JP4888204B2 - Vacuum cleaner - Google Patents

Vacuum cleaner Download PDF

Info

Publication number
JP4888204B2
JP4888204B2 JP2007104779A JP2007104779A JP4888204B2 JP 4888204 B2 JP4888204 B2 JP 4888204B2 JP 2007104779 A JP2007104779 A JP 2007104779A JP 2007104779 A JP2007104779 A JP 2007104779A JP 4888204 B2 JP4888204 B2 JP 4888204B2
Authority
JP
Japan
Prior art keywords
self
distance
running
vacuum cleaner
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007104779A
Other languages
Japanese (ja)
Other versions
JP2008259674A (en
Inventor
浩 中尾
裕夫 大島
健次 曾根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007104779A priority Critical patent/JP4888204B2/en
Publication of JP2008259674A publication Critical patent/JP2008259674A/en
Application granted granted Critical
Publication of JP4888204B2 publication Critical patent/JP4888204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Suction Cleaners (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、自走機能を有する電気掃除機に関するもので、特に、その自走距離を床面の状態によらず一定に保つための制御に関するものである。   The present invention relates to a vacuum cleaner having a self-propelled function, and more particularly to control for keeping the self-propelled distance constant regardless of the state of the floor surface.

自走機能を有する電気掃除機に関する課題のひとつとして、どの様にして使用者の意図通りの自走を行なうかという課題がある。この課題を解決するための手段として、これまでいくつかの発明が提案されている。例えば特許文献1に記載の発明は、電気掃除機本体に接続され、使用者が操作するホースの引張力を検知して、その引張力に応じて電気掃除機本体の駆動力を変えるものであり、特許文献2に記載の発明は、本体の走行速度を検知して、自走開始直前の走行速度に応じて駆動時間を変えるものである。   One of the problems related to a vacuum cleaner having a self-propelling function is how to perform self-propelling as intended by the user. As a means for solving this problem, several inventions have been proposed so far. For example, the invention described in Patent Document 1 is connected to a vacuum cleaner body, detects the tensile force of a hose operated by a user, and changes the driving force of the vacuum cleaner body according to the tensile force. The invention described in Patent Document 2 detects the traveling speed of the main body and changes the driving time according to the traveling speed immediately before the start of self-running.

これらの発明によれば、基本的には使用者が電気掃除機本体を強く引けば速く/長く自走し、弱く引けば遅く/短く自走することになるが、床面の状態例えば、じゅうたん上で行なう場合とフローリング上で行なう場合とでは、車輪にかかる負荷が違うため、同じ力で引張っても自走の挙動が変わってしまうという課題がある。   According to these inventions, basically, if the user pulls the main body of the vacuum cleaner strongly, it will self-propelled fast / long, and if it is weakly pulled, it will self-propelled slowly / shortly. Since the load applied to the wheel is different between the case where it is performed on the floor and the case where it is performed on the flooring, there is a problem that the behavior of the self-running is changed even if the same force is applied.

この課題を解決するための発明として、自走中の駆動モータの回転速度を一定にするためのフィードバック制御を行なうもの等がある(例えば特許文献3参照)。
特開平4−92634号公報 特開平4−105623号公報 特開平7−319号公報
As an invention for solving this problem, there is one that performs feedback control for making the rotation speed of a self-running drive motor constant (see, for example, Patent Document 3).
JP-A-4-92634 JP-A-4-105623 JP-A-7-319

電気掃除機の自走制御に関して如何にすると、使用者の意図に出来る限り近い自走制御になるかの検討を行なった結果、床面の状態に関わらず常に同じ距離を走行させると、使用者は使い勝手が良いと感じ、更に同じ速度で自走させると、使用者は使い勝手が更に良いと感じるとの結論に至った。   As a result of investigating how self-propelled control is as close as possible to the user's intention as a result of self-propelled control of the vacuum cleaner, if the user always runs the same distance regardless of the floor surface condition, the user Concludes that the user feels better, and that the user feels better when he / she runs at the same speed.

このような制御を行なおうとする場合、上記特許文献3に記載のように、車輪の回転速度によってフィードバック制御を行なう方法は容易に考えられるが、単純なフィードバック制御では、目的とする制御は行なえない。なぜなら、距離と速度をフィードバック制御だけで行なうには、ブレーキ機構が必須となるが、ブレーキ機構を搭載した場合、非通電時の操作性を犠牲にするか、複雑なクラッチ機構が必要となり、コストが高くなってしまうからである。一方、ブレーキ機構なしの場合、じゅうたん上とフローリング上とでは惰性走行距離は2倍以上となるため、この惰性走行距離を推定したフィードバック制御を行なわないと、目的とする制御は行なえないという不都合があった。   When such control is to be performed, a method of performing feedback control according to the rotational speed of the wheel as described in Patent Document 3 can be easily considered. However, with simple feedback control, the target control cannot be performed. Absent. This is because a brake mechanism is indispensable to perform distance and speed only by feedback control. However, when a brake mechanism is installed, the operability at the time of de-energization is sacrificed or a complicated clutch mechanism is required, and the cost is reduced. Because it becomes expensive. On the other hand, when the brake mechanism is not provided, the coasting distance on the carpet and the flooring is more than doubled. Therefore, the target control cannot be performed unless the feedback control for estimating the coasting distance is performed. there were.

これらの課題を解決するために、本発明は、床面の状態によらず所定の距離を自走する電気掃除機を提供するものである。   In order to solve these problems, the present invention provides a vacuum cleaner that self-propels for a predetermined distance regardless of the state of the floor surface.

前記従来の課題を解決するために、本発明の電気掃除機は、電気掃除機本体に設けられた複数の車輪と、前記複数の車輪のうちの少なくとも1つを回転駆動する駆動手段と、前記複数の車輪のうちの少なくとも1つの車輪の回転を検出する回転検出手段と、前記回転検出手段の出力信号を基に前記駆動手段の通電を制御する制御手段とを有し、前記制御手段は、前記回転検出手段の出力信号を基に前記電気掃除機本体が外力によって動かされたことを検知すると、前記駆動手段に通電して前記電気掃除機本体の自走を行なうと共に、自走中の前記車輪の回転速度及び走行距離を検出し続け、自走開始から惰性走行停止までの総走行距離がほぼ一定になるように、検出した回転速度における惰性走行距離を前記総走行距離から差し引いた距離を目標とし、その目標の距離に達すると前記駆動手段への通電を停止することを特徴とする。   In order to solve the conventional problem, a vacuum cleaner of the present invention includes a plurality of wheels provided in a vacuum cleaner body, a driving unit that rotationally drives at least one of the plurality of wheels, A rotation detecting means for detecting rotation of at least one of the plurality of wheels; and a control means for controlling energization of the driving means based on an output signal of the rotation detecting means. When it is detected that the vacuum cleaner body is moved by an external force based on the output signal of the rotation detection means, the drive means is energized to self-run the vacuum cleaner body, and the self-running The distance obtained by subtracting the inertial travel distance at the detected rotational speed from the total travel distance so that the total travel distance from the start of self-running to the stoppage of inertial travel is substantially constant. ShimegiToshi, characterized by stopping the energization to said driving means reaching distance of the target.

本発明の電機掃除機は、駆動手段による自走制御を開始してから停止するまでの総走行距離を、床面の状態に関わらずほぼ一定にすることができ、総走行距離を所定値にすることが掃除作業を行う使用者にとって使い勝手が良く、使用者の意図にあった自走制御を行うことができる。   The electric vacuum cleaner of the present invention can make the total travel distance from the start to the stop of the self-running control by the driving means almost constant regardless of the state of the floor, and the total travel distance to a predetermined value. This is convenient for the user who performs the cleaning work, and can perform self-propelled control suitable for the user's intention.

第1の発明は、電気掃除機本体に設けられた複数の車輪と、前記複数の車輪のうちの少なくとも1つを回転駆動する駆動手段と、前記複数の車輪のうちの少なくとも1つの車輪の回転を検出する回転検出手段と、前記回転検出手段の出力信号を基に前記駆動手段の通電を制御する制御手段とを有し、前記制御手段は、前記回転検出手段の出力信号を基に前記電気掃除機本体が外力によって動かされたことを検知すると、前記駆動手段に通電して前記電気掃除機本体の自走を行なうと共に、自走中の前記車輪の回転速度及び走行距離を検出し続け、自走開始から惰性走行停止までの総走行距離がほぼ一定になるように、検出した回転速度における惰性走行距離を前記総走行距離から差し引いた距離を目標とし、その目標の距離に達すると前記駆動手段への通電を停止することを特徴とする電気掃除機であり、電気掃除機本体の自走距離と惰性走行距離を含めた総走行距離を、床面の状態に関わらずほぼ一定に保つことができ、使用者にとって使い勝手の良い電気掃除機を提供できる。   According to a first aspect of the present invention, there are provided a plurality of wheels provided in a vacuum cleaner body, driving means for rotationally driving at least one of the plurality of wheels, and rotation of at least one of the plurality of wheels. A rotation detecting means for detecting the rotation and a control means for controlling energization of the driving means based on an output signal of the rotation detecting means, wherein the control means is configured to control the electric power based on an output signal of the rotation detecting means. When it is detected that the main body of the vacuum cleaner has been moved by an external force, the driving means is energized to perform self-running of the electric vacuum cleaner main body, and continues to detect the rotational speed and travel distance of the wheel during self-running, The target is a distance obtained by subtracting the inertial travel distance at the detected rotational speed from the total travel distance so that the total travel distance from the start of self-running to the inertial travel stop is substantially constant. It is a vacuum cleaner characterized by stopping energization of the means, and keeps the total travel distance including the self-run distance and inertia travel distance of the main body of the vacuum cleaner almost constant regardless of the state of the floor surface Therefore, a user-friendly vacuum cleaner can be provided.

第2の発明は、制御手段は、駆動手段を有した車輪の自走開始からの走行距離が所定値に達するまでの間、前記駆動手段に通電して自走制御を行うと共に、前記走行距離の所定値を、電気掃除機の走行速度が遅い場合には大きく、前記走行速度が速い場合には小さく設定することを特徴とする請求項1に記載の電気掃除機であり、床面の状態の違いによって電気掃除機本体の走行速度が変わり、例え走行速度の低下と共に惰性走行距離が低下しても、自走制御で走行する距離を長くして総走行距離をほぼ一定に保つことができ、より精度の高い自走制御を行なえるものである。   In the second invention, the control means performs self-running control by energizing the driving means until the running distance from the start of self-running of the wheel having the driving means reaches a predetermined value. 2. The vacuum cleaner according to claim 1, wherein the predetermined value is set to be large when the traveling speed of the vacuum cleaner is low and small when the traveling speed is high. Even if the travel speed of the vacuum cleaner body changes due to the difference between the two, and the inertia travel distance decreases as the travel speed decreases, the distance traveled by self-propelled control can be lengthened and the total travel distance can be kept almost constant. Therefore, more accurate self-running control can be performed.

第3の発明は、制御手段は、駆動手段を有した車輪の惰性走行期間中、その車輪の回転速度を検出し続け、前記惰性走行期間中の回転速度の変化量から惰性走行距離を推定すると共に、推定した惰性走行距離と自走距離を合計した総走行距離が所定値より小さくなると判定された場合、自走開始から惰性走行停止までの総走行距離が所定の距離に近づくように、前記駆動手段による自走を再度行なうことを特徴とする請求項1又は2に記載の電気掃除機であり、惰性走行期間中にも回転速度と走行距離の検出が継続され、惰性走行中に床面状態が変わって、負荷の軽い床面から負荷の重い床面に変わった時でも、再度、駆動手段による自走制御が機能して、自走距離と惰性走行距離を含む総走行距離をほぼ一定にすることができる。   In a third aspect of the invention, the control means continues to detect the rotational speed of the wheel having the driving means during the inertia traveling period, and estimates the inertia traveling distance from the amount of change in the rotational speed during the inertia traveling period. In addition, when it is determined that the total traveling distance obtained by adding the estimated inertial traveling distance and the self-traveling distance is smaller than a predetermined value, the total travel distance from the self-running start to the inertial travel stop approaches the predetermined distance. 3. The electric vacuum cleaner according to claim 1, wherein the self-running by the driving means is performed again, the detection of the rotational speed and the running distance is continued even during the inertia running period, and the floor surface during the inertia running. Even when the state changes and the floor changes from a light load to a heavy load, the self-propelled control by the driving means functions again, and the total travel distance including the self-travel distance and the inertia travel distance is almost constant. Can be.

第4の発明は、電気掃除機本体に設けられた複数の車輪と、前記複数の車輪のうちの少なくとも1つを回転駆動する駆動手段と、前記複数の車輪のうちの少なくとも1つの車輪の回転数を検出する回転検出手段と、前記回転検出手段の出力信号を基に前記駆動手段の通電量を制御する制御手段とを有し、前記制御手段は、前記回転検出手段の出力信号を基に前記電気掃除機本体が外力によって動かされたことを検知すると、前記駆動手段への通電を開始して、前記回転検出手段を有した車輪の回転速度がほぼ一定となるように前記駆動手段への通電量を制御し、前記回転検出手段を有した車輪の自走開始から自走停止までの自走距離が、自走開始から惰性走行停止までの総走行距離の目標値から惰性走行距離を差し引いて予め求めた距離に達すると、前記駆動手段への電力供給を停止して惰性走行に移行することを特徴とする電気掃除機であり、自走で走行する場合は駆動手段への通電量の制御によって一定速度で走行し、自走距離が目標値に達すると惰性走行に移行して、自走距離と惰性走行距離を含む総走行距離をほぼ一定にすることができる。   According to a fourth aspect of the present invention, there is provided a plurality of wheels provided in a vacuum cleaner body, driving means for rotationally driving at least one of the plurality of wheels, and rotation of at least one of the plurality of wheels. A rotation detecting means for detecting a number, and a control means for controlling an energization amount of the driving means based on an output signal of the rotation detecting means, wherein the control means is based on an output signal of the rotation detecting means. When it is detected that the main body of the vacuum cleaner has been moved by an external force, energization of the drive means is started, and the rotation speed of the wheel having the rotation detection means is supplied to the drive means so as to be substantially constant. The self-propelled distance from the self-propelled start to the self-propelled stop of the wheel having the rotation detecting means that controls the energization amount is subtracted from the target value of the total travel distance from the self-propelled start to the inertial travel stop. Reach the distance determined in advance Then, the electric vacuum cleaner is characterized in that the power supply to the driving means is stopped and the inertial running is started, and when running by self-running, the driving means runs at a constant speed by controlling the energization amount to the driving means. Then, when the self-travel distance reaches the target value, it shifts to inertia travel, and the total travel distance including the self-travel distance and the inertia travel distance can be made substantially constant.

第5の発明は、自走距離の目標値を、駆動手段への通電量が多い場合には大きく、通電量が少ない場合には小さく設定したことを特徴とする請求項4に記載の電気掃除機であり、掃除の途中で床面が変わっても通電量の違いで床面状態を判断し、例え負荷が重くなって惰性走行距離が短くなる場合は自走制御で走行する距離を長くして総走行距離をほぼ一定に保つことができ、床面状態の変化に合わせた自走制御ができる。   5. The electric cleaning according to claim 4, wherein the self-travel distance target value is set large when the energization amount to the driving means is large and small when the energization amount is small. Even if the floor surface changes during cleaning, the state of the floor surface is judged by the difference in the amount of electricity applied.For example, if the load increases and the inertial mileage shortens, the distance traveled by self-propelled control is increased. Therefore, the total travel distance can be kept almost constant, and self-running control can be performed according to changes in the floor surface condition.

第6の発明は、制御手段は、惰性走行期間中も回転検出手段を有した車輪の回転速度および回転速度変化量を検出し続け、自走停止後の回転速度変化量から惰性走行距離を推定すると共に、推定した惰性走行距離が所定の走行距離に満たないと判定した場合は、惰性走行距離の不足を判定した時点の回転速度を維持するように所定の通電量の供給電力を前記駆動手段へ供給し、前記所定の走行距離まで自走制御を再開することを特徴とする請求項4又は5に記載の電気掃除機であり、自走期間中は一定の速度で走行し、惰性走行の途中で床面の負荷が重くなっても、速度変化量の低下を検出して自走制御を再開するため、走行速度が急激に低下することがなく、惰性走行中に床面の状態が重くなっても所定の距離まで走行する電気掃除機を提供できるものである。   In a sixth aspect of the invention, the control means continues to detect the rotational speed of the wheel having the rotation detection means and the amount of change in the rotational speed even during the inertia traveling period, and estimates the inertia traveling distance from the amount of change in the rotational speed after the self-running stop. In addition, when it is determined that the estimated inertial traveling distance is less than the predetermined traveling distance, the driving means supplies the supply power of a predetermined energization amount so as to maintain the rotational speed at the time of determining that the inertial traveling distance is insufficient. The electric vacuum cleaner according to claim 4 or 5, wherein the self-propelled control is resumed until the predetermined travel distance, and travels at a constant speed during the self-propelled period. Even if the load on the floor becomes heavy in the middle, the decrease in speed change is detected and self-running control is resumed, so the running speed does not drop sharply and the floor surface is heavy during coasting. A vacuum cleaner that can travel up to a predetermined distance It is those that can be.

以下、本発明の実施の形態について、図面を参照しながら説明する。尚、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiment.

(実施の形態1)
本発明の第一の実施の形態に係る電気掃除機について図1〜図6を参照しながら説明する。
(Embodiment 1)
A vacuum cleaner according to a first embodiment of the present invention will be described with reference to FIGS.

まずは図1〜図3を用いて各構成要素について説明する。   First, each component will be described with reference to FIGS.

図1は本発明の電気掃除機の概観で、1は電気掃除機本体でホース2が接続される。3はホース2の先端部分に設けられた手元操作部で、使用者は手元操作部3を操作して電気掃除機の吸引力を切り換え可能である。4はホース2と床用吸込み具5との間をつなぐ延長管である。電気掃除機本体1の底部には補助的な車輪となる4つのキャスタ6が配置されている。   FIG. 1 is an overview of the electric vacuum cleaner of the present invention. Reference numeral 1 denotes an electric vacuum cleaner main body to which a hose 2 is connected. Reference numeral 3 denotes a hand operating part provided at the tip of the hose 2, and the user can switch the suction force of the vacuum cleaner by operating the hand operating part 3. Reference numeral 4 denotes an extension pipe connecting the hose 2 and the floor suction tool 5. Four casters 6 serving as auxiliary wheels are arranged at the bottom of the vacuum cleaner body 1.

図2は電気掃除機本体1を略底部方向から見た図で、キャスタ6は電気掃除機本体1の底部外周に4つ配設されている。11は走行ローラ10他から構成される走行ユニットで、電気掃除機本体1の底部で略重心位置7に走行ローラ10をホース2の本体引出し方向と同一方向に向けて固定されている。   FIG. 2 is a view of the main body 1 of the vacuum cleaner as viewed from the substantially bottom direction. Four casters 6 are arranged on the outer periphery of the bottom of the main body 1 of the vacuum cleaner. A traveling unit 11 includes a traveling roller 10 and the like, and the traveling roller 10 is fixed at a substantially center of gravity position 7 at the bottom of the vacuum cleaner body 1 in the same direction as the main body drawing direction of the hose 2.

図3は電気掃除機の回路構成ブロック図である。走行ユニット11には駆動回路19によって駆動される駆動モータ14と、駆動モータ14の回転出力を減速して駆動軸15を回転駆動する減速手段13と、駆動軸15の回転に合わせて回転して電気掃除機本体1を自走させる走行ローラ10と、同じく駆動軸15の回転を検知するエンコーダ12を備えている。そして、エンコーダ12は、回転速度及び回転方向に応じたA相及びB相2つの信号16(エンコーダ出力信号)を制御手段20に出力する。   FIG. 3 is a circuit configuration block diagram of the vacuum cleaner. The travel unit 11 includes a drive motor 14 driven by a drive circuit 19, a speed reduction unit 13 that rotates the drive shaft 15 by reducing the rotational output of the drive motor 14, and rotates according to the rotation of the drive shaft 15. A traveling roller 10 that causes the electric vacuum cleaner main body 1 to self-run and an encoder 12 that similarly detects the rotation of the drive shaft 15 are provided. The encoder 12 then outputs two signals 16 (encoder output signals) A-phase and B-phase corresponding to the rotation speed and rotation direction to the control means 20.

減速手段13は、駆動モータ14が停止している時には、駆動軸15が回転自在(空転)になるようクラッチ機構(図示せず)が施されていて、駆動モータ14が停止している時には走行ローラ10は手で簡単に回転可能である。これは、駆動モータ14が停止している時に使用者が電気掃除機本体1を移動させる場合など、減速手段13によって走行ローラ10の自由な回転が阻害されて移動の妨げになること等を防止するためのものである。   The decelerating means 13 is provided with a clutch mechanism (not shown) so that the drive shaft 15 is freely rotatable (idle) when the drive motor 14 is stopped, and travels when the drive motor 14 is stopped. The roller 10 can be easily rotated by hand. This prevents, for example, when the user moves the vacuum cleaner main body 1 when the drive motor 14 is stopped, the free rotation of the traveling roller 10 is obstructed by the speed reducing means 13 and hinders the movement. Is to do.

制御手段20は手元操作部3からの信号に応じて電動送風機駆動手段31へ位相制御タイミング信号を出力する。32は電動送風機であり、電動送風機駆動手段31から供給される商用電源30を位相制御した電力で運転する。18は商用電源30を整流・平滑して駆動回路19へ直流電力を出力する直流電源である。   The control means 20 outputs a phase control timing signal to the electric blower driving means 31 in accordance with a signal from the hand operation unit 3. Reference numeral 32 denotes an electric blower which operates the commercial power supply 30 supplied from the electric blower driving means 31 with phase-controlled electric power. Reference numeral 18 denotes a DC power source that rectifies and smoothes the commercial power source 30 and outputs DC power to the drive circuit 19.

駆動回路19は、制御手段20からのPWMタイミング信号が入力され、PWMタイミング信号に応じて直流電源18から供給される直流電力をPWM制御して、パルス幅に応じて通電量を調整した供給電力Wsを駆動モータ14へ出力する。   The drive circuit 19 receives the PWM timing signal from the control means 20, performs PWM control on the DC power supplied from the DC power supply 18 in accordance with the PWM timing signal, and adjusts the energization amount in accordance with the pulse width. Ws is output to the drive motor 14.

制御手段20は、走行速度演算手段22と走行特性記憶手段21とから成り、走行速度演算手段22は、エンコーダ12からのA相とB相から成るエンコーダ出力信号16のパルス数を走行開始から累積演算して電気掃除機本体1の走行距離を求め、走行ローラ10の回転回数と比例関係にあるエンコーダ出力信号16の単位時間当りのパルス数を演算して電気掃除機本体1の走行速度を求め、AB各相の位相から走行方向(前進又は後進)を判定する演算が可能なものであり、これらの演算処理に必要なデータを走行特性記憶手段21から呼び出して演算処理を行う。走行特性記憶手段21は、走行速度演算手段22で演算した演算情報と、駆動モータ14へ供給する供給電力Wsの供給情報と、電気掃除機本体1の走行速度、速度変化量及び自走距離の相関関係を示す相関データ等のデータを記憶している。   The control means 20 includes a travel speed calculation means 22 and a travel characteristic storage means 21. The travel speed calculation means 22 accumulates the number of pulses of the encoder output signal 16 composed of the A phase and the B phase from the encoder 12 from the start of travel. The travel distance of the vacuum cleaner body 1 is calculated to calculate the travel speed of the vacuum cleaner body 1 by calculating the number of pulses per unit time of the encoder output signal 16 that is proportional to the number of rotations of the travel roller 10. The calculation of determining the traveling direction (forward or reverse) from the phase of each phase AB is possible, and data necessary for these arithmetic processes is called from the travel characteristic storage means 21 to perform the arithmetic process. The travel characteristic storage means 21 includes the calculation information calculated by the travel speed calculation means 22, the supply information of the supply power Ws supplied to the drive motor 14, the travel speed of the vacuum cleaner body 1, the speed change amount, and the self-travel distance. Data such as correlation data indicating the correlation is stored.

以上説明してきた各構成要素による動作について、図4〜図6を用いて説明する。   The operation of each component described above will be described with reference to FIGS.

使用者が掃除場所を移動しようとしてホース2を引っ張ると、電気掃除機本体1は引っ張り力を受けて移動を開始する。その移動によって電気掃除機本体1の底部に配設してある走行ローラ10が回転する。走行ローラ10の回転は駆動軸15によってエンコーダ12に伝えられ、エンコーダ12は図4に示すA相とB相の2つの信号を出力する。A相とB相の2つの信号は、走行ローラ10の回転方向、即ち電気掃除機本体1の前後の移動方向によって信号の位相のずれ方が異なり、電気掃除機本体1が前進する時、走行ローラ10が正転する時、A相信号に対してB相信号がΔθ=90°遅れるB相(1)信号を出力し、走行ローラ10が逆転する時、A相に対してB相がΔθ=90°進むB相(2)を出力するため、A相信号の立ち下がり時点のB相信号のレベルがハイレベルかローレベルかによって、走行ローラ10の正転と逆転を判断することができる。   When the user pulls the hose 2 to move the cleaning place, the electric vacuum cleaner main body 1 receives the pulling force and starts moving. By the movement, the traveling roller 10 disposed at the bottom of the vacuum cleaner main body 1 rotates. The rotation of the traveling roller 10 is transmitted to the encoder 12 by the drive shaft 15, and the encoder 12 outputs two signals of A phase and B phase shown in FIG. The two signals of the A phase and the B phase have different signal phase shifts depending on the rotation direction of the traveling roller 10, that is, the moving direction of the front and rear of the vacuum cleaner body 1, and when the vacuum cleaner body 1 moves forward, When the roller 10 rotates forward, a B phase (1) signal is output in which the B phase signal is delayed by Δθ = 90 ° with respect to the A phase signal, and when the traveling roller 10 reverses, the B phase is Δθ relative to the A phase. Since the B phase (2) which advances = 90 ° is output, the forward rotation and the reverse rotation of the traveling roller 10 can be determined depending on whether the level of the B phase signal at the time of the fall of the A phase signal is high level or low level. .

制御手段20はエンコーダ出力信号16から、電気掃除機本体1の移動方向は前進か後進かの認識し、後進の場合は何もせず前進の場合は駆動回路19にPWMタイミング信号を出力する。これは、使用者が電気掃除機本体1を掃除中に足などを使って後方へ押しやった時等を想定し、電気掃除機本体1を後方へ自走させることは、かえって使用感を損ねるものであるとの研究結果に基づいた制御であり、エンコーダ12の2つに信号を検知することで実現できる制御であることは言うまでも無い。   The control means 20 recognizes from the encoder output signal 16 whether the moving direction of the electric vacuum cleaner main body 1 is forward or reverse, does nothing in the reverse direction, and outputs a PWM timing signal to the drive circuit 19 in the forward direction. Assuming that the user pushes the electric vacuum cleaner body 1 backward using his / her feet while cleaning the electric vacuum cleaner body 1, making the electric vacuum cleaner body 1 self-propelled backwards impairs the feeling of use. It is needless to say that the control is based on the result of the research that is, and can be realized by detecting the signals in the two encoders 12.

駆動回路19は直流電源18の電力をPWMタイミング信号に応じて通電量を制御した供給電力Wsを駆動モータ14へ出力する。一旦駆動モータ14が回転を始めると、減速手段13のクラッチ機構(図示せず)が連結して駆動モータ14の回転力が走行ローラ10に伝達可能となって電気掃除機本体1が自走する。このようにして電気掃除機本体1が自走開始することで以降、使用者の引っ張り力が低減される。   The drive circuit 19 outputs, to the drive motor 14, supply power Ws in which the amount of power supplied from the DC power supply 18 is controlled in accordance with the PWM timing signal. Once the drive motor 14 starts to rotate, a clutch mechanism (not shown) of the speed reduction means 13 is connected to transmit the rotational force of the drive motor 14 to the travel roller 10 so that the electric vacuum cleaner main body 1 runs on its own. . Thus, after the vacuum cleaner main body 1 starts self-propelled, a user's pulling force is reduced.

ところで、一旦自走開始した後の電気掃除機本体1の走行の様子は、電気掃除機本体1の置かれている床面によって異なる。図5は、各床面における電気掃除機本体1の走行速度と駆動回路19から出力するPWM信号のDUTYとの関係を示す図であり、図6は、各床面における電気掃除機本体1の走行速度と、その走行速度で駆動回路19からの電力供給を停止した時の惰性走行距離との関係を示す図である。   By the way, the state of the running of the electric vacuum cleaner main body 1 once started to self-run differs depending on the floor surface on which the electric vacuum cleaner main body 1 is placed. FIG. 5 is a diagram showing the relationship between the running speed of the vacuum cleaner main body 1 on each floor surface and the DUTY of the PWM signal output from the drive circuit 19, and FIG. 6 shows the relationship of the vacuum cleaner main body 1 on each floor surface. It is a figure which shows the relationship between travel speed and the inertial travel distance when the electric power supply from the drive circuit 19 is stopped with the travel speed.

これらの特性を元に、電気掃除機本体1の総走行距離を床面に関わらず一定にするための制御を後述する。   Based on these characteristics, control for keeping the total travel distance of the vacuum cleaner body 1 constant regardless of the floor surface will be described later.

まず最初に、実機試作品による使用性確認の結果、1回の自走における電気掃除機本体1の総走行距離は60cm程度が妥当であるとの結論に至り、総走行距離の狙いを60cmに設定した。次に、狙いの総走行距離(60cm)を実現するための、駆動モータ14による自走距離を決定するが、極力自走速度を早くするために、駆動モータ14による自走中は、駆動モータ14への出力PWMのDUTYを常に100%に設定するようにしている。図5からわかるように、この時の電気掃除機本体1の自走速度は、木床上で50cm/秒であるのに対し、毛足の長いじゅうたん上では35cm/秒となる。更に、図6からわかるように、駆動回路19からの電力供給を停止してからの惰性走行距離は、木床上で50cmであるのに対し、毛足の長いじゅうたん上では12cmである。つまり、木床上と毛足の長いじゅうたん上とで同じ距離を動かすためには、木床上では自走距離の目標値を10cmに設定し、その目標値を超えると50cmの惰性走行を行えば良い。同じく、毛足の長いじゅうたん上では目標値を48cmに設定し、12cmの惰性走行をすれば良いことになる。   First, as a result of usability confirmation using a prototype of a real machine, it was concluded that the total distance traveled by the vacuum cleaner main body 1 in one self-run was about 60 cm, and the aim of the total distance traveled to 60 cm. Set. Next, the self-propelled distance by the drive motor 14 for realizing the target total travel distance (60 cm) is determined. In order to increase the self-propelled speed as much as possible, during the self-run by the drive motor 14, the drive motor DUTY of the output PWM to 14 is always set to 100%. As can be seen from FIG. 5, the self-running speed of the vacuum cleaner main body 1 at this time is 50 cm / sec on the wooden floor, whereas it is 35 cm / sec on the carpet having a long bristle. Further, as can be seen from FIG. 6, the coasting distance after the power supply from the drive circuit 19 is stopped is 50 cm on the wooden floor, whereas it is 12 cm on the carpet having a long bristle. In other words, in order to move the same distance on the wooden floor and on the carpet with long hairs, the target value of the self-propelled distance is set to 10 cm on the wooden floor, and if the target value is exceeded, 50 cm of inertial running may be performed. . Similarly, on a carpet with a long bristle, the target value may be set to 48 cm and the inertia running of 12 cm may be performed.

本実施の形態では、床面の状態を検知するために、エンコーダ出力信号16を利用した。即ち、エンコーダ出力信号16から電気掃除機本体1の走行速度を検知し、検知した走行速度に応じて駆動回路19からの電力供給を停止するタイミングを決定している。このタイミング決定は、数式により導くこともできるが、本実施の形態では下の表1に示される移動速度−自走距離テーブルを元に、駆動回路19からの電力供給停止タイミングを決定している。この表1は、各走行速度の時に、駆動モータ14による自走を何cm行なえば60cmで停止するかを予め計算した表である。尚、走行距離は、走行ローラ10の回転回数に比例するエンコーダ出力信号16を基に検知している。   In the present embodiment, the encoder output signal 16 is used to detect the state of the floor surface. That is, the traveling speed of the electric vacuum cleaner main body 1 is detected from the encoder output signal 16, and the timing for stopping the power supply from the drive circuit 19 is determined according to the detected traveling speed. Although this timing determination can also be derived from a mathematical expression, in the present embodiment, the power supply stop timing from the drive circuit 19 is determined based on the moving speed-self-traveling distance table shown in Table 1 below. . This table 1 is a table in which the number of cm of self-running by the drive motor 14 at each running speed is calculated in advance for stopping at 60 cm. The travel distance is detected based on an encoder output signal 16 that is proportional to the number of rotations of the travel roller 10.

Figure 0004888204
Figure 0004888204

具体的には、自走開始から0.2秒後から、走行速度Vと自走距離Sの検知を開始し、以降、0.1秒毎に走行速度Vと自走距離Sの検知を行なっていき、自走距離Sに対して走行速度Vが、表1の数値以上であれば電力供給を停止する。なお、自走開始0.2秒後から検知を開始するのは、自走開始から0.2秒間は加速期間であるので、正確な速度検知が行なえない為である。また、上表に現れない数値に対しては、比例計算によって判断値を求めることができる。例えば、自走距離が16.5cmであった場合、走行速度Vが48.5cm/秒以上であれば、電力供給を停止するという具合である。   Specifically, detection of the traveling speed V and the self-traveling distance S is started 0.2 seconds after the start of self-running, and then the travel speed V and the self-running distance S are detected every 0.1 second. If the traveling speed V is greater than or equal to the values in Table 1 with respect to the self-traveling distance S, the power supply is stopped. The reason why the detection is started 0.2 seconds after the start of self-running is that 0.2 seconds from the start of self-running is the acceleration period, and therefore accurate speed detection cannot be performed. For numerical values that do not appear in the above table, a judgment value can be obtained by proportional calculation. For example, when the self-traveling distance is 16.5 cm, the power supply is stopped if the traveling speed V is 48.5 cm / second or more.

駆動回路19からの電力供給停止後の惰性走行中にもエンコーダ出力信号16による走行速度と走行距離の検知を継続して行なっており、走行速度の変化量から床面状態の変化を推定し、床面状態の変化に応じて、駆動回路19からの再通電を行なうか否かの判断を行なう。   Even during inertial running after the power supply from the drive circuit 19 is stopped, the detection of the running speed and the running distance by the encoder output signal 16 is continuously performed, and the change in the floor surface state is estimated from the amount of change in the running speed, It is determined whether or not re-energization from the drive circuit 19 is performed according to the change in the floor surface state.

床面に対する速度変化量(減速加速度)も計算式によって導くことができるが、本実施の形態では上述した制御と同様、あらかじめ計算により導いた数値によって作られた走行速度−自走距離テーブル(表1)を用いて、惰性走行中の床面検知を行なう。惰性走行中に床面状態が変化した場合、その時点からの惰性走行距離を再計算し、総走行距離が60cmになるように駆動回路19からの電力供給を再度行なう。床面状態が変化した時の惰性走行距離及び、再電力供給時間は、図6の特性から各々導出された惰性走行距離テーブル(表2)によって設定する。以降、この制御の具体例を挙げて説明する。   Although the speed change amount (deceleration acceleration) with respect to the floor surface can also be derived by a calculation formula, in the present embodiment, as in the above-described control, a traveling speed-self-traveling distance table (table) created by numerical values derived in advance by calculation. 1) is used to detect the floor surface during inertial running. When the floor surface state changes during inertial traveling, the inertial traveling distance from that point is recalculated, and power is supplied again from the drive circuit 19 so that the total traveling distance becomes 60 cm. The inertial mileage and the repower supply time when the floor condition changes are set by the inertial mileage table (Table 2) derived from the characteristics shown in FIG. Hereinafter, a specific example of this control will be described.

例えば、自走開始0.2秒後の走行速度が46cm/秒で、自走距離が9cmであった場合の動作を以下に説明する。表1から走行速度46cm/秒で目標とする自走距離は26cmであり、その時点の自走距離9cmが目標値に満たないので自走を継続する。更に0.1秒後の自走距離が9.5cmであった場合、同様に自走を継続する。これを0.1秒毎に繰返し、例えば0.4秒後に走行速度46cm/秒、自走距離27cmとなって、自走距離が目標値を超えた時に、駆動モータ14への電力供給を停止して惰性走行に移行する。そして、床面状態が均一であれば、電気掃除機本体1は所定の惰性走行距離を走行して停止する。   For example, the operation in the case where the running speed 0.2 seconds after the start of self-running is 46 cm / sec and the self-running distance is 9 cm will be described below. From Table 1, the target self-run distance at a running speed of 46 cm / sec is 26 cm, and the self-run distance at that time is less than the target value, so the self-run is continued. Furthermore, when the self-run distance after 0.1 second is 9.5 cm, the self-run is continued in the same manner. This is repeated every 0.1 seconds. For example, after 0.4 seconds, the traveling speed becomes 46 cm / second and the self-running distance becomes 27 cm. When the self-running distance exceeds the target value, the power supply to the drive motor 14 is stopped. Then, shift to coasting. And if a floor surface state is uniform, the vacuum cleaner main body 1 will drive | work the predetermined inertial travel distance, and will stop.

次に、電気掃除機本体1が惰性走行中に床面状態が変更される場合の動作について説明する。惰性走行に移行してから0.1秒後に検出した速度変化量(減速加速度)が34cm/秒2、それまでに走行した距離が約32cm(距離はエンコーダ12で検出した値)であったとする。仮にこの時の速度が42.5cm/秒であったとすると、表2の速度「45」と「40」の行で、速度変化量「37.5」と「32.5」の箇所の数値から比例計算で、速度42.5cm/秒の時の惰性走行距離が24cmであるとわかる。この時、総走行距離の推定値は32+24=56cmとなり、総走行距離の狙いである60cmよりも短くなるとわかる。この場合、0.1秒間だけ駆動モータ14に再度電力供給を行って加速を行い、電力供給停止から0.1秒後の速度変化量を再測定する。総走行距離の推定値が狙いの60cmを越えた場合は、惰性走行状態を維持する。これを繰り返すことで、総走行距離を狙いの60cmに近づけていく。 Next, an operation when the floor surface state is changed while the vacuum cleaner main body 1 is coasting will be described. It is assumed that the speed change amount (deceleration acceleration) detected 0.1 seconds after the transition to inertial running is 34 cm / second 2 and the distance traveled so far is approximately 32 cm (the distance is a value detected by the encoder 12). . If the speed at this time is 42.5 cm / sec, the values of speed change amounts “37.5” and “32.5” in the rows of speed “45” and “40” in Table 2 are used. Proportional calculation shows that the inertial mileage at a speed of 42.5 cm / sec is 24 cm. At this time, the estimated value of the total travel distance is 32 + 24 = 56 cm, which is understood to be shorter than 60 cm, which is the target of the total travel distance. In this case, power is again supplied to the drive motor 14 for 0.1 seconds to accelerate, and the speed change amount 0.1 seconds after the power supply is stopped is measured again. If the estimated value of the total travel distance exceeds the target 60 cm, the coasting state is maintained. By repeating this, the total traveling distance is brought closer to the target 60 cm.

Figure 0004888204
Figure 0004888204

尚、惰性走行中の再通電によって総走行距離を調整することが可能であるのは、床面状態が「木床」→「毛足の長いじゅうたん」の方向に変化した時のみであり、逆方向(惰性走行距離が伸びる方向の変化)の場合には、不可能であることを付け加えておく。   It is possible to adjust the total mileage by re-energizing during inertial traveling only when the floor surface condition changes from “wood floor” to “long carpet”. In the case of direction (change in the direction in which inertial mileage extends), it is added that it is impossible.

又、速度あるいは速度変化量が上表1又は2のテーブル範囲を超えることはシステム上ありえないが、万が一テーブル範囲を超えた場合は、判断値の比例計算にはテーブル上下限の1つ内側の数値を用いることで、通常と同様の比例計算が行なえるのは言うまでもない。   In addition, the speed or the amount of speed change cannot exceed the table range shown in Table 1 or 2 above. However, if it exceeds the table range, the numerical value inside the upper and lower limits of the table is used for the proportional calculation of the judgment value. It goes without saying that the same proportional calculation can be performed by using.

(実施の形態2)
本発明の第二の実施の形態について説明する。尚、回路の基本構成については第一の実施の形態と同様であるためその説明を省略し、第一の実施の形態と異なる制御方法について説明を行なう。
(Embodiment 2)
A second embodiment of the present invention will be described. Since the basic configuration of the circuit is the same as that of the first embodiment, a description thereof will be omitted, and a control method different from that of the first embodiment will be described.

自走開始後、制御手段20は、エンコーダ出力信号16をモニターして走行速度を検出し、その走行速度が所定値、ここでは35cm/秒となるように駆動モータ14に供給する電力を調整する。本実施の形態では、電力調整にPWMのDUTY制御を用いており、図5に示す通り、35cm/秒にするためのDUTY(通電率)は、例えば木床等の負荷の軽い床面では50%であり、毛足の長いじゅうたん等の負荷の重い床面では100%(フル通電)となる。即ち、逆に言えば、35cm/秒で自走している時のDUTYから、床面の状態(負荷の重さ)が推定できると言える。ただし、実際には自走開始直後は、素早く目標速度に到達させるために、100%DUTYで電力供給を開始し、所定速度(オーバーシュート防止のために、35cmよりも低い速度に設定している)に達した後で、エンコーダ出力信号16によって検出される走行速度等に応じてDUTY調整を開始するため、この加速期間中は床面状態の推定は困難であり、又、DUTY調整開始直後においても、オーバーシュート/アンダーシュート防止のために、速度以外の情報にも基づいた制御を行なう(ごく一般的な制御であるため、詳細説明は省略する)ために、床面状態の推定は困難である。上述した事情を配慮して、本実施の形態において、自走開始から自走速度が狙いの速度で安定するまでの時間(DUTYから床面状態の推定が困難である時間)は0.5秒であるとして説明を進める。   After starting the self-running, the control means 20 monitors the encoder output signal 16 to detect the running speed, and adjusts the electric power supplied to the drive motor 14 so that the running speed becomes a predetermined value, 35 cm / second here. . In the present embodiment, PWM DUTY control is used for power adjustment, and as shown in FIG. 5, the DUTY (energization rate) for achieving 35 cm / second is 50 for a lightly loaded floor such as a wooden floor, for example. %, And 100% (full energization) on a heavily loaded floor such as a carpet with a long bristle. That is, in other words, it can be said that the state of the floor surface (the weight of the load) can be estimated from the DUTY when self-running at 35 cm / second. However, in fact, immediately after the start of self-running, in order to quickly reach the target speed, power supply is started at 100% DUTY, and a predetermined speed (a speed lower than 35 cm is set to prevent overshoot). ), The DUTY adjustment is started in accordance with the traveling speed detected by the encoder output signal 16. Therefore, it is difficult to estimate the floor condition during this acceleration period, and immediately after the start of the DUTY adjustment. However, in order to prevent overshoot / undershoot, control based on information other than speed is performed (this is a very general control, and detailed description is omitted), so it is difficult to estimate the floor condition. is there. In consideration of the circumstances described above, in the present embodiment, the time from the start of self-running until the self-running speed stabilizes at the target speed (the time during which it is difficult to estimate the floor condition from DUTY) is 0.5 seconds. The explanation will be advanced as it is.

第一の実施の形態では、100%DUTYでの走行速度によって床面状態を検出していたが、本実施の形態では、前述した通り、走行速度が35cm/秒になるように通電量を制御した時のDUTYによって床面状態を検出する。即ち、下記の表3に示すPWMDUTY−自走距離テーブルを用いて、自走すべき自走距離の目標値を求めて、自走速度と走行距離の両方が、床面によらず常に一定になるようにしている。   In the first embodiment, the floor surface state is detected based on the traveling speed at 100% DUTY. In the present embodiment, as described above, the energization amount is controlled so that the traveling speed becomes 35 cm / second. The floor state is detected by the DUTY when That is, using the PWMDUTY-self-propelled distance table shown in Table 3 below, the target value of the self-propelled distance to be self-propelled is obtained, and both the self-propelled speed and the travel distance are always constant regardless of the floor surface. It is trying to become.

Figure 0004888204
Figure 0004888204

尚、第一の実施の形態で行なっていた、惰性走行中の再電力供給制御も、同様の判断に基づいて行なうが、電力の再供給を、第一の実施の形態においては100%DUTYで行っていたのに対し、本実施の形態においては、電力再供給によって、走行速度が速くならないように駆動モータ14への出力PWMのDUTYを調整しながら電力の再供給を行なう。尚、各速度変化量と速度に対して、どの程度のDUTYで電力供給を行なうか(現在の速度を維持するためには、DUTYをいくらに設定すればよいか)は、床面の状態によって異なるが、本実施の形態では、惰性走行中の床面の状態は、速度変化量(減速加速度)によって判断する。即ち、木床等、床面の負荷が軽い時には速度変化量が小さく、じゅうたん等、床面の負荷が重い時には速度変化量が大きいことを利用して床面の状態を判断し、判断した床面の状態に応じて、DUTYを決定するが、実際には、予め実験によって惰性走行中の速度変化量と速度との相関データを表すPWM設定テーブル(表4)を作成しておき、それを用いてDUTYを決定している。   The re-power supply control during inertial running, which was performed in the first embodiment, is also performed based on the same determination, but the re-supply of power is 100% DUTY in the first embodiment. In contrast to this, in the present embodiment, power is re-supplied while adjusting the DUTY of the output PWM to the drive motor 14 so that the traveling speed is not increased by power re-supply. Depending on the state of the floor, how much power is supplied with DUTY for each speed change amount and speed (how much should DUTY be set to maintain the current speed)? Although different, in the present embodiment, the state of the floor surface during inertial running is determined by the speed change amount (deceleration acceleration). That is, when the load on the floor, such as a wooden floor, is light, the speed change is small, and when the load on the floor, such as a carpet, is heavy, the speed change is large. DUTY is determined according to the state of the surface. Actually, however, a PWM setting table (Table 4) showing correlation data between the speed change amount and the speed during inertial running is created in advance by experiment, To determine the DUTY.

以降、惰性走行時の制御について具体例を挙げて説明する。   Hereinafter, control during inertial running will be described with a specific example.

例えば、制御手段20は、検出動作が安定する自走開始0.5秒後以降に走行速度の検出を行う。その後、自走速度が35cm/秒で安定している時のPWMDUTYが65%であった場合、目標とする総走行距離から惰性走行距離を差し引いた自走距離は、即ち自走距離の目標値は、以下のようにして求める。表3に示すPWMDUTY−自走距離テーブルにおいて、PWMDUTY=65%が中間に位置する「60」と「70」に対応する自走距離S「39」と「43」のデータから比例計算して、41cmであることを求める。この41cmを自走距離の目標値とし、自走距離が目標値(41cm)に達した時点で、駆動モータ14への電力供給を停止して駆動モータ14による自走を止め、走行惰性走行に移行する。(自走開始0.5秒後から検知を開始するのは、自走開始から0.5秒間は前述の通り、正確な床面状態判断が行なえない為である)惰性走行移行の0.1秒後に検出した速度変化量が34cm/秒2、それまでに走行した距離が約35cm(距離はエンコーダ12で検出した値)であったとする。仮にこの時の速度が31.5cm/秒であったとすると、表2の速度「35」「30」の行で、速度変化量「37.5」と「32.5」の箇所より、惰性走行距離は13cmであると推定される。この時の総走行距離は35+13=48cmと推定でき、狙いの60cmよりも短い値となるので、再度駆動モータ14に通電を行なう。一方、表4の速度「35」と「30」の行で、速度変化量が「37.5」と「32.5」の箇所の数値から、速度31.5cm/秒の走行速度を維持するためには69.5%のDUTYで電力供給を行えばよいとわかる。よって、69.5%のDUTYで駆動モータ14に再通電を行なう。更に0.1秒後、0.2秒後・・・と同様の判定を繰返し、総走行距離の推定値が狙いの60cmを越えた時点で、駆動モータ14への電力供給を停止する。これを繰り返すことにより、惰性走行中の速度を徐々に下げつつ且つ、総走行距離を狙いの60cmに近づけることが可能となる。 For example, the control means 20 detects the traveling speed after 0.5 seconds after the start of self-running when the detection operation is stabilized. Thereafter, when the PWMDUTY when the self-running speed is stable at 35 cm / sec is 65%, the self-running distance obtained by subtracting the inertia running distance from the target total running distance is the target value of the self-running distance. Is obtained as follows. In the PWMDUTY-free running distance table shown in Table 3, PWMDUTY = 65% is proportionally calculated from the data of the free running distances S “39” and “43” corresponding to “60” and “70” located in the middle, It asks that it is 41cm. This 41 cm is set as a target value of the self-travel distance, and when the self-travel distance reaches the target value (41 cm), the power supply to the drive motor 14 is stopped to stop the self-travel by the drive motor 14, and the travel inertia travel is performed. Transition. (The reason why the detection starts 0.5 seconds after the start of self-run is because 0.5 seconds after the start of self-run cannot accurately determine the floor condition as described above.) 0.1 Assume that the speed change detected after 2 seconds is 34 cm / second 2 and the distance traveled so far is approximately 35 cm (the distance is a value detected by the encoder 12). If the speed at this time is 31.5 cm / sec, it is possible to run inertially from the speed change amounts “37.5” and “32.5” in the rows of speed “35” and “30” in Table 2. The distance is estimated to be 13 cm. The total travel distance at this time can be estimated as 35 + 13 = 48 cm, and is shorter than the target 60 cm, so the drive motor 14 is energized again. On the other hand, in the rows of speeds “35” and “30” in Table 4, the running speed of 31.5 cm / sec is maintained from the numerical values where the speed variation is “37.5” and “32.5”. In order to achieve this, it is understood that power supply should be performed at 69.5% DUTY. Therefore, the drive motor 14 is re-energized at 69.5% DUTY. Further, the same determination as 0.1 second, 0.2 second later,... Is repeated, and the power supply to the drive motor 14 is stopped when the estimated total travel distance exceeds the target 60 cm. By repeating this, it becomes possible to gradually reduce the speed during inertial traveling and bring the total traveling distance closer to the target 60 cm.

Figure 0004888204
Figure 0004888204

本実施の形態1及び2では、エンコーダ12は駆動軸15の回転を検知して回転数及び回転方向に応じたA相及びB相2つの信号16(エンコーダ出力信号)を出力するようにしたが、キャスタ6の何れかの回転を検知するように構成したり、キャスタ6以外に特別な車輪等を設けたりしても良い。更に、自走機能は電動送風機32が運転されている時だけ有効であるよう制御手段20で制御することも、例えば使用者が万一コンセントを差したまま収納してしまっているときに電気掃除機本体1が僅かに動いたことで不意に自走することなどが無いようにすることに有用であろう。   In the first and second embodiments, the encoder 12 detects the rotation of the drive shaft 15 and outputs two signals 16 (encoder output signals) of the A phase and the B phase according to the rotation speed and the rotation direction. Further, it may be configured to detect any rotation of the caster 6 or a special wheel or the like may be provided in addition to the caster 6. Furthermore, the self-propelled function can be controlled by the control means 20 so that it is effective only when the electric blower 32 is in operation. For example, when the user has stored it with the outlet plugged in, the electric cleaner It would be useful to prevent the machine body 1 from moving unintentionally due to slight movement.

ところで、本実施の形態で説明した走行特性図は走行に関る部分の詳細設計条件によって大きく変わる。走行ローラ10の床面とのグリップ特性、駆動モータのトルクや回転数特性、補助輪の転がり摩擦係数、電気掃除機本体1の重量等々が走行特性に影響するため、図6,7に示す各走行特性はどのような機種の電気掃除機本体に対しても一様に決まるものではなく、個々に詳細設計(実験等による走行特性データ確認)が必要となるものであり、単なるひとつの特性事例であることは理解できよう。ただし、自走機能を設計するに際しては、一般家庭の床面のうち最も走行時の抵抗の大きな床面、例えば毛足の長い絨毯上で良好な走行性能が得られるように走行駆動系の速度やトルクを設計して快適な追従性能を確保できるようにすると、走行抵抗の少ない例えば木床等を走行する場合に走行スピードが出すぎたり、走行距離が長くなったりして快適な自走性能が得にくくなる。本発明はそのような課題を解決するために成されたものであり、使用者の移動に対してできるだけ瞬時に走行開始(スタートダッシュ力を確保)可能な駆動系を備えつつ、走行速度や走行距離は常に略同一に制御できる優れた自走機能を備えた電気掃除機を提供できるものである。   By the way, the traveling characteristic diagram described in the present embodiment varies greatly depending on the detailed design conditions of the portion related to traveling. Since the grip characteristics with the floor surface of the traveling roller 10, the torque and rotational speed characteristics of the drive motor, the rolling friction coefficient of the auxiliary wheel, the weight of the vacuum cleaner body 1, and the like affect the traveling characteristics, each of FIGS. Travel characteristics are not determined uniformly for any type of vacuum cleaner body, but require detailed design (confirmation of travel characteristics data through experiments, etc.) for each model. I understand that. However, when designing the self-propelled function, the speed of the driving system should be such that good driving performance can be obtained on the floor surface with the greatest resistance among the floor surfaces of ordinary households, such as carpets with long fur feet. By designing the torque and torque to ensure a comfortable follow-up performance, for example, when traveling on a wooden floor with low running resistance, the running speed will be too high or the running distance will be long and comfortable self-running performance Is difficult to obtain. The present invention has been made to solve such a problem, and has a drive system that can start traveling (securing start dash force) as quickly as possible with respect to a user's movement, while also achieving traveling speed and traveling. It is possible to provide a vacuum cleaner having an excellent self-propelled function in which the distance can always be controlled to be substantially the same.

尚、本実施の形態では駆動モータへの電力供給を直流電源から行うようにしているが、駆動モータ内にダイオードブリッジを内蔵させるなどして駆動モータをAC駆動可能なものを使用すれば、駆動手段は商用電源を位相制御可能なトライアック等で構成しても良い。   In this embodiment, power is supplied to the drive motor from a DC power source. However, if a drive motor that can be AC driven by using a diode bridge in the drive motor is used, the drive motor can be driven. The means may be composed of a triac or the like capable of controlling the phase of the commercial power source.

またエンコーダは、2個のフォトインタラプタとスリット付き回転盤や、同じく2個のホールICと複数個のマグネット等を使用すれば、出力信号の位相差90度の精度にこだわらなければ簡単に構成可能であることは言うまでもない。   Also, the encoder can be easily configured by using two photo interrupters, a rotating disk with slits, and two Hall ICs and a plurality of magnets. Needless to say.

以上のように本発明は、掃除中の疲労感を低減する高付加価値・高機能な電気掃除機や、更には使用者の移動に合わせて追従する機器にも有用な技術である。   As described above, the present invention is a technique useful for a high-value-added and high-function vacuum cleaner that reduces fatigue during cleaning, and also for a device that follows the movement of the user.

本発明の一実施の形態に係る電気掃除機の外観斜視図The external appearance perspective view of the vacuum cleaner which concerns on one embodiment of this invention 本発明の一実施の形態に係る電気掃除機の底部から見た斜視図The perspective view seen from the bottom part of the vacuum cleaner which concerns on one embodiment of this invention 本発明の一実施の形態に係る電気掃除機の回路ブロック図The circuit block diagram of the vacuum cleaner which concerns on one embodiment of this invention 一実施の形態のエンコーダ出力信号の波形説明図Waveform explanatory diagram of encoder output signal of one embodiment 一実施に形態の通電量と走行速度の関係を示す走行特性図Traveling characteristic diagram showing the relationship between the energization amount and travel speed of an embodiment 一実施の形態の走行速度と惰性走行距離の関係を示す走行特性図Travel characteristic diagram showing the relationship between travel speed and inertia travel distance in one embodiment

符号の説明Explanation of symbols

1 電気掃除機本体
6 キャスタ(車輪)
10 走行ローラ(車輪)
11 走行ユニット
12 エンコーダ(回転検出手段)
13 減速手段
14 駆動モータ(駆動手段)
15 駆動軸
16 エンコーダ出力信号
18 直流電源
19 駆動回路(モータドライバIC)
20 制御手段
21 走行特性記憶手段
22 走行速度演算手段
1 Electric vacuum cleaner body 6 Casters (wheels)
10 Traveling roller (wheel)
11 traveling unit 12 encoder (rotation detecting means)
13 Deceleration means 14 Drive motor (drive means)
15 Drive shaft 16 Encoder output signal 18 DC power supply 19 Drive circuit (motor driver IC)
20 Control means 21 Travel characteristic storage means 22 Travel speed calculation means

Claims (6)

電気掃除機本体に設けられた複数の車輪と、前記複数の車輪のうちの少なくとも1つを回転駆動する駆動手段と、前記複数の車輪のうちの少なくとも1つの車輪の回転を検出する回転検出手段と、前記回転検出手段の出力信号を基に前記駆動手段の通電を制御する制御手段とを有し、前記制御手段は、前記回転検出手段の出力信号を基に前記電気掃除機本体が外力によって動かされたことを検知すると、前記駆動手段に通電して前記電気掃除機本体の自走を行なうと共に、自走中の前記車輪の回転速度及び走行距離を検出し続け、自走開始から惰性走行停止までの総走行距離がほぼ一定になるように、検出した回転速度における惰性走行距離を前記総走行距離から差し引いた距離を目標とし、その目標の距離に達すると前記駆動手段への通電を停止することを特徴とする電気掃除機。 A plurality of wheels provided in the main body of the vacuum cleaner, a driving unit that rotationally drives at least one of the plurality of wheels, and a rotation detection unit that detects rotation of at least one of the plurality of wheels. And control means for controlling energization of the drive means based on the output signal of the rotation detection means, and the control means is configured such that the main body of the vacuum cleaner is driven by an external force based on the output signal of the rotation detection means. When it is detected that it has been moved, the drive means is energized to self-run the main body of the vacuum cleaner, and the rotation speed and travel distance of the wheel during self-running are continuously detected. A target is obtained by subtracting the inertial travel distance at the detected rotational speed from the total travel distance so that the total travel distance until the stop is substantially constant, and when the target distance is reached, the drive means is energized. Vacuum cleaner, characterized in that the stop. 前記制御手段は、前記回転検出手段を有した車輪の自走開始からの自走距離が目標値に達するまでの間、前記駆動手段に通電して自走制御を行うと共に、前記自走距離の目標値を、前記電気掃除機の走行速度が遅い場合には大きく、前記走行速度が速い場合には小さく設定することを特徴とする請求項1に記載の電気掃除機。 The control means conducts self-running control by energizing the drive means until the self-running distance from the start of self-running of the wheel having the rotation detecting means reaches a target value. 2. The vacuum cleaner according to claim 1, wherein the target value is set to be large when the traveling speed of the vacuum cleaner is low and small when the traveling speed is fast. 前記制御手段は、前記回転検出手段を有した車輪の惰性走行期間中、その車輪の回転速度を検出し続け、前記惰性走行期間中の回転速度の変化量から惰性走行距離を推定すると共に、推定した惰性走行距離と自走距離を合計した総走行距離が所定値より小さくなると判定された場合、自走開始から惰性走行停止までの総走行距離が所定の距離に近づくように、前記駆動手段による自走を再度行なうことを特徴とする請求項1又は2に記載の電気掃除機。 The control means continues to detect the rotational speed of the wheel having the rotation detecting means during the inertia traveling period, and estimates the inertia traveling distance from the amount of change in the rotational speed during the inertia traveling period. When the total traveling distance obtained by adding the inertial traveling distance and the self-traveling distance is determined to be smaller than the predetermined value, the driving means is configured so that the total traveling distance from the self-running start to the inertial traveling stop approaches the predetermined distance. The electric vacuum cleaner according to claim 1 or 2, wherein self-running is performed again. 電気掃除機本体に設けられた複数の車輪と、前記複数の車輪のうちの少なくとも1つを回転駆動する駆動手段と、前記複数の車輪のうちの少なくとも1つの車輪の回転数を検出する回転検出手段と、前記回転検出手段の出力信号を基に前記駆動手段の通電量を制御する制御手段とを有し、前記制御手段は、前記回転検出手段の出力信号を基に前記電気掃除機本体が外力によって動かされたことを検知すると、前記駆動手段への通電を開始して、前記回転検出手段を有した車輪の回転速度がほぼ一定となるように前記駆動手段への通電量を制御し、前記回転検出手段を有した車輪の自走開始から自走停止までの自走距離が、自走開始から惰性走行停止までの総走行距離の目標値から惰性走行距離を差し引いて予め求めた距離に達すると、前記駆動手段への電力供給を停止して惰性走行に移行することを特徴とする電気掃除機。 A plurality of wheels provided in the main body of the vacuum cleaner, drive means for rotationally driving at least one of the plurality of wheels, and rotation detection for detecting a rotational speed of at least one of the plurality of wheels. And a control means for controlling the energization amount of the drive means based on the output signal of the rotation detection means, and the control means is configured such that the main body of the electric vacuum cleaner is based on the output signal of the rotation detection means. When it is detected that it has been moved by an external force, it starts energization to the drive means, and controls the energization amount to the drive means so that the rotation speed of the wheel having the rotation detection means becomes substantially constant, The self-running distance from the self-running start of the wheel having the rotation detecting means to the self-running stop is a distance obtained in advance by subtracting the free running distance from the target value of the total running distance from the self-running start to the free running stop. When you reach Vacuum cleaner, characterized in that to stop the power supply to the unit moves to coasting. 前記制御手段は、前記自走距離の目標値を、前記駆動手段への通電量が多い場合には大きく、通電量が少ない場合には小さく設定したことを特徴とする請求項4に記載の電気掃除機。 5. The electricity according to claim 4, wherein the control means sets the target value of the self-travel distance to be large when the energization amount to the drive means is large and small when the energization amount is small. Vacuum cleaner. 前記制御手段は、惰性走行期間中も前記回転検出手段を有した車輪の回転速度および回転速度変化量を検出し続け、自走停止後の回転速度変化量から惰性走行距離を推定すると共に、推定した惰性走行距離が所定の走行距離に満たないと判定した場合は、惰性走行距離の不足を判定した時点の回転速度を維持するように所定の通電量の供給電力を前記駆動手段へ供給し、前記所定の走行距離まで自走制御を再開することを特徴とする請求項4又は5に記載の電気掃除機。 The control means continues to detect the rotational speed and the rotational speed change amount of the wheel having the rotation detection means even during the inertia traveling period, and estimates the inertia traveling distance from the rotational speed change amount after the self-running stop. If it is determined that the inertial travel distance is less than the predetermined travel distance, supply power of a predetermined energization amount is supplied to the driving means so as to maintain the rotational speed at the time of determining the shortage of the inertia travel distance, 6. The electric vacuum cleaner according to claim 4, wherein self-running control is resumed up to the predetermined travel distance.
JP2007104779A 2007-04-12 2007-04-12 Vacuum cleaner Expired - Fee Related JP4888204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104779A JP4888204B2 (en) 2007-04-12 2007-04-12 Vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104779A JP4888204B2 (en) 2007-04-12 2007-04-12 Vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2008259674A JP2008259674A (en) 2008-10-30
JP4888204B2 true JP4888204B2 (en) 2012-02-29

Family

ID=39982642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104779A Expired - Fee Related JP4888204B2 (en) 2007-04-12 2007-04-12 Vacuum cleaner

Country Status (1)

Country Link
JP (1) JP4888204B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995424B1 (en) * 2012-06-13 2019-07-02 엘지전자 주식회사 Robot Cleaner and Controlling Method for the same
JP6854722B2 (en) * 2017-07-14 2021-04-07 パナソニック株式会社 robot

Also Published As

Publication number Publication date
JP2008259674A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP5109608B2 (en) Electric vacuum cleaner
US7725223B2 (en) Control arrangement for a propulsion unit for a self-propelled floor care appliance
CN103973173B (en) Electric machine without sensor brakes
CN108349515A (en) Self-propelled cart component
EP2743166A1 (en) Driving unit and battery-assisted bicycle
CN112740893B (en) Riding mower
US20170168492A1 (en) Autonomous travel vehicle and reproduction travel method
JP4888204B2 (en) Vacuum cleaner
JP6055020B2 (en) Walking assistance vehicle
CN113490409B (en) Driven floor care appliance
JP6171541B2 (en) Autonomous mobile object movement control device, autonomous mobile object, and autonomous mobile object control method
WO2015075807A1 (en) Electric vehicle control system
JP2010051628A (en) Vacuum cleaner
JP2018052251A (en) Electric brake device
JP4316328B2 (en) Power assist travel device
JP2009050294A (en) Electric vacuum cleaner
JP5018185B2 (en) Electric vacuum cleaner
JP5018207B2 (en) Electric vacuum cleaner
JP4888196B2 (en) Vacuum cleaner
JP5003323B2 (en) Electric vacuum cleaner
JP5018208B2 (en) Electric vacuum cleaner
JP5018394B2 (en) Electric vacuum cleaner
JP2011183086A (en) Vacuum cleaner
JP5077270B2 (en) Round-trip X-ray equipment
JP2006020831A (en) Self-propelled vacuum cleaner, and program of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees