JP4883398B2 - Background light reduction method and member for evanescent wave excitation fluorescence observation - Google Patents

Background light reduction method and member for evanescent wave excitation fluorescence observation Download PDF

Info

Publication number
JP4883398B2
JP4883398B2 JP2006242020A JP2006242020A JP4883398B2 JP 4883398 B2 JP4883398 B2 JP 4883398B2 JP 2006242020 A JP2006242020 A JP 2006242020A JP 2006242020 A JP2006242020 A JP 2006242020A JP 4883398 B2 JP4883398 B2 JP 4883398B2
Authority
JP
Japan
Prior art keywords
light
waveguide substrate
substrate
incident
stray light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006242020A
Other languages
Japanese (ja)
Other versions
JP2008064574A (en
Inventor
淳 平林
昇 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006242020A priority Critical patent/JP4883398B2/en
Priority to PCT/JP2007/065708 priority patent/WO2008029591A1/en
Publication of JP2008064574A publication Critical patent/JP2008064574A/en
Application granted granted Critical
Publication of JP4883398B2 publication Critical patent/JP4883398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明はエバネッセント波励起蛍光観察における背景蛍光を低減する方法及び該方法に使用する部材に関する。   The present invention relates to a method for reducing background fluorescence in evanescent wave excitation fluorescence observation and a member used in the method.

エバネッセント波励起方式による蛍光観察手法は、顕微鏡の分野でタンパク質の1分子観察を可能とするなど、近年、高い成果を挙げている技術である。   The fluorescence observation method based on the evanescent wave excitation method is a technology that has been highly successful in recent years, such as enabling single-molecule observation of proteins in the field of microscopy.

このようなエバネッセント波励起方式による蛍光観察手法は、基板上に蛍光標識したプローブ溶液を接触させた基板内で光を全反射させたときに界面近傍数百nmに限定的に発生するエバネッセント波により基板-液層界面近傍の蛍光標識プローブ分子が選択的に励起されることを利用したものである。すなわち、入射光をスラブ型導波路基板端面より入射し、スライド基板内を繰り返し全反射させて導波させてエバネッセント波を発生させ、このエバネッセント波により励起されるプローブ分子が発する蛍光を観察することによって、スライド基板表面に固定化した分子とプローブ分子間の相互作用を観察することが出来る(図1)。   The fluorescence observation method using such an evanescent wave excitation method is based on the evanescent wave generated in a limited number of hundreds of nanometers in the vicinity of the interface when the light is totally reflected in the substrate in contact with the fluorescently labeled probe solution on the substrate. This is based on the selective excitation of fluorescently labeled probe molecules in the vicinity of the substrate-liquid layer interface. That is, incident light is incident from the end face of the slab type waveguide substrate, and is repeatedly reflected and guided through the slide substrate to generate an evanescent wave, and the fluorescence emitted by the probe molecules excited by the evanescent wave is observed. Thus, the interaction between the molecule immobilized on the surface of the slide substrate and the probe molecule can be observed (FIG. 1).

このようなエバネッセント波励起による蛍光観察は、特に、多数の被験分子を固定したマイクロアレイにおける上記分子と蛍光プローブとの結合状態の観察に適しており、このようなエバネッセント波励起方式を利用したマイクロアレイ技術としては、例えば、水平方向に設置したスラブ型導波路を具備する基板上に設置された反応槽内部に蛍光プローブ試料溶液を注入することにより、蛍光プローブ試料をスラブ型導波路に接触させるように構成し、導波路内にある角度をつけて入射光を導入することで、導波路上に生じるエバネッセント波により界面近傍領域のプローブ分子を選択的に励起することを可能としたものがあり(特許文献1参照)、また、本発明者も数件出願している(PCT-JP2004009600、PCT-JP2004019333、特願2005-184171)。   Such fluorescence observation by evanescent wave excitation is particularly suitable for observing the binding state between the above-mentioned molecule and a fluorescent probe in a microarray in which a large number of test molecules are immobilized. Microarray technology using such evanescent wave excitation method For example, by injecting a fluorescent probe sample solution into a reaction vessel installed on a substrate having a slab waveguide installed in a horizontal direction, the fluorescent probe sample is brought into contact with the slab waveguide. In some cases, by introducing incident light at an angle in the waveguide, it is possible to selectively excite the probe molecules in the vicinity of the interface by the evanescent wave generated on the waveguide (patented) In addition, the inventor has filed several applications (PCT-JP2004009600, PCT-JP2004019333, Japanese Patent Application 2005-184171).

しかし、エバネッセント波励起方式の選択的励起は理論上、界面結合分子に対する選択性ではなく界面からの距離の関数に依存した現象であり、界面よりはるか上層に存在する非結合分子の励起を完全にゼロにするものではない。また現実には装置内で非理想的に生じる全反射条件を逸脱した迷光が存在するため、実際の観察においてはエバネッセント領域よりも上層のプローブ溶液層が光る現象が観察されることが知られていた。このような迷光や導波路進行中に全反射条件を満たさなくなった光がプローブ液上層に到達し、プローブ分子を直接励起してしまうと背景光強度が上がる為結果的にS/N比の大幅な低下をもたらす。このようなことが、従来のエバネッセント励起方式で十分なS/N比と感度を両立させることを困難としてきた。また背景光が強い場合、高濃度プローブ溶液の使用が制限される要因になるため、弱い相互作用の検出が困難になるといった問題点があった。   However, the selective excitation of the evanescent wave excitation method is theoretically a phenomenon that depends on the function of the distance from the interface, not the selectivity for the interface-bound molecule, and completely eliminates the excitation of non-bonded molecules existing far above the interface. It's not going to be zero. In reality, there is stray light that deviates from the total reflection condition that occurs non-ideally in the device, and it is known that a phenomenon in which the probe solution layer above the evanescent region shines is observed in actual observation. It was. Such stray light or light that does not satisfy the total reflection condition while traveling in the waveguide reaches the upper layer of the probe solution and directly excites the probe molecules, resulting in increased background light intensity, resulting in a large S / N ratio. Cause a significant decline. This has made it difficult to achieve both a sufficient S / N ratio and sensitivity with the conventional evanescent excitation method. In addition, when the background light is strong, the use of the high-concentration probe solution becomes a limiting factor, which makes it difficult to detect weak interactions.

これに対し、本発明者らは、上記エバネッセント波励起蛍光検出における、基板上の反応槽内に進入する迷光対策として、プローブ液層にコロイド溶液を加えることでコロイドを分散させ、迷光によってプローブ溶液上層が励起されても発生した蛍光が検出器に到達しにくくする方法を開発している(特願2005-006298)。この方法は、背景光を簡便に減弱することが可能であるが、反面、添加するコロイド溶液の内容物によって、平衡反応が変化する可能性がある点や、コロイド粒子に対してプローブ分子が吸着するケースには不適であることから充分ではない点もあった。   In contrast, the present inventors, as a countermeasure against stray light entering the reaction vessel on the substrate in the evanescent wave excitation fluorescence detection, disperse the colloid by adding a colloid solution to the probe liquid layer, and the probe solution by stray light. A method has been developed to make it difficult for the generated fluorescence to reach the detector even when the upper layer is excited (Japanese Patent Application 2005-006298). Although this method can easily attenuate background light, the equilibrium reaction may change depending on the contents of the added colloid solution, and the probe molecules adsorb to the colloidal particles. In some cases, it is not sufficient because it is unsuitable.

また、本発明者らはさらに一歩進んだ方法として、エバネッセント波励起蛍光検出における基板上の反応槽内に進入する迷光対策として、プローブ溶液層の厚みを極めて薄くすることで、反応槽内部を迷光が通過する際に励起されるプローブ溶液上層の蛍光分子の絶対数を減らす技術を開発している(特願2006-203257)。しかしこれらの技術のいずれもが、プローブ溶液上層の蛍光分子を励起してしまう迷光の発生源そのものに手をつけた方法ではなく、迷光は存在しているがその影響を抑える方法である為、背景光の低減できる下限にはおのずと限界があった。また迷光の存在そのものを反応槽内から除去するという根本的対策技術ついては、今まで全く報告がなされてこなかった。

特表2003−521684号公報
Further, the present inventors have taken a step further as a countermeasure against stray light entering the reaction tank on the substrate in evanescent wave excitation fluorescence detection, by making the probe solution layer extremely thin, stray light inside the reaction tank. A technology has been developed to reduce the absolute number of fluorescent molecules in the upper layer of the probe solution that is excited when passing through (Japanese Patent Application No. 2006-203257). However, none of these techniques is a method of dealing with the source of stray light itself that excites the fluorescent molecules in the upper layer of the probe solution, because it is a method of suppressing the influence of stray light existing, There was a natural limit to the lower limit of background light reduction. There has been no report on the fundamental countermeasure technology for removing the presence of stray light from the reaction tank.

Special table 2003-521684 gazette

本発明の課題は、スラブ型導波路を具備した基板を用いてエバネッセント波励起蛍光観察を行う際に、光学的に非理想的な条件下で発生した迷光が基板上の反応槽内のエバネッセント場よりも上部へ到達してしまう現象を効果的に抑制することで、高いS/N比での蛍光観察を達成する方法であり、しかも、上記迷光の抑制が簡便かつ安価に実施可能であるとともに、全自動化解析機器等へも適用し得る、迷光の新規抑制手段を提供することにある。
The problem of the present invention is that when performing evanescent wave excitation fluorescence observation using a substrate having a slab waveguide, stray light generated under optically non-ideal conditions is generated in an evanescent field in a reaction vessel on the substrate. It is a method of achieving fluorescence observation at a high S / N ratio by effectively suppressing the phenomenon of reaching the upper part, and the suppression of the stray light can be carried out easily and inexpensively. Another object of the present invention is to provide a new means for suppressing stray light, which can be applied to a fully automated analyzer.

本発明者は、エバネッセント波励起蛍光観察装置内に残存する、光学的設計意図から外れた非理想的迷光や、導波路内部に入射されて全反射を繰り返す間にスラブ型導波路基板内部での全反射条件を逸脱した迷光が、基板上の蛍光プローブ溶液上層へ達し、蛍光分子を励起してしまう現象が背景光の大きな一因となっていることに着目し、この迷光が基板上の反応槽に達することを抑制するための手段として迷光の吸収領域を基板上に効果的に配置することにより、プローブ溶液層の上層に到達する迷光の量を抑制し、エバネッセント波励起蛍光観察時の背景光の大幅な低減を達成し、本発明を完成させた。   The present inventor has found that non-ideal stray light remaining in the evanescent wave excitation fluorescence observation apparatus deviates from the optical design intention, or the inside of the slab type waveguide substrate while being totally reflected by being incident inside the waveguide. Focusing on the fact that stray light that deviates from the total reflection condition reaches the upper layer of the fluorescent probe solution on the substrate and excites fluorescent molecules, this is a major cause of background light. By effectively arranging the stray light absorption region on the substrate as a means to suppress reaching the bath, the amount of stray light reaching the upper layer of the probe solution layer is suppressed, and the background during evanescent wave excitation fluorescence observation A significant reduction in light was achieved and the present invention was completed.

すなわち本発明は以下のとおりである。
(1)底部に被験分子を固定した導波路基板を有する反応槽に蛍光標識したプローブ分子を含有するプローブ溶液を導入して、上記固定分子とプローブ分子とを結合させた後、上記導波路基板に光を導入してエバネッセント波励起蛍光観察を行うに際し、該反応槽内への迷光の入射を抑制し、エバネッセント波励起蛍光観察における背景光を低減する方法であって、入射光入射端部から被験分子固定位置に至る間の導波路基板の上面または下面に、入射光方向に少なくとも3mm以上の幅を有する迷光吸収領域を設けたことを特徴とする、上記背景光低減方法。
(2)迷光吸収領域が導波路基板を挟んで上下両面に設けられていることを特徴とする、上記(1)に記載の背景光低減方法。
(3)迷光吸収領域が、光吸収部材の接着により形成されていることを特徴とする、上記(1)または(2)に記載の背景光低減方法。
(4)導波路基板の入射光入射端面がレーザーカッティング加工されていることを特徴とする、上記(1)〜(3)のいずれかに記載の背景光低減方法。
(5)光吸収部材により反応槽が形成されていることを特調とする、上記(1)〜(4)のいずれかに記載の背景光低減方法。
(6)底部に被験分子を固定した反応槽を有する、エバネッセント波励起蛍光観察に使用する導波路基板であって、入射光入射端部から被験分子固定位置に至る間の導波路基板の上面または下面に、入射光方向に少なくとも3mm以上の幅を有する迷光吸収領域を設けたことを特徴とする、上記導波路基板。
(7)迷光吸収領域が導波路基板を挟んで上下両面に設けられていることを特徴とする、上記(6)に記載の導波路基板。
(8)迷光吸収領域が、光吸収部材の接着により形成されていることを特徴とする、上記(6)または(7)に記載の導波路基板。
(9)導波路基板の入射光入射端面がレーザーカッティング加工されていることを特徴とする、上記(6)〜(8)のいずれかに記載の導波路基板。
(10)光吸収部材により反応槽が形成されていることを特徴とする、上記(6)〜(9)のいずれかに記載の導波路基板。
(11)底部に被験分子を固定した反応槽を有する、エバネッセント波励起蛍光観察に使用する導波路基板であって、入射光入射端面がレーザーカッティング加工されていることを特徴とする、エバネッセント波励起蛍光観察に使用する導波路基板。
That is, the present invention is as follows.
(1) After introducing a probe solution containing a fluorescently labeled probe molecule into a reaction vessel having a waveguide substrate having a test molecule immobilized on the bottom, the immobilized molecule and the probe molecule are bonded, and then the waveguide substrate. When performing evanescent wave excitation fluorescence observation by introducing light into the reaction vessel, it is possible to reduce the background light in the evanescent wave excitation fluorescence observation by suppressing the incidence of stray light into the reaction tank, from the incident light incident end. The background light reduction method as described above, wherein a stray light absorption region having a width of at least 3 mm or more in the direction of incident light is provided on the upper surface or the lower surface of the waveguide substrate while reaching the test molecule fixing position.
(2) The background light reducing method as described in (1) above, wherein the stray light absorption regions are provided on both the upper and lower surfaces across the waveguide substrate.
(3) The background light reduction method according to (1) or (2) above, wherein the stray light absorption region is formed by adhesion of a light absorption member.
(4) The background light reducing method according to any one of (1) to (3) above, wherein the incident light incident end face of the waveguide substrate is laser-cut.
(5) The background light reduction method according to any one of (1) to (4), wherein the reaction tank is formed of a light absorbing member.
(6) A waveguide substrate used for evanescent wave excitation fluorescence observation, which has a reaction vessel in which a test molecule is fixed at the bottom, and the top surface of the waveguide substrate between the incident light incident end and the test molecule fixing position or The waveguide substrate according to claim 1, wherein a stray light absorption region having a width of at least 3 mm or more in the incident light direction is provided on the lower surface.
(7) The waveguide substrate according to (6), wherein stray light absorption regions are provided on both upper and lower surfaces with the waveguide substrate interposed therebetween.
(8) The waveguide substrate according to (6) or (7), wherein the stray light absorption region is formed by adhesion of a light absorption member.
(9) The waveguide substrate according to any one of (6) to (8) above, wherein the incident light incident end face of the waveguide substrate is laser-cut.
(10) The waveguide substrate according to any one of (6) to (9), wherein a reaction vessel is formed by a light absorbing member.
(11) An evanescent wave excitation characterized in that it is a waveguide substrate used for evanescent wave excitation fluorescence observation having a reaction vessel with a test molecule fixed on the bottom, and the incident light incident end face is laser-cut. A waveguide substrate used for fluorescence observation.

本発明によれば、迷光吸収領域を導波路基板に効果的な位置に設けることで、光学的に非理想的な迷光を反応槽に入射する前に吸収し、スラブ型導波路によるエバネッセント波励起蛍光観察を行う際に、観察の最大の障害要因となる背景蛍光の発生を抑制し、これにより高いS/N比での蛍光観察を可能とする。しかも、本発明の迷光抑制手段は簡便かつ安価に実施可能であり、その上、他の迷光の影響を低減する方法(液層厚制御法)と組み合わせて適応することで、背景蛍光の更なる低減を可能とする。
According to the present invention, by providing the stray light absorption region at an effective position on the waveguide substrate, optically non-ideal stray light is absorbed before entering the reaction vessel, and the evanescent wave is excited by the slab type waveguide. When performing fluorescence observation, generation of background fluorescence, which is the biggest obstacle to observation, is suppressed, thereby enabling fluorescence observation with a high S / N ratio. Moreover, the stray light suppressing means of the present invention can be implemented easily and inexpensively, and in addition, it can be applied in combination with other methods for reducing the influence of stray light (liquid layer thickness control method), thereby further increasing the background fluorescence. Reduction is possible.

本発明は、スライド基板そのものをスラブ型導波路として用いるエバネッセント波励起蛍光観察する方式に関するものである。   The present invention relates to an evanescent wave excitation fluorescence observation method using a slide substrate itself as a slab type waveguide.

図1に示すように、エバネッセント波励起光観察においては、被験分子19を固定した導波路基板5上にプローブ溶液14を接触させた後、十分に結合反応を進行させた後に、入射光を導波路基板5の端面より入射し、基板内で繰り返し全反射させることで、導波路上にエバネッセント波15を発生させる。これにより、被験分子19と結合した蛍光標識プローブ分子13は、エバネッセント波により励起され蛍光を発し、該蛍光を検出器16で検出することにより、基板上のプローブ分子と結合した被験分子を特定できる。   As shown in FIG. 1, in the evanescent wave excitation light observation, the probe solution 14 is brought into contact with the waveguide substrate 5 on which the test molecule 19 is fixed, and then the binding reaction is sufficiently advanced, and then the incident light is guided. An evanescent wave 15 is generated on the waveguide by being incident from the end face of the waveguide substrate 5 and being repeatedly totally reflected in the substrate. Thereby, the fluorescence-labeled probe molecule 13 bound to the test molecule 19 emits fluorescence when excited by an evanescent wave, and the test molecule bound to the probe molecule on the substrate can be identified by detecting the fluorescence with the detector 16. .

このとき界面から滲み出すエバネッセント場の強度は基板界面から鉛直方向に指数関数的に減衰する性質を持ち、蛍光分子の励起に関与する領域は界面から鉛直方向に数百nm程度であることが知られているので、残存するプローブ溶液の層が厚くても、原理的には導波路基板5上の被験分子19に結合したプローブ分子13が選択的に検出される。しかし、実際の光学系では導波路となるスライド基板に入射した光の中で全反射条件を満たす光(図2の破線)が基板内部を進むのに対し、入射または反射の過程で全反射条件を満たさなくなった光(以下迷光と呼ぶ)の一部(図2の実線)が残存するプローブ溶液上層中の蛍光標識プローブ分子を直接励起して背景光を発生させるため、S/N比が低下して良好な画像を感度よく得ることできないという問題点があった。   At this time, the intensity of the evanescent field that exudes from the interface has the property of exponentially decaying from the substrate interface in the vertical direction, and the region involved in the excitation of fluorescent molecules is about several hundreds of nanometers in the vertical direction from the interface. Therefore, even if the remaining probe solution layer is thick, in principle, the probe molecules 13 bound to the test molecules 19 on the waveguide substrate 5 are selectively detected. However, in an actual optical system, light (a broken line in FIG. 2) satisfying the total reflection condition among the light incident on the slide substrate serving as a waveguide travels inside the substrate, whereas the total reflection condition in the process of incidence or reflection. The background light is generated by directly exciting the fluorescently labeled probe molecules in the upper layer of the probe solution in which a part of the light (hereinafter referred to as stray light) that does not satisfy the conditions (solid line in FIG. 2) remains, and the S / N ratio decreases. As a result, a good image cannot be obtained with high sensitivity.

これに対して本発明の迷光抑制手段は、エバネッセント波励起蛍光観察する導波路基板において、入射光入射端部から被験分子を固定した領域までの間の導波路基板に、入射方向の幅が少なくとも3mmの迷光吸収領域を設けるものである。   On the other hand, the stray light suppressing means of the present invention is such that, in the waveguide substrate for evanescent wave excitation fluorescence observation, the width of the incident direction is at least on the waveguide substrate between the incident light incident end and the region where the test molecule is fixed. A stray light absorption region of 3 mm is provided.

この迷光吸収領域は、基板の上面または下面のみ、あるいは、上下両面に設けることにより、全反射条件を逸脱して反応槽内の被験分子固定領域の上方に抜けようとする迷光を補足するものである(図3)。これにより、光学系内にて生じた迷光が基板上反応槽内の被験分子固定領域の上方向に抜けるという従来のプロセスを抑制し、プローブ溶液上層の蛍光分子が迷光に直接励起される現象を抑制する。さらに導波路基板への入射光の入射端面をレーザーカッティング加工することで、端面における散乱迷光の発生を抑制する。このため本発明の迷光抑制手法を具備した基板を用いることで、エバネッセント波励起蛍光観察時の背景光を大幅に低減することが可能となり、S/N比の向上した良好な画像が得られる。   This stray light absorption region is provided only on the upper or lower surface of the substrate, or on both upper and lower surfaces, thereby supplementing stray light that escapes from the total reflection condition and escapes above the test molecule fixing region in the reaction tank. Yes (Figure 3). This suppresses the conventional process in which stray light generated in the optical system escapes upward in the test molecule fixing region in the reaction tank on the substrate, and the phenomenon that the fluorescent molecules in the upper layer of the probe solution are directly excited by stray light. Suppress. Further, by performing laser cutting on the incident end face of the incident light on the waveguide substrate, generation of scattered stray light on the end face is suppressed. For this reason, by using the substrate equipped with the stray light suppression method of the present invention, it becomes possible to significantly reduce the background light during the evanescent wave excitation fluorescence observation, and a good image with an improved S / N ratio can be obtained.

本発明の迷光吸収領域を形成する手段としては、例えば、カーボンブラック等の黒色顔料を配合した塗料を塗布する手段、あるいは黒色顔料を含有するゴム、樹脂等の成型品からなる光吸収部材を、導波路基板に接着する手段等が挙げられる。   As a means for forming the stray light absorption region of the present invention, for example, a means for applying a paint containing a black pigment such as carbon black, or a light absorbing member made of a molded product such as rubber or resin containing a black pigment, Means for bonding to the waveguide substrate and the like can be mentioned.

本発明の光吸収部材を具備した導波路基板の形態は図6に示される。この形態の光吸収部材は、導波路基板上に上部防水仕切材1によって区切られ複数形成されている各反応槽中における上部及び下部光吸収部材3により、迷光吸収領域6を形成するために設計されたものであって、各光吸収部材は、各反応槽の位置と対応させて設けられている。上部防水仕切部材1と上部光吸収部材3とは接着剤等により接着することも可能であるが、図7に示すように上部光吸収部材3を構成する材料を使用して上部防水仕切部材と上部光吸収部材を一体成形し、光吸収部材を反応槽側壁の構成部材として用いて反応槽を形成してもよい。この方法は上部防水仕切部材の作製コストを省くことができるため、コスト面でより有利な手法である。本発明の光吸収部材は、入射光入射端部から被験分子を固定した領域までの間の導波路基板に、入射光方向に少なくとも3mm以上の幅を有する迷光吸収領域6を形成し得るものであればどのような形状のものでものでもよい。
迷光吸収領域の幅については、後記する実施例に示す実験例から明らかなように、5.4mmを超すといくら幅を増やしてもそれほど背景光低減効果が向上しない。この実験例で使用した導波路基板の厚みは通常される1mmであるが、これ以上の厚みがあっても、少なくとも幅3mm、あるいは3〜6.5mm幅の迷光吸収領域を設ければ背景光を効果的に低減できる。
基板に配置する光吸収部材の材質については、本実施例ではシリコンゴム20°(黒色)を用いたが、他のスライドガラスに密着する材質(樹脂・シーリング剤等)を用いてもよい。更には、色について、黒色が好ましいが変更しても良い。接着形体も材料自体の粘着性で接着してもよく、また入射光波長領域における自家蛍光のなるべく低い接着剤を用いることも可能である。光吸収部材層の厚さは特に限定されないが、通常1 mm以上が好ましく、操作上の便宜をはかるためであれば、もっと厚さを厚くしても構わない。このような導波路基板の好ましい例としては、導波路基板上に配置する反応槽の縦方向中心間隔は8.4〜9.6 mmとして、これを基板左右両側の迷光吸収領域の間に配置するものが挙げられる(図8)。
The form of the waveguide substrate provided with the light absorbing member of the present invention is shown in FIG. The light absorbing member of this form is designed to form the stray light absorbing region 6 by the upper and lower light absorbing members 3 in each reaction tank that is divided and formed by the upper waterproof partition material 1 on the waveguide substrate. Each light absorption member is provided in correspondence with the position of each reaction tank. The upper waterproof partition member 1 and the upper light absorbing member 3 can be bonded with an adhesive or the like. However, as shown in FIG. The upper light absorbing member may be integrally formed, and the reaction tank may be formed using the light absorbing member as a constituent member of the reaction tank side wall. Since this method can save the manufacturing cost of the upper waterproof partition member, it is a more advantageous method in terms of cost. The light absorbing member of the present invention can form the stray light absorbing region 6 having a width of at least 3 mm or more in the incident light direction on the waveguide substrate between the incident light incident end and the region where the test molecule is fixed. Any shape can be used.
Regarding the width of the stray light absorption region, as is clear from the experimental examples shown in the examples described later, if the width exceeds 5.4 mm, the background light reduction effect is not improved so much. The thickness of the waveguide substrate used in this experimental example is usually 1 mm. However, if the stray light absorption region having a width of at least 3 mm or 3 to 6.5 mm is provided, even if the thickness is larger than this, background light is provided. Can be effectively reduced.
As for the material of the light absorbing member disposed on the substrate, silicon rubber 20 ° (black) is used in this embodiment, but other materials (resin, sealing agent, etc.) that are in close contact with the slide glass may be used. Furthermore, the color is preferably black, but may be changed. The adhesive shape may also be adhered by the adhesiveness of the material itself, and an adhesive having as low autofluorescence as possible in the incident light wavelength region can be used. The thickness of the light-absorbing member layer is not particularly limited, but is usually preferably 1 mm or more, and may be made thicker for the convenience of operation. As a preferable example of such a waveguide substrate, the center distance in the vertical direction of the reaction tank disposed on the waveguide substrate is 8.4 to 9.6 mm, and this is disposed between the stray light absorption regions on the left and right sides of the substrate. (FIG. 8).

また、反応槽の配置方法は横1列だけに限定されるものではなく、横2列以上でも構わない。例としてこれを基板左右両側の迷光吸収領域を除く反応槽領域の中で横2列に反応槽を仕切る方式を挙げることが可能である(図9)。なお、これら図8及び9の基板においては基板の長手方向左右両側に5.4mmの迷光吸収領域が設けられている。   Further, the arrangement method of the reaction tank is not limited to one horizontal row, and may be two or more horizontal rows. As an example, a system in which the reaction tanks are divided into two horizontal rows in the reaction tank area excluding the stray light absorption areas on the left and right sides of the substrate can be exemplified (FIG. 9). 8 and 9 are provided with stray light absorption regions of 5.4 mm on both the left and right sides in the longitudinal direction of the substrate.

また、本発明の迷光抑制法における背景光を低減させる効果と組み合わせる導波路基板は光透過性のものであればよいが、好ましくは、自家蛍光ができるだけ少なくかつ、端面形状が光学的に散乱光を生じにくい特性を持つよう加工されたものがよい。このような板状体の材料としては例えば、ホウ珪酸ガラス、白板ガラス、石英ガラス、合成石英、その他光学用途ガラス(BK7, SF03等)を挙げることができる。またより好ましい形態として基板端面での入射光の散乱による迷光の発生を低減するため、基板端面においてレーザーカッティング処理が施された基板の使用を挙げることができる(図10)。さらに本基板はエバネッセント波励起蛍光スキャナー以外の共焦点蛍光観察スキャナーなどのスキャナーで観察することが出来る対応性を備えており、プローブ試料溶液を十分に基板上の固定化分子と反応させた後に、光吸収部材を取り除き、共焦点蛍光観察スキャナーなどで観察することも可能である。   In addition, the waveguide substrate combined with the effect of reducing background light in the stray light suppression method of the present invention may be light-transmitting, but preferably has as little autofluorescence as possible and the end face shape is optically scattered light. It should be processed so that it has the characteristic that it is difficult to generate. Examples of such a plate-like material include borosilicate glass, white plate glass, quartz glass, synthetic quartz, and other optical use glasses (BK7, SF03, etc.). Further, as a more preferable form, in order to reduce generation of stray light due to scattering of incident light on the substrate end surface, use of a substrate subjected to laser cutting processing on the substrate end surface can be exemplified (FIG. 10). Furthermore, this substrate has the correspondence that can be observed with a scanner such as a confocal fluorescence observation scanner other than the evanescent wave excitation fluorescence scanner. After sufficiently reacting the probe sample solution with the immobilized molecules on the substrate, It is also possible to remove the light absorbing member and observe with a confocal fluorescence observation scanner or the like.

また、光吸収部材に重ねる形で上部修部飾部材や下部修飾部材を具備させることで、強度やサンプル注入時の操作利便性を高めても良い(図12)。さらに上部保護シールを配置することで基板上面からの物理的接触からの保護やプローブサンプル溶液の蒸発防止を図ることができ、さらに下部保護シールを具備することで基板下面からの物理的接触からの保護を図ることができる。
図12においては、上部修飾部材8・上部保護シール11を上部光吸収部材3の上に配置し、下部修飾部材9・下部保護シール12を下部光吸収部材4の下に配置した場合を示すが、これら修飾部材や保護シールの全部または一部を設けなくても特段の不都合はない。しかし、図13のように上部修飾部材8を導波路基板5の上の上部光吸収部材3の上に設けた場合、プローブ溶液の注入時の操作性が非常に向上する。またこの時、上部光吸収部材3の上に上部保護シール11を設けることで、プローブサンプル溶液の蒸発を防止することで取り扱いの利便性をより高める。下部保護シール12は、下部修飾部材9又は下部光吸収部材4に貼り付けることにより、下面からの物理的接触に起因する反応槽内導波路裏面の汚染を防止する役割を果たす。さらに上部保護シール11と下部保護シール12を遮光性素材又は波長選択的透光性素材で作製することで、蛍光プローブ溶液中の蛍光色素分子の長時間の光線暴露による退色(フォトブリーチング)を防止する機能を付与することが可能である。
Moreover, you may improve intensity | strength and the operation convenience at the time of sample injection | pouring by providing an upper repair part decoration member and a lower modification member in the form superimposed on a light absorption member (FIG. 12). In addition, an upper protective seal can be provided to protect from physical contact from the top surface of the substrate and to prevent evaporation of the probe sample solution, and a lower protective seal can be used to prevent physical contact from the bottom surface of the substrate. Protection can be achieved.
FIG. 12 shows a case where the upper modifying member 8 and the upper protective seal 11 are disposed on the upper light absorbing member 3 and the lower modifying member 9 and the lower protective seal 12 are disposed below the lower light absorbing member 4. There is no particular inconvenience even if all or part of these modifying members and protective seals are not provided. However, when the upper modifying member 8 is provided on the upper light absorbing member 3 on the waveguide substrate 5 as shown in FIG. 13, the operability at the time of injecting the probe solution is greatly improved. Further, at this time, by providing the upper protective seal 11 on the upper light absorbing member 3, the convenience of handling is further improved by preventing evaporation of the probe sample solution. The lower protective seal 12 plays a role of preventing contamination of the back surface of the waveguide in the reaction tank due to physical contact from the lower surface by being attached to the lower modification member 9 or the lower light absorbing member 4. Further, the upper protective seal 11 and the lower protective seal 12 are made of a light-shielding material or a wavelength-selective light-transmitting material, thereby fading (photo bleaching) due to long-term light exposure of fluorescent dye molecules in the fluorescent probe solution. It is possible to provide a function to prevent.

以下に本発明の実施例を示すが、本発明はこれら実施例に限定されるものではない。

(1)蛍光標識化タンパク質プローブの調製
蛍光標識化タンパク質プローブは、アシアロフェツイン(以下ASF)(SIGMA社)またはウシ血清アルブミン(以下BSA)(SIGMA社)を550 nm付近に吸収極大波長を持つ蛍光色素であるCy3 Mono-reactive Dye(アマシャムファルマシア社、以下Cy3)を用いて蛍光標識化して調製した。手順としては、ASFやBSAをリン酸緩衝生理食塩水、pH 7.4(以下PBS)に終濃度1 mg/mLになるよう調製した後、1 mLについて1.0 mgのCy3粉末と混合させ、1時間、適時攪拌しながら暗所で反応させた。次に担体としてSephadex G-25(アマシャムファルマシア社)を用いたゲルろ過クロマトグラフィーにより未反応のCy3分子を除去することで、Cy3標識化タンパクプローブ標品として精製した。

(2)光吸収部材の設置位置と最適寸法幅の検討
より効果的に迷光を吸収する黒色光吸収部材の形状を設計する為には、スポット面積と背景光低減効果のもっともバランスのよい点がどこかという知見が必要となる。この検討には実際の実験系と同じ材質や形状の基板を用い、条件を変えて実験を行った。以下にその実施例を示す。
接着表面平滑性向上の為に打ち抜き加工された黒色のシリコンゴム20°製の光吸収部材(厚さ1 mm)を切断加工し、吸収材両端-スライド端の距離を6mmと一定にして吸収剤の横幅を2, 4, 6 mmと3段階に変えた反応槽を、3-グリシドキシプロピルトリメトキシシラン(信越シリコーン社、以降GTMS)によるコーティング処理を施した、長さ76.2 mm × 幅25.4 mm (±0.05 mm)、厚さ1.0 mm (±0.05 mm)の白板ガラス製スライド基板上に作製した。次にスライド基板裏面に100 ng/mL Cy3-BSAを溶解した精製水を1 mLスポットして乾燥させ、エバネッセント波励起による蛍光強度評価用スポットサンプルを作製した。続いて反応槽内に1% BSAを含むPBS溶液を100 μLずつ満たし、湿度を90%以上に保った保存容器中で25℃、1時間放置し、反応槽内スライド基板上面へのプローブ試料分子の非特異的吸着を抑制するためのブロッキング操作を行った。この基板上の各反応槽内に5 mg/mLのCy3-BSAを加え、1時間静置した。
結果として、入射光の入射方向のラバーの幅が広くなるにつれ、同容量の同一プローブ溶液でも背景光が下がる様子が観察された(図4)。この結果から入射光の入射方向のラバーの幅が背景光の低減に効果があることが確認された。またこの実験結果では各反応槽内のスポットのシグナル輝度値に大きな変化が見られなかったことから、背景光低下がおきた反応槽内では、励起光全体が下がったのではなく、プローブ溶液上層由来の背景蛍光が選択的に減少したことが分かる。
本実験では、本実験条件においては入射光の入射方向の光吸収部材の幅が広ければ広いほど背景光強度が減弱するという結果を得た(図4)。さらにこの関係をプロットしてみると両者の相関には曲線的な関係があることが示された(図5)。換言すると、入射光入射方向の光吸収部材の幅が5.4 mmを越えたあたりからは、いくら幅を増やしてもそれほど効果的にバックグラウンド低減効果が向上しないことがわかる。このような結果を踏まえ、本実験系においては、スポット面積と背景光低減効果のもっともバランスのよい寸法として、入射光入射方向の光吸収部材の幅を約5.4 mmという値を導き出した。

(3)エバネッセント波励起蛍光観察における背景光の低減
3-グリシドキシプロピルトリメトキシシラン(信越シリコーン社)によるコーティング処理を施した、長さ76.2 mm × 幅25.4 mm (±0.05 mm)、厚さ1.0 mm (±0.05 mm)の白板ガラス製導波路基板上にレクチンを、非接触スポッターを用いて分注操作を繰り返すことで中心間間隔0.65mmのタンパク質43種を3スポットずつスポットしたタンパクアレイを作製した。ここに、黒色のシリコンゴム製の光吸収部材で一体形成した反応槽形成用ラバーを接着して基板上に8つの液体を満たすことの出来る反応槽を形成した。続いて反応槽内に1% BSAを含むPBS溶液を100 μLずつ満たし、湿度を90%以上に保った保存容器中で25℃、1時間放置し、反応槽内スライド基板上面へのプローブ試料分子の非特異的吸着を抑制するためのブロッキング操作を行った。
上記の工程を経て作製した反応槽内のマイクロアレイに対し、蛍光標識化タンパク質プローブとして通常の使用時より1000倍も高濃度の100μg/mLの濃度に調製したCy3-ASF溶液を加え、遮光して20℃に設定したインキュベーターの中に3時間静置し、アレイ上に固定化したタンパクと反応させた。このスライド基板に対し4つの異なる条件で観察を行い、迷光抑制法の効果を検証することとした。光吸収部材をスライド基板に貼り付ける際に、上面のみ貼り付けた場合と上下両面に貼り付けた場合の背景光の差を比較する実験を行った。100 ng/mLのCy3-ASFプローブにて全反応槽をプロービングした後のスライドを用いて、反応槽内のプローブ液をCy3-グリシン溶液に交換した後に、スキャンニングした。なお、スキャニングには、エバネッセント波励起方式マイクロアレイスキャナー(GTMAS Scan IV)を使用し、エバネッセント波励起蛍光観察を行った。スキャニング時のパラメーターはGain「4000倍」、積算回数「4回」、露光時間「34 msec」で行った。スキャニング画像の輝度の数値化には市販のマイクロアレイ用解析ソフトであるArray-Pro Analyzer (version 4.0 for Windows、Media Cybernetics社)を使用した。
結果、吸収材を上面のみ貼り付けた状態と、上下両面に貼り付けた状態でプローブ溶液上層の背景光の強度を観察したところ、光吸収部材をスライド基板の上下両面に貼り付けた方式が上面のみに貼り付ける方式に比べ、プローブ溶液上層由来の蛍光を大幅に減弱させる効果が高く、より背景光除去に有効であるという結果を得た(図10)。

(4)迷光抑制法と液層厚制御法の併用時の効果観察
光吸収部材を用いてプローブ溶液上層由来背景光を抑制した系に対し、液層厚制御部材として硼珪酸ガラス板を反応槽内にセットすることで、本発明の迷光抑制法と先に出願した背景光低減法である液層厚制御法(特願2006-203257)を併用した際のプローブ溶液上層背景光強度を観察した。100 ng/mLのCy3-ASFでプロービングした基板のプローブ液を反応槽から抜き、新たに高濃度の蛍光標識糖タンパク質プローブ溶液(10μg/mLのCy3-BSA)を意図的に高度に背景光が生じるように100 μL反応槽に注入し、エバネッセント波励起蛍光スキャナーで観察した。結果、迷光抑制法にてプローブ溶液上層由来背景光を抑制した系に対して、液層厚制御装置を用いて液層厚を制御することで更なる背景光減弱効果が観察された。本実験結果から、吸収剤の基板下面への貼付により液層厚制御装装置と併用することが可能であり、両手法はプローブ溶液上層由来の背景蛍光を減弱させる効果を互いに高めることが分かった(図11)。
Examples of the present invention are shown below, but the present invention is not limited to these Examples.

(1) Preparation of fluorescently labeled protein probe The fluorescently labeled protein probe has an absorption maximum wavelength around 550 nm of asialofetuine (hereinafter ASF) (SIGMA) or bovine serum albumin (BSA) (SIGMA). The fluorescent dye was prepared by fluorescent labeling using Cy3 Mono-reactive Dye (Amersham Pharmacia, hereinafter referred to as Cy3). As a procedure, after preparing ASF and BSA in phosphate buffered saline, pH 7.4 (hereinafter PBS) to a final concentration of 1 mg / mL, 1 mL is mixed with 1.0 mg of Cy3 powder for 1 hour. The reaction was carried out in the dark with timely stirring. Next, unreacted Cy3 molecules were removed by gel filtration chromatography using Sephadex G-25 (Amersham Pharmacia) as a carrier to purify as a Cy3-labeled protein probe preparation.

(2) Examining the installation position and optimum size width of the light absorbing member In order to design the shape of the black light absorbing member that absorbs stray light more effectively, the best balance between the spot area and the background light reduction effect is Knowledge of where is needed. For this study, we used a substrate with the same material and shape as the actual experimental system, and experimented under different conditions. Examples are shown below.
Cut the black silicon rubber 20 ° light-absorbing member (thickness 1 mm) punched to improve the adhesion surface smoothness, and make the distance between the absorbent material end and the slide end constant 6 mm. The reaction tank with the horizontal width of 2, 4, 6 mm changed to 3 stages, coated with 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Silicone, hereinafter GTMS), 76.2 mm long x 25.4 mm wide It was fabricated on a white glass slide substrate having a thickness of mm (± 0.05 mm) and a thickness of 1.0 mm (± 0.05 mm). Next, 1 mL of purified water in which 100 ng / mL Cy3-BSA was dissolved was spotted on the back surface of the slide substrate and dried to prepare a spot sample for evaluation of fluorescence intensity by evanescent wave excitation. Next, fill the reaction tank with 100 μL of 1% BSA-containing PBS solution and leave it in a storage container kept at a humidity of 90% or more for 1 hour at 25 ° C. Probe sample molecules on the upper surface of the slide substrate in the reaction tank A blocking operation was carried out to suppress non-specific adsorption. 5 mg / mL of Cy3-BSA was added to each reaction tank on the substrate and left to stand for 1 hour.
As a result, it was observed that the background light decreased even with the same probe solution having the same volume as the width of the rubber in the incident direction of the incident light increased (FIG. 4). From this result, it was confirmed that the width of the rubber in the incident direction of the incident light is effective in reducing the background light. Also, in this experimental result, there was no significant change in the signal luminance value of the spot in each reaction tank. Therefore, in the reaction tank where the background light decreased, the entire excitation light did not decrease, but the upper layer of the probe solution. It can be seen that the background fluorescence from the source was selectively reduced.
In this experiment, under the present experiment conditions, the result was that the background light intensity decreased as the width of the light absorbing member in the incident direction of the incident light increased (FIG. 4). Furthermore, when this relationship was plotted, the correlation between the two was shown to have a curvilinear relationship (FIG. 5). In other words, it can be seen that the background reduction effect is not improved so effectively no matter how much the width is increased after the width of the light absorbing member in the incident light incident direction exceeds 5.4 mm. Based on these results, in this experimental system, the value of about 5.4 mm was derived for the width of the light absorbing member in the incident light incident direction as the best balance between the spot area and the background light reduction effect.

(3) Reduction of background light in evanescent wave excitation fluorescence observation
White glass waveguide, coated with 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Silicone), 76.2 mm long × 25.4 mm wide (± 0.05 mm), 1.0 mm thick (± 0.05 mm) By repeating the dispensing operation of lectins on a substrate using a non-contact spotter, a protein array was prepared in which 43 spots of 43 proteins with a center-to-center distance of 3 spots were spotted. Here, a reaction tank forming rubber formed integrally with a light absorbing member made of black silicon rubber was adhered to form a reaction tank capable of filling eight liquids on the substrate. Next, fill the reaction tank with 100 μL of 1% BSA-containing PBS solution and leave it in a storage container kept at a humidity of 90% or more for 1 hour at 25 ° C. Probe sample molecules on the upper surface of the slide substrate in the reaction tank A blocking operation was carried out to suppress non-specific adsorption.
Add Cy3-ASF solution prepared at a concentration of 100 μg / mL, which is 1000 times higher than the normal use as a fluorescently labeled protein probe, to the microarray in the reaction vessel prepared through the above steps, and protect it from light. It was left to stand in an incubator set at 20 ° C. for 3 hours to react with the protein immobilized on the array. The slide substrate was observed under four different conditions to verify the effect of the stray light suppression method. When the light absorbing member was attached to the slide substrate, an experiment was performed to compare the difference in background light between the case where only the upper surface was attached and the case where the light absorbing member was attached to the upper and lower surfaces. Using the slide after probing the entire reaction vessel with 100 ng / mL Cy3-ASF probe, the probe solution in the reaction vessel was replaced with a Cy3-glycine solution, and then scanned. For scanning, an evanescent wave excitation type microarray scanner (GTMAS Scan IV) was used, and evanescent wave excitation fluorescence observation was performed. Scanning parameters were Gain “4000 times”, integration number “4 times”, and exposure time “34 msec”. Array-Pro Analyzer (version 4.0 for Windows, Media Cybernetics), a commercially available analysis software for microarrays, was used to digitize the brightness of the scanned image.
As a result, when the intensity of the background light of the upper layer of the probe solution was observed with the absorbent material attached only on the upper surface and the upper and lower surfaces, the method of attaching the light absorbing member to the upper and lower surfaces of the slide substrate was the upper surface. Compared with the method of attaching only to the substrate, the effect of greatly reducing the fluorescence derived from the upper layer of the probe solution was high, and the result was more effective for background light removal (FIG. 10).

(4) Observation of effect when combined use of stray light suppression method and liquid layer thickness control method For a system in which background light derived from the probe solution upper layer is suppressed using a light absorbing member, a borosilicate glass plate is used as a liquid layer thickness control member in the reaction vessel By setting the inside of the probe solution, the background light intensity of the upper layer of the probe solution was observed when the stray light suppression method of the present invention and the liquid layer thickness control method (Japanese Patent Application No. 2006-203257) which was the background light reduction method previously applied were used in combination. . Remove the probe solution of the substrate probed with 100 ng / mL Cy3-ASF from the reaction vessel, and deliberately add a high concentration of fluorescent-labeled glycoprotein probe solution (10 μg / mL Cy3-BSA). The resulting solution was injected into a 100 μL reaction vessel and observed with an evanescent wave excitation fluorescence scanner. As a result, a further background light attenuation effect was observed by controlling the liquid layer thickness using a liquid layer thickness controller for the system in which the background light derived from the probe solution upper layer was suppressed by the stray light suppression method. From this experimental result, it was found that it is possible to use it together with the liquid layer thickness control device by attaching the absorbent to the lower surface of the substrate, and both methods enhance the effect of attenuating background fluorescence derived from the upper layer of the probe solution. (FIG. 11).

従来のエバネッセント波励起蛍光観察における、固-液界面近傍の選択的励起の原理を示す図である。It is a figure which shows the principle of the selective excitation of the solid-liquid interface vicinity in the conventional evanescent wave excitation fluorescence observation. 従来のエバネッセント波励起蛍光観察を行う場合に用いられてきた基板とその特徴を示した図である。It is the figure which showed the board | substrate used when performing the conventional evanescent wave excitation fluorescence observation, and its characteristic. 今回発明されたエバネッセント波励起蛍光観察に使用する、迷光抑制手段を具備した導波路基板の特徴を示した図である。It is the figure which showed the characteristic of the waveguide board | substrate provided with the stray light suppression means used for the evanescent wave excitation fluorescence observation invented this time. 入射光の入射方向の光吸収部材の幅と上層の蛍光強度の関係を観察した結果を示す図である。It is a figure which shows the result of having observed the relationship between the width | variety of the light absorption member of the incident direction of incident light, and the fluorescence intensity of an upper layer. 入射光の入射方向の光吸収部材の幅と上層の蛍光強度の関係を示す図である。It is a figure which shows the relationship between the width | variety of the light absorption member of the incident direction of incident light, and the fluorescence intensity of an upper layer. 本発明の反応槽を設けた導波路基板上の迷光吸収領域に光吸収部材を具備した基板の、部材の配置形態を示す図である。It is a figure which shows the arrangement | positioning form of the member of the board | substrate which comprised the light absorption member in the stray light absorption area | region on the waveguide board | substrate which provided the reaction tank of this invention. 本発明の反応槽を設けた導波路基板上の迷光吸収領域に光吸収部材を具備した基板の、部材の配置形態を示す図である。It is a figure which shows the arrangement | positioning form of the member of the board | substrate which comprised the light absorption member in the stray light absorption area | region on the waveguide board | substrate which provided the reaction tank of this invention. 本発明の実施に際して設計した光吸収部材の寸法を示す図である。It is a figure which shows the dimension of the light absorption member designed in the case of implementation of this invention. 本発明の実施に際して設計した光吸収部材の寸法を示す図である。It is a figure which shows the dimension of the light absorption member designed in the case of implementation of this invention. 本発明の迷光吸収法の背景光減弱効果を、従来基板の背景光減弱効果と比較した実験の結果を示す図である。It is a figure which shows the result of the experiment which compared the background light attenuation effect of the stray light absorption method of this invention with the background light attenuation effect of the conventional board | substrate. 迷光吸収法と液層厚制御法の組み合わせによる背景光低減効果を観察した実験結果を示す図である。It is a figure which shows the experimental result which observed the background light reduction effect by the combination of a stray light absorption method and a liquid layer thickness control method. 本発明の反応槽を設けた導波路基板上の迷光吸収領域に光吸収部材を具備した基板への付属修飾材の配置形態を示す図である。It is a figure which shows the arrangement | positioning form of the attached modifier to the board | substrate which comprised the light absorption member in the stray light absorption area | region on the waveguide board | substrate which provided the reaction tank of this invention. 本発明の反応槽を設けた導波路基板上の迷光吸収領域に光吸収部材を具備した基板に付属修飾材を装着させた、より好ましい使用形態を示す図である。It is a figure which shows the more preferable usage pattern which attached the attachment modifier to the board | substrate which comprised the light absorption member in the stray light absorption area | region on the waveguide board | substrate which provided the reaction tank of this invention.

Claims (9)

底部に被験分子を固定した導波路基板を有する反応槽に蛍光標識したプローブ分子を含有するプローブ溶液を導入して、上記固定分子とプローブ分子とを結合させた後、上記導波路基板の端面から光を導入してエバネッセント波励起蛍光観察を行うに際し、該反応槽への迷光の入射を抑制し、エバネッセント波励起蛍光観察における背景光を低減する方法であって、
入射光入射端部から被験分子固定領域に至る間の導波路基板の上面に、入射光方向に少なくとも3mm以上の幅を有する迷光吸収領域を設け、
上記迷光吸収領域を形成する光吸収部材により、上記反応槽の側壁を形成したことを特徴とする、背景光低減方法。
A probe solution containing a fluorescently labeled probe molecule is introduced into a reaction vessel having a waveguide substrate with a test molecule fixed to the bottom, and the fixed molecule and the probe molecule are bonded together, and then from the end face of the waveguide substrate When performing evanescent wave excitation fluorescence observation by introducing light, it is a method for suppressing background light in evanescent wave excitation fluorescence observation by suppressing the incidence of stray light to the reaction vessel,
On surfaces of the waveguide substrate while the incident light entering end reaches the test molecule fixing region, it provided the stray light absorption regions having at least 3mm width in the incident light direction,
The light-absorbing member forming the stray light absorption regions, and characterized by forming a side wall of the reactor, background light reduction method.
上記迷光吸収領域が導波路基板を挟んで上下両面に設けられていることを特徴とする、請求項1に記載の背景光低減方法。 The background light reducing method according to claim 1, wherein the stray light absorption regions are provided on both upper and lower surfaces with the waveguide substrate interposed therebetween. 上記迷光吸収領域が、光吸収部材の接着により形成されていることを特徴とする、請求項1または2に記載の背景光低減方法。 The background light reducing method according to claim 1, wherein the stray light absorbing region is formed by adhesion of a light absorbing member. 上記導波路基板の入射光入射端面がレーザーカッティング加工されていることを特徴とする、請求項1〜3のいずれか1項記載の背景光低減方法。 The incident light incident end face of the waveguide substrate is characterized in that it is a laser cutting process, the background light reduction method of any one of claims 1 to 3. 上記反応槽の底部の上記被験分子は、マイクロアレイの被験分子であることを特徴とする請求項1〜4のいずれか1項記載の背景光低減方法 The background light reduction method according to claim 1, wherein the test molecule at the bottom of the reaction vessel is a microarray test molecule . 底部に被験分子を固定した反応槽を有する、エバネッセント波励起蛍光観察に使用する導波路基板であって、
上記導波路基板の端面から入射される入射光入射端部から被験分子固定領域に至る間の導波路基板の上面に、入射方向に少なくとも3mm以上の幅を有する迷光吸収領域設けられ
上記迷光吸収領域を形成する光吸収部材により、上記反応槽の側壁が形成されていることを特徴とする、導波路基板。
A waveguide substrate used for observation of evanescent wave-excited fluorescence, having a reaction vessel with a test molecule fixed at the bottom,
On surfaces of the waveguide substrate between reaching the test molecule fixing area from the entrance end of the light incident from the end face of the waveguide substrate, the stray light absorbing region having at least 3mm or more widths are provided in the incident direction,
A waveguide substrate , wherein a side wall of the reaction vessel is formed by a light absorbing member that forms the stray light absorbing region .
上記迷光吸収領域が上記導波路基板を挟んで上下両面に設けられていることを特徴とする、請求項6に記載の導波路基板。 Characterized in that the stray light absorption regions are provided on both upper and lower surfaces across the waveguide substrate, a waveguide substrate according to claim 6. 上記迷光吸収帯域が、光吸収部材の接着により形成されていることを特徴とする、請求項6または7に記載の導波路基板。 The waveguide substrate according to claim 6 or 7, wherein the stray light absorption band is formed by adhesion of a light absorbing member. 上記導波路基板の入射光入射端面がレーザーカッティング加工されていることを特徴とする、請求項6〜8のいずれか1項記載の導波路基板。 Wherein the incident light incident end face of the waveguide substrate are laser cutting process, waveguide substrate of any one of claims 6-8.
JP2006242020A 2006-09-06 2006-09-06 Background light reduction method and member for evanescent wave excitation fluorescence observation Active JP4883398B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006242020A JP4883398B2 (en) 2006-09-06 2006-09-06 Background light reduction method and member for evanescent wave excitation fluorescence observation
PCT/JP2007/065708 WO2008029591A1 (en) 2006-09-06 2007-08-10 Backgroud light reducing method in evanscent wave exciting fluorescent oservation, and component therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242020A JP4883398B2 (en) 2006-09-06 2006-09-06 Background light reduction method and member for evanescent wave excitation fluorescence observation

Publications (2)

Publication Number Publication Date
JP2008064574A JP2008064574A (en) 2008-03-21
JP4883398B2 true JP4883398B2 (en) 2012-02-22

Family

ID=39157033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242020A Active JP4883398B2 (en) 2006-09-06 2006-09-06 Background light reduction method and member for evanescent wave excitation fluorescence observation

Country Status (2)

Country Link
JP (1) JP4883398B2 (en)
WO (1) WO2008029591A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100184616A1 (en) * 2009-01-20 2010-07-22 Bio-Rad Laboratories, Inc. Spatially controlled illumination of biological sample array through wedge-shaped support
WO2011111472A1 (en) * 2010-03-08 2011-09-15 コニカミノルタホールディングス株式会社 Surface-plasmon-enhanced fluorescence measurement device and chip structure
JP5487127B2 (en) * 2011-01-14 2014-05-07 富士フイルム株式会社 Measuring device and sensor chip
EP2884265A4 (en) 2012-08-10 2016-09-28 Hamamatsu Photonics Kk Surface-enhanced raman scattering element
CN104520694B (en) 2012-08-10 2018-05-15 浜松光子学株式会社 Surface enhanced Raman scattering unit and its application method
WO2014025034A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering unit
CN104520696B (en) 2012-08-10 2018-01-12 浜松光子学株式会社 SERS element and its manufacture method
JP6282762B2 (en) * 2017-01-17 2018-02-21 浜松ホトニクス株式会社 Surface-enhanced Raman scattering unit
JP6588055B2 (en) * 2017-06-09 2019-10-09 株式会社シバサキ Bacteria detection device
JP7318632B2 (en) * 2020-12-25 2023-08-01 横河電機株式会社 Culture vessel and observation system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042302A (en) * 1999-08-04 2001-02-16 Seiko Epson Corp Electrooptical device, its production and electric appliance
DE10012793C2 (en) * 2000-03-13 2002-01-24 Fraunhofer Ges Forschung Sensor element for optical detection of chemical or biochemical analytes
JP2002047025A (en) * 2000-07-31 2002-02-12 Seiko Epson Corp Cutting method of substrate, and manufacturing method of electrooptical device using it and laser cutting device for it and electrooptical device and electronic equipment
JP2002340790A (en) * 2001-05-15 2002-11-27 Suzuki Motor Corp Spr sensor
JP2005099011A (en) * 2003-08-29 2005-04-14 Toshiba Corp Antigen measurement apparatus and method, pallet, and antibody chip package
JP2005156527A (en) * 2003-11-07 2005-06-16 Sekisui Chem Co Ltd Optical measurement device and optical measurement method of specific binder using it
JP4436110B2 (en) * 2003-11-07 2010-03-24 積水化学工業株式会社 Optical measuring apparatus and optical measuring method for specific binding substance using the same
JP2005147891A (en) * 2003-11-17 2005-06-09 Aisin Seiki Co Ltd Surface plasmon resonance sensor
JP4558448B2 (en) * 2004-11-01 2010-10-06 テルモ株式会社 Optical waveguide and fluorescent sensor using the optical waveguide

Also Published As

Publication number Publication date
WO2008029591A1 (en) 2008-03-13
JP2008064574A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4883398B2 (en) Background light reduction method and member for evanescent wave excitation fluorescence observation
JP4662623B2 (en) Method and apparatus for measuring luminescence
US5811312A (en) Optical measurement apparatus and method therefor
US20130309779A1 (en) Optical waveguide measurement system and method for measuring glycated hemoglobin
US7652768B2 (en) Chemical sensing apparatus and chemical sensing method
WO2017187744A1 (en) Optical detection method and optical detection device
JPH03506078A (en) Equipment used in chemical test methods
SK151396A3 (en) Process for detecting evanescently excited luminescence
KR20090128528A (en) Calibration and normalization method for biosensors
JP2004069397A (en) Analysis chip and analytical apparatus
JPH07174692A (en) Evanescent wave sensor and device
KR20070012707A (en) Imaging method and apparatus
US20090101815A1 (en) Cantilever for near field optical microscopes, plasmon enhanced fluorescence microscope employing the cantilever, and fluorescence detecting method
JP6738070B2 (en) Optical detection device and optical detection method
US7842505B2 (en) Fluorescent labeling reagent
JP2010523987A (en) Biochip for fluorescence analysis of individual transporters
JP2010210378A (en) Sensing method and sensing kit to be used of the same
US11946930B2 (en) Device for use in the detection of binding affinities
US20140030821A1 (en) Localized plasmon enhancing fluorescence particles, localized plasmon enhanced fluorescence detecting carrier, localized plasmon enhanced fluorescence detecting apparatus, and fluorescence detecting method
JP2008032420A (en) Method and member for weakening background fluorescence in evernescent wave exciting fluorescence observation
WO2005085801A1 (en) Method and apparatus for detection of biomolecular interaction using near-field light
JP2008051512A (en) Sensor using near field light and its manufacturing method
JP2009192259A (en) Sensing device
JP6481371B2 (en) Detection method and detection kit
JP5339278B2 (en) Detection and analysis system for protein array using monolith gel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4883398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250