JP4886395B2 - Moving object detection device - Google Patents

Moving object detection device Download PDF

Info

Publication number
JP4886395B2
JP4886395B2 JP2006182468A JP2006182468A JP4886395B2 JP 4886395 B2 JP4886395 B2 JP 4886395B2 JP 2006182468 A JP2006182468 A JP 2006182468A JP 2006182468 A JP2006182468 A JP 2006182468A JP 4886395 B2 JP4886395 B2 JP 4886395B2
Authority
JP
Japan
Prior art keywords
signal
quadrant
signals
threshold value
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006182468A
Other languages
Japanese (ja)
Other versions
JP2008008871A (en
Inventor
文宏 笠野
俊昌 高木
英彦 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006182468A priority Critical patent/JP4886395B2/en
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to KR1020077021768A priority patent/KR100985451B1/en
Priority to PCT/JP2006/326294 priority patent/WO2007077940A1/en
Priority to CN2006800107943A priority patent/CN101151552B/en
Priority to EP06843672.4A priority patent/EP1970729B1/en
Priority to US11/887,079 priority patent/US7746220B2/en
Priority to MYPI20071565 priority patent/MY152851A/en
Publication of JP2008008871A publication Critical patent/JP2008008871A/en
Application granted granted Critical
Publication of JP4886395B2 publication Critical patent/JP4886395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S15/523Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating

Description

本発明は、超音波を監視空間に放射し、監視空間内の物体の移動により生じる反射波の周波数偏移を検出することにより、監視空間内において移動する物体の存在を検出する移動物体検出装置に関するものである。   The present invention relates to a moving object detection device that detects the presence of an object moving in a monitoring space by radiating ultrasonic waves to the monitoring space and detecting a frequency shift of a reflected wave caused by the movement of the object in the monitoring space. It is about.

近年、自動車の車両盗難並びに車上盗難が増加しているため、駐車中の車両に不審者が侵入した場合に警報音を鳴動する車載用盗難警報装置が普及してきており、かかる車載用盗難警報装置には監視空間(車内)における移動物体(人)の存否を検出するために移動物体検出装置が搭載されている(例えば、特許文献1参照)。   In recent years, since vehicle theft and on-the-car theft of automobiles have increased, in-vehicle theft alarm devices that sound an alarm sound when a suspicious person enters a parked vehicle have become widespread. The apparatus is equipped with a moving object detection device for detecting the presence or absence of a moving object (person) in the monitoring space (inside the vehicle) (for example, see Patent Document 1).

この種の移動物体検出装置は、所定周波数の超音波を監視空間内に放射しておき、監視空間内に存在する物体の移動に伴なってドップラー効果として生じる反射波の周波数偏移を検出するように構成されている(例えば、特許文献2,3参照)。   This kind of moving object detection device radiates ultrasonic waves of a predetermined frequency into the monitoring space, and detects the frequency shift of the reflected wave that occurs as a Doppler effect accompanying the movement of the object existing in the monitoring space. (See, for example, Patent Documents 2 and 3).

図5に従来の移動物体検出装置の一例を示す。発振器1が発振する所定周波数の送波信号を受けて送波回路2が送波器3を駆動することにより、発振器1の発振周波数と同周波数の超音波が監視空間に送波され、監視空間内に存在する物体Oに超音波が反射して生じる反射波を受波器4で受波する。受波器4では受波した反射波を受波信号Einに変換し、この受波信号Einを第1及び第2の位相検波回路6A,6Bにそれぞれ入力して発振器1の発振周波数と同周波数の基準信号E0,E0’と混合する。ここで、一方の基準信号E0は移相回路10の出力であって、両基準信号E0,E0’の位相が互いに異なるように設定される。したがって、第1及び第2の位相検波回路6A,6Bの出力にビート信号として得られる一対のドップラー信号E,E’も位相が互いに異なったものとなる。ドップラー信号E,E’はそれぞれローパスフィルタ7A,7Bで高調波成分が除去された後にコンパレータ9A,9Bにおいて信号の正負に対応した2値信号(以下、「軸符号信号」と呼ぶ。)X,Yに変換される。軸符号信号X,Yはそれぞれ2値(ハイレベルとローレベル)を有しているから、両者の組み合わせにより4つの状態を表わすことができるのであり、これら4状態はドップラー信号E,E’を基本軸とするベクトル平面の4つの象限のうちで、受波信号Einに対応するベクトルがどの象限に存在しているかを示すことになる。したがって、ドップラー信号E,E’の極性の組み合わせにより4つの状態(正正、正負、負負、負正)を考えれば、ベクトル平面上の各象限(第1象限乃至第4象限)に対応させることができるのである。要するに正負両極性を有したドップラー信号E,E’の極性を組み合わせることによって4つの状態を分類すれば、両ドップラー信号E,E’の信号値を成分としたベクトルが存在する象限(第1象限乃至第4象限)と上記各状態とが一対一に対応することになる。このベクトルは、受波信号Einの基準信号E0,E0’に対する周波数偏移に応じてベクトル平面内の象限を移動し、周波数が低くなるか高くなるか、すなわち物体Oが遠ざかるか近付くかに応じて、象限を右回りもしくは左回りに移動するのである。   FIG. 5 shows an example of a conventional moving object detection apparatus. By receiving a transmission signal of a predetermined frequency oscillated by the oscillator 1 and the transmission circuit 2 driving the transmitter 3, an ultrasonic wave having the same frequency as the oscillation frequency of the oscillator 1 is transmitted to the monitoring space. The reflected wave generated by the reflection of the ultrasonic wave on the object O existing inside is received by the wave receiver 4. In the receiver 4, the received reflected wave is converted into a received signal Ein, and the received signal Ein is input to the first and second phase detection circuits 6 </ b> A and 6 </ b> B, respectively, and the same frequency as the oscillation frequency of the oscillator 1. Are mixed with the reference signals E0 and E0 '. Here, one reference signal E0 is an output of the phase shift circuit 10, and is set so that the phases of both reference signals E0 and E0 'are different from each other. Therefore, the pair of Doppler signals E and E 'obtained as beat signals at the outputs of the first and second phase detection circuits 6A and 6B also have different phases. The Doppler signals E and E ′ are binary signals (hereinafter referred to as “axis code signals”) X and X corresponding to the positive and negative of the signals in the comparators 9A and 9B after the harmonic components are removed by the low-pass filters 7A and 7B, respectively. Converted to Y. Since each of the axis code signals X and Y has two values (high level and low level), four states can be represented by a combination of both, and these four states represent the Doppler signals E and E ′. Of the four quadrants of the vector plane serving as the basic axis, it indicates in which quadrant the vector corresponding to the received signal Ein exists. Therefore, considering four states (positive, positive, negative, negative, negative) according to the combination of the polarities of the Doppler signals E and E ′, it is made to correspond to each quadrant (first quadrant to fourth quadrant) on the vector plane. It can be done. In short, if the four states are classified by combining the polarities of the Doppler signals E and E ′ having both positive and negative polarities, a quadrant (first quadrant) in which vectors having signal values of both Doppler signals E and E ′ exist as components. Thru | or 4th quadrant) and said each state respond | correspond one-to-one. This vector moves in a quadrant in the vector plane in accordance with the frequency shift of the received signal Ein with respect to the reference signals E0 and E0 ′, depending on whether the frequency becomes lower or higher, that is, whether the object O moves away or approaches. The quadrant is moved clockwise or counterclockwise.

そこで、この従来例では象限信号発生回路80、メモリ81、転移方向検出回路82、演算回路83、閾値回路84で検知回路8を構成し、以下のような処理を行っている。但し、検知回路8をマイコンで構成し、マイコンにおいてプログラムを実行することで象限信号発生回路80、転移方向検出回路82、演算回路83、閾値回路84の機能を実現することも可能である。   Therefore, in this conventional example, the detection circuit 8 is configured by the quadrant signal generation circuit 80, the memory 81, the transition direction detection circuit 82, the arithmetic circuit 83, and the threshold circuit 84, and the following processing is performed. However, the functions of the quadrant signal generation circuit 80, the transition direction detection circuit 82, the arithmetic circuit 83, and the threshold circuit 84 can be realized by configuring the detection circuit 8 by a microcomputer and executing a program in the microcomputer.

象限信号発生回路80では、上述した信号処理により、上記ベクトル平面上において受波信号Einが存在する象限を検出して対応する象限信号Qを出力し、同時に受波信号Einが各象限の境界線を超えて転移するときに転移信号Zを発生する。象限信号Qは4状態を表わせばよいから、2ビット以上あればよい。また、象限信号Qは、転移信号Zの発生毎にメモリ81に一時的に記憶されると同時に、転移方向検出回路82にも入力される。ここに、メモリ81に記憶される象限信号Qは転移信号Zの発生毎に更新される。   The quadrant signal generation circuit 80 detects the quadrant in which the received signal Ein exists on the vector plane by the signal processing described above and outputs a corresponding quadrant signal Q. At the same time, the received signal Ein is a boundary line of each quadrant. A transition signal Z is generated when transitioning beyond. Since the quadrant signal Q only needs to represent four states, it may be 2 bits or more. Further, the quadrant signal Q is temporarily stored in the memory 81 every time the transition signal Z is generated, and is also input to the transition direction detection circuit 82. Here, the quadrant signal Q stored in the memory 81 is updated every time the transition signal Z is generated.

転移方向検出回路82では、受波信号Einに対応するベクトルが隣接する象限(第1象限乃至第4象限)に転移して転移信号Zが発生するのに伴って象限信号発生回路80から入力された現在の象限信号Q(すなわち、転移後の象限信号Q)と、前回の転移信号Zの発生に伴ってメモリ81に記憶されていた前回の象限信号Q(すなわち、転移前の象限信号Q)とが比較され、象限が右回りに転移したか左回りに転移したかが判定される。ここで、転移方向検出回路82の出力としては、受波信号Einに対応するベクトルが原点を中心として反時計回りに象限の境界線(基本軸)を横切る場合に加算、時計回りに象限の境界線を横切る場合に減算を指示する方向信号が出力されるように設定しておく。こうして、転移方向検出回路82の出力である方向信号が得られるとメモリ81の内容は更新される。転移方向検出回路82の出力である方向信号と象限信号発生回路80の出力である転移信号Zとは演算回路83に入力され、演算回路83では、転移信号Zが発生するたびに転移方向検出回路82の出力信号を読み込み、演算回路83に記憶されている値に対して方向信号が反時計回りなら1を加え、時計回りなら1を引くようにする。したがって、受波信号Einに対応するベクトルが第1象限から第2象限を通過して第3象限に至る軌跡を描いて移動した場合、演算回路83の初期値が0であれば、最終値は3になる。こうして演算回路83の出力値の絶対値が閾値回路84に予め設定されている閾値を超えると、閾値回路84は検出信号を送出する。検出信号は報知器駆動回路11に入力され、移動物体Oの存在が適宜報知器により報知される。 In the transition direction detection circuit 82, a vector corresponding to the received signal Ein is input from the quadrant signal generation circuit 80 as the transition signal Z is generated by shifting to the adjacent quadrant (first quadrant to fourth quadrant). The current quadrant signal Q (that is, the quadrant signal Q after the transition) and the previous quadrant signal Q (that is, the quadrant signal Q before the transition) stored in the memory 81 when the previous transition signal Z is generated. Are compared to determine whether the quadrant has shifted clockwise or counterclockwise. Here, the output of the transition direction detection circuit 82 is added when the vector corresponding to the received signal Ein crosses the quadrant boundary line (basic axis) counterclockwise around the origin, and the quadrant boundary clockwise. It is set so that a direction signal instructing subtraction is output when the line is crossed. Thus, when the direction signal that is the output of the transition direction detection circuit 82 is obtained, the contents of the memory 81 are updated. The direction signal, which is the output of the transition direction detection circuit 82, and the transition signal Z, which is the output of the quadrant signal generation circuit 80, are input to the arithmetic circuit 83. The arithmetic circuit 83 generates a transition direction detection circuit each time the transition signal Z is generated. 82 is read, and 1 is added to the value stored in the arithmetic circuit 83 if the direction signal is counterclockwise, and 1 if it is clockwise. Therefore, when the vector corresponding to the received signal Ein moves along a locus from the first quadrant through the second quadrant to the third quadrant, if the initial value of the arithmetic circuit 83 is 0, the final value is It becomes 3. Thus, when the absolute value of the output value of the arithmetic circuit 83 exceeds the threshold value preset in the threshold circuit 84, the threshold circuit 84 sends out a detection signal. The detection signal is input to the alarm drive circuit 11, and the presence of the moving object O is appropriately notified by the alarm.

上記構成によれば、超音波を送出して反射波の周波数偏移を検出するのであるから、送波信号の周波数をf0、物体の移動速度をv、超音波の伝播速度をcとすれば、ドップラー信号E,E’の周波数Δfは、|Δf|≒2vf0/cとなり(一般に、v≪c)、ドップラー信号E,E’の周波数は物体の移動速度vに比例することになる。また、物体が単位距離だけ移動したときに発生する、ドップラー信号E,E’の波数Nは、N=2f0/cとなるから、超音波の伝播速度cと送波周波数f0とが一定であれば、物体の移動速度vとは無関係に波数Nは一定となる。したがって、受波信号Einに対応するベクトルのベクトル平面での象限転移の回数も一定となる。つまり、上述のように4象限で表わせば、象限転移の回数は4×N回となり、物体の移動距離に比例することになる。また、象限の転移の向きは物体の移動する向きを表わすから、象限の転移が生じたときに転移の向きに応じて転移回数を加減算すれば、物体の移動距離と向きを知ることができるのである。換言すれば、監視空間内での物体Oの移動距離が閾値回路84の判定基準となり、物体Oが監視空間内で移動する時間には関係なく、物体の存在を検出することができるのである。
特開平9−272402号公報 特公昭62−43507号公報 特公平6−16085号公報
According to the above configuration, since the ultrasonic wave is transmitted and the frequency shift of the reflected wave is detected, if the frequency of the transmitted signal is f0, the moving speed of the object is v, and the propagation speed of the ultrasonic wave is c. The frequency Δf of the Doppler signals E and E ′ is | Δf | ≈2vf0 / c (generally v << c), and the frequency of the Doppler signals E and E ′ is proportional to the moving speed v of the object. Further, since the wave number N of the Doppler signals E and E ′ generated when the object moves by a unit distance is N = 2f0 / c, the ultrasonic wave propagation speed c and the transmission frequency f0 are constant. For example, the wave number N is constant regardless of the moving speed v of the object. Therefore, the number of quadrant transitions on the vector plane of the vector corresponding to the received signal Ein is also constant. In other words, if expressed in four quadrants as described above, the number of quadrant transitions is 4 × N, which is proportional to the moving distance of the object. In addition, since the direction of quadrant transition represents the direction in which the object moves, if the number of transitions is added or subtracted according to the direction of the transition when quadrant transition occurs, the moving distance and direction of the object can be known. is there. In other words, the moving distance of the object O in the monitoring space becomes the determination criterion of the threshold circuit 84, and the presence of the object can be detected regardless of the time for which the object O moves in the monitoring space.
JP-A-9-272402 Japanese Examined Patent Publication No. 62-43507 Japanese Patent Publication No. 6-16085

ところで、上述のような移動物体検出装置を車載用盗難警報装置に搭載した場合、他の車両(自動車、電車、オートバイなど)が側を通過することで発生する振動や音が駐車中の車両(自動車)に伝わって当該車両の窓ガラスや送波器3又は受波器4が微少な振幅で振動することがあり、その微少振動に起因して超音波の伝搬経路が時間的に変動して反射波に位相変調がかかることになる。   By the way, when the moving object detection device as described above is mounted on an in-vehicle burglar alarm device, vibrations and sounds generated when other vehicles (cars, trains, motorcycles, etc.) pass by the side ( The window glass of the vehicle, the transmitter 3 or the receiver 4 may vibrate with a minute amplitude when transmitted to the automobile), and the ultrasonic propagation path fluctuates with time due to the minute vibration. Phase modulation is applied to the reflected wave.

ここで、発振器1が出力する周期信号をsin(ωt+φ)、微少振動をfmsinω0tとしたとき、受波回路5から出力される変調信号fは、f=sin(ωt+φ+fmsinω0t)と表されるので、位相検波回路6A,6Bから出力されるドップラー信号E,E’はそれぞれ下記の式で表される。   Here, when the periodic signal output from the oscillator 1 is sin (ωt + φ) and the minute vibration is fmsinω0t, the modulation signal f output from the receiving circuit 5 is f = sin (ωt + φ + fmsinω0t). Therefore, the Doppler signals E and E ′ output from the phase detection circuits 6A and 6B are expressed by the following equations, respectively.

E=sin(ωt+φ+fmsinω0t)sinωt
≒1/2fmsinφsinω0t
E’=sin(ωt+φ+fmsinω0t)cosωt
≒1/2fmcosφsinω0t
但し、fm≪1
上記式から明らかなように、φが0又はπ/2であればドップラー信号E,E’の何れか一方がゼロとなり、φがπ/4又は3π/4であればドップラー信号E,E’が逆相(即ち、位相差がπ)又は同相(位相差がゼロ)となる。
E = sin (ωt + φ + fmsinω0t) sinωt
≒ 1 / 2fmsinφsinω0t
E '= sin (ωt + φ + fmsinω0t) cosωt
≒ 1 / 2fmcosφsinω0t
However, fm << 1
As is clear from the above equation, if φ is 0 or π / 2, one of the Doppler signals E and E ′ is zero, and if φ is π / 4 or 3π / 4, the Doppler signals E and E ′. Are in reverse phase (ie, phase difference is π ) or in phase (phase difference is zero).

例えば、ドップラー信号E,E’が同相となった場合、ドップラー信号E,E’を2値化して得られる軸符号信号X,Yが(1,1)と(−1,−1)を周期的に繰り返すことになり(図6(a)参照)、転移前後の象限信号Qから転移方向を検出することができないために微少振動する物体(窓ガラスなど)を移動物体と誤検出することはないはずである。   For example, when the Doppler signals E and E ′ are in phase, the axis code signals X and Y obtained by binarizing the Doppler signals E and E ′ have a cycle of (1, 1) and (−1, −1). (Refer to Fig. 6 (a)), and because the transition direction cannot be detected from the quadrant signal Q before and after the transition, it is not possible to erroneously detect an object (such as a window glass) that vibrates slightly as a moving object. There should be no.

しかしながら、ドップラー信号E,E’を軸符号信号X,Yに変換するコンパレータ9A,9Bのしきい値にチャタリング防止用のヒステリシスを持たせた場合、図7(a)に示すように同相のドップラー信号E,E’の振幅が異なっているとき(例えば、ドップラー信号E’の振幅が小さいとき)には、図7(b)(c)に示すように軸符号信号X,Yの間に位相差が生じて象限信号Qが(1,1)→(−1,1)→(−1,−1)→(1,−1)→(1,1)という順序で周期的に転移するため、微少振動する物体を近づく向きに移動する物体と誤検出してしまう虞がある(図6(b)参照)。   However, in the case where the thresholds of the comparators 9A and 9B that convert the Doppler signals E and E ′ into the axis code signals X and Y have hysteresis for preventing chattering, as shown in FIG. When the amplitudes of the signals E and E ′ are different (for example, when the amplitude of the Doppler signal E ′ is small), there is a position between the axis code signals X and Y as shown in FIGS. A phase difference occurs, and the quadrant signal Q periodically shifts in the order of (1, 1) → (−1,1) → (−1, −1) → (1, −1) → (1,1). There is a possibility that an object that vibrates slightly will be erroneously detected as an object that moves in the direction of approach (see FIG. 6B).

本発明は上記事情に鑑みて為されたものであり、その目的は、微少振動する物体を移動物体と誤検出することが抑制できる移動物体検出装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a moving object detection device capable of suppressing erroneous detection of a minute vibrating object as a moving object.

請求項1の発明は、上記目的を達成するために、所定の周波数で発振する発振手段と、発振手段から出力する送波信号により監視空間に超音波を送波する送波手段と、前記超音波が監視空間に存在する物体に反射して生じる反射波を受波する受波手段と、受波手段から出力する受波信号と前記送波信号と同周波数の基準信号との位相差を検波する位相検波手段と、位相検波手段から出力する位相検波信号を所定のしきい値と比較することで2値信号に変換する2値信号変換手段と、2値信号変換手段から出力する2値信号に基づいて監視空間における移動物体の存否を検知する検知手段とを備え、前記位相検波手段は、送波信号と同周波数で互いに位相の異なる基準信号と受波信号とを混合して互いに位相の異なる正負両極性を有した一対のドップラー信号に変換する一対の位相検波回路を有し、前記2値信号変換手段は、前記一対の位相検波回路から出力するドップラー信号をそれぞれヒステリシスを有した所定の第1のしきい値と比較することで軸符号信号に変換する一対の第1の比較器を有し、前記検知手段は、前記軸符号信号に基づいて、各ドップラー信号の信号値を縦横各軸に取ったベクトル平面の象限のうち両ドップラー信号の信号値を成分とするベクトルが存在する象限に対応する象限信号を発生する象限信号発生部を有する、移動体検出装置において、前記2値信号変換手段は、さらに、一対の前記ドップラー信号をそれぞれヒステリシスを有し且つ第1のしきい値よりも絶対値が小さい所定の第2のしきい値と比較することで判別信号に変換する一対の第2の比較器有し、前記検知手段は、前記第1の比較器の比較結果において記ドップラー信号何れも前記第1のしきい値を超えており且つ前記判別信号の位相差が第1のしきい値と第2のしきい値との差に対応した基準値よりも大きい場合に、前記象限信号を発生し、当該象限信号の時間的な変化に基づいて移動物体の存否を検知することを特徴とする。 In order to achieve the above object, an invention according to claim 1, an oscillating means that oscillates at a predetermined frequency, a wave sending means that sends an ultrasonic wave to a monitoring space by a wave sending signal output from the oscillating means, Detecting a phase difference between a wave receiving means for receiving a reflected wave generated by reflection of a sound wave on an object existing in a monitoring space, and a received signal output from the wave receiving means and a reference signal having the same frequency as the wave transmission signal. Phase detecting means, binary signal converting means for converting the phase detection signal output from the phase detecting means into a binary signal by comparing with a predetermined threshold value, and binary signal output from the binary signal converting means Detection means for detecting the presence or absence of a moving object in the monitoring space, and the phase detection means mixes a reference signal and a reception signal having the same frequency as the transmission signal and different phases from each other to obtain a phase difference from each other. A pair of different positive and negative polarities The binary signal converting means compares the Doppler signals output from the pair of phase detection circuits with a predetermined first threshold value having hysteresis, respectively. A pair of first comparators for converting into an axis code signal , and the detecting means is based on the axis code signal and is in a quadrant of a vector plane in which the signal values of the respective Doppler signals are taken on the vertical and horizontal axes. In the moving body detection apparatus, the binary signal converting means further includes a quadrant signal generating unit that generates a quadrant signal corresponding to a quadrant in which a vector whose components are signal values of both Doppler signals exists. a pair of second ratio to convert to the discrimination signal by comparing the Doppler signal with a predetermined second threshold value also is smaller absolute value than and the first threshold value having respective hysteresis Has a vessel, I said detecting means, said pre-Symbol doppler signal at the comparison result of the first comparator are both exceeded the first threshold value, and the phase difference of the determination signal is the first if the threshold and greater than the difference reference value corresponding to the second threshold value, generates the quadrant signal, to detect the presence or absence of a moving object based on the temporal change of the quadrant signals It is characterized by.

請求項2の発明は、請求項1の発明において、前記第2のしきい値を前記第1のしきい値の2分の1倍とし、前記第2の比較器の比較結果における位相差の基準値を4分のπとしたことを特徴とする。 According to a second aspect of the present invention, in the first aspect of the invention, the second threshold value is set to a half of the first threshold value, and the phase difference in the comparison result of the second comparator is calculated . The reference value is set to π / 4.

人のような移動物体に反射した反射波あるいは静止している物体に反射した反射波を受波して得られる一対のドップラー信号は、通常、互いの振幅値が同一若しくは僅かな差しか生じないはずであり、微少振動する物体に反射した反射波を受波して得られるドップラー信号のみが互いの振幅値に大きな差が生じると考えられるから、本発明によれば、何れか一方のドップラー信号の第1の比較器における第1のしきい値を超え、且つ他方のドップラー信号の値が第1のしきい値未満であれば微少振動する物体に反射した反射波と推測して象限信号を発生させないことで誤検出が抑制でき、さらに、一対のドップラー信号の何れも第1の比較器における第1しきい値以上である場合においても、第2の比較器の比較結果(2値化された判別信号α,β)における位相差が第1のしきい値と第2のしきい値との差に対応した基準値よりも大きいときにだけ象限信号を発生させ、第2の比較器の比較結果における位相差が基準値未満のときは移動物体検知の処理を行わないことにより、微少振動する物体を移動物体と誤検出することが抑制できる。 A pair of Doppler signals obtained by receiving a reflected wave reflected on a moving object such as a person or a reflected wave reflected on a stationary object usually has the same or slightly different amplitude value. Since only a Doppler signal obtained by receiving a reflected wave reflected by a minutely vibrating object should have a large difference in amplitude value between the two, according to the present invention, either one of the Doppler signals quadrant value exceeds the first threshold in the first comparator, and the value of the other of the Doppler signal is speculated that the reflected wave reflected on the object to fine vibration is less than the first threshold value The false detection can be suppressed by not generating the signal, and the comparison result of the second comparator even when the values of the pair of Doppler signals are both equal to or higher than the first threshold value in the first comparator. (Binarized A quadrant signal is generated only when the phase difference in the discrimination signals α, β) is larger than a reference value corresponding to the difference between the first threshold value and the second threshold value, and the second comparator compares When the phase difference in the result is less than the reference value, by not performing the moving object detection process, it is possible to suppress erroneous detection of a slightly vibrating object as a moving object.

図1に本実施形態のブロック図を示す。但し、本実施形態の基本構成並びに基本動作は図5に示した従来例と共通であるから、共通の構成要素には同一の符号を付して説明を省略する。   FIG. 1 shows a block diagram of this embodiment. However, since the basic configuration and basic operation of this embodiment are the same as those of the conventional example shown in FIG. 5, the same reference numerals are given to common components, and the description thereof is omitted.

本実施形態においては、ローパスフィルタ7A,7Bの出力端に、コンパレータ9A,9B(第1の比較器)とは別のコンパレータ9C,9D(第2の比較器)を並列に接続するとともに、これらのコンパレータ9C,9Dにおける比較結果(以下、判別信号と呼ぶ。)α,βを、マイコンからなる検知回路8の象限信号発生回路80に取り込んでいる。ここで、コンパレータ9A,9Bにおいてはしきい値にヒステリシスが持たせてあり、ドップラー信号E,E’が大きい方のしきい値Th1(+)を上回ると小さい方のしきい値Th1(-)に切り替わり、ドップラー信号E,E’が小さい方のしきい値Th1(-)を下回ると大きい方のしきい値Th1(+)に切り替わることでチャタリングを防止している。同様に、本実施形態で追加しているコンパレータ9C,9Dにおいてもしきい値にヒステリシスが持たせてあり、ドップラー信号E,E’が大きい方のしきい値Th2(+)を上回ると小さい方のしきい値Th2(-)に切り替わり、ドップラー信号E,E’が小さい方のしきい値Th2(-)を下回ると大きい方のしきい値Th2(+)に切り替わるようになっている。そして、コンパレータ9A,9Bにおけるしきい値(第1のしきい値)Th1(+),Th1(-)に対してコンパレータ9C,9Dにおけるしきい値(第2のしきい値)Th2(+),Th2(-)の方が絶対値が小さく、すなわち、Th2(+)<Th1(+)且つTh2(-)>Th1(-)の関係を満たすように第2のしきい値Th2(+),Th2(-)を設定しており、ドップラー信号E,E’のが第2のしきい値Th2(+)よりも大きいときに判別信号α,βがハイレベルとなり、ドップラー信号E,E’のが第2のしきい値Th2(-)よりも小さい場合に判別信号α,βがローレベルとなる。 In the present embodiment, comparators 9C and 9D (second comparator) different from the comparators 9A and 9B (first comparator) are connected in parallel to the output terminals of the low-pass filters 7A and 7B. The comparison results (hereinafter referred to as discrimination signals) α and β in the comparators 9C and 9D are taken into the quadrant signal generation circuit 80 of the detection circuit 8 made of a microcomputer. Here, in the comparators 9A and 9B, hysteresis is given to the threshold value. When the Doppler signals E and E ′ exceed the larger threshold value Th1 (+), the smaller threshold value Th1 (−). When the Doppler signals E and E ′ fall below the smaller threshold value Th1 (−), the switching to the larger threshold value Th1 (+) prevents chattering. Similarly, the comparators 9C and 9D added in this embodiment also have hysteresis in the threshold value, and when the Doppler signals E and E ′ exceed the larger threshold value Th2 (+), the smaller one is obtained. The threshold value Th2 (-) is switched, and when the Doppler signals E and E 'fall below the smaller threshold value Th2 (-), the larger threshold value Th2 (+) is switched. The threshold values (second threshold values) Th2 (+) in the comparators 9C and 9D are compared with the threshold values (first threshold values) Th1 (+) and Th1 (-) in the comparators 9A and 9B. , Th2 (-) has a smaller absolute value, that is, the second threshold value Th2 (+) so as to satisfy the relationship Th2 (+) <Th1 (+) and Th2 (-)> Th1 (- ). , Th2 (−) are set, and when the values of the Doppler signals E, E ′ are larger than the second threshold value Th2 (+), the determination signals α 1 , β become high level, and the Doppler signals E, E When the value of 'is smaller than the second threshold value Th2 (-), the discrimination signals α and β become low level.

一方、象限信号発生回路80においては、ドップラー信号E,E’のうち、何れか一方の振幅値が、第1の比較器(コンパレータ9A又は9B)における第1のしきい値Th1(+),Th1(-)より小さく、他方の振幅値が、第1の比較器(コンパレータ9A又は9B)における第1のしきい値Th1(+),Th1(-)より大きい場合、コンパレータ9A,9Bで2値化された軸符号信号X,Yから象限信号を発生する処理を行わない。つまり、人のような移動物体に反射した反射波あるいは静止している物体に反射した反射波を受波して得られる一対のドップラー信号E,E’は、通常、互いの振幅値が同一若しくは僅かな差しか生じないはずであり、微少振動する物体(例えば、自動車等の通過に伴って振動する車両の窓ガラスなど)に反射した反射波を受波して得られるドップラー信号E,E’互いの振幅値に大きな差が生じると考えられるから、ドップラー信号E,E’の何れか一方が、第1の比較器おける第1のしきい値Th1(+),Th1(-)より小さく、他方のドップラー信号が第1の比較器における第1のしきい値Th1(+),Th1(-)より大きいときに受波信号Einが微少振動する物体に反射した反射波によるものと推測することができ、その場合に象限信号発生回路80で象限信号を発生させないことによって微少振動する物体を移動物体と誤検出することが抑制できる。 On the other hand, in the quadrant signal generation circuit 80, the amplitude value of one of the Doppler signals E and E ′ is the first threshold value Th1 (+), in the first comparator (comparator 9A or 9B). When smaller than Th1 (−) and the other amplitude value is larger than the first threshold value Th1 (+), Th1 (−) in the first comparator (comparator 9A or 9B) , the comparator 9A, 9B sets 2 Processing for generating quadrant signals from the digitized axis code signals X and Y is not performed. That is, a pair of Doppler signals E and E ′ obtained by receiving a reflected wave reflected on a moving object such as a person or a reflected wave reflected on a stationary object usually has the same amplitude value or Only a slight difference should occur, and Doppler signals E and E ′ obtained by receiving reflected waves reflected on a slightly vibrating object (for example, a window glass of a vehicle that vibrates as a vehicle passes). since it is believed to occur a large difference in the amplitude value of each other, the Doppler signal E, is one of E ', the first threshold Th1 which those of the first comparator (+), Th1 - from () When the other Doppler signal is smaller and larger than the first threshold values Th1 (+) and Th1 (-) in the first comparator , the received signal Ein is caused by a reflected wave reflected by a slightly vibrating object. Quadrant signal generation circuit can be guessed 0 can be suppressed to be erroneously detected as an object the moving object minutely vibrate by not generating a quadrant signal.

ここで、受波信号Einが微少振動する物体に反射した反射波によるものであっても、ドップラー信号E,E’の値が何れも第1の比較器(コンパレータ9A又は9B)における第1のしきい値Th1(+),Th1(-)を超えてしまう場合があるから、第1の比較器(コンパレータ9A又は9B)における第1のしきい値Th1(+),Th1(-)との比較処理のみでは微少振動する物体の誤検出を十分に抑制することができない。 Here, it is by the reflected wave reflected on the object reception signal Ein is minutely vibrate, the Doppler signal E, E 'values are all first comparator (comparator 9A or 9B) in the first of Since the threshold values Th1 (+) and Th1 (-) may be exceeded, the first threshold values Th1 (+) and Th1 (-) in the first comparator (comparator 9A or 9B ) Only the comparison processing cannot sufficiently suppress erroneous detection of an object that vibrates slightly.

そこで、ドップラー信号E,E’の値が何れも第1の比較器(コンパレータ9A又は9B)における第1のしきい値Th1(+),Th1(-)を超えている場合であっても、判別信号α,βの位相差が第1のしきい値Th1(+),Th1(-)と第2のしきい値Th2(+),Th2(-)との差に対応した基準値未満であれば、ドップラー信号E,E’がほぼ同相又は逆相で受波信号Einが微少振動する物体に反射した反射波によるものと推測することができる Therefore, even if the values of the Doppler signals E and E ′ exceed the first threshold values Th1 (+) and Th1 (−) in the first comparator (comparator 9A or 9B ), The phase difference between the discrimination signals α and β is less than the reference value corresponding to the difference between the first threshold values Th1 (+) and Th1 (−) and the second threshold values Th2 (+) and Th2 (−). If so, it can be assumed that the Doppler signals E and E ′ are substantially in phase or out of phase, and the received signal Ein is due to a reflected wave reflected by a slightly vibrating object .

例えば、第2のしきい値Th2(+),Th2(-)を第1のしきい値Th1(+),Th1(-)の2分の1倍(Th2(+)=Th1(+)×1/2,Th2(-)=Th1(-)×1/2)に設定した場合、図2に示すようにドップラー信号E,E’の第1のしきい値Th1(+),Th1(-)を超えているときの判別信号α,βの位相差Δφは最大で30°(=π/6)となるので、位相差Δφが30°以下であれば同相と判断し、微少振動する物体に反射した反射波によるものと推測することができる。そして、図3に示すように判別信号αがローレベルからハイレベルに変化した時点t1(象限信号Q=(1,-1))から、判別信号βがローレベルからハイレベルに変化する時点t2(象限信号Q=(1,1))までの時間T1(=t2-t1)と、時点t2から判別信号αがハイレベルからローレベルに変化した時点t3(象限信号Q=(-1,1))までの時間T2(=t3-t2)とを演算回路83において比較し、2つの時間T1,T2の比(T1:T2)が1:3〜3:1の範囲内、言い換えると2つの時間T1,T2の時間差に対応する判別信号α,βの位相差Δφが45°(=π/4)以上のときにだけ演算回路83が転移方向検出回路82の出力信号を読み込んで記憶している値に対して方向信号が反時計回りなら1を加え、時計回りなら1を引く処理を実行し、2つの時間T1,T2の時間差に対応する判別信号α,βの位相差Δφが45°未満のときは演算回路83は記憶値に対して加算又は減算処理を行わない。つまり、2つの時間T1,T2の比(T1:T2)が1:3〜3:1の範囲外、言い換えると2つの時間T1,T2の時間差に対応する判別信号α,βの位相差Δφが45°未満である場合、演算回路83では、図4に示すように実際の受波信号Einが第1象限と第3象限の間を移動する(ドップラー信号E,E’が同相のとき)か若しくは第2象限と第4象限の間を移動する(ドップラー信号E,E’が逆相のとき)と推定して移動物体の検出処理を行わないようにしている。 For example, a second threshold Th2 (+), Th2 (- ) the first threshold value Th1 (+), Th1 (- ) 1 times the half of the (Th2 (+) = Th1 ( +) × 1/2 , Th2 (−) = Th1 (−) × 1/2 ), the values of the Doppler signals E, E ′ are set to the first threshold values Th1 (+), Th1 as shown in FIG. (-) discrimination signal when exceeding the alpha, the phase difference Δφ of β is a maximum at 30 ° (= [pi / 6), determines that the phase if the phase difference Δφ is 30 ° or less, fine vibrations It can be inferred that this is due to the reflected wave reflected by the object. As shown in FIG. 3, the time t2 when the determination signal β changes from the low level to the high level from the time t1 when the determination signal α changes from the low level to the high level (quadrant signal Q = (1, −1)). Time T1 (= t2−t1) until (quadrant signal Q = (1,1)) and time t3 (quadrant signal Q = (− 1,1) when the determination signal α changes from high level to low level from time t2. )) Until the time T2 (= t3-t2) is compared in the arithmetic circuit 83, and the ratio (T1: T2) of the two times T1, T2 is within the range of 1: 3 to 3: 1, in other words, the two The arithmetic circuit 83 reads and stores the output signal of the transition direction detection circuit 82 only when the phase difference Δφ between the determination signals α and β corresponding to the time difference between the times T1 and T2 is 45 ° (= π / 4) or more. Add 1 if the direction signal is counterclockwise to the value, and turn clockwise If the phase difference Δφ between the discrimination signals α and β corresponding to the time difference between the two times T1 and T2 is less than 45 °, the arithmetic circuit 83 adds or subtracts the stored value. Not performed. That is, the ratio (T1: T2) of the two times T1 and T2 is outside the range of 1: 3 to 3: 1. In other words , the phase difference Δφ between the determination signals α and β corresponding to the time difference between the two times T1 and T2 is If the angle is less than 45 °, the arithmetic circuit 83 determines whether the actual received signal Ein moves between the first quadrant and the third quadrant (when the Doppler signals E and E ′ are in phase) as shown in FIG. Alternatively, it is estimated that the movement is between the second quadrant and the fourth quadrant (when the Doppler signals E and E ′ are in reverse phase), so that the moving object detection process is not performed.

ここで、演算回路83が判別信号α,βの位相差Δφと比較している基準値(=45°)は、第1のしきい値Th1(+),Th1(-)と第2のしきい値Th2(+),Th2(-)との差に対応した値、すなわち、判別信号α,βの位相差Δφの最大値(=30°)に若干の余裕値を見積もって決定される値である。但し、本実施形態で例示した値は一例であって、これに限定する趣旨ではない。 Here, the reference value (= 45 °) that the arithmetic circuit 83 compares with the phase difference Δφ between the discrimination signals α and β is the first threshold Th1 (+), Th1 (−) and the second threshold value. A value corresponding to the difference between the threshold values Th2 (+) and Th2 (-), that is, a value determined by estimating a slight margin value for the maximum value (= 30 °) of the phase difference Δφ between the discrimination signals α and β. It is. However, the values exemplified in this embodiment are merely examples, and the present invention is not limited to these values.

而して、本実施形態によれば、ドップラー信号E,E’の何れか一方の値がコンパレータ9A,9B第1の比較器)における第1のしきい値Th1(+),Th1(-)未満であり、他方のドップラー信号の値が第1のしきい値Th1(+),Th1(-)以上であれば、微少振動する物体に反射した反射波と推測して象限信号発生回路80から象限信号Qを発生させないことで誤検出が抑制でき、さらに、ドップラー信号E,E’の何れもコンパレータ9A,9Bにおける第1のしきい値Th1(+),Th1(-)以上である場合においても、判別信号α,βの位相差Δφが第1のしきい値Th1(+),Th1(-)と第2のしきい値Th2(+),Th2(-)との差に対応した基準値よりも大きいときにだけ象限信号Qを発生させ、判別信号α,βの位相差Δφが基準値未満のときは演算回路83が移動物体検知の処理(記憶値に対して加算又は減算処理)を行わないことにより、微少振動する物体を移動物体と誤検出することがより確実に抑制できるものである。 Thus, according to the present embodiment, one of the values of the Doppler signals E and E ′ becomes the first threshold values Th1 (+) and Th1 (− in the comparators 9A and 9B ( first comparator). ) And the value of the other Doppler signal is equal to or greater than the first threshold value Th1 (+), Th1 (−), it is assumed that the reflected wave is reflected by a slightly vibrating object, and the quadrant signal generation circuit 80 Since the quadrant signal Q is not generated, false detection can be suppressed, and the values of the Doppler signals E and E ′ are both equal to or higher than the first threshold values Th1 (+) and Th1 (−) in the comparators 9A and 9B . Even in some cases, the phase difference Δφ between the discrimination signals α and β is the difference between the first threshold values Th1 (+) and Th1 (−) and the second threshold values Th2 (+) and Th2 (−). is generated only quadrant signal Q when greater than the corresponding reference value, determination signal alpha, when the phase difference Δφ of β is less than the reference value calculation times By 83 it does not perform the processing of the moving object detection (addition or subtraction processing on the stored value), in which more reliably suppressed from being erroneously detected as the moving object an object minutely vibrate.

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 同上の動作説明用の波形図である。It is a wave form diagram for operation explanation same as the above. 同上における軸符号信号の説明図である。It is explanatory drawing of the axis code signal in the same as the above. 同上における象限信号の説明図である。It is explanatory drawing of the quadrant signal in the same as the above. 従来例を示すブロック図である。It is a block diagram which shows a prior art example. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明用の波形図である。It is a wave form diagram for operation explanation same as the above.

1 発振器
2 送波回路
3 送波器
4 受波器
5 受波回路
6A,6B 位相検波回路
8 検知回路
9A,9B コンパレータ(第1の比較器)
9C,9D コンパレータ(第2の比較器)
80 象限信号発生回路
83 演算回路
DESCRIPTION OF SYMBOLS 1 Oscillator 2 Transmitter circuit 3 Transmitter 4 Receiver 5 Receiver circuit 6A, 6B Phase detector circuit 8 Detector circuit 9A, 9B Comparator (1st comparator)
9C, 9D comparator (second comparator)
80 quadrant signal generation circuit 83 arithmetic circuit

Claims (2)

所定の周波数で発振する発振手段と、発振手段から出力する送波信号により監視空間に超音波を送波する送波手段と、前記超音波が監視空間に存在する物体に反射して生じる反射波を受波する受波手段と、受波手段から出力する受波信号と前記送波信号と同周波数の基準信号との位相差を検波する位相検波手段と、位相検波手段から出力する位相検波信号を所定のしきい値と比較することで2値信号に変換する2値信号変換手段と、2値信号変換手段から出力する2値信号に基づいて監視空間における移動物体の存否を検知する検知手段とを備え、
前記位相検波手段は、送波信号と同周波数で互いに位相の異なる基準信号と受波信号とを混合して互いに位相の異なる正負両極性を有した一対のドップラー信号に変換する一対の位相検波回路を有し、
前記2値信号変換手段は、前記一対の位相検波回路から出力するドップラー信号をそれぞれヒステリシスを有した所定の第1のしきい値と比較することで一対の軸符号信号に変換する一対の第1の比較器を有し、
前記検知手段は、前記一対の軸符号信号に基づいて、各ドップラー信号の信号値を縦横各軸に取ったベクトル平面の象限のうち両ドップラー信号の信号値を成分とするベクトルが存在する象限に対応する象限信号を発生する象限信号発生部を有する、移動体検出装置において、
前記2値信号変換手段は、さらに、一対の前記ドップラー信号をそれぞれヒステリシスを有し且つ第1のしきい値よりも絶対値が小さい所定の第2のしきい値と比較することで一対の判別信号に変換する一対の第2の比較器有し、
前記検知手段は、前記第1の比較器の比較結果において記ドップラー信号何れも前記第1のしきい値を超えており且つ前記一対の判別信号の位相差が前記第1のしきい値と前記第2のしきい値との差に対応した基準値よりも大きい場合に、前記象限信号を発生し、当該象限信号の時間的な変化に基づいて移動物体の存否を検知することを特徴とする移動物体検出装置。
An oscillating unit that oscillates at a predetermined frequency, a transmitting unit that transmits an ultrasonic wave to the monitoring space by a transmission signal output from the oscillating unit, and a reflected wave that is generated when the ultrasonic wave is reflected by an object existing in the monitoring space Receiving means for receiving the signal, phase detecting means for detecting the phase difference between the received signal output from the receiving means and the reference signal having the same frequency as the transmitted signal, and the phase detecting signal output from the phase detecting means A binary signal converting means for converting the signal into a binary signal by comparing the signal with a predetermined threshold, and a detecting means for detecting the presence or absence of a moving object in the monitoring space based on the binary signal output from the binary signal converting means And
The phase detection means mixes a reference signal and a reception signal having the same frequency as the transmission signal and different phases, and converts them into a pair of Doppler signals having positive and negative polarities having different phases. Have
The binary signal converting means converts the Doppler signals output from the pair of phase detection circuits to a predetermined first threshold value having hysteresis, thereby converting the signals into a pair of axis code signals . Having a comparator of
The detection means is based on the pair of axis code signals in a quadrant in which a vector whose component is the signal value of both Doppler signals is present among quadrants of the vector plane in which the signal values of the Doppler signals are taken in the vertical and horizontal axes. In the mobile object detection device having a quadrant signal generation unit for generating a corresponding quadrant signal,
The binary signal converting means further compares the pair of Doppler signals with a predetermined second threshold value having hysteresis and having an absolute value smaller than the first threshold value, thereby making a pair of determinations. a second comparator of the pair to be converted into a signal,
The detection means, the pre-Symbol doppler signal at the comparison result of the first comparator are both exceeded the first threshold value, and the pair of phase difference of the first threshold of the discrimination signal If the value is greater than the reference value corresponding to the difference between the second threshold value, it generates the quadrant signal, to detect the presence or absence of a moving object based on the temporal change of the quadrant signals A moving object detection device.
前記第2のしきい値を前記第1のしきい値の2分の1倍とし、前記第2の比較器の比較結果における位相差の基準値を4分のπとしたことを特徴とする請求項1記載の移動物体検出装置。 The second threshold value is set to a half of the first threshold value, and the reference value of the phase difference in the comparison result of the second comparator is set to π / 4. The moving object detection device according to claim 1.
JP2006182468A 2006-01-06 2006-06-30 Moving object detection device Expired - Fee Related JP4886395B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006182468A JP4886395B2 (en) 2006-06-30 2006-06-30 Moving object detection device
PCT/JP2006/326294 WO2007077940A1 (en) 2006-01-06 2006-12-29 Mobile unit detecting device
CN2006800107943A CN101151552B (en) 2006-01-06 2006-12-29 Moving body detection device
EP06843672.4A EP1970729B1 (en) 2006-01-06 2006-12-29 Mobile unit detecting device
KR1020077021768A KR100985451B1 (en) 2006-01-06 2006-12-29 Moving object detection apparatus
US11/887,079 US7746220B2 (en) 2006-01-06 2006-12-29 Moving object detection apparatus
MYPI20071565 MY152851A (en) 2006-01-06 2006-12-29 Moving object detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182468A JP4886395B2 (en) 2006-06-30 2006-06-30 Moving object detection device

Publications (2)

Publication Number Publication Date
JP2008008871A JP2008008871A (en) 2008-01-17
JP4886395B2 true JP4886395B2 (en) 2012-02-29

Family

ID=39067200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182468A Expired - Fee Related JP4886395B2 (en) 2006-01-06 2006-06-30 Moving object detection device

Country Status (1)

Country Link
JP (1) JP4886395B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796603B2 (en) 2008-05-22 2011-10-19 パナソニック電工株式会社 Moving body detection device
JP5354712B2 (en) * 2008-07-17 2013-11-27 パナソニック株式会社 Moving body detection device

Also Published As

Publication number Publication date
JP2008008871A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP5626132B2 (en) Object detection device
JP4389874B2 (en) Moving body detection device
JP2008151506A (en) Moving object detecting device
US8638254B2 (en) Signal processing device, radar device, vehicle control system, signal processing method, and computer-readable medium
JP4936162B2 (en) Moving object detection device
US7746220B2 (en) Moving object detection apparatus
US20100052972A1 (en) Moving object detection system
JP4886395B2 (en) Moving object detection device
JP4796603B2 (en) Moving body detection device
JP2012237712A (en) Vehicle monitoring method and monitoring device
TW200303992A (en) An in-car intrusion detection system
JP2013079855A (en) Moving object detection device
JP2007183182A (en) Moving body detector
JP4783130B2 (en) Microwave Doppler sensor
JP2015025712A (en) Ultrasonic sensor
JP5354712B2 (en) Moving body detection device
JPH06222140A (en) Ultrasonic sensor
JPH0644040B2 (en) Ultrasonic security device
JPH0616085B2 (en) Moving object detector
JP2010223623A (en) Doppler sensor
JPS63249076A (en) Moving body detector
JP2020165883A (en) Object detection system, moving body, object detection method and program
JP5821025B2 (en) Moving body detection device
JP5767170B2 (en) FSK demodulator
JPH05172942A (en) Doppler type object detecting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4886395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees