JP4888720B2 - Simple measurement method for organic halogen compounds - Google Patents

Simple measurement method for organic halogen compounds Download PDF

Info

Publication number
JP4888720B2
JP4888720B2 JP2007186235A JP2007186235A JP4888720B2 JP 4888720 B2 JP4888720 B2 JP 4888720B2 JP 2007186235 A JP2007186235 A JP 2007186235A JP 2007186235 A JP2007186235 A JP 2007186235A JP 4888720 B2 JP4888720 B2 JP 4888720B2
Authority
JP
Japan
Prior art keywords
organic halogen
time
concentration
amount
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007186235A
Other languages
Japanese (ja)
Other versions
JP2009025051A (en
Inventor
光太郎 青山
光太郎 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007186235A priority Critical patent/JP4888720B2/en
Publication of JP2009025051A publication Critical patent/JP2009025051A/en
Application granted granted Critical
Publication of JP4888720B2 publication Critical patent/JP4888720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機ハロゲン化合物の簡易測定方法及び装置に係り、特に土壌や地下水に含まれるPCB類やダイオキシン類等の有機ハロゲン化合物の濃度を、微生物を利用した毒性、有害性試験により簡易的にスクリーニングする方法に関する。   The present invention relates to a simple measurement method and apparatus for organic halogen compounds, and in particular, the concentration of organic halogen compounds such as PCBs and dioxins contained in soil and groundwater is easily determined by toxicity and toxicity tests using microorganisms. It relates to a screening method.

2002年に制定された土壌汚染対策法によって、テトラクロロエチレンやトリクロロエチレン等の有機塩素系化合物、カドミウム、六価クロムなどの重金属類、PCB(ポリ塩化ビフェニル)や有機リン化合物等の農薬類が特定有害物質として規制対象となっている。ダイオキシン類についても、ダイオキシン類対策特別措置法等によって環境基準が制定されている。   According to the Soil Contamination Countermeasures Law enacted in 2002, organic chlorinated compounds such as tetrachloroethylene and trichlorethylene, heavy metals such as cadmium and hexavalent chromium, and agricultural chemicals such as PCB (polychlorinated biphenyl) and organophosphorus compounds are specified hazardous substances. It is subject to regulation. For dioxins, environmental standards have been established by the Act on Special Measures against Dioxins.

その中でもPCBは、化学的、熱的に安定であるため、トランスやコンデンサ等の電気機器の絶縁油や可塑剤、化学機器の熱媒体等に広く適用されていた。しかし、現在では生体に対する有害性が指摘されており、製造及び使用が禁止されるとともに、PCBによる土壌及び地下水汚染の調査や浄化対策の必要性が高まりつつある。   Among them, PCBs are chemically and thermally stable, and thus have been widely applied to insulating oils and plasticizers for electrical equipment such as transformers and capacitors, and heat media for chemical equipment. At present, however, harmfulness to living bodies has been pointed out, and production and use are prohibited, and the necessity of investigation and purification measures for soil and groundwater contamination by PCBs is increasing.

土壌汚染調査は、初めに広範囲にわたる表層調査を実施し、汚染の疑わしいエリアの絞り込みを行なう。絞り込みを行った後、不透水層までの詳細調査を行なうが、絞込み精度を高めるためには更に詳細な調査を行なう必要がある。また、汚染が存在した場合は浄化対策をとるが、一般的には、対象土壌を掘削して、場外搬出した後廃棄処分するか、或いはオンサイトの浄化処理を行った後埋め戻している。この際、掘削管理が非常に重要となるが、事前に行なった詳細調査によるコンター図だけでは不十分であり、分析しながら掘削を行なう必要がある。このとき、通常のPCB分析手法としては、GC−LRMSやGC−HRMS、GC−ECI等の機器分析によって測定するため、分析結果が得られるまでには数日間かかるという問題がある。   In soil contamination surveys, a wide range of surface surveys are first conducted to narrow down areas suspected of being contaminated. After narrowing down, a detailed survey up to the impermeable layer is performed, but in order to improve the narrowing accuracy, a more detailed survey is required. In addition, when there is contamination, remedial measures are taken, but in general, the target soil is excavated and discarded after being removed from the field, or is refilled after on-site purification treatment. At this time, excavation management is very important, but the contour map based on the detailed survey conducted in advance is not sufficient, and it is necessary to perform excavation while analyzing. At this time, as a normal PCB analysis method, since measurement is performed by instrumental analysis such as GC-LRMS, GC-HRMS, and GC-ECI, there is a problem that it takes several days to obtain an analysis result.

これらの機器分析では、サンプルを分析施設へ持ち込む必要があること、前処理や測定に長時間を要すること、専門的な分析者が必要であること、高コストであること等の問題がある。このため、汚染の可能性のあるエリアを全て網羅するには時間、費用ともに莫大なものとなる。   In these instrumental analysis, there are problems that it is necessary to bring a sample into an analysis facility, a long time is required for pretreatment and measurement, a specialized analyst is required, and the cost is high. For this reason, it takes an enormous amount of time and money to cover all possible areas of contamination.

このようなことから、JISK0311:1999に規定されている公定法分析を補完し、高濃度汚染の有無の判断を現場で測定が可能で、簡易且つ安価に分析できる方法が望まれている。これまで、土壌汚染物質の簡易分析法としては、例えば特許文献1では、土壌等に含まれる有機ハロゲン化合物類をトルエン抽出し、その後金属ナトリウムと反応させて水相に移行させた後、滴定法、比濁法、分光光度法により有機ハロゲン化合物を分析する方法が提案されている。   For this reason, there is a demand for a method that can complement the official method analysis stipulated in JISK0311: 1999, can determine the presence or absence of high-concentration contamination on-site, and can be easily and inexpensively analyzed. Until now, as a simple analysis method of soil pollutants, for example, in Patent Document 1, organohalogen compounds contained in soil or the like are extracted with toluene, and then reacted with metallic sodium to be transferred to an aqueous phase, followed by a titration method. In addition, methods for analyzing organohalogen compounds by turbidimetry and spectrophotometry have been proposed.

また、特許文献2では、有機ハロゲン化合物の分析において、金属ナトリウムと陽イオン交換樹脂からなる分析用前処理キットを用いることで、前処理操作を簡易化する方法が提案されている。   Patent Document 2 proposes a method for simplifying the pretreatment operation by using an analytical pretreatment kit composed of metallic sodium and a cation exchange resin in the analysis of the organic halogen compound.

また、特許文献3及び4では、主に、ダイオキシン類を対象とした簡易分析方法が提案されている。
特開2006−177981号公報 特開2006−226813号公報 特開2004−156970号公報 特開2001−305121号公報
Patent Documents 3 and 4 mainly propose simple analysis methods for dioxins.
JP 2006-177981 A Japanese Patent Laid-Open No. 2006-226813 JP 2004-156970 A JP 2001-305121 A

しかしながら、特許文献1の方法では、操作が煩雑である上、分析時間が最短でも8時間以上かかるという問題があった。また、PCBの検出可否や検出感度については不明であった。   However, the method of Patent Document 1 has a problem that the operation is complicated and the analysis time takes at least 8 hours at the shortest. Further, whether or not PCB can be detected and detection sensitivity were unknown.

特許文献2の方法では、有機ハロゲン化合物の濃度が数十〜数千ppmレベルの高濃度を対象としており、低濃度の場合は検出できない虞があった。   In the method of Patent Document 2, the concentration of the organic halogen compound is targeted at a high concentration of several tens to several thousand ppm, and there is a possibility that it cannot be detected when the concentration is low.

特許文献3及び4の方法では、公定法を若干改良したものであり、作業や分析時間を考慮すると、簡易的な方法とはいえなかった。   In the methods of Patent Documents 3 and 4, the official method is slightly improved, and it cannot be said that it is a simple method in consideration of work and analysis time.

このように、上記特許文献1〜4の方法では、いずれもPCBを含む有機ハロゲン化合物をオンサイトで測定できるものではなく、簡易的且つ短時間、高検出感度でスクリーニングできるものでもなかった。   As described above, none of the methods of Patent Documents 1 to 4 can measure an organic halogen compound containing PCB on-site, and cannot be screened with high detection sensitivity in a simple and short time.

本発明はこのような事情に鑑みてなされたもので、土壌や地下水に含まれるPCB類を始めとする有機ハロゲン化合物をオンサイトで、簡易的且つ短時間、高検出感度で検出できる簡易測定方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and a simple measurement method capable of detecting organic halogen compounds including PCBs contained in soil and groundwater on site in a simple and short time with high detection sensitivity. And an apparatus.

本発明の請求項1は前記目的を達成するために、土壌又は地下水に含まれる有機ハロゲン化合物の簡易測定方法において、予め前記有機ハロゲン化合物を複数の異なる濃度に調整し該濃度ごとに、発光細菌との接触時間による発光量の経時変化パターンを取得するパターン取得工程と、前記取得した濃度ごとの経時変化パターンにおける発光量の低下挙動の違いに基づいて、該経時変化パターンを前記接触時間の初期、中期及び後期に区分する区分工程と、前記土壌又は地下水から採取したサンプル液と発光細菌とを接触させて前記発光細菌による発光量の経時変化を測定する測定工程と、前記測定したサンプルの経時変化データと前記予め取得した経時変化パターンとを照合する照合工程と、前記照合した経時変化データにおける発光量の低下挙動が、前記初期、中期及び後期の何れにおいて発現するかにより、前記サンプル液の有機ハロゲン化合物濃度を判定する判定工程と、を備えたことを特徴とする有機ハロゲン化合物の簡易測定方法を提供する。   In order to achieve the above object, according to claim 1 of the present invention, in a simple method for measuring an organic halogen compound contained in soil or groundwater, the organic halogen compound is previously adjusted to a plurality of different concentrations, and a luminescent bacterium is used for each concentration. The pattern acquisition step of acquiring a temporal change pattern of the light emission amount according to the contact time with the contact time and the difference in the light emission amount decrease behavior in the temporal change pattern for each of the acquired concentrations A step of classifying into a middle period and a late period, a measurement process in which a sample solution collected from the soil or ground water is brought into contact with a luminescent bacterium to measure a change over time in the amount of luminescence caused by the luminescent bacterium; A collation process for collating change data with the previously obtained time-varying pattern; and a light emission amount in the collated time-varying data. And a determination step of determining an organic halogen compound concentration of the sample liquid depending on whether the lower behavior is manifested in the initial period, the intermediate period, or the late period, and provides a simple method for measuring an organic halogen compound To do.

発明者らは、有機ハロゲン化合物の所定濃度ごとに、ある一定の発光量の経時変化挙動(パターン)を示すことを見出した。さらに、発光量の経時変化挙動を初期、中期、後期と区分した各領域ごとに発光量の増減を判断することで、有機ハロゲン化合物の濃度を高い検出精度で推定できることを見出した。   The inventors have found that for each predetermined concentration of the organic halogen compound, a certain amount of luminescence change with time (pattern) is exhibited. Furthermore, the present inventors have found that the concentration of the organic halogen compound can be estimated with high detection accuracy by judging the increase / decrease of the light emission amount for each region divided into the early, middle and late phases of the light emission amount.

請求項1によれば、予め取得した各濃度ごとの発光量の経時変化挙動(パターン)を接触時間の初期、中期、後期に区分し、未知のサンプル液の発光量の経時変化データにおける低下挙動が何れの領域で発現するかを判断することで、未知のサンプル液における有機ハロゲン化合物の濃度を判定できる。したがって、サンプル液を分析施設へ持ち込み、機器分析する必要がなく、オンサイトで簡易的且つ短時間、高検出感度で検出できる。なお、発光量の経時変化パターンは、予め標準データとして用意しておいてもよいし、現場で各濃度のサンプル液を調製してその場で作成してもよい。なお、発光量の経時変化挙動(パターン)を初期、中期、後期に区切る際、各領域は一部又は全部が重複してもよく、要求される検出精度に応じて区切り方を適宜変更することもできる。   According to the first aspect, the temporal change behavior (pattern) of the light emission amount for each concentration acquired in advance is divided into the initial, middle, and late contact times, and the decrease behavior in the temporal change data of the light emission amount of the unknown sample liquid. It is possible to determine the concentration of the organohalogen compound in an unknown sample solution by determining in which region. Therefore, it is not necessary to bring the sample liquid into the analysis facility and perform instrumental analysis, and it can be detected on-site simply and in a short time with high detection sensitivity. Note that the temporal change pattern of the light emission amount may be prepared in advance as standard data, or may be prepared on the spot by preparing a sample solution of each concentration on site. In addition, when dividing the temporal change behavior (pattern) of the light emission amount into the initial stage, the middle period, and the latter stage, each region may be partially or entirely overlapped, and the dividing method may be appropriately changed according to the required detection accuracy. You can also.

請求項2は請求項1において、前記有機ハロゲン化合物は、PCBであることを特徴とする。   A second aspect of the present invention is characterized in that, in the first aspect, the organic halogen compound is PCB.

請求項2によれば、PCBは高い検出精度が必要であり、本発明が特に有効である。   According to the second aspect, the PCB requires high detection accuracy, and the present invention is particularly effective.

請求項3は請求項1又は2において、前記測定した経時変化データにおいて、接触時間0〜1分の間を初期とし、接触時間1〜30分の間を中期とし、接触時間30〜120分の間を後期とすることを特徴とする。   A third aspect of the present invention relates to the first or second aspect of the present invention, in the measured time-dependent change data, the contact time is 0 to 1 minute as an initial period, the contact time is 1 to 30 minutes as a middle period, and the contact time is 30 to 120 minutes. It is characterized by a later period.

請求項3によれば、低濃度のPCBも精度よく検出できる。   According to the third aspect, it is possible to detect a low concentration PCB with high accuracy.

請求項4は請求項1〜3の何れか1項において、前記サンプル液は、前記有機ハロゲン化合物を有機溶媒に溶解させた後、濃縮したものであることを特徴とする。   A fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the sample liquid is obtained by dissolving the organic halogen compound in an organic solvent and then concentrating the sample liquid.

有機溶媒は、有機ハロゲン化合物の溶解性が高いため抽出し易く、揮発性も高いので有機ハロゲン化合物を短時間で濃縮できる。したがって、低濃度の有機ハロゲン化合物でも短時間且つ高検出精度で検出できる。   An organic solvent is easily extracted because of high solubility of the organic halogen compound, and has high volatility, so that the organic halogen compound can be concentrated in a short time. Therefore, even a low concentration organic halogen compound can be detected in a short time with high detection accuracy.

請求項5は請求項4において、前記有機溶媒は、メタノールであることを特徴とする。   A fifth aspect of the present invention is characterized in that, in the fourth aspect, the organic solvent is methanol.

請求項5によれば、検出対象物質である有機ハロゲン化合物を溶解し易く、効率よく抽出できるとともに、発光細菌へのダメージも少なくすることができる。   According to the fifth aspect, the organohalogen compound as the detection target substance can be easily dissolved and extracted efficiently, and damage to the luminescent bacteria can be reduced.

請求項6は請求項1〜5の何れか1項において、前記サンプル液と接触させる前記発光細菌の菌体濃度を5000〜40000CFU/mLとすることを特徴とする。   A sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, a cell concentration of the luminescent bacteria to be brought into contact with the sample solution is 5000 to 40000 CFU / mL.

請求項6によれば、菌体濃度を5000〜40000CFU/mLとすることで、高い検出感度を維持できる。なお、菌体濃度を8000〜20000CFU/mLとすることがより好ましい。   According to the sixth aspect, high detection sensitivity can be maintained by setting the bacterial cell concentration to 5000 to 40000 CFU / mL. The bacterial cell concentration is more preferably 8000 to 20000 CFU / mL.

請求項7は請求項1〜6の何れか1項において、前記発光細菌と接触させるサンプル液が水溶液である場合は、前記サンプル液量Xと前記発光細菌の菌体量Yとの質量比X/Yを1/2以下とし、前記発光細菌と接触させるサンプル液が有機溶媒である場合は、前記質量比X/Yを1/200以下とすることを特徴とする。   A seventh aspect according to any one of the first to sixth aspects, wherein when the sample liquid to be contacted with the luminescent bacteria is an aqueous solution, the mass ratio X between the sample liquid amount X and the microbial cell amount Y of the luminescent bacteria. / Y is 1/2 or less, and when the sample liquid to be contacted with the luminescent bacteria is an organic solvent, the mass ratio X / Y is 1/200 or less.

菌体量に対してサンプル液の割合が多すぎると、発光細菌がダメージを受けて検出精度が低下する。請求項7によれば、サンプル液が水溶液である場合は、サンプル液量Xと発光細菌の菌体量Yとの質量比X/Yを1/2以下にするので、検出精度の低下を抑制できる。また、サンプル液が有機溶媒である場合は、発光細菌が有機溶媒によるダメージを受け易いが、菌体量Yの割合を増やす(質量比X/Yを1/200以下とする)ことで検出感度の低下を抑制できる。   If the ratio of the sample solution is too large relative to the amount of bacterial cells, the luminescent bacteria are damaged and the detection accuracy decreases. According to the seventh aspect, when the sample solution is an aqueous solution, the mass ratio X / Y between the sample solution amount X and the microbial cell amount Y of the luminescent bacteria is reduced to ½ or less, so that a decrease in detection accuracy is suppressed. it can. Further, when the sample solution is an organic solvent, the luminescent bacteria are easily damaged by the organic solvent, but the detection sensitivity is increased by increasing the proportion of the amount of bacterial cells Y (the mass ratio X / Y is 1/200 or less). Can be suppressed.

本発明によれば、土壌や地下水に含まれるPCB類を始めとする有機ハロゲン化合物をオンサイトで、簡易的且つ短時間、高検出感度で検出できる。   According to the present invention, organic halogen compounds such as PCBs contained in soil and groundwater can be detected on-site simply and in a short time with high detection sensitivity.

以下、添付図面に従って本発明に係る有機ハロゲン化合物の簡易測定方法及び装置の好ましい実施の形態について説明する。   Hereinafter, preferred embodiments of a simple method and apparatus for measuring an organic halogen compound according to the present invention will be described with reference to the accompanying drawings.

本実施の形態は、土壌や地下水から採取したサンプル液に含まれるPCB濃度を、オンサイトで簡易的に一次スクリーニングする例で説明する。   In the present embodiment, an example of simple primary screening on-site for the PCB concentration contained in a sample solution collected from soil or groundwater will be described.

発光細菌は、発光細菌の呼吸機構に伴って発光するが、この過程でPCB等の有害性物質が作用すると発光細菌がダメージを受けて発光が抑制される。本発明は、この性質を利用し、発光量の経時変化を測定することで土壌等から採取したサンプル液Bに含まれるPCB濃度を検出するものである。   Luminescent bacteria emit light along with the respiratory mechanism of the luminous bacteria, but if harmful substances such as PCBs act in this process, the luminous bacteria are damaged and light emission is suppressed. The present invention uses this property to detect the PCB concentration contained in the sample solution B collected from soil or the like by measuring the change over time in the amount of luminescence.

本発明に使用される発光細菌としては、例えば、海洋性発光細菌(Vibro fischri)などが挙げられる。   Examples of the luminescent bacteria used in the present invention include marine luminescent bacteria (Vibro fischri).

本発明が対象とする有機ハロゲン化合物としては、例えば、ジクロロメタン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン類、クロロフェノール類、PCB類、ダイオキシン類、クロロベンゾフラン類、各種ブロモ化合物、各種のハロゲン系農薬類などの多種類の有機ハロゲン誘導体が挙げられる。中でも、PCB類、ダイオキシン類の検出に好適である。   The organic halogen compounds targeted by the present invention include, for example, dichloromethane, trichloroethylene, tetrachloroethylene, chlorobenzenes, chlorophenols, PCBs, dioxins, chlorobenzofurans, various bromo compounds, various halogenated pesticides and the like. Examples of the organic halogen derivatives are listed. Especially, it is suitable for detection of PCBs and dioxins.

まず、本発明に使用される簡易分析装置の概要について説明する。   First, an outline of a simple analyzer used in the present invention will be described.

図1は、本発明に使用される簡易分析装置10の概略構成の一例を示す概略図である。図2は、図1の検出装置16を説明する概略図である。   FIG. 1 is a schematic diagram showing an example of a schematic configuration of a simple analyzer 10 used in the present invention. FIG. 2 is a schematic diagram illustrating the detection device 16 of FIG.

簡易分析装置10は、図1及び図2に示すように、主に、土壌から採取したサンプル液に発光細菌を含む菌液を混合した液を保持する複数のセル12…を備えた専用プレート14と、該専用プレート14を収納し、サンプル液の発光量を検出する検出装置16と、該検出装置16とPCケーブル17を介して接続され、検出結果を表示するPC(コンピュータ)18と、を備えている。   As shown in FIGS. 1 and 2, the simple analyzer 10 mainly includes a dedicated plate 14 having a plurality of cells 12 that hold a liquid obtained by mixing a bacterial solution containing luminescent bacteria into a sample solution collected from soil. And a detection device 16 that houses the dedicated plate 14 and detects the light emission amount of the sample liquid, and a PC (computer) 18 that is connected to the detection device 16 via the PC cable 17 and displays the detection result. I have.

これにより、専用プレート14の各セル12内に発光細菌の菌液(A)と、有機ハロゲン化合物を含有するサンプル液(B)を注入した後、専用プレート14を検出装置16にセットし、PC18の表示画面でサンプル液の発光量の経時変化を測定する。   Thus, after injecting the bacterial solution (A) of the luminescent bacteria and the sample solution (B) containing the organic halogen compound into each cell 12 of the dedicated plate 14, the dedicated plate 14 is set in the detection device 16, and the PC 18 Measure the change over time in the amount of luminescence of the sample solution on the display screen.

このような簡易分析装置10としては、オンサイト対応土壌毒性検査システムROTAS(Rapid Onsite Toxicity Audit System、日立化成工業)を使用できる。   As such a simple analysis apparatus 10, an on-site compatible soil toxicity test system ROTAS (Rapid Onsite Toxicity Audit System, Hitachi Chemical Co., Ltd.) can be used.

次に、図1の簡易分析装置10を用いて、PCBの各濃度ごとの発光量の経時変化パターンを取得する方法について説明する。   Next, a method for obtaining a temporal change pattern of the light emission amount for each concentration of PCB using the simple analyzer 10 of FIG. 1 will be described.

まず、PCB濃度が0.000065〜0.0013mg−PCB/cell(0.065〜1.3mg−PCB/L)の各標準サンプル液Bを調製する。そして、図2の専用プレート12の複数のセル12…に発光細菌の菌液Bをシリンジ19で0.95mLずつ注入した後、各標準サンプル液Bを0.05mLずつ添加して、総量が1mLになるようにする。このように調製した各濃度のサンプルを一定時間(1〜120分)静置する。これを検出装置16にセットし、各セル12における発光量の経時変化を測定し、PC18の表示画面で観察する。なお、ブランクとして清水及びメタノールのみ、コントロールとして発光細菌と清水及びメタノールを混合した条件での発光強度を測定し、各実験条件の値を補正する。   First, each standard sample solution B having a PCB concentration of 0.000065 to 0.0013 mg-PCB / cell (0.065 to 1.3 mg-PCB / L) is prepared. Then, after injecting 0.95 mL of the luminescent bacterial solution B into the plurality of cells 12 of the dedicated plate 12 of FIG. 2 with the syringe 19, 0.05 mL of each standard sample solution B is added, and the total amount is 1 mL. To be. The sample of each concentration prepared in this way is allowed to stand for a fixed time (1 to 120 minutes). This is set in the detection device 16, the change with time of the light emission amount in each cell 12 is measured, and observed on the display screen of the PC 18. In addition, only the fresh water and methanol as a blank, and the light emission intensity in the conditions which mixed luminescent bacteria, fresh water, and methanol as a control are measured, and the value of each experimental condition is corrected.

図3は、このときの発光量(相対発光強度)の経時変化パターンを示す図である。
相対発光強度=(各サンプルを添加したセルの発光強度)/(ブランクの発光強度)
測定条件:温度…20℃、測定時間…120分、菌体濃度…15000CFU/mL
図3に示すように、発光量の経時変化挙動は、標準サンプル液Bに含まれるPCB濃度によって異なることがわかる。すなわち、0.78mg−PCB/L以上ではPCBの添加直後に発光量は低下し、それ以後、発光量はほぼ一定で変化はみられない。また、0.52mg−PCB/Lでは、一旦発光量は低下し、その後初期発光量まで上昇した後に再度低下する。0.52mg−PCB/Lより低濃度では、PCB添加直後に発光量は約1.6倍まで上昇し、それ以後は徐々に低下する。
FIG. 3 is a diagram showing a temporal change pattern of the light emission amount (relative light emission intensity) at this time.
Relative light emission intensity = (light emission intensity of the cell to which each sample was added) / (blank light emission intensity)
Measurement conditions: temperature ... 20 ° C, measurement time ... 120 minutes, bacterial cell concentration ... 15000 CFU / mL
As shown in FIG. 3, it can be seen that the light emission amount changes with time depending on the PCB concentration contained in the standard sample solution B. That is, at 0.78 mg-PCB / L or more, the light emission amount decreases immediately after the addition of PCB, and thereafter, the light emission amount is almost constant and no change is observed. In addition, at 0.52 mg-PCB / L, the light emission amount temporarily decreases, and then increases to the initial light emission amount and then decreases again. When the concentration is lower than 0.52 mg-PCB / L, the amount of luminescence increases to about 1.6 times immediately after the addition of PCB, and gradually decreases thereafter.

さらに、図3の経時変化パターンは、経過時間(接触時間)0〜1分を初期とし、経過時間1〜30分を中期とし、経過時間30〜120分を後期として区分することで、詳細に分析できる。図4は、図3で区分した初期における発光量の経時変化データであり、図5は、中期における発光量の経時変化データであり、図6は、後期における発光量の経時変化データである。   Furthermore, the temporal change pattern of FIG. 3 is classified in detail by setting the elapsed time (contact time) 0 to 1 minute as the initial period, the elapsed time 1 to 30 minutes as the middle period, and the elapsed time 30 to 120 minutes as the latter period. Can be analyzed. FIG. 4 shows the temporal change data of the light emission amount in the initial stage divided in FIG. 3, FIG. 5 shows the temporal change data of the light emission amount in the middle period, and FIG. 6 shows the temporal change data of the light emission amount in the latter period.

初期では、図4に示すように、PCB濃度が0.52mg−PCB/Lを境に発光量の低下挙動が異なる。すなわち、PCB濃度が0.52mg−PCB/Lよりも低いと発光量は上昇し、0.52mg−PCB/Lよりも高いと発光量は低下する。これにより、PCB濃度について0.52mg−PCB/Lを基準とした大小を判定できる。   In the initial stage, as shown in FIG. 4, the light emission amount lowering behavior is different at a PCB concentration of 0.52 mg-PCB / L. That is, when the PCB concentration is lower than 0.52 mg-PCB / L, the light emission amount increases, and when it is higher than 0.52 mg-PCB / L, the light emission amount decreases. Thereby, the magnitude | size based on 0.52 mg-PCB / L can be determined about a PCB density | concentration.

中期では、図5に示すように、0.065mg−PCB/Lを境に発光量の低下挙動が異なる。すなわち、0.065mg−PCB/L以下(ブランクを含む)になると発光量が低下し、0.065mg−PCB/Lよりも高いと発光量はほぼ一定となる。これにより、0〜0.065mg−PCB/Lの範囲が判定できる。   In the middle period, as shown in FIG. 5, the light emission amount lowering behavior is different at the boundary of 0.065 mg-PCB / L. That is, the amount of luminescence decreases when it is 0.065 mg-PCB / L or less (including a blank), and the amount of luminescence becomes almost constant when it is higher than 0.065 mg-PCB / L. Thereby, the range of 0-0.065 mg-PCB / L can be determined.

後期では、図6に示すように、0.26mg−PCB/Lを境に発光量の低下挙動が異なる。すなわち、0.26mg−PCB/L以下になると発光量が一旦上昇した後低下するカーブが得られ、0.26mg−PCB/Lよりも高いと、前述のようなカーブはなくなる。これにより、0〜0.26mg−PCB/Lの範囲が判定できる。   In the latter period, as shown in FIG. 6, the light emission amount lowering behavior is different at 0.26 mg-PCB / L. That is, when the amount is 0.26 mg-PCB / L or less, a curve is obtained in which the amount of emitted light once increases and then decreases, and when it is higher than 0.26 mg-PCB / L, the above curve disappears. Thereby, the range of 0-0.26 mg-PCB / L can be determined.

なお、発光量の経時変化パターンは、PCB濃度が既知の土壌又は地下水から採取したサンプル液を、各濃度にそれぞれ希釈又は濃縮したものを用いて作成できるが、PCB濃度が既知の標準サンプル液を調製して作成してもよい。   In addition, the time-dependent change pattern of the luminescence amount can be prepared by using a sample solution collected from soil or groundwater with a known PCB concentration, diluted or concentrated to each concentration, but a standard sample solution with a known PCB concentration is used. It may be prepared.

以下、図1の簡易分析装置10を用いて、未知のサンプル液についてPCB濃度を測定(及び判定)する方法について説明する。   Hereinafter, a method for measuring (and determining) the PCB concentration of an unknown sample solution using the simple analyzer 10 of FIG. 1 will be described.

図7は、本発明に係る簡易分析方法の流れを説明する説明図である。まず、PCBを含有するサンプル液Bの前処理工程について説明する。   FIG. 7 is an explanatory diagram for explaining the flow of the simple analysis method according to the present invention. First, the pretreatment process of the sample liquid B containing PCB will be described.

抽出工程では、土壌等から採取したサンプル液を有機溶媒と混合し、PCBを有機溶媒に抽出する。使用する有機溶媒としては、発光細菌に対するダメージが少なく、且つ検出対象であるPCBの溶解性が高いものが好ましく、例えば、ヘキサン、メタノール、エタノール、DMSO(ジメチルスルホキシド)等が使用できる。中でも、発光細菌へのダメージが少ないメタノール及びDMSOが好ましく、極性が高く、PCBの溶解性の高いメタノールがより好ましい。   In the extraction step, a sample solution collected from soil or the like is mixed with an organic solvent, and PCB is extracted into the organic solvent. As the organic solvent to be used, those having little damage to the luminous bacteria and high solubility of the PCB to be detected are preferable. For example, hexane, methanol, ethanol, DMSO (dimethyl sulfoxide) and the like can be used. Among these, methanol and DMSO that cause little damage to luminous bacteria are preferable, and methanol that has high polarity and high PCB solubility is more preferable.

有機溶媒の発光細菌に対する影響については、図8で確認することができる。図8は、発光細菌の菌液1000μLを用意し、各菌液に対して各種有機溶媒(ヘキサン、メタノール、エタノール、DMSO)を50μL添加したときの発光量を比較したグラフ図である。   The influence of the organic solvent on the luminescent bacteria can be confirmed in FIG. FIG. 8 is a graph comparing the amount of luminescence when preparing 1000 μL of a luminescent bacterial solution and adding 50 μL of various organic solvents (hexane, methanol, ethanol, DMSO) to each bacterial solution.

図8に示すように、メタノール又はDMSOを添加した場合に最も発光量が高く、特にメタノールを添加した場合に発光細菌によるダメージが少ないことがわかる。   As shown in FIG. 8, it can be seen that the amount of luminescence is highest when methanol or DMSO is added, and particularly when methanol is added, damage caused by luminescent bacteria is small.

なお、採取したサンプル液Bが地下水である場合、そのまま有機溶媒と混合して抽出操作を行うことができる。一方、採取したサンプル液Bが砂利等を含む土壌サンプルである場合、土壌サンプルを有機溶媒と混合・攪拌した後、上澄み液を分離(例えば、遠心分離)・ろ過することでサンプル液を得ることができる。   In addition, when the collected sample liquid B is groundwater, the extraction operation can be performed by mixing it with an organic solvent as it is. On the other hand, when the collected sample solution B is a soil sample containing gravel, etc., the sample solution is obtained by mixing and stirring the soil sample with an organic solvent, and then separating (for example, centrifuging) and filtering the supernatant. Can do.

濃縮工程では、上記抽出した有機溶媒を加熱濃縮することで、サンプル液B中のPCB濃度を高くする。加熱温度は、使用する有機溶媒によるが、例えば80〜120℃とすることができる。その他、有機溶媒を減圧雰囲気下で濃縮する方法も採用できる。これにより、採取したサンプル液BのPCBが極めて低濃度であっても、検出できるようになる。   In the concentration step, the extracted organic solvent is heated and concentrated to increase the PCB concentration in the sample liquid B. Although heating temperature is based on the organic solvent to be used, it can be 80-120 degreeC, for example. In addition, a method of concentrating the organic solvent under a reduced pressure atmosphere can be employed. Thereby, even if the PCB of the collected sample liquid B has a very low concentration, it can be detected.

なお、濃縮工程は必要に応じて行えばよく、採取したサンプル液自体が高濃度である場合は省いてもよい。このように、前処理したサンプル液を未知の抽出サンプル液Bとする。この前処理工程は、予め発光量の経時変化パターンを作成する際にも適用できることはいうまでもない。   The concentration step may be performed as necessary, and may be omitted when the collected sample solution itself has a high concentration. In this way, the pretreated sample liquid is defined as an unknown extracted sample liquid B. It goes without saying that this pretreatment step can also be applied when a temporal change pattern of the light emission amount is created in advance.

次に、図1の簡易分析装置10を用いて、PCB濃度が未知の抽出サンプル液Bに含まれるPCBの簡易測定工程について図7を参照して説明する。   Next, a simple measurement process of PCB contained in the extracted sample liquid B whose PCB concentration is unknown will be described with reference to FIG. 7 using the simple analyzer 10 of FIG.

まず、図1の専用プレート14のセル12内に発光細菌の菌液Bを0.95mLずつ注入した後、PCB濃度が未知の抽出サンプル液Bを0.05mL添加して、総量が1mLになるようにする。このように調製した測定用のサンプルを一定時間(1〜120分)静置する。   First, after injecting 0.95 mL of bacterial solution B of luminescent bacteria into the cell 12 of the dedicated plate 14 in FIG. 1, 0.05 mL of the extracted sample solution B with unknown PCB concentration is added, so that the total amount becomes 1 mL. Like that. The measurement sample prepared in this way is allowed to stand for a certain time (1 to 120 minutes).

これを検出装置16にセットした後、各セル12の発光量の経時変化を測定し、PC18の表示画面で観察する。なお、ブランクとして清水及びメタノールのみ、コントロールとして発光細菌と清水及びメタノールを混合した条件での発光強度を測定し、各実験条件の値を補正する。   After this is set in the detection device 16, the time-dependent change in the light emission amount of each cell 12 is measured and observed on the display screen of the PC 18. In addition, only the fresh water and methanol as a blank, and the light emission intensity in the conditions which mixed luminescent bacteria, fresh water, and methanol as a control are measured, and the value of each experimental condition is corrected.

そして、既述した図3〜図6の発光量の経時変化パターンに従い、測定した未知の抽出サンプル液Bの発光量の経時変化データについて、経過時間0〜1分を初期とし、経過時間1〜30分を中期とし、経過時間30〜120分を後期として区分する。   Then, according to the time-dependent change pattern of the light emission amount of FIGS. 3 to 6 described above, with respect to the time-dependent change data of the light emission amount of the unknown extracted sample liquid B, the elapsed time 0 to 1 minute is set as the initial time. 30 minutes is classified as the middle period, and the elapsed time of 30 to 120 minutes is classified as the latter period.

未知の抽出サンプル液Bの発光量の経時変化データの初期において、例えば、(図4のように)発光量が経時的に上昇していると、未知の抽出サンプル液Bに含まれるPCB濃度は0.52mg−PCB/Lよりも低いと判定できる。   In the initial stage of the time-dependent change data of the luminescence amount of the unknown extraction sample liquid B, for example, if the luminescence amount increases with time (as shown in FIG. 4), the PCB concentration contained in the unknown extraction sample liquid B is It can be determined that it is lower than 0.52 mg-PCB / L.

同様に、発光量の経時変化データの中期において、未知の抽出サンプル液Bの発光量が経時的に低下していると、未知の抽出サンプル液Bに含まれるPCB濃度は0.065mg−PCB/L以下であると判定できる。   Similarly, if the amount of luminescence of the unknown extracted sample solution B decreases with time in the middle period of the luminescence amount with time, the concentration of PCB contained in the unknown extracted sample solution B is 0.065 mg-PCB / It can be determined that it is L or less.

同様に、発光量の経時変化データの後期において、未知の抽出サンプル液Bの発光量が経時的に一旦上昇した後低下していると、未知の抽出サンプル液Bに含まれるPCB濃度は0.026mg−PCB/L以下であると判定できる。一方、未知の抽出サンプル液Bの発光量がほぼ一定であれば、0.026mg−PCB/Lよりも高いと判定できる。   Similarly, if the amount of luminescence of the unknown extracted sample solution B once increases and then decreases with time in the latter stage of the luminescence amount change data with time, the PCB concentration contained in the unknown extracted sample solution B is 0. It can be determined that it is 026 mg-PCB / L or less. On the other hand, if the amount of luminescence of the unknown extracted sample liquid B is substantially constant, it can be determined that it is higher than 0.026 mg-PCB / L.

このように本実施の形態によれば、予め取得した発光量の経時変化パターン(図3〜図6)を初期、中期、後期と区分し、測定した経時変化データにおける発光量の低下挙動が上記区分した何れの領域において発現するかを判別する。これにより、PCB濃度が0.065mg−PCB/L以下、即ち第二溶出量基準である0.003mg/Lの約20倍の濃度まで検出が可能となる。また、サンプル液中のPCB濃度を、簡易的な方法、且つ前処理から測定までを約2時間以内で行うことができる。   As described above, according to the present embodiment, the temporal change pattern (FIGS. 3 to 6) of the light emission amount acquired in advance is divided into the initial, middle, and late phases, and the decrease behavior of the light emission amount in the measured time change data is It is determined in which of the divided areas the expression occurs. Thereby, it is possible to detect the PCB concentration to 0.065 mg-PCB / L or less, that is, a concentration about 20 times the 0.003 mg / L which is the second elution amount standard. In addition, the PCB concentration in the sample solution can be measured within about 2 hours from a simple method and from pretreatment to measurement.

上記測定において、調製サンプル液Bが水溶液の場合は、発光細菌に対する悪影響はない。しかし、PCB濃度が高い場合は発光細菌に悪影響を与えるため菌体量が低下し、それに伴い検出感度も低下する。このため、接触させるサンプル液量Xと発光細菌の菌体量Yとの質量比X/Yを1/2以下とすることが好ましい。調製サンプル液Bが有機溶媒の場合は、有機溶媒が発光細菌に対して影響を及ぼすことが懸念されるので、上記の質量比X/Yは1/200以下とすることが好ましい。   In the above measurement, when the prepared sample solution B is an aqueous solution, there is no adverse effect on the luminescent bacteria. However, when the PCB concentration is high, the luminescent bacteria are adversely affected, so the amount of cells decreases, and the detection sensitivity decreases accordingly. For this reason, it is preferable that the mass ratio X / Y between the amount X of the sample solution to be brought into contact with the amount Y of the luminescent bacteria is 1/2 or less. When the prepared sample solution B is an organic solvent, there is a concern that the organic solvent has an effect on the luminescent bacteria, and thus the mass ratio X / Y is preferably 1/200 or less.

発光細菌の発光量は、菌体濃度の上昇に伴って増加する。ここで、接触させたサンプル液における発光細菌の菌体濃度が5000CFU/mL以下では極度に検出感度が低下し、20000CFU/mL以上では検出感度が顕著に向上しない。これより、発光細菌の菌体濃度は5000〜40000CFU/mLとすることが好ましく、8000〜20000CFU/mLとすることがより好ましい。   The amount of luminescence of the luminescent bacteria increases as the cell concentration increases. Here, when the cell concentration of the luminescent bacteria in the contacted sample solution is 5000 CFU / mL or less, the detection sensitivity is extremely lowered, and when it is 20000 CFU / mL or more, the detection sensitivity is not significantly improved. Accordingly, the cell concentration of the luminous bacteria is preferably 5000 to 40000 CFU / mL, and more preferably 8000 to 20000 CFU / mL.

なお、本実施の形態では、採取したサンプル液Bの前処理や菌液Aの添加等をハンドリングで行う例で説明したが、これらを装置で行ってもよい。   In the present embodiment, the pretreatment of the collected sample liquid B, the addition of the bacterial liquid A, and the like have been described as examples of handling. However, these may be performed by an apparatus.

図9は、図1の別態様である簡易分析装置20を示すブロック図である。   FIG. 9 is a block diagram showing a simple analyzer 20 which is another embodiment of FIG.

図9に示すように、簡易分析装置20は、主に、土壌等から採取したサンプル液Bを保持する保持部22と、有機溶媒を供給する有機溶媒供給部24と、サンプル液Bと有機溶媒を混合、振とうする混合部26と、混合したサンプル液Bを濃縮する濃縮部28と、発光細菌の菌液Aを供給する菌液供給部30と、濃縮したサンプル液Bと菌液Aとを接触させた後、発光量を検出する検出部32と、を備えている。なお、検出部32での検出結果は、接続されたPC18に出力される(点線矢印)。   As shown in FIG. 9, the simplified analyzer 20 mainly includes a holding unit 22 that holds a sample solution B collected from soil or the like, an organic solvent supply unit 24 that supplies an organic solvent, a sample solution B, and an organic solvent. A mixing unit 26 that mixes and shakes, a concentration unit 28 that concentrates the mixed sample solution B, a fungus solution supply unit 30 that supplies a bacterial solution A of luminous bacteria, a concentrated sample solution B and a fungus solution A, And a detection unit 32 for detecting the amount of light emission. In addition, the detection result in the detection part 32 is output to connected PC18 (dotted line arrow).

濃縮部28としては、例えば、各種ヒータが使用できる。   As the concentration unit 28, for example, various heaters can be used.

これにより、操作者は、簡易分析装置20をPC18に接続すると共に、採取したサンプル液Bと菌液Aを保持部22、有機溶媒供給部24にそれぞれセットするだけで、サンプル液Bの前処理を含めたPCB濃度の測定を効率的に行うことができる。   As a result, the operator simply connects the simple analyzer 20 to the PC 18 and sets the collected sample solution B and fungus solution A in the holding unit 22 and the organic solvent supply unit 24, respectively. PCB concentration including can be measured efficiently.

以上、本発明に係る簡易分析方法及び装置の好ましい実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、各種の態様が採り得る。   The preferred embodiments of the simple analysis method and apparatus according to the present invention have been described above. However, the present invention is not limited to the above embodiments, and various aspects can be adopted.

たとえば、上記実施の形態では、PCBの各濃度ごとの発光量の経時変化パターンを予め取得しておき、現場では、PCB濃度が未知のサンプル液についてのみ測定する例で説明したが、これに限定されず、オンサイトでPCB濃度が既知のサンプル液を用意し、各濃度ごとの発光量の経時変化パターンを取得してもよい。   For example, in the above-described embodiment, an example in which a temporal change pattern of the light emission amount for each concentration of PCB is acquired in advance and only a sample solution with an unknown PCB concentration is measured in the field has been described. Alternatively, a sample solution having a known PCB concentration may be prepared on-site, and a temporal change pattern of the light emission amount for each concentration may be acquired.

上記実施の形態では、PCB濃度が未知のサンプル液について、前処理として濃縮を行う例で説明したが、PCB濃度が高濃度である場合は、これとは逆に希釈を行ってもよい。   In the above-described embodiment, the sample liquid whose PCB concentration is unknown has been described as an example of concentration as pretreatment. However, when the PCB concentration is high, dilution may be performed on the contrary.

また、発光量の経時変化パターンを初期、中期、後期に区切る際、各領域は重複してもよく、要求される検出精度に応じて区切り方を適宜変更してもよい。さらに、初期、中期、後期はそれぞれ1つずつに限らず、2つ以上であってもよい。   Further, when dividing the temporal change pattern of the light emission amount into the initial period, the middle period, and the latter period, the respective areas may be overlapped, and the dividing method may be appropriately changed according to the required detection accuracy. Furthermore, the initial period, the middle period, and the latter period are not limited to one each, but may be two or more.

上記実施の形態では、検出対象物質がPCBである例で説明したが、その他の有機ハロゲン化合物についても適用できる。   In the above embodiment, the example in which the detection target substance is PCB has been described, but the present invention can also be applied to other organic halogen compounds.

本実施形態において使用される簡易分析装置の概略構成の一例を示す概略図である。It is the schematic which shows an example of schematic structure of the simple analyzer used in this embodiment. 図1の検出装置の一例を示す説明図である。It is explanatory drawing which shows an example of the detection apparatus of FIG. 本実施の形態における発光量の経時変化パターンを示すグラフ図である。It is a graph which shows the time-dependent change pattern of the light-emission quantity in this Embodiment. 本実施の形態における発光量の経時変化パターンを示すグラフ図である。It is a graph which shows the time-dependent change pattern of the light-emission quantity in this Embodiment. 本実施の形態における発光量の経時変化パターンを示すグラフ図である。It is a graph which shows the time-dependent change pattern of the light-emission quantity in this Embodiment. 本実施の形態における発光量の経時変化パターンを示すグラフ図である。It is a graph which shows the time-dependent change pattern of the light-emission quantity in this Embodiment. 本実施の形態における簡易分析方法の流れを説明する説明図である。It is explanatory drawing explaining the flow of the simple analysis method in this Embodiment. 本実施の形態におけるグラフ図である。It is a graph in this Embodiment. 本実施の形態における簡易分析装置の別態様を示すブロック図である。It is a block diagram which shows another aspect of the simple analyzer in this Embodiment.

符号の説明Explanation of symbols

10…簡易分析装置、12…セル、14…専用プレート、16…検出装置、18…PC、20…簡易分析装置、22…保持部、24…有機溶媒供給部、26…混合部、28…濃縮部、30…菌液供給部、32…検出部   DESCRIPTION OF SYMBOLS 10 ... Simple analyzer, 12 ... Cell, 14 ... Dedicated plate, 16 ... Detection apparatus, 18 ... PC, 20 ... Simple analyzer, 22 ... Holding part, 24 ... Organic solvent supply part, 26 ... Mixing part, 28 ... Concentration Part, 30 ... bacteria solution supply part, 32 ... detection part

Claims (7)

土壌又は地下水に含まれる有機ハロゲン化合物の簡易測定方法において、
予め前記有機ハロゲン化合物を複数の異なる濃度に調整し該濃度ごとに、発光細菌との接触時間による発光量の経時変化パターンを取得するパターン取得工程と、
前記取得した濃度ごとの経時変化パターンにおける発光量の低下挙動の違いに基づいて、該経時変化パターンを前記接触時間の初期、中期及び後期に区分する区分工程と、
前記土壌又は地下水から採取したサンプル液と発光細菌とを接触させて前記発光細菌による発光量の経時変化を測定する測定工程と、
前記測定したサンプルの経時変化データと前記予め取得した経時変化パターンとを照合する照合工程と、
前記照合した経時変化データにおける発光量の低下挙動が、前記初期、中期及び後期の何れにおいて発現するかにより前記サンプル液の有機ハロゲン化合物濃度を判定する判定工程と、を備えたことを特徴とする有機ハロゲン化合物の簡易測定方法。
In a simple method for measuring organic halogen compounds contained in soil or groundwater,
A pattern acquisition step of adjusting the organic halogen compound to a plurality of different concentrations in advance and acquiring a temporal change pattern of the amount of luminescence according to the contact time with the luminescent bacteria for each concentration;
Based on the difference in luminescence amount decrease behavior in the time-dependent change pattern for each acquired concentration, the step of classifying the time-dependent change pattern into the initial, middle and late phases of the contact time;
A measurement step of measuring a time-dependent change in the amount of luminescence by the luminescent bacteria by contacting a sample solution collected from the soil or groundwater with the luminescent bacteria;
A collation step of collating the measured time-lapse data of the measured sample with the previously obtained time-varying pattern;
A determination step of determining an organic halogen compound concentration of the sample liquid depending on whether the light emission amount lowering behavior in the collated temporal change data is manifested in the initial period, the intermediate period, or the late period. Simple measurement method for organic halogen compounds.
前記有機ハロゲン化合物は、PCBであることを特徴とする請求項1に記載の有機ハロゲン化合物の簡易測定方法。   The simple method for measuring an organic halogen compound according to claim 1, wherein the organic halogen compound is PCB. 前記測定した経時変化データにおいて、前記接触時間が0〜1分の間を初期とし、前記接触時間が1〜30分の間を中期とし、前記接触時間が30〜120分の間を後期とすることを特徴とする請求項1又は2に記載の有機ハロゲン化合物の簡易測定方法。   In the measured aging data, the contact time is initially 0 to 1 minute, the contact time is 1 to 30 minutes as the middle period, and the contact time is 30 to 120 minutes as the latter period. The simple measuring method of the organic halogen compound according to claim 1 or 2. 前記サンプル液は、前記有機ハロゲン化合物を有機溶媒に溶解させた後、濃縮したものであることを特徴とする請求項1又は請求項2に記載の有機ハロゲン化合物の簡易測定方法。   3. The method for easily measuring an organic halogen compound according to claim 1, wherein the sample solution is obtained by dissolving the organic halogen compound in an organic solvent and then concentrating the sample solution. 前記有機溶媒は、メタノールであることを特徴とする請求項4に記載の有機ハロゲン化合物の簡易測定方法。   The simple method for measuring an organic halogen compound according to claim 4, wherein the organic solvent is methanol. 前記サンプル液と接触させる前記発光細菌の菌体濃度を5000〜40000CFU/mLとすることを特徴とする請求項1〜5の何れか1項に記載の有機ハロゲン化合物の簡易測定方法。   6. The simple method for measuring an organohalogen compound according to claim 1, wherein the cell concentration of the luminescent bacteria brought into contact with the sample solution is 5000 to 40000 CFU / mL. 前記発光細菌と接触させるサンプル液が水溶液である場合は、前記サンプル液量Xと前記発光細菌の菌体量Yとの質量比X/Yを1/2以下とし、前記発光細菌と接触させるサンプル液が有機溶媒である場合は、前記質量比X/Yを1/200以下とすることを特徴とする請求項1〜6の何れか1項に記載の有機ハロゲン化合物の簡易測定方法。   When the sample solution to be contacted with the luminescent bacteria is an aqueous solution, the sample to be brought into contact with the luminescent bacteria, with a mass ratio X / Y between the sample solution amount X and the microbial cell amount Y of the luminescent bacteria being ½ or less. When the liquid is an organic solvent, the mass ratio X / Y is set to 1/200 or less. The simple method for measuring an organic halogen compound according to any one of claims 1 to 6.
JP2007186235A 2007-07-17 2007-07-17 Simple measurement method for organic halogen compounds Expired - Fee Related JP4888720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007186235A JP4888720B2 (en) 2007-07-17 2007-07-17 Simple measurement method for organic halogen compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186235A JP4888720B2 (en) 2007-07-17 2007-07-17 Simple measurement method for organic halogen compounds

Publications (2)

Publication Number Publication Date
JP2009025051A JP2009025051A (en) 2009-02-05
JP4888720B2 true JP4888720B2 (en) 2012-02-29

Family

ID=40397006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186235A Expired - Fee Related JP4888720B2 (en) 2007-07-17 2007-07-17 Simple measurement method for organic halogen compounds

Country Status (1)

Country Link
JP (1) JP4888720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076319A (en) * 2012-12-27 2013-05-01 通标标准技术服务有限公司 Method for detecting residual pesticidal toxicity in fruits and vegetables

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204626A (en) 2009-02-05 2010-09-16 Asahi Glass Co Ltd Wire grid polarizer and manufacturing method therefor
CN103336001B (en) * 2013-06-24 2015-04-29 同济大学 Method for rapidly evaluating water quality biological stability of drinking water
CN114577785B (en) * 2022-05-05 2022-09-30 杭州泽天春来科技有限公司 Water toxicity detection method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133452A (en) * 1999-11-01 2001-05-18 Nippon Steel Corp Method for evaluating toxic substance
JP2001231598A (en) * 2000-02-23 2001-08-28 Meidensha Corp Method for detecting hazardous material and equipment for the same method
JP2002139486A (en) * 2000-10-31 2002-05-17 Meidensha Corp Toxic substance monitoring device
JP2005315794A (en) * 2004-04-30 2005-11-10 Nisshin Kankyo Chosa Center:Kk Method for preparing dioxin measuring sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076319A (en) * 2012-12-27 2013-05-01 通标标准技术服务有限公司 Method for detecting residual pesticidal toxicity in fruits and vegetables
CN103076319B (en) * 2012-12-27 2015-08-05 通标标准技术服务有限公司 A kind of detection method of fruits and vegetables Pesticide Residues toxicity

Also Published As

Publication number Publication date
JP2009025051A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
Bispo et al. Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs)
Magrisso et al. Microbial reporters of metal bioavailability
US20100068821A1 (en) Method for detection and analysis of aromatic hydrocarbons from water
Podgorski et al. Hydrocarbons to carboxyl-rich alicyclic molecules: A continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes
JP4888720B2 (en) Simple measurement method for organic halogen compounds
Ko et al. Monitoring of environmental phenolic endocrine disrupting compounds in treatment effluents and river waters, Korea
Adamson et al. Membrane interface probe protocol for contaminants in low‐permeability zones
Reible et al. Innovative approaches to the on-site assessment and remediation of contaminated sites
Einarson et al. DyeLIF™: A new direct‐push laser‐induced fluorescence sensor system for chlorinated solvent DNAPL and other non‐naturally fluorescing NAPLs
Doré et al. Field analyzers for lead quantification in drinking water samples
Tripathi et al. Analytical methods of water pollutants detection
Wilkin et al. Field measurement of dissolved oxygen: A comparison of methods
Lu Identification of forensic information from existing conventional site-investigation data
Davis et al. Rapid detection of volatile organic compounds in groundwater by in situ purge and direct‐sampling ion‐trap mass spectrometry
Koglin et al. Emerging technologies for detecting and measuring contaminants in the vadose zone
Lu et al. Copper ion-induced fluorescence band shift of CdTe quantum dots: a highly specific strategy for visual detection of Cu 2+ with a portable UV lamp
Gao et al. Determination of Cu2+ in drinking water based on electrochemiluminescence of Ru (phen) 32+ and cyclam
Elad et al. Whole-cell biochips for online water monitoring
Christensen et al. PARAFAC Modeling of Fluorescence Excitation− Emission Spectra of Fish Bile for Rapid En Route Screening of PAC Exposure
JP5024556B2 (en) Simple measurement method and apparatus for organic halogen compounds
JP2018531396A (en) Water pollutant testing apparatus, system and method
JP2018531396A6 (en) Water pollutant testing apparatus, system and method
KR20040071490A (en) Monitoring method of petroleum contaminated soils using Laser-Induced Fluorescence
WO2004090156A3 (en) Test system for detecting contaminants
Alcock New developments in sensor technology for water quality surveillance and early warning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees