に配置されている。   The water film forming device 30 includes a water supply device 31 that supplies water onto the simulated road surface 20a, and a gap forming member 32 that can form a gap GA of an arbitrary size between the simulated road surface 20a. The water supply device 31 is made of a tubular member having a plurality of discharge holes 31a formed on the lower side, and water is supplied from a water supply source (not shown). Further, the water supply device 31 is disposed above the pseudo road surface 20 a and is disposed so as to extend in the radial direction of the disk-shaped member 20. Furthermore, the water supply device 31 can arbitrarily adjust the amount of water supplied from each discharge hole 31a to the simulated road surface 20a by a known mechanism such as an electromagnetic valve. The gap forming member 32 is disposed above the pseudo road surface 20 a and is disposed so as to extend in the radial direction of the disk-shaped member 20. Further, the gap forming member 32 can be moved in the vertical direction by a known cylinder 32a. When the gap forming member 32 is moved in the vertical direction by the cylinder 32a, the size of the gap GA between the gap forming member 32 and the pseudo road surface 20a is increased. Change. The cylinder 32a is fixed to a frame (not shown). The gap forming member 32 is disposed downstream of the water supply device 31 in the moving direction of the simulated road surface 20a. That is, by changing the amount of water supplied from the water supply device 31 to the simulated road surface 20a, the water film thickness on the simulated road surface 20a can be adjusted, and the water film thickness can be adjusted depending on the size of the gap GA with the simulated road surface 20a. You can also adjust the height. Further, the characteristic measurement position where the tire TA supported by the support device 10 and the simulated road surface 20a come into contact with each other is arranged on the downstream side in the moving direction of the simulated road surface 20a with respect to the gap forming member 32.

水膜厚さ検出装置40は擬似路面20aの上方に配置されるとともに、擬似路面20a側に開口している矩形箱状の保護部材41内に固定され、保護部材41が移動機構42のレール42aによって支持されている。また、レール42aは円板状部材20の径方向に延びるように形成され、移動機構42は保護部材41及び水膜厚さ検出装置40をレール42aに沿って移動可能である。さらに、移動機構42はレール42aを上下方向に移動させる昇降装置42bを有する。即ち、移動機構42は水膜厚さ検出装置40を擬似路面20aの移動方向と交差する方向に移動可能であり、昇降装置42bによってレール42aを上下方向に移動させることにより、水膜厚さ検出装置40と擬似路面20aとの距離を任意に設定可能である。また、水膜厚さ検出装置40は隙間形成部材32よりも擬似路面20aの移動方向下流側に配置され、前記特性測定位置よりも擬似路面20aの移動方向上流側に配置されている。   The water film thickness detecting device 40 is disposed above the simulated road surface 20a and is fixed in a rectangular box-shaped protective member 41 opened to the simulated road surface 20a. The protective member 41 is a rail 42a of the moving mechanism 42. Is supported by. Moreover, the rail 42a is formed so that it may extend in the radial direction of the disk-shaped member 20, and the moving mechanism 42 can move the protection member 41 and the water film thickness detector 40 along the rail 42a. Furthermore, the moving mechanism 42 has an elevating device 42b that moves the rail 42a in the vertical direction. That is, the moving mechanism 42 can move the water film thickness detecting device 40 in a direction intersecting the moving direction of the simulated road surface 20a, and the water film thickness detecting device 40b moves the rail 42a in the vertical direction by the lifting device 42b. The distance between the device 40 and the simulated road surface 20a can be arbitrarily set. Further, the water film thickness detection device 40 is disposed downstream of the gap forming member 32 in the movement direction of the simulated road surface 20a, and is disposed upstream of the characteristic measurement position in the movement direction of the simulated road surface 20a.

レール42aには水膜厚さ検出装置40の位置を検知する位置センサ43が設けられ、位置センサ43は疑似路面20aの移動方向と交差する方向における水膜厚さ検出装置40の位置を検知するようになっている。   The rail 42a is provided with a position sensor 43 for detecting the position of the water film thickness detecting device 40. The position sensor 43 detects the position of the water film thickness detecting device 40 in a direction intersecting the moving direction of the pseudo road surface 20a. It is like that.

水膜厚さ検出装置40は擬似路面20aに向かって赤外線を照射し、擬似路面20aによって反射した赤外線を受光する。また、水膜厚さ検出装置40は受光した赤外線の所定波長帯Wにおける吸光度に基づき擬似路面20a上の水膜厚さを検出するようになっている。ここで、水膜が形成された擬似路面20aに向かって赤外線が照射されると、水膜によって1.9μm近傍及び2.9μm近傍の波長帯が吸光され、その吸光度は水膜厚さに応じて変化する。図4は水膜が薄い場合の吸光状態La(グラフ上では透過率で示されている)と水膜が厚い場合の吸光状態Lbとを参考例として示すグラフであり、水膜厚さ検出装置40は図4に示した所定波長帯Wの吸光度に基づき水膜厚さを検出するようになっている。詳しくは、水膜厚さ検出装置40は図5に示すような吸光度と水膜厚さとの相関データを有しており、水膜厚さ検出装置40は所定波長帯Wの吸光度と前記相関データに基づき水膜厚さを検出するようになっている。   The water film thickness detection device 40 irradiates infrared rays toward the simulated road surface 20a and receives infrared rays reflected by the simulated road surface 20a. Further, the water film thickness detecting device 40 detects the water film thickness on the pseudo road surface 20a based on the absorbance of the received infrared light in a predetermined wavelength band W. Here, when infrared rays are irradiated toward the pseudo road surface 20a on which the water film is formed, the water film absorbs the wavelength band near 1.9 μm and 2.9 μm, and the absorbance depends on the water film thickness. Change. FIG. 4 is a graph showing a light absorption state La when the water film is thin (indicated by transmittance on the graph) and a light absorption state Lb when the water film is thick as a reference example. 40 detects the water film thickness based on the absorbance in the predetermined wavelength band W shown in FIG. Specifically, the water film thickness detector 40 has correlation data between the absorbance and the water film thickness as shown in FIG. 5, and the water film thickness detector 40 has the absorbance in the predetermined wavelength band W and the correlation data. The water film thickness is detected based on the above.

水膜厚さ検出装置40は周知のマイクロコンピュータから成る制御部50に接続され、制御部50は水供給装置31、シリンダ32a、移動機構42及び位置センサ43にも接続されている(図6参照)。   The water film thickness detection device 40 is connected to a control unit 50 comprising a well-known microcomputer, and the control unit 50 is also connected to a water supply device 31, a cylinder 32a, a moving mechanism 42, and a position sensor 43 (see FIG. 6). ).

以上のように構成されたウェット路面試験機において、タイヤTAの特性を測定する場合は、先ず、支持装置10によってタイヤTAを擬似路面20aに所定の押付力で押付けるとともに、駆動装置21によって円板状部材20を回転させ、擬似路面20aをタイヤTAに対して所定方向に移動させる。ここでは、タイヤTAの進行方向と円板状部材20の接線方向とが一致するようにタイヤTAが支持部材10に支持されている。一方、水膜形成装置30の水供給装置31によって擬似路面20a上に水を供給する。これにより、水膜が形成された擬似路面20a上をタイヤTAが転がっている状態が形成される。   In the wet road surface testing machine configured as described above, when measuring the characteristics of the tire TA, first, the tire TA is pressed against the simulated road surface 20a by the support device 10 with a predetermined pressing force, and the drive device 21 is used to rotate the circle. The plate member 20 is rotated, and the simulated road surface 20a is moved in a predetermined direction with respect to the tire TA. Here, the tire TA is supported by the support member 10 so that the traveling direction of the tire TA and the tangential direction of the disk-shaped member 20 coincide. On the other hand, water is supplied onto the simulated road surface 20 a by the water supply device 31 of the water film forming device 30. Thereby, the state where the tire TA is rolling on the pseudo road surface 20a on which the water film is formed is formed.

続いて、制御部50が水膜厚さ検出装置40の検出結果に基づいて水供給装置31及びシリンダ32aを制御し、擬似路面20a上の水膜厚さを調整する。また、制御部50は、移動機構42によって水膜厚さ検出装置40を擬似路面20aの移動方向と交差する方向に移動させながら、位置センサ43による水膜厚さ検出装置40の位置検知結果と水膜厚さ検出装置40による水膜厚さ検出結果とを記憶する。   Then, the control part 50 controls the water supply apparatus 31 and the cylinder 32a based on the detection result of the water film thickness detection apparatus 40, and adjusts the water film thickness on the simulated road surface 20a. Further, the control unit 50 moves the water film thickness detection device 40 in the direction intersecting the moving direction of the simulated road surface 20a by the moving mechanism 42, and the position detection result of the water film thickness detection device 40 by the position sensor 43. The water film thickness detection result by the water film thickness detector 40 is stored.

水膜厚さを調整する場合の制御部50の動作について図7のフローチャートを参照しながら説明する。即ち、水膜厚さ検出装置40の検出結果と制御部50に予め設定されている水膜の目標厚さ(所定の幅を有する)とを比較し、検出結果が目標厚さよりも厚いと(S1)、水供給装置31の各吐出孔31aから供給する水量を所定量だけ低減させるとともに(S2)、シリンダ32aによって隙間形成部材32を所定距離だけ下方に移動させる(S3)。一方、水膜厚さ検出装置40の検出結果と目標厚さとを比較し、検出結果が目標厚さよりも薄いと(S4)、水供給装置31の各吐出孔31aから供給する水量を所定量だけ増加させるとともに(S5)、シリンダ32aによって隙間形成部材32を所定距離だけ上方に移動させる(S6)。ここで、前記所定量及び所定距離は微量であり、ステップS2及びステップS3が一度行われることによる水膜厚さの減少は微小であり、ステップS5及びステップS6が行われることによる水膜厚さの増加も微小である。   The operation of the control unit 50 when adjusting the water film thickness will be described with reference to the flowchart of FIG. That is, the detection result of the water film thickness detection device 40 is compared with the target thickness (having a predetermined width) of the water film preset in the control unit 50, and if the detection result is thicker than the target thickness ( S1) The amount of water supplied from each discharge hole 31a of the water supply device 31 is reduced by a predetermined amount (S2), and the gap forming member 32 is moved downward by a predetermined distance by the cylinder 32a (S3). On the other hand, the detection result of the water film thickness detection device 40 is compared with the target thickness, and if the detection result is thinner than the target thickness (S4), the amount of water supplied from each discharge hole 31a of the water supply device 31 is a predetermined amount. While increasing (S5), the gap forming member 32 is moved upward by a predetermined distance by the cylinder 32a (S6). Here, the predetermined amount and the predetermined distance are very small, the decrease of the water film thickness by performing Step S2 and Step S3 once is small, and the water film thickness by performing Step S5 and Step S6. The increase in is also small.

また、水膜厚さ検出装置40を移動させながら位置検知結果と水膜厚さ検出結果を記憶する場合の制御部50の動作について図8のフローチャートを参照しながら説明する。先ず、水膜厚さ検出装置40による水膜厚さ検出結果が目標厚さ内にある状態で(S11)、移動機構42によって水膜厚さ検出装置40をタイヤの幅方向所定位置に応じた第1所定位置に配置し(S12)、その時の位置検知結果及び水膜厚さ検出結果を記憶する(S13)。続いて、移動機構42によって水膜厚さ検出装置40をタイヤの他の幅方向所定位置に応じた第2所定位置に配置し(S14)、その時の位置検知結果及び水膜厚さ検出結果を記憶する(S15)。一方、ステップS13の水膜厚さ検出結果に対応するタイヤTAの特性測定結果が別途制御部50に記憶され、ステップS15の水膜厚さ検出結果に対応するタイヤTAの特性測定結果が別途制御部50に記憶される。ここで、位置検知結果、水膜厚さ検出結果及びタイヤTAの特性測定結果は互いに対応するように制御部50に記憶される。   The operation of the control unit 50 when storing the position detection result and the water film thickness detection result while moving the water film thickness detection device 40 will be described with reference to the flowchart of FIG. First, in a state where the water film thickness detection result by the water film thickness detecting device 40 is within the target thickness (S11), the water film thickness detecting device 40 is made to correspond to a predetermined position in the tire width direction by the moving mechanism 42. It arrange | positions at a 1st predetermined position (S12), and memorize | stores the position detection result and water film thickness detection result at that time (S13). Subsequently, the water film thickness detecting device 40 is arranged at a second predetermined position corresponding to another predetermined position in the width direction of the tire by the moving mechanism (S14), and the position detection result and the water film thickness detection result at that time are displayed. Store (S15). On the other hand, the tire TA characteristic measurement result corresponding to the water film thickness detection result in step S13 is separately stored in the control unit 50, and the tire TA characteristic measurement result corresponding to the water film thickness detection result in step S15 is separately controlled. Stored in the unit 50. Here, the position detection result, the water film thickness detection result, and the tire TA characteristic measurement result are stored in the control unit 50 so as to correspond to each other.

ここで、前述のように擬似路面20a上に水膜を形成するとともに、擬似路面20aをタイヤTAに対して所定方向に移動させると、タイヤTAの回転によって水滴WDが飛散するとともに、隙間形成部材32と擬似路面20aとの隙間GAを水が通過する際に隙間形成部材32によって水滴WDが飛散するが、水膜厚さ検出装置40は保護部材41内に設けられているので、保護部材41により水膜厚さ検出装置40がタイヤTAの回転や隙間形成部材32によって飛散する水滴WDから保護される(図3参照)。   Here, as described above, a water film is formed on the simulated road surface 20a, and when the simulated road surface 20a is moved in a predetermined direction with respect to the tire TA, water droplets WD are scattered by rotation of the tire TA, and a gap forming member is formed. When the water passes through the gap GA between the simulated road surface 20a and the pseudo road surface 20a, the water droplet WD is scattered by the gap forming member 32. However, since the water film thickness detecting device 40 is provided in the protective member 41, the protective member 41 Thus, the water film thickness detecting device 40 is protected from the water droplets WD scattered by the rotation of the tire TA and the gap forming member 32 (see FIG. 3).

このように、本実施形態によれば、タイヤTAが支持装置10に回転可能に支持されるとともに、支持装置10に支持されたタイヤTAの外周面に擬似路面20aが下方から接触し、水膜形成装置30が擬似路面20a上に水膜を形成するとともに、タイヤTAが擬似路面20aに接触している状態で擬似路面20aがタイヤTAに対して所定方向に移動することから、水膜が形成された擬似路面20a上をタイヤTAが転がる状態を形成することができる。また、水膜が形成された擬似路面20a上をタイヤTAが転がっている状態で、タイヤTAに接触する前の擬似路面20aに向かって赤外線を照射するとともに擬似路面20aによって反射した赤外線を受光し、受光した赤外線の所定波長帯Wにおける吸光度に基づき擬似路面20a上に形成された水膜の厚さを検出するので、タイヤTAに接触する前の擬似路面20a上の水膜厚さを非接触で測定することができ、水膜厚さとタイヤTAの特性との関係を正確に測定することができる。従って、タイヤTAの水膜厚さに応じた特性を詳細に測定することが可能となる。   Thus, according to the present embodiment, the tire TA is rotatably supported by the support device 10, and the pseudo road surface 20a is in contact with the outer peripheral surface of the tire TA supported by the support device 10 from below, and the water film The forming device 30 forms a water film on the simulated road surface 20a, and the simulated road surface 20a moves in a predetermined direction with respect to the tire TA while the tire TA is in contact with the simulated road surface 20a. A state where the tire TA rolls on the simulated road surface 20a can be formed. In addition, in a state where the tire TA is rolling on the pseudo road surface 20a on which the water film is formed, infrared rays are irradiated toward the pseudo road surface 20a before contacting the tire TA and infrared rays reflected by the pseudo road surface 20a are received. Since the thickness of the water film formed on the pseudo road surface 20a is detected based on the absorbance of the received infrared rays in the predetermined wavelength band W, the water film thickness on the pseudo road surface 20a before contacting the tire TA is not contacted. The relationship between the water film thickness and the characteristics of the tire TA can be accurately measured. Therefore, it is possible to measure in detail the characteristics corresponding to the water film thickness of the tire TA.

また、水膜厚さ検出装置40は所定波長帯Wにおける吸光度に基づき擬似路面20a上の水膜厚さを検出するので、水膜厚さを連続的に測定することができ、タイヤTAの水膜厚さに応じた特性を詳細に測定する上で極めて有利である。   Further, since the water film thickness detecting device 40 detects the water film thickness on the pseudo road surface 20a based on the absorbance in the predetermined wavelength band W, the water film thickness can be continuously measured, and the water of the tire TA can be measured. This is extremely advantageous in measuring the characteristics according to the film thickness in detail.

また、水膜厚さ検出装置は所定波長帯Wにおける吸光度に基づき擬似路面20a上の水膜厚さを検出するので、例えば0.1μmの薄膜から数mmの厚膜まで測定することができ、タイヤTAの水膜厚さに応じた特性を詳細に測定する上で極めて有利である。   Moreover, since the water film thickness detector detects the water film thickness on the pseudo road surface 20a based on the absorbance in the predetermined wavelength band W, it can measure from a thin film of 0.1 μm to a thick film of several mm, for example. This is extremely advantageous in measuring the characteristics according to the water film thickness of the tire TA in detail.

また、水膜厚さ検出装置40と擬似路面20aとの距離を移動装置42によって任意に設定可能であることから、水膜厚さ検出装置40から擬似路面20aに照射される赤外線のスポット径を前記距離によって任意に設定することができる。   Further, since the distance between the water film thickness detecting device 40 and the simulated road surface 20a can be arbitrarily set by the moving device 42, the spot diameter of the infrared rays irradiated from the water film thickness detecting device 40 to the simulated road surface 20a is set. It can be arbitrarily set according to the distance.

また、水膜厚さ検出装置40を移動装置42によって擬似路面20aの移動方向と交差する方向に移動可能であることから、水膜厚さ検出装置40によって擬似路面20aの移動方向と交差する方向の水膜厚さの分布を測定することができ、タイヤTAの水膜厚さに応じた特性を詳細に測定する上で極めて有利である。   Further, since the water film thickness detecting device 40 can be moved by the moving device 42 in a direction intersecting with the moving direction of the simulated road surface 20a, the water film thickness detecting device 40 intersects with the moving direction of the simulated road surface 20a. This is extremely advantageous in measuring the characteristics according to the water film thickness of the tire TA in detail.

また、水膜形成装置30に、擬似路面20a上に水を供給する水供給装置31と、擬似路面20aとの間に任意の大きさの隙間GAを形成可能に配置され、擬似路面20a上の水膜厚さを前記隙間GAの大きさによって調整可能な隙間形成部材32とを設けたので、水供給装置31から擬似路面20a上に供給する水量を変化させることにより水膜厚さを調整することができるとともに、前記隙間GAの大きさを変化させることにより水膜厚さを調整することもでき、水膜厚さ調整を容易に行うことができる。   Further, the water film forming device 30 is arranged so that a gap GA of an arbitrary size can be formed between the water supply device 31 for supplying water on the simulated road surface 20a and the simulated road surface 20a, and on the simulated road surface 20a. Since the gap forming member 32 capable of adjusting the water film thickness according to the size of the gap GA is provided, the water film thickness is adjusted by changing the amount of water supplied from the water supply device 31 onto the simulated road surface 20a. In addition, the water film thickness can be adjusted by changing the size of the gap GA, and the water film thickness can be easily adjusted.

また、保護部材41は水膜厚さ検出装置40をタイヤTAの回転によって飛散する水滴WDから保護するので、水膜厚さ検出装置40の故障や動作不良を防止する上で極めて有利である。   Further, since the protection member 41 protects the water film thickness detection device 40 from the water droplets WD scattered by the rotation of the tire TA, it is extremely advantageous in preventing failure and malfunction of the water film thickness detection device 40.

さらに、保護部材41は水膜厚さ検出装置40を隙間形成部材42によって飛散する水滴WDから保護するので、水膜厚さ検出装置40の故障や動作不良を防止する上で極めて有利である。   Furthermore, since the protection member 41 protects the water film thickness detection device 40 from the water droplets WD scattered by the gap forming member 42, it is extremely advantageous in preventing failure and malfunction of the water film thickness detection device 40.

図9及び図10は本発明の第2実施形態を示すもので、図9はウェット路面試験機の断面図、図10は図9のB−B線断面における動作説明図である。尚、第1実施形態と同等の構成部分には同一の符号を付して示す。   FIGS. 9 and 10 show a second embodiment of the present invention. FIG. 9 is a sectional view of a wet road surface testing machine, and FIG. 10 is an operation explanatory view taken along the line BB of FIG. In addition, the same code | symbol is attached | subjected and shown to the component equivalent to 1st Embodiment.

このウェット路面試験機は、試験対象物としてのタイヤTAを回転可能に支持する支持装置10と、支持装置10に支持されたタイヤTAの外周面に下方から接触する擬似路面60aが内周面に形成された円筒状部材60と、円筒状部材60の内周面の擬似路面60aに水膜を形成可能な水膜形成装置30と、擬似路面60a上の水膜の厚さを検出可能な水膜厚さ検出装置40と、制御部50とを備えている。尚、支持装置10、水膜形成装置30、水膜厚さ検出装置40及び制御部50は第1実施形態と同等の構成を有する。   In this wet road surface testing machine, a support device 10 that rotatably supports a tire TA as a test object, and a pseudo road surface 60a that contacts the outer peripheral surface of the tire TA supported by the support device 10 from below is provided on the inner peripheral surface. The formed cylindrical member 60, the water film forming device 30 capable of forming a water film on the simulated road surface 60a on the inner peripheral surface of the cylindrical member 60, and the water capable of detecting the thickness of the water film on the simulated road surface 60a A film thickness detection device 40 and a control unit 50 are provided. In addition, the support apparatus 10, the water film formation apparatus 30, the water film thickness detection apparatus 40, and the control part 50 have the structure equivalent to 1st Embodiment.

円筒状部材60の内周面に形成された擬似路面60aは例えば舗装路と同等の表面状態を有する。円筒状部材60は一端側に端面壁61を有し、端面壁61の中心が駆動装置62によって支持されている。即ち、円筒状部材60は駆動装置62によって所定方向に回転可能であり、円筒状部材60が回転することにより、擬似路面60aが支持装置10に支持されたタイヤTAに対して所定方向に移動するようになっている。また、タイヤTAの進行方向と擬似路面60aの移動方向とが一致するように、タイヤTAが支持部材10に支持される。   The pseudo road surface 60a formed on the inner peripheral surface of the cylindrical member 60 has a surface state equivalent to, for example, a paved road. The cylindrical member 60 has an end face wall 61 on one end side, and the center of the end face wall 61 is supported by a driving device 62. That is, the cylindrical member 60 can be rotated in a predetermined direction by the driving device 62, and the pseudo road surface 60 a moves in a predetermined direction with respect to the tire TA supported by the support device 10 by rotating the cylindrical member 60. It is like that. Further, the tire TA is supported by the support member 10 so that the traveling direction of the tire TA and the moving direction of the simulated road surface 60a coincide.

水膜形成装置30の水供給装置31は円筒状部材60の径方向内側に配置され、円筒状部材60の軸方向に延びるように配置されている。また、水膜形成装置30の隙間形成部材32は円筒状部材60の径方向内側に配置され、円筒状部材60の軸方向に延びるように配置されている。さらに、隙間形成部材32はシリンダ32aによって円筒状部材60の径方向に移動可能であり、シリンダ32aによって隙間形成部材32が径方向に移動すると、隙間形成部材32と擬似路面60aとの隙間GAの大きさが変化する。また、支持装置10に支持されたタイヤTAと擬似路面60aとが接触する特性測定位置は隙間形成部材32よりも擬似路面60aの移動方向下流側に配置されている。   The water supply device 31 of the water film forming apparatus 30 is disposed on the radially inner side of the cylindrical member 60 and is disposed so as to extend in the axial direction of the cylindrical member 60. Further, the gap forming member 32 of the water film forming apparatus 30 is disposed on the radially inner side of the cylindrical member 60 and is disposed so as to extend in the axial direction of the cylindrical member 60. Further, the gap forming member 32 can be moved in the radial direction of the cylindrical member 60 by the cylinder 32a. When the gap forming member 32 is moved in the radial direction by the cylinder 32a, the gap GA between the gap forming member 32 and the pseudo road surface 60a is changed. The size changes. In addition, the characteristic measurement position where the tire TA supported by the support device 10 and the simulated road surface 60a come into contact with each other is disposed downstream of the gap forming member 32 in the moving direction of the simulated road surface 60a.

水膜厚さ検出装置40は円筒状部材60の径方向内側に配置されるとともに、擬似路面60a側に開口している矩形箱状の保護部材41内に固定され、保護部材41が移動機構42のレール42aによって支持されている。また、レール42aは円筒状部材60の軸方向に延びるように形成され、昇降機構42bはレール42aを円筒状部材60の径方向に移動可能である。即ち、移動機構42は水膜厚さ検出装置40を擬似路面60aの移動方向と交差する方向に移動可能であり、水膜厚さ検出装置40と擬似路面60aとの距離を任意に設定可能である。また、位置センサ43は円筒状部材60の軸方向における水膜厚さ検出装置40の位置を検知するようになっている。また、水膜厚さ検出装置40は隙間形成部材32よりも擬似路面60aの移動方向下流側に配置され、前記特性測定位置よりも擬似路面60aの移動方向上流側に配置されている。   The water film thickness detecting device 40 is disposed inside the cylindrical member 60 in the radial direction, and is fixed in a rectangular box-shaped protective member 41 opened on the simulated road surface 60a side, and the protective member 41 is moved by the moving mechanism 42. The rail 42a is supported. The rail 42 a is formed so as to extend in the axial direction of the cylindrical member 60, and the lifting mechanism 42 b can move the rail 42 a in the radial direction of the cylindrical member 60. That is, the moving mechanism 42 can move the water film thickness detecting device 40 in a direction intersecting the moving direction of the simulated road surface 60a, and can arbitrarily set the distance between the water film thickness detecting device 40 and the simulated road surface 60a. is there. The position sensor 43 detects the position of the water film thickness detector 40 in the axial direction of the cylindrical member 60. Further, the water film thickness detection device 40 is disposed downstream of the gap forming member 32 in the movement direction of the simulated road surface 60a, and is disposed upstream of the characteristic measurement position in the movement direction of the simulated road surface 60a.

制御部50は、第1実施形態と同様に、水膜厚さ検出装置40の検出結果に基づいて水供給装置31及びシリンダ32aを制御し、擬似路面60a上の水膜厚さを調整するようになっている。また、制御部50は、第1実施形態と同様に、移動機構42によって水膜厚さ検出装置40を擬似路面60aの移動方向と交差する方向に移動させながら、位置センサ43による水膜厚さ検出装置40の位置検知結果と水膜厚さ検出装置40による水膜厚さ検出結果とを記憶するようになっている。さらに、制御部50は、第1実施形態と同様に、前記各水膜厚さ検出結果にそれぞれ対応するタイヤTAの特性測定結果を記憶するようになっており、位置検知結果、水膜厚さ測定結果及びタイヤTAの特性測定結果は互いに対応するように制御部50に記憶されるようになっている。   As in the first embodiment, the control unit 50 controls the water supply device 31 and the cylinder 32a based on the detection result of the water film thickness detection device 40 to adjust the water film thickness on the simulated road surface 60a. It has become. Similarly to the first embodiment, the control unit 50 moves the water film thickness detecting device 40 in the direction intersecting the moving direction of the simulated road surface 60a by the moving mechanism 42, while the water film thickness by the position sensor 43 is detected. The position detection result of the detection device 40 and the water film thickness detection result by the water film thickness detection device 40 are stored. Further, as in the first embodiment, the control unit 50 stores the characteristic measurement results of the tire TA corresponding to the respective water film thickness detection results, and the position detection result, the water film thickness, and the like. The measurement result and the characteristic measurement result of the tire TA are stored in the control unit 50 so as to correspond to each other.

ここで、前述のように擬似路面60a上に水膜を形成するとともに、擬似路面60aをタイヤTAに対して所定方向に移動させると、タイヤTAの回転によって水滴WDが飛散するとともに、隙間形成部材32と擬似路面60aとの隙間GAを水が通過する際に隙間形成部材32によって水滴WDが飛散するが、水膜厚さ検出装置40が保護部材41内に設けられているので、保護部材41により水膜厚さ検出装置40がタイヤTAの回転や隙間形成部材32によって飛散する水滴WDから保護される。   Here, as described above, a water film is formed on the pseudo road surface 60a, and when the pseudo road surface 60a is moved in a predetermined direction with respect to the tire TA, water droplets WD are scattered by rotation of the tire TA, and a gap forming member is formed. The water droplets WD are scattered by the gap forming member 32 when water passes through the gap GA between the road surface 32 and the pseudo road surface 60a. However, since the water film thickness detecting device 40 is provided in the protective member 41, the protective member 41 Thus, the water film thickness detecting device 40 is protected from the water droplets WD scattered by the rotation of the tire TA and the gap forming member 32.

このように、本実施形態によれば、タイヤTAが支持装置10に回転可能に支持されるとともに、支持装置10に支持されたタイヤTAの外周面に擬似路面60aが下方から接触し、水膜形成装置30が擬似路面60a上に水膜を形成するとともに、タイヤTAが擬似路面60aに接触している状態で擬似路面60aがタイヤTAに対して所定方向に移動することから、水膜が形成された擬似路面60a上をタイヤTAが転がる状態を形成することができる。また、水膜が形成された擬似路面60a上をタイヤTAが転がっている状態で、タイヤTAに接触する前の擬似路面60aに向かって赤外線を照射するとともに擬似路面60aによって反射した赤外線を受光し、受光した赤外線の所定波長帯Wにおける吸光度に基づき擬似路面60a上に形成された水膜の厚さを検出するので、タイヤTAに接触する前の擬似路面60a上の水膜厚さを非接触で測定することができ、水膜厚さとタイヤTAの特性との関係を正確に測定することができる。従って、タイヤTAの水膜厚さに応じた特性を詳細に測定することが可能となる。   Thus, according to the present embodiment, the tire TA is rotatably supported by the support device 10, and the pseudo road surface 60a comes into contact with the outer peripheral surface of the tire TA supported by the support device 10 from below, and the water film The forming device 30 forms a water film on the simulated road surface 60a, and the simulated road surface 60a moves in a predetermined direction with respect to the tire TA while the tire TA is in contact with the simulated road surface 60a. A state in which the tire TA rolls on the simulated road surface 60a can be formed. In addition, in a state where the tire TA is rolling on the simulated road surface 60a on which the water film is formed, infrared rays are irradiated toward the simulated road surface 60a before contacting the tire TA, and infrared rays reflected by the simulated road surface 60a are received. Since the thickness of the water film formed on the pseudo road surface 60a is detected based on the absorbance of the received infrared rays in the predetermined wavelength band W, the water film thickness on the pseudo road surface 60a before contacting the tire TA is not contacted. The relationship between the water film thickness and the characteristics of the tire TA can be accurately measured. Therefore, it is possible to measure in detail the characteristics corresponding to the water film thickness of the tire TA.

また、水膜厚さ検出装置40を移動装置42によって擬似路面60aの移動方向と直交する方向に移動可能であることから、水膜厚さ検出装置40によって擬似路面60aの移動方向と交差する方向の水膜厚さの分布を測定することができ、タイヤTAの水膜厚さに応じた特性を詳細に測定する上で極めて有利である。   Further, since the water film thickness detecting device 40 can be moved by the moving device 42 in a direction orthogonal to the moving direction of the simulated road surface 60a, the water film thickness detecting device 40 intersects the moving direction of the simulated road surface 60a. This is extremely advantageous in measuring the characteristics according to the water film thickness of the tire TA in detail.

また、水膜形成装置30に、擬似路面60a上に水を供給する水供給装置31と、擬似路面60aとの間に任意の大きさの隙間GAを形成可能に配置され、擬似路面60a上の水膜厚さを前記隙間GAの大きさによって調整可能な隙間形成部材32とを設けたので、水供給装置31から擬似路面60a上に供給する水量を変化させることにより水膜厚さを調整することができるとともに、前記隙間GAの大きさを変化させることにより水膜厚さを調整することもでき、水膜厚さ調整を容易に行うことができる。   Further, the water film forming device 30 is arranged so that a gap GA of an arbitrary size can be formed between the water supply device 31 for supplying water on the simulated road surface 60a and the simulated road surface 60a, and on the simulated road surface 60a. Since the gap forming member 32 capable of adjusting the water film thickness according to the size of the gap GA is provided, the water film thickness is adjusted by changing the amount of water supplied from the water supply device 31 onto the simulated road surface 60a. In addition, the water film thickness can be adjusted by changing the size of the gap GA, and the water film thickness can be easily adjusted.

尚、第2実施形態では、擬似路面60aを円筒状部材60の内周面に形成したものを示したが、図11に示すように、円筒状部材60の代わりに無端状部材70を設けるとともに、擬似路面70aを無端状部材70の外周面に形成し、無端状部材70を一対のローラ71によって所定方向に移動させることも可能である。   In the second embodiment, the pseudo road surface 60a is formed on the inner peripheral surface of the cylindrical member 60. However, as shown in FIG. 11, an endless member 70 is provided instead of the cylindrical member 60. Alternatively, the pseudo road surface 70 a may be formed on the outer peripheral surface of the endless member 70, and the endless member 70 may be moved in a predetermined direction by the pair of rollers 71.

また、第1及び第2実施形態では、水供給装置31から擬似路面20a,60aに供給する水量及び隙間形成部材32と擬似路面20a,60aとの隙間GAの大きさによって水膜厚さを調整するようにしたものを示したが、前記水量のみによって水膜厚さを調整することも可能であり、前記隙間GAの大きさのみによって水膜厚さを調整することも可能である。   In the first and second embodiments, the water film thickness is adjusted by the amount of water supplied from the water supply device 31 to the simulated road surfaces 20a and 60a and the size of the gap GA between the gap forming member 32 and the simulated road surfaces 20a and 60a. Although what was made to show was shown, it is also possible to adjust a water film thickness only with the said water amount, and it is also possible to adjust a water film thickness only with the magnitude | size of the said clearance gap GA.

尚、第1及び第2実施形態では、試験対象物としてタイヤTAの特性を測定するようにしたものを示したが、外周面にゴムシートが貼り付けられた円板状部材やゴム製の円板状部材等のゴム製の外周面を有する試験対象物を測定することも可能である。   In the first and second embodiments, the characteristics of the tire TA are measured as the test object. However, a disk-shaped member having a rubber sheet attached to the outer peripheral surface or a rubber circle is shown. It is also possible to measure a test object having a rubber outer peripheral surface such as a plate-like member.

また、第1及び第2実施形態では、水膜厚さ検出装置40が所定波長帯Wの吸光度に基づき水膜厚さを測定するようにしたものを示したが、所定波長の吸光度に基づき水膜厚さを測定することも可能である。   In the first and second embodiments, the water film thickness detection device 40 is configured to measure the water film thickness based on the absorbance in the predetermined wavelength band W. It is also possible to measure the film thickness.

尚、第1及び第2実施形態では、水膜厚さ検出装置40を擬似路面20a,60aの移動方向と交差する方向に移動させる移動機構42を設け、擬似路面20a,60aの移動方向と交差する方向の水膜厚さの分布を測定するようにしたものを示したが、複数の水膜厚さ検出装置40を擬似路面20a,60aの移動方向と交差する方向に所定間隔をおいて設け、擬似路面20a,60aの移動方向と交差する方向の水膜厚さの分布を測定することも可能である。   In the first and second embodiments, a moving mechanism 42 that moves the water film thickness detector 40 in a direction that intersects the moving direction of the simulated road surfaces 20a and 60a is provided, and intersects the moving direction of the simulated road surfaces 20a and 60a. However, a plurality of water film thickness detectors 40 are provided at predetermined intervals in a direction crossing the moving direction of the simulated road surfaces 20a and 60a. It is also possible to measure the distribution of the water film thickness in the direction intersecting the moving direction of the simulated road surfaces 20a and 60a.

本発明の第1実施形態を示すウェット路面試験機の正面図The front view of the wet road surface testing machine which shows 1st Embodiment of this invention ウェット路面試験機の平面図Top view of wet road surface testing machine 図2のA−A線断面における動作説明図Explanatory drawing in the AA line cross section of FIG. 水膜厚さ検出装置によって受光する赤外線の吸光状態を示すグラフGraph showing the absorption state of infrared rays received by the water film thickness detector 吸光度と水膜厚さの関係を示すグラフGraph showing the relationship between absorbance and water film thickness ウェット路面試験機のブロック図Block diagram of wet road surface testing machine 制御部の動作を示すフローチャートFlow chart showing operation of control unit 制御部の動作を示すフローチャートFlow chart showing operation of control unit 本発明の第2実施形態を示すウェット路面試験機の断面図Sectional drawing of the wet road surface testing machine which shows 2nd Embodiment of this invention 図9のB−B線断面における動作説明図FIG. 9 is an explanatory diagram of the operation along the line B-B in FIG. 第2実施形態の変形例を示すウェット路面試験機の一部断面正面図Partial sectional front view of a wet road surface testing machine showing a modification of the second embodiment

符号の説明Explanation of symbols

10…支持装置、11…シャフト、12…ベース、20…円板状部材、20a…擬似路面、21…駆動装置、30…水膜形成装置、31…水供給装置、31a…吐出孔、32…隙間形成部材、32a…シリンダ、40…水膜厚さ検出装置、41…保護部材、42…移動機構、42a…レール、42b…昇降装置、43…位置センサ、50…制御部、60…円筒状部材、60a…擬似路面、61…端面壁、62…駆動装置、70…無端状部材、70a…擬似路面、71…ローラ、GA…隙間、W…所定波長帯、La…吸光状態、Lb…吸光状態、WD…水滴、TA…タイヤ。   DESCRIPTION OF SYMBOLS 10 ... Support apparatus, 11 ... Shaft, 12 ... Base, 20 ... Disk-shaped member, 20a ... Simulated road surface, 21 ... Drive apparatus, 30 ... Water film formation apparatus, 31 ... Water supply apparatus, 31a ... Discharge hole, 32 ... Gap forming member, 32a ... cylinder, 40 ... water film thickness detecting device, 41 ... protective member, 42 ... moving mechanism, 42a ... rail, 42b ... lifting device, 43 ... position sensor, 50 ... control unit, 60 ... cylindrical shape Member 60a ... Simulated road surface 61 ... End face wall 62 ... Drive device 70 ... Endless member 70a ... Simulated road surface 71 ... Roller GA ... Gap W ... Predetermined wavelength band La ... Absorbing state Lb ... Absorbing State, WD ... water droplet, TA ... tire.

Claims (7)

ゴム製の外周面を有する試験対象物のウェット路面上における特性を測定するウェット路面試験機において、
前記試験対象物を回転可能に支持する支持装置と、
支持装置に支持された試験対象物の外周面に下方から接触するように設けられ、試験対象物に対して所定方向に移動可能な擬似路面と、
擬似路面上に水膜を形成する水膜形成装置と、
支持装置に支持された試験対象物が擬似路面に接触するとともに、擬似路面が試験対象物に対して所定方向に移動している状態で、試験対象物に接触する前の擬似路面に向かって赤外線を照射するとともに擬似路面によって反射した赤外線を受光し、受光した赤外線の所定波長または所定波長帯における吸光度に基づき擬似路面上に形成された水膜の厚さを検出する水膜厚さ検出装置とを備え
前記水膜形成装置に、擬似路面上に水を供給する水供給装置と、擬似路面との間に任意の大きさの隙間を形成可能に配置され、擬似路面上の水膜厚さを前記隙間の大きさによって調整可能な隙間形成部材とを設け
ことを特徴とするウェット路面試験機。
In a wet road surface testing machine for measuring the characteristics of a test object having a rubber outer peripheral surface on a wet road surface,
A support device for rotatably supporting the test object;
A pseudo road surface provided so as to come into contact with the outer peripheral surface of the test object supported by the support device from below, and movable in a predetermined direction with respect to the test object;
A water film forming apparatus for forming a water film on the simulated road surface;
While the test object supported by the support device is in contact with the simulated road surface and the simulated road surface is moving in a predetermined direction with respect to the test object, infrared rays are directed toward the simulated road surface before contacting the test object. And a water film thickness detector for detecting the thickness of the water film formed on the simulated road surface based on the absorbance of the received infrared light at a predetermined wavelength or a predetermined wavelength band. equipped with a,
The water film forming device is disposed so that a gap of an arbitrary size can be formed between the water supply device that supplies water on the simulated road surface and the simulated road surface, and the water film thickness on the simulated road surface is determined by the gap. A wet road surface testing machine comprising a gap forming member that can be adjusted according to the size of the road.
前記水膜厚さ検出装置と擬似路面との距離を任意に設定可能な距離設定手段を備えた
ことを特徴とする請求項1記載のウェット路面試験機。
The wet road surface testing machine according to claim 1, further comprising distance setting means capable of arbitrarily setting a distance between the water film thickness detecting device and the simulated road surface.
前記水膜厚さ検出装置を、互いに擬似路面の移動方向と交差する方向に間隔をおいて複数設けた
ことを特徴とする請求項1または2記載のウェット路面試験機。
3. The wet road surface testing machine according to claim 1, wherein a plurality of the water film thickness detecting devices are provided at intervals in a direction intersecting with the moving direction of the simulated road surface.
前記水膜厚さ検出装置を擬似路面の移動方向と交差する方向に移動可能な移動機構を備えた
ことを特徴とする請求項1または2記載のウェット路面試験機。
The wet road surface testing machine according to claim 1 or 2, further comprising a moving mechanism capable of moving the water film thickness detecting device in a direction crossing a moving direction of the simulated road surface.
前記測定対象物の回転によって飛散する水から水膜厚さ検出装置を保護可能な保護部材を備えた
ことを特徴とする請求項1、2、3または4記載のウェット路面試験機。
The wet road surface testing machine according to claim 1, 2, 3, or 4 , further comprising a protective member capable of protecting the water film thickness detection device from water scattered by rotation of the measurement object.
前記保護部材を、隙間形成部材によって飛散する水から水膜厚さ検出装置を保護可能に構成した
ことを特徴とする請求項記載のウェット路面試験機。
The wet road surface testing machine according to claim 5 , wherein the protection member is configured to protect the water film thickness detection device from water scattered by the gap forming member.
前記水膜厚さ検出装置による水膜厚さの検出結果に基づき、水供給装置によって供給する水量及び/または擬似路面と隙間形成部材との隙間の大きさを調整する調整手段を備えた
ことを特徴とする請求項1、2、3、4、または6記載のウェット路面試験機。
Adjusting means for adjusting the amount of water supplied by the water supply device and / or the size of the gap between the simulated road surface and the gap forming member based on the detection result of the water film thickness by the water film thickness detection device; The wet road surface testing machine according to claim 1, 2, 3, 4, 5, or 6 .
JP2007011159A 2007-01-22 2007-01-22 Wet road surface testing machine Expired - Fee Related JP4888832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007011159A JP4888832B2 (en) 2007-01-22 2007-01-22 Wet road surface testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007011159A JP4888832B2 (en) 2007-01-22 2007-01-22 Wet road surface testing machine

Publications (2)

Publication Number Publication Date
JP2008175757A JP2008175757A (en) 2008-07-31
JP4888832B2 true JP4888832B2 (en) 2012-02-29

Family

ID=39702882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007011159A Expired - Fee Related JP4888832B2 (en) 2007-01-22 2007-01-22 Wet road surface testing machine

Country Status (1)

Country Link
JP (1) JP4888832B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959169B1 (en) 2008-10-30 2010-05-24 금호타이어 주식회사 Hydroplaning test structure with guidance equipment of vehicles
AT10958U3 (en) 2009-08-27 2010-08-15 Avl List Gmbh TIRE TEST SYSTEM
JP6181568B2 (en) * 2014-01-31 2017-08-16 トヨタ自動車株式会社 Tabletop wet road surface forming device
CN105092266B (en) * 2015-09-17 2017-10-17 山东建筑大学 Tire neatly performance dynamic test experimental bed and experimental method
JP7115173B2 (en) * 2018-09-14 2022-08-09 富士電機株式会社 tire test equipment
CN109164142A (en) * 2018-10-24 2019-01-08 厦门工学院 A kind of dry and wet detection wheel
CN111733649B (en) * 2020-07-14 2022-05-20 长沙理工大学 Super-wide pavement internal drainage system for expressway and determination method of permeability coefficient thereof
CN113406978B (en) * 2021-06-27 2023-01-03 南京熙赢测控技术有限公司 Water film thickness control system and method of longitudinal force friction coefficient tester

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155804A (en) * 1984-12-28 1986-07-15 Toshiba Electron Syst Kk Optical water film thickness gauge
JPH0355547A (en) * 1989-07-25 1991-03-11 Sharp Corp Plate making device for silk printing
JPH03156341A (en) * 1989-08-01 1991-07-04 Ohtsu Tire & Rubber Co Ltd :The Method and apparatus for testing hydroplaning of tire
JPH0611442A (en) * 1992-06-29 1994-01-21 Kurabo Ind Ltd Infrared optical device

Also Published As

Publication number Publication date
JP2008175757A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4888832B2 (en) Wet road surface testing machine
JP5640073B2 (en) Method and apparatus for measuring tread depth of vehicle tire
KR101205735B1 (en) Device for measuring the width and/or the position of a metal strip or slab
JP5718336B2 (en) Apparatus and method for precision edge finishing
US20180257802A1 (en) Stretch Wrap Monitoring Device
JP5043101B2 (en) Printing plate manufacturing apparatus and manufacturing method thereof
JP5711046B2 (en) Rubber friction and wear characteristic test method and rubber friction and wear characteristic test apparatus
EP2536578A1 (en) Tire changer and method of measuring force variations
ITVR20040055A1 (en) AUTOMATIC FEELER FOR TIRE MOUNTING MACHINES
EP2543980B1 (en) Wheel balancer with means for determining tyre uniformity
JP2006163276A5 (en)
WO2013076526A1 (en) Assembly for detecting geometric parameters of supports for printing plates
US6209817B1 (en) Method and apparatus for monitoring a winding hardness of a winding roll
US8616870B2 (en) Optical media production system and method for controlling same
JP2008216189A (en) Vehicle-testing device
RU2004106573A (en) METHOD AND DEVICE FOR NON-DESTRUCTIVE TESTING OR REGISTRATION OF RESULTS OF MEASUREMENTS OF DISCOVERABLE OR RING-OBJECTS
KR100766443B1 (en) Apparatus and method for measuring widthwise ejection uniformity of slit nozzle
JP7097240B2 (en) Vehicle face-to-face adjustment method and face-to-face adjustment device
JP2009031034A (en) Radial runout measuring method and device of tire
JP2004309142A (en) Shape detection apparatus
KR100899114B1 (en) Apparatus and method for detecting foreign substance
JP6735254B2 (en) Device and method for calculating tire dynamic load radius
JP2011149762A (en) Twist-amount measuring device
JP5756378B2 (en) Belt polishing equipment
US9586303B2 (en) Polishing device and method for polishing semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4888832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees