JP4882576B2 - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP4882576B2
JP4882576B2 JP2006206487A JP2006206487A JP4882576B2 JP 4882576 B2 JP4882576 B2 JP 4882576B2 JP 2006206487 A JP2006206487 A JP 2006206487A JP 2006206487 A JP2006206487 A JP 2006206487A JP 4882576 B2 JP4882576 B2 JP 4882576B2
Authority
JP
Japan
Prior art keywords
particles
conductive
melting point
silver
average primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006206487A
Other languages
Japanese (ja)
Other versions
JP2008034242A (en
Inventor
洋平 平川
雄太 四ツ▲柳▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2006206487A priority Critical patent/JP4882576B2/en
Publication of JP2008034242A publication Critical patent/JP2008034242A/en
Application granted granted Critical
Publication of JP4882576B2 publication Critical patent/JP4882576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、プリント基板のビアホールの充填などに好適に使用される導電性ペーストに関する。   The present invention relates to a conductive paste suitably used for filling via holes in printed circuit boards.

従来、プリント基板のビアホールの充填に使用される導電性ペーストには、導電性粒子として銀粉、銅粉、銀コート銅粉などを含有するものが使用されてきた。ところが、これらの導電性粒子は一般に融点が高いため、加熱処理により互いに融着接続しにくく、例えば熱衝撃試験や耐湿試験などにおける導電接続信頼性に乏しいという問題があった。   Conventionally, conductive pastes used for filling via holes in printed circuit boards have been used that contain silver powder, copper powder, silver-coated copper powder, or the like as conductive particles. However, since these conductive particles generally have a high melting point, they are difficult to be fused and connected to each other by heat treatment, and there is a problem that the conductive connection reliability is poor in, for example, a thermal shock test and a moisture resistance test.

このような事情を背景として、種々の導電性ペーストが検討されていて、例えば特許文献1には、導電性粒子として、低融点金属粒子とこれよりも高融点の低抵抗金属粒子とを併用した導電性ペーストが開示されている。これによれば、低抵抗金属粒子同士が低融点金属粒子を介して接続し、その結果、導電接続信頼性の高いビアホールを形成できるとされ、その実施例では、低抵抗金属粒子として銅粒子が使用されている。
特開2005−071825号公報
Under such circumstances, various conductive pastes have been studied. For example, in Patent Document 1, a low-melting metal particle and a low-resistance metal particle having a higher melting point are used in combination as conductive particles. A conductive paste is disclosed. According to this, the low resistance metal particles are connected to each other through the low melting point metal particles, and as a result, a via hole having high conductive connection reliability can be formed. In the embodiment, copper particles are used as the low resistance metal particles. in use.
JP 2005-071825 A

しかしながら、特許文献1に開示されているように、低融点金属粒子と銅粒子(低抵抗金属粒子)とを組み合わせて使用しても、十分な導電性や導電接続信頼性は得られ難かった。   However, as disclosed in Patent Document 1, even when low melting point metal particles and copper particles (low resistance metal particles) are used in combination, it is difficult to obtain sufficient conductivity and conductive connection reliability.

本発明は上記事情に鑑みてなされたもので、導電性や導電接続信頼性に優れた導電性ペーストを提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the electroconductive paste excellent in electroconductivity and electroconductive connection reliability.

本発明者らは鋭意検討した結果、導電性粒子として、低融点金属粒子と低抵抗金属粒子とを組み合わせて使用する場合、特に低抵抗金属粒子として特定の粒径の銀粒子を使用すると、銅粒子を使用した場合に比べて導電性粒子同士の融着性や導電性粒子と基板の電極金属部との融着性が向上し、導電性や導電接続信頼性に優れた導電性ペーストを提供できることに想到して、本発明を完成するに至った。
本発明の導電性ペーストは、導電性粒子と、エポキシ樹脂と、硬化剤とを含有し、前記導電性粒子は、スズ、インジウム、ビスマスからなる群より選ばれる少なくとも1種を含み、230℃以下に少なくとも1つの融点を有する低融点金属粒子と、平均一次粒子径が6μm以下の銀粒子との混合物であり、前記低融点金属粒子と前記銀粒子との質量比が、90:10〜70:30であり、かつ、前記導電性粒子と前記エポキシ樹脂との質量比が85:15〜97:3であることを特徴とする
前記導電性粒子100質量部に対して、酸化膜除去剤を0.1〜8.0質量部含有することが好ましい。
本発明の導電性ペーストは、プリント基板のビアホール充填用に好適である。
As a result of intensive studies, the present inventors have determined that when conductive particles are used in combination with low melting point metal particles and low resistance metal particles, particularly when silver particles having a specific particle size are used as the low resistance metal particles, Compared to the case where particles are used, the adhesion between conductive particles and the adhesion between the conductive particles and the electrode metal part of the substrate are improved, providing a conductive paste with excellent conductivity and conductive connection reliability. The present invention has been completed by conceiving what can be done.
The conductive paste of the present invention contains conductive particles, an epoxy resin, and a curing agent, and the conductive particles include at least one selected from the group consisting of tin, indium, and bismuth, and are 230 ° C. or lower. The low melting point metal particles having at least one melting point and silver particles having an average primary particle size of 6 μm or less, and the mass ratio of the low melting point metal particles to the silver particles is 90:10 to 70: 30 and the mass ratio of the conductive particles to the epoxy resin is 85:15 to 97: 3 .
It is preferable to contain 0.1 to 8.0 parts by mass of an oxide film removing agent with respect to 100 parts by mass of the conductive particles.
The conductive paste of the present invention is suitable for filling via holes in printed circuit boards.

本発明によれば、導電性や導電接続信頼性に優れた導電性ペーストを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the electroconductive paste excellent in electroconductivity and electroconductive connection reliability can be provided.

以下、本発明について詳細に説明する。
本発明の導電性ペーストは、導電性粒子と、エポキシ樹脂と、硬化剤とを含有し、プリント基板のビアホールなどに充填された後、加熱により硬化するものである。
導電性粒子は、低融点金属粒子と、平均一次粒子径が6μm以下の銀粒子との混合物からなり、低融点金属粒子としては、スズ、インジウム、ビスマスからなる群より選ばれる少なくとも1種を含み、230℃以下に少なくとも1つの融点を有するものが使用される。このような低融点金属粒子としては、具体的には、Sn−Ag−Cu合金、Sn−Ag−Cu−Bi−In合金、In、Sn−Cu合金、Sn−Ag合金、Sn−Ag−Cu−Bi合金、Sn−Ag−Cu−In合金、Sn−Ag−Cu−Sb合金、Sn−Ag−Bi−In合金、Sn−Bi合金、Sn−Bi−In合金、Sn−Zn−Bi合金、Sn−Zn合金、Sn−Mn合金、Sn−Bi−Ag合金などが挙げられ、これらのうち1種以上を使用できる。
Hereinafter, the present invention will be described in detail.
The conductive paste of the present invention contains conductive particles, an epoxy resin, and a curing agent, and is cured by heating after being filled in a via hole of a printed circuit board.
The conductive particles are composed of a mixture of low melting point metal particles and silver particles having an average primary particle size of 6 μm or less, and the low melting point metal particles include at least one selected from the group consisting of tin, indium and bismuth. Those having at least one melting point at 230 ° C. or lower are used. Specific examples of such low melting point metal particles include Sn—Ag—Cu alloy, Sn—Ag—Cu—Bi—In alloy, In, Sn—Cu alloy, Sn—Ag alloy, Sn—Ag—Cu. -Bi alloy, Sn-Ag-Cu-In alloy, Sn-Ag-Cu-Sb alloy, Sn-Ag-Bi-In alloy, Sn-Bi alloy, Sn-Bi-In alloy, Sn-Zn-Bi alloy, A Sn-Zn alloy, a Sn-Mn alloy, a Sn-Bi-Ag alloy, etc. are mentioned, Among these, 1 or more types can be used.

低融点金属粒子の平均粒子径には特に制限はないが、より安定な導電性を発現しやすい点では、レーザー回折散乱法などで測定される平均一次粒子径が、0.5〜30μmのものが好ましい。0.5μm以上であれば、導電性粒子の比表面積が大き過ぎず、表面が酸化されやすくなることもないし、導電性ペーストの粘度が過度に高くなって希釈剤が多量に必要となることもない。希釈剤が多量になると、ビアホール中にボイドが発生しやすくなる傾向がある。また、30μm以下であれば、これを含む導電性ペーストをプリント基板のビアホールなどに充填した際、充填される粒子数が適度となり、導電性粒子間の空隙が多く生じることもなく、安定な導電性が発現しやすくなる。より好ましくは1〜20μmである。   The average particle diameter of the low melting point metal particles is not particularly limited, but the average primary particle diameter measured by a laser diffraction scattering method or the like is 0.5 to 30 μm from the standpoint of more stable conductivity. Is preferred. If it is 0.5 μm or more, the specific surface area of the conductive particles is not too large, the surface is not easily oxidized, and the viscosity of the conductive paste becomes excessively high, and a large amount of diluent may be required. Absent. When the amount of the diluent is large, voids tend to be generated in the via hole. Moreover, if it is 30 micrometers or less, when the electroconductive paste containing this is filled in the via hole of a printed circuit board, etc., the number of particles with which it will be filled will become moderate, and there will not be many space | gap between electroconductive particles, but stable electroconductivity. Sex is easy to express. More preferably, it is 1-20 micrometers.

銀粒子としては、一次粒子の平均粒子径、すなわち、平均一次粒子径が6μm以下のものであれば、略球形のものやフレーク状のものなどを使用できる。平均一次粒子径が6μmを超える銀粒子を使用した場合や、平均一次粒子径が6μm以下であっても銀以外の粒子、例えば銅粒子、銀メッキ銅粒子、ニッケル粒子、アルミニウム粒子などを使用した場合には、導電性粒子同士の融着性や、導電性粒子と基板の電極金属部との融着性が不十分となり、導電性や導電接続信頼性に優れた導電性ペーストを得ることができない。また、銀粒子としては、これと組み合わせて使用する低融点金属粒子よりも、平均一次粒子径の小さいものを使用することが好ましい。
なお、銀粒子が略球形である場合には凝集性が高いため、50個の銀粒子を走査型電子顕微鏡観察し、各銀粒子について実測される直径の平均値をその平均一次粒子径として採用する。一方、銀粒子がフレーク状である場合、その凝集性は低いため、レーザー回折散乱法(マイクロトラック法)により測定された粒子径の平均値をその平均一次粒子径として採用する。
As the silver particles, those having an average primary particle size, that is, an average primary particle size of 6 μm or less can be approximately spherical or flaky. When silver particles having an average primary particle diameter exceeding 6 μm are used, or even when the average primary particle diameter is 6 μm or less, particles other than silver, such as copper particles, silver-plated copper particles, nickel particles, aluminum particles, etc. are used. In such a case, the adhesiveness between the conductive particles and the adhesiveness between the conductive particles and the electrode metal part of the substrate become insufficient, and a conductive paste excellent in conductivity and conductive connection reliability can be obtained. Can not. Moreover, as a silver particle, it is preferable to use a thing with an average primary particle diameter smaller than the low melting metal particle used in combination with this.
In addition, since the aggregation is high when the silver particles are substantially spherical, 50 silver particles are observed with a scanning electron microscope, and an average value of diameters measured for each silver particle is adopted as the average primary particle diameter. To do. On the other hand, when the silver particles are in the form of flakes, the agglomeration property is low, so the average value of the particle diameters measured by the laser diffraction scattering method (microtrack method) is adopted as the average primary particle diameter.

導電性粒子における低融点金属粒子と平均一次粒子径が6μm以下の銀粒子との質量比は、これらの合計を100とした場合、低融点金属粒子:銀粒子=90:10〜70:30が好ましい。この範囲内であると、より導電性粒子同士の融着性や、導電性粒子と基板の電極金属部との融着性が向上し、導電性、導電接続信頼性に優れた導電性ペーストが得られやすい。低融点金属粒子は溶融すると表面張力により表面積を小さくしようとして、その形状が真球に近づくため、隣接する粒子との間や粒子と電極金属部との間に空隙を生じやすい傾向がある。そのため、低融点金属粒子が90を超えると、導電性が不安定になる場合がある。一方、低融点金属粒子が70未満であると、融着性が不十分となり、導電性が不安定になる傾向がある。   The mass ratio of the low melting point metal particles to the silver particles having an average primary particle diameter of 6 μm or less in the conductive particles is such that when these totals are 100, the low melting point metal particles: silver particles = 90: 10 to 70:30. preferable. Within this range, the fusion between conductive particles and the fusion between the conductive particles and the electrode metal part of the substrate are improved, and a conductive paste having excellent conductivity and conductive connection reliability can be obtained. Easy to obtain. When the low-melting-point metal particles are melted, the surface area tends to be reduced by surface tension, and the shape approaches a true sphere. Therefore, if the number of low melting point metal particles exceeds 90, the conductivity may become unstable. On the other hand, when the low melting point metal particles are less than 70, the fusion property is insufficient and the conductivity tends to be unstable.

エポキシ樹脂は、バインダーとして導電性ペーストに含有されるものであり、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、1分子中に1個以上のグリシジル基を有する液状エポキシ化合物などを使用できる。硬化剤としては、エポキシ樹脂を硬化可能なものであればよく、アミン系エポキシ硬化剤、酸無水物系エポキシ硬化剤、イソシアネート系硬化剤、イミダゾール系硬化剤、フェノール系硬化剤などが挙げられる。これらエポキシ樹脂、硬化剤はいずれも、1種単独で使用しても2種以上を併用してもよい。さらにバインダーとして、エポキシ樹脂以外の熱可塑性樹脂などを必要に応じてエポキシ樹脂と併用してもよい。   The epoxy resin is contained in the conductive paste as a binder, such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a novolac type epoxy resin, a liquid epoxy compound having one or more glycidyl groups in one molecule, etc. Can be used. Any curing agent may be used as long as it can cure the epoxy resin, and examples thereof include amine-based epoxy curing agents, acid anhydride-based epoxy curing agents, isocyanate-based curing agents, imidazole-based curing agents, and phenol-based curing agents. These epoxy resins and curing agents may be used alone or in combination of two or more. Further, as a binder, a thermoplastic resin other than the epoxy resin may be used in combination with the epoxy resin as necessary.

導電性ペーストにおける導電性粒子とエポキシ樹脂との質量比は、これらの合計を100とした場合、85:15〜97:3である。この範囲以外であると、導電性粒子同士の融着性や、導電性粒子と基板の電極金属部との融着性が不十分となり、導電性や導電接続信頼性に優れた導電性ペーストを得ることができない。   The mass ratio of the conductive particles to the epoxy resin in the conductive paste is 85:15 to 97: 3, where the total is 100. If it is outside this range, the adhesiveness between the conductive particles and the adhesiveness between the conductive particles and the electrode metal part of the substrate will be insufficient, and a conductive paste excellent in conductivity and conductive connection reliability will be obtained. Can't get.

導電性ペーストは、以上説明した導電性粒子とエポキシ樹脂と硬化剤とをプラネタリーミキサーやロールミルなどで混合することにより得られるが、ここで導電性ペーストには、さらに酸化膜除去剤を配合することが好ましい。酸化膜除去剤を配合することによって、導電性粒子の表面酸化膜を除去でき、その融着性を向上させることができる。酸化膜除去剤としては、一般的に市販されているフラックス、表面処理剤のほか、アジピン酸、ステアリン酸などのカルボン酸類、ビニルエーテルなどを用いてカルボン酸の活性をブロックしたブロックカルボン酸、ステアリルアミンなどのアミン類、ホウ素系化合物などを用いてアミンの活性をブロックしたブロックアミンなどを使用できる。これらのなかでは、貯蔵安定性の点から、ブロックカルボン酸が好ましい。
酸化膜除去剤の配合量は、導電性粒子100質量部に対して、0.1〜8.0質量部であることが好ましい。このような範囲であると、十分な配合効果が得られ、導電性や導電接続信頼性に悪影響を与えることもない。
The conductive paste can be obtained by mixing the above-described conductive particles, epoxy resin, and curing agent with a planetary mixer, a roll mill, or the like. Here, the conductive paste further contains an oxide film removing agent. It is preferable. By blending the oxide film removing agent, the surface oxide film of the conductive particles can be removed, and its fusing property can be improved. In addition to commercially available fluxes and surface treatment agents, oxide film removal agents include carboxylic acids such as adipic acid and stearic acid, and block carboxylic acids and stearylamines that block the activity of carboxylic acids using vinyl ethers. Block amines in which amine activity is blocked using amines such as boron compounds and the like can be used. Of these, block carboxylic acids are preferred from the viewpoint of storage stability.
It is preferable that the compounding quantity of an oxide film removal agent is 0.1-8.0 mass parts with respect to 100 mass parts of electroconductive particles. In such a range, a sufficient blending effect can be obtained, and the conductivity and conductive connection reliability are not adversely affected.

酸化膜除去剤の配合方法としては特に制限はなく、上述したように、導電性粒子とエポキシ樹脂と硬化剤をプラネタリーミキサーやロールミルなどで混合してペースト化する際に直接添加する以外に、導電性粒子をあらかじめ酸化膜除去剤で被覆しておいてもよい。被覆には、粉体同士を混合したり、粉体と液体とを混合、分散したりする際に使用する装置を適宜使用でき、その機種などに制限はない。その際、酸化膜除去剤を直接導電性粒子に接触させてもよいが、酸化膜除去剤をあらかじめ適当な液体に溶解または分散させ、これに導電性粒子を投入し、スラリー状として処理してもよい。このような方法によれば、均一かつ確実に導電性粒子を酸化膜除去剤で被覆できる。その後、必要に応じて真空乾燥機などによる乾燥工程を行ってもよい。
また、導電性ペーストには、さらに分散剤、希釈剤として有機溶剤など、他の成分が必要に応じて含まれていてもよい。
There is no particular limitation on the method of blending the oxide film remover, as described above, in addition to directly adding the conductive particles, the epoxy resin, and the curing agent by mixing with a planetary mixer or a roll mill to make a paste, The conductive particles may be coated with an oxide film removing agent in advance. For the coating, a device used when mixing powders or mixing and dispersing powders and liquids can be used as appropriate, and there is no limitation on the model. At that time, the oxide film removing agent may be directly brought into contact with the conductive particles. However, the oxide film removing agent is dissolved or dispersed in advance in an appropriate liquid, and the conductive particles are charged into the slurry and processed as a slurry. Also good. According to such a method, the conductive particles can be uniformly and reliably coated with the oxide film removing agent. Then, you may perform the drying process by a vacuum dryer etc. as needed.
In addition, the conductive paste may further contain other components such as a dispersant and an organic solvent as a diluent as necessary.

このような導電性ペーストは、種々の用途に使用できるが、特に、多層プリント基板の貫通または非貫通ビアホールへの使用や、電子部品などの実装部への使用に適している。導電性ペーストをビアホールへ印刷、充填し、その後加熱処理して硬化することにより、導電性粒子同士が良好に融着接続するとともに、基板の電極金属部とも良好に接続し、優れた導電性と導電接続信頼性を備えた多層プリント基板を製造できる。加熱処理には、ボックス式熱風炉、連続式熱風炉、マッフル式加熱炉、近赤外線炉、遠赤外線炉、真空加熱プレスなどの公知の装置が使用でき、この際の雰囲気としては空気雰囲気でもよいが、酸素濃度が少ないかあるいは存在しない雰囲気、すなわち、不活性ガス雰囲気、還元性雰囲気、真空雰囲気が望ましい。  Such a conductive paste can be used for various applications, and is particularly suitable for use in a through-hole or a non-through-via hole of a multilayer printed circuit board or a mounting part such as an electronic component. By printing and filling the conductive paste into the via hole, and then curing by heat treatment, the conductive particles are fused and connected well, and the electrode metal part of the substrate is also well connected and has excellent conductivity. A multilayer printed circuit board having conductive connection reliability can be manufactured. For the heat treatment, a known apparatus such as a box-type hot air furnace, a continuous hot air furnace, a muffle-type heat furnace, a near infrared furnace, a far infrared furnace, a vacuum heating press can be used, and the atmosphere at this time may be an air atmosphere However, an atmosphere having a low or no oxygen concentration, that is, an inert gas atmosphere, a reducing atmosphere, or a vacuum atmosphere is desirable.

以下、本発明について試験例を示して具体的に説明する。
[試験例1〜17]
導電性粒子とエポキシ樹脂と硬化剤と酸化膜除去剤とをプラネタリーミキサーで混合することにより、導電性ペーストを製造した。
この際、各導電性ペーストにおけるエポキシ樹脂と導電性粒子との質量比は10:90とした。また、硬化剤は、エポキシ樹脂100質量部に対して5質量部使用し、酸化膜除去剤は、導電性粒子100質量部に対して0.5質量部使用した。なお、エポキシ樹脂としては、ジャパンエポキシレジン製のビスフェノールF型エポキシ樹脂(エピコート807)を使用し、硬化剤としては、四国化成製イミダゾール系硬化剤(C17Z)を使用し、酸化膜除去剤としては、ステアリン酸を使用した。
また、各例の導電性粒子の構成は表1に示すようにし、低融点金属粒子とその他の粒子(低抵抗金属粒子)との質量比は、いずれも80:20とした。
Hereinafter, the present invention will be specifically described with reference to test examples.
[Test Examples 1 to 17]
A conductive paste was produced by mixing the conductive particles, the epoxy resin, the curing agent, and the oxide film removing agent with a planetary mixer.
At this time, the mass ratio of the epoxy resin and the conductive particles in each conductive paste was 10:90. Further, 5 parts by mass of the curing agent was used with respect to 100 parts by mass of the epoxy resin, and 0.5 parts by mass of the oxide film removing agent was used with respect to 100 parts by mass of the conductive particles. As epoxy resin, bisphenol F type epoxy resin (Epicoat 807) manufactured by Japan Epoxy Resin is used. As curing agent, imidazole type curing agent (C17Z) manufactured by Shikoku Kasei is used, and as oxide film removing agent. Stearic acid was used.
The constitution of the conductive particles in each example was as shown in Table 1, and the mass ratio between the low melting point metal particles and other particles (low resistance metal particles) was 80:20.

ついで、得られた導電性ペーストを、直径0.2mmの貫通ビアホールを形成したプリプレグ(松下電工製、商品名R1661)の該貫通ビアホールに充填し、銅箔をプリプレグの両面に貼り合せて、真空熱プレス機でプレス温度230℃、圧力40kg/cm(=3.9×10Pa)の条件で60分間加熱加圧して両面銅貼り板を形成し、さらにエッチングによりこれに回路を形成しプリント基板を作製した。
そして、得られた各プリント基板について、ビア抵抗値の測定、導電性粒子間および導電性粒子と銅箔(電極金属部)との融着性の評価、耐湿リフロー試験を行った。
また、直径0.2mmの貫通ビアホールを0.4mmピッチで形成したプリプレグを150℃で60分間加熱して硬化させ、該貫通ビアホールに導電性ペーストを充填し、同じように銅箔を貼り合わせて、真空熱プレス機で加熱加圧して両面銅張り板を形成した。その後、エッチングにより幅10mmの銅パターンを形成し、これを引き剥がすことでピール強度試験を行った。結果を表1に示す。
Next, the obtained conductive paste was filled into the through via hole of a prepreg (made by Matsushita Electric Works, trade name R1661) in which a through via hole having a diameter of 0.2 mm was formed, and copper foil was bonded to both sides of the prepreg, and vacuum was applied. A double-sided copper-clad plate is formed by heating and pressing for 60 minutes under the conditions of a press temperature of 230 ° C. and a pressure of 40 kg / cm 2 (= 3.9 × 10 6 Pa) with a hot press machine, and a circuit is formed thereon by etching. A printed circuit board was produced.
And about each obtained printed circuit board, the measurement of via | veer resistance value, evaluation of the adhesiveness between electroconductive particle and electroconductive particle and copper foil (electrode metal part), and the moisture reflow test were done.
Further, a prepreg in which through-holes having a diameter of 0.2 mm are formed at a pitch of 0.4 mm is cured by heating at 150 ° C. for 60 minutes, the through-via holes are filled with a conductive paste, and copper foil is bonded in the same manner. A double-sided copper-clad plate was formed by heating and pressing with a vacuum heat press. Thereafter, a copper pattern having a width of 10 mm was formed by etching, and a peel strength test was performed by peeling the copper pattern. The results are shown in Table 1.

なお、融着性は、日本電子製の走査型電子顕微鏡(SEM)によりプリント基板の断面を目視観察することで評価し、導電性粒子間および導電性粒子と銅箔との融着接続の状態について、良好なものから順に○、△、×の3段階で評価した。
また、耐湿リフロー試験では、65℃、95%RHの環境下で96時間放置後ピーク温度260℃でリフローを行い、その前後のビア抵抗値の変化率を下記式に基づいて算出するとともに、上記融着性の評価と同様にしてリフロー後のプリント基板の断面を目視観察し、融着性を評価した。
耐湿リフロー試験変化率(%)=(試験後のビア抵抗値−試験前のビア抵抗値)/試験前のビア抵抗値×100
The fusing property is evaluated by visually observing the cross section of the printed circuit board with a scanning electron microscope (SEM) manufactured by JEOL, and the state of fusion splicing between the conductive particles and between the conductive particles and the copper foil. Were evaluated in three stages of ○, Δ, and × in order from the best.
Further, in the moisture-resistant reflow test, the sample is left for 96 hours in an environment of 65 ° C. and 95% RH and then reflowed at a peak temperature of 260 ° C., and the rate of change in via resistance before and after the calculation is calculated based on the following formula. The cross-section of the printed circuit board after reflow was visually observed in the same manner as the evaluation of the fusing property, and the fusing property was evaluated.
Moisture reflow test change rate (%) = (via resistance value after test−via resistance value before test) / via resistance value before test × 100

導電性粒子を構成する各粒子の詳細は以下のとおりである。
低融点金属粒子1:千住金属工業製、96.5Sn−3.0Ag−0.5Cu合金粒子(融点:220℃)、平均一次粒子径20μm
低融点金属粒子2:三井金属鉱業製、93Sn−3.5Ag−0.5Bi−3In合金粒子(融点:210℃)、平均一次粒子径20μm
低融点金属粒子3:三井金属鉱業製、89Sn−8Zn−3Bi合金粒子(融点:197℃)、平均一次粒子径20μm
低融点金属粒子4:三井金属鉱業製、42Sn−58Bi合金粒子(融点:138℃)、平均一次粒子径10μm
銀粒子1:FERRO製、商品名SFK−ED、フレーク状、平均一次粒子径0.8μm
銀粒子2:FERRO製、商品名SF9ED、フレーク状、平均一次粒子径3.5μm
銀粒子3:FERRO製、商品名SF78、フレーク状、平均一次粒子径5.9μm
銀粒子4:FERRO製、商品名SF26、フレーク状、平均一次粒子径15.0μm
銀粒子5:FERRO製、商品名SPI、略球形、平均一次粒子径0.4μm、マイクロトラックにより測定された平均粒子径14.0μm
銀粒子6:日本アトマイズ加工製、商品名HXR−Ag1.0μm、略球形、平均一次粒子径1.2μm、マイクロトラックにより測定された平均粒子径1.1μm
銀粒子7:日本アトマイズ加工製、商品名HXR−Ag2.5μm、略球形、平均一次粒子径2.9μm、マイクロトラックにより測定された平均粒子径2.8μm
銀粒子8:FERRO製、商品名SPEG、略球形、平均一次粒子径4.2μm、マイクロトラックにより測定された平均粒子径15.0μm
銀粒子9:AMES GOLDSMITH製、商品名AEP−6、略球形、平均一次粒子径6.0μm、マイクロトラックにより測定された平均粒子径6.0μm
銀粒子10:三井金属鉱業製、商品名3110、略球形、平均一次粒子径6.8μm、マイクロトラックにより測定された平均粒子径6.6μm
銅粒子:三井金属鉱業製、商品名Cu 1400Y、略球形、平均一次粒子径5.8μm、マイクロトラックにより測定された平均粒子径5.5μm
ニッケル粒子:日興リカ製、商品名110FSC−60、略球形、平均一次粒子径1.3μm、マイクロトラックにより測定された平均粒子径1.1μm
銀メッキ銅粒子:三井金属鉱業製、商品名Ag/Cu 1400Y、略球形、平均一次粒子径5.9μm、マイクロトラックにより測定された平均粒子径5.9μm
なお、略球形のものは凝集性が高いため、50個の粒子を走査型電子顕微鏡観察し、各粒子について実測される直径の平均値をその平均一次粒子径として採用し、一方、フレーク状のものは凝集性が低いため、レーザー回折散乱法(マイクロトラック法)により測定された粒子径の平均値をその平均一次粒子径として採用している。
Details of each particle constituting the conductive particle are as follows.
Low melting point metal particles 1: manufactured by Senju Metal Industry Co., Ltd., 96.5Sn-3.0Ag-0.5Cu alloy particles (melting point: 220 ° C.), average primary particle size 20 μm
Low melting point metal particles 2: 93Sn-3.5Ag-0.5Bi-3In alloy particles (melting point: 210 ° C.) manufactured by Mitsui Mining & Smelting Co., Ltd., average primary particle size 20 μm
Low melting point metal particles 3: 89Sn-8Zn-3Bi alloy particles (melting point: 197 ° C), manufactured by Mitsui Mining & Smelting Co., Ltd., average primary particle size 20 μm
Low melting point metal particle 4: 42Sn-58Bi alloy particle (melting point: 138 ° C), manufactured by Mitsui Mining & Smelting Co., Ltd., average primary particle size of 10 µm
Silver particles 1: manufactured by FERRO, trade name SFK-ED, flake shape, average primary particle size 0.8 μm
Silver particles 2: manufactured by FERRO, trade name SF9ED, flake shape, average primary particle size 3.5 μm
Silver particles 3: manufactured by FERRO, trade name SF78, flake shape, average primary particle size 5.9 μm
Silver particles 4: manufactured by FERRO, trade name SF26, flake shape, average primary particle size 15.0 μm
Silver particle 5: manufactured by FERRO, trade name SPI, substantially spherical, average primary particle diameter 0.4 μm, average particle diameter measured by Microtrac 14.0 μm
Silver particle 6: manufactured by Nippon Atomizing, trade name HXR-Ag 1.0 μm, substantially spherical, average primary particle diameter 1.2 μm, average particle diameter 1.1 μm measured by Microtrac
Silver particle 7: manufactured by Nippon Atomizing, trade name HXR-Ag 2.5 μm, substantially spherical, average primary particle size 2.9 μm, average particle size 2.8 μm measured by Microtrac
Silver particle 8: manufactured by FERRO, trade name SPEG, substantially spherical, average primary particle size 4.2 μm, average particle size measured by Microtrac 15.0 μm
Silver particle 9: manufactured by AMES GOLDSMITH, trade name AEP-6, substantially spherical, average primary particle size 6.0 μm, average particle size 6.0 μm measured by Microtrac
Silver particle 10: manufactured by Mitsui Mining & Smelting Co., Ltd., trade name 3110, substantially spherical, average primary particle size 6.8 μm, average particle size measured by Microtrac 6.6 μm
Copper particles: manufactured by Mitsui Mining & Smelting Co., Ltd., trade name Cu 1400Y, substantially spherical, average primary particle diameter 5.8 μm, average particle diameter measured by Microtrac 5.5 μm
Nickel particles: manufactured by Nikko Rica, trade name 110FSC-60, substantially spherical, average primary particle size 1.3 μm, average particle size 1.1 μm measured by Microtrac
Silver-plated copper particles: manufactured by Mitsui Mining & Smelting Co., Ltd., trade name Ag / Cu 1400Y, substantially spherical, average primary particle size 5.9 μm, average particle size measured by Microtrac 5.9 μm
In addition, since the substantially spherical shape has high cohesiveness, 50 particles are observed with a scanning electron microscope, and the average value of the diameters actually measured for each particle is adopted as the average primary particle size. Since those having low cohesiveness, the average value of the particle diameter measured by the laser diffraction scattering method (microtrack method) is adopted as the average primary particle diameter.

Figure 0004882576
Figure 0004882576

[試験例18〜21]
導電性粒子とエポキシ樹脂の質量比を表2に記載のように変化させた以外は、試験例7と同様にして導電性ペーストを製造し、同様にビア抵抗値の測定、導電性粒子間および導電性粒子と銅箔との融着性の評価を実施した。結果を表2に示す。
[Test Examples 18 to 21]
A conductive paste was produced in the same manner as in Test Example 7 except that the mass ratio of the conductive particles and the epoxy resin was changed as shown in Table 2, and the measurement of via resistance, Evaluation of the fusing property between the conductive particles and the copper foil was performed. The results are shown in Table 2.

Figure 0004882576
Figure 0004882576

[試験例22〜24]
導電性粒子における低融点金属粒子1と銀粒子3の質量比を表3に記載のように変化させた以外は、試験例7と同様にして導電性ペーストを製造し、同様にビア抵抗値の測定、導電性粒子間および導電性粒子と銅箔との融着性の評価を実施した。結果を表3に示す。
[Test Examples 22 to 24]
A conductive paste was produced in the same manner as in Test Example 7 except that the mass ratio of the low melting point metal particles 1 and the silver particles 3 in the conductive particles was changed as shown in Table 3, and the via resistance value was similarly measured. Measurement and evaluation of the fusion between the conductive particles and between the conductive particles and the copper foil were performed. The results are shown in Table 3.

Figure 0004882576
Figure 0004882576

[試験例25〜28]
導電性粒子100質量部に対する酸化膜除去剤の配合量を表4に記載のように変化させた以外は、試験例7と同様にして導電性ペーストを製造し、同様に評価した。なお、耐湿リフロー試験において、融着性の評価は省略した。結果を表4に示す。
[Test Examples 25 to 28]
Except having changed the compounding quantity of the oxide film removal agent with respect to 100 mass parts of electroconductive particle as shown in Table 4, the electroconductive paste was manufactured like Test Example 7 and evaluated similarly. In the moisture reflow test, the evaluation of fusing property was omitted. The results are shown in Table 4.

Figure 0004882576
Figure 0004882576

表1〜4から明らかなように、導電性粒子として、平均一次粒子径が6μm以下の銀粒子を低融点金属粒子と併用した各試験例では、ビア抵抗値が低く導電性が良好で、プリント基板の断面を目視観察して評価した融着性も優れていた。また、耐湿リフロー試験結果もよく、導電接続信頼性に優れていた。さらに、これらの試験例では、ピール強度も良好であり、導電性粒子と銅箔とが強固に融着していることが示された。
一方、低融点金属粒子を単独で使用した場合や、低融点金属粒子と併用するその他の粒子として、平均一次粒子径が6μmを超える銀粒子を使用した場合や、平均一次粒子径が6μm以下であるものの銀以外の銅粒子やニッケル粒子、銀メッキ銅粒子を使用した場合には、ビア抵抗値、目視観察による融着性、耐湿リフロー試験結果、ピール強度のすべてが良好であるものは得られなかった。
As is apparent from Tables 1 to 4, in each test example in which silver particles having an average primary particle size of 6 μm or less were used in combination with the low melting point metal particles as the conductive particles, the via resistance value was low and the conductivity was good. The fusing property evaluated by visually observing the cross section of the substrate was also excellent. Moreover, the results of the moisture resistance reflow test were good, and the conductive connection reliability was excellent. Further, in these test examples, the peel strength was also good, indicating that the conductive particles and the copper foil were firmly fused.
On the other hand, when low melting point metal particles are used alone, or as other particles used in combination with low melting point metal particles, when silver particles having an average primary particle diameter exceeding 6 μm are used, or when the average primary particle diameter is 6 μm or less. If copper particles other than silver, nickel particles, or silver-plated copper particles are used, those with good via resistance, fusion by visual observation, moisture reflow test results, and peel strength can be obtained. There wasn't.

低融点金属粒子と平均一次粒子径が6μm以下の銀粒子との混合物からなる導電性粒子を使用することにより、このように優れた導電性ペーストが得られる理由については必ずしも明らかではないが、その他の粒子(低抵抗金属粒子)として銅粒子、ニッケル粒子、銀メッキ銅粒子などを使用し、これと低融点金属粒子とを併用した場合には、加熱による低融点金属粒子のその他の粒子への拡散速度が速く、低融点金属粒子はすみやかにその他の粒子へ吸収されてしまうと考えられる。その結果、電極金属部へ拡散する低融点金属粒子が少なくなってしまい、電極金属部との融着が不十分となり、導電接続安定性が不安定になるものと推測される。一方、低融点金属粒子の銀粒子への拡散速度は、銅粒子、ニッケル粒子、銀メッキ銅粒子への拡散速度にくらべて遅いために、その他の粒子として銀粒子を使用した場合には、低融点金属粒子は電極金属部へも十分に拡散するものと考えられる。そして、その際、特に銀粒子の平均一次粒子径が6μm以下であると、その表面積が大きいため、低融点金属粒子の銀粒子への拡散速度は、銅粒子、ニッケル粒子、銀メッキ銅粒子などへの拡散速度よりは遅いものの、ある程度速くなると考えられる。その結果、平均一次粒子径が6μm以下の銀粒子への低融点金属粒子の拡散速度は適度なものとなり、低融点金属粒子と平均一次粒子径6μm以下の銀粒子とは合金化しやすく、しかも、電極金属部へ拡散する低融点金属粒子は依然として十分に残っている状態になる。よって、電極金属部との融着も十分となり、強固な導電パスが形成され、導電接続安定性が高まるものと推測される。

The reason why such an excellent conductive paste can be obtained by using conductive particles composed of a mixture of low melting point metal particles and silver particles having an average primary particle diameter of 6 μm or less is not necessarily clear, If copper particles, nickel particles, silver-plated copper particles, etc. are used as the particles (low-resistance metal particles) and these are used in combination with low-melting-point metal particles, the low-melting-point metal particles are heated to other particles. It is considered that the diffusion rate is high and the low melting point metal particles are promptly absorbed by other particles. As a result, it is presumed that low melting point metal particles diffusing into the electrode metal part are reduced, the fusion with the electrode metal part is insufficient, and the conductive connection stability becomes unstable. On the other hand, the diffusion rate of low melting point metal particles into silver particles is slower than the diffusion rate into copper particles, nickel particles, and silver-plated copper particles. Therefore, when silver particles are used as other particles, the diffusion rate is low. The melting point metal particles are considered to sufficiently diffuse into the electrode metal part. And in that case, especially when the average primary particle diameter of the silver particles is 6 μm or less, the surface area is large, so the diffusion rate of the low melting point metal particles into the silver particles is copper particles, nickel particles, silver plated copper particles, etc. Although it is slower than the diffusion rate, it is considered to be somewhat faster. As a result, the diffusion rate of the low melting point metal particles into the silver particles having an average primary particle size of 6 μm or less becomes moderate, and the low melting point metal particles and the silver particles having an average primary particle size of 6 μm or less are easily alloyed, The low melting point metal particles diffusing into the electrode metal part still remain sufficiently. Therefore, it is presumed that the fusion with the electrode metal part is sufficient, a strong conductive path is formed, and the conductive connection stability is improved.

Claims (3)

導電性粒子と、エポキシ樹脂と、硬化剤とを含有し、
前記導電性粒子は、スズ、インジウム、ビスマスからなる群より選ばれる少なくとも1種を含み、230℃以下に少なくとも1つの融点を有する低融点金属粒子と、平均一次粒子径が6μm以下の銀粒子との混合物であり、前記低融点金属粒子と前記銀粒子との質量比が、90:10〜70:30であり、かつ、前記導電性粒子と前記エポキシ樹脂との質量比が85:15〜97:3であることを特徴とする導電性ペースト。
Containing conductive particles, epoxy resin, and curing agent,
The conductive particles include at least one selected from the group consisting of tin, indium and bismuth, low melting point metal particles having at least one melting point at 230 ° C. or less, silver particles having an average primary particle size of 6 μm or less, The mass ratio of the low melting point metal particles to the silver particles is 90:10 to 70:30, and the mass ratio of the conductive particles to the epoxy resin is 85:15 to 97. : 3 is a conductive paste.
前記導電性粒子100質量部に対して、酸化膜除去剤を0.1〜8.0質量部含有することを特徴とする請求項1に記載の導電性ペースト。 2. The conductive paste according to claim 1, comprising 0.1 to 8.0 parts by mass of an oxide film removing agent with respect to 100 parts by mass of the conductive particles. プリント基板のビアホール充填用であることを特徴とする請求項1または2に記載の導電性ペースト。 3. The conductive paste according to claim 1, wherein the conductive paste is used for filling a via hole in a printed board.
JP2006206487A 2006-07-28 2006-07-28 Conductive paste Active JP4882576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206487A JP4882576B2 (en) 2006-07-28 2006-07-28 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206487A JP4882576B2 (en) 2006-07-28 2006-07-28 Conductive paste

Publications (2)

Publication Number Publication Date
JP2008034242A JP2008034242A (en) 2008-02-14
JP4882576B2 true JP4882576B2 (en) 2012-02-22

Family

ID=39123442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206487A Active JP4882576B2 (en) 2006-07-28 2006-07-28 Conductive paste

Country Status (1)

Country Link
JP (1) JP4882576B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974092B1 (en) * 2008-05-30 2010-08-04 삼성전기주식회사 Conductive paste including a carbon nanotube and printed circuit board using the same
JP2011258838A (en) * 2010-06-10 2011-12-22 Fujitsu Ltd Laminated circuit board, method of manufacturing the same, adhesive sheet, and method of manufacturing the same
CN104098813B (en) * 2013-04-12 2016-05-25 中国石油化工股份有限公司 A kind of conductive plastics and preparation method thereof
CN111128442B (en) * 2020-01-07 2021-12-03 北京梦之墨科技有限公司 Liquid metal conductive slurry, preparation method thereof and electronic device
TW202334367A (en) * 2022-02-21 2023-09-01 日商拓自達電線股份有限公司 Conductive paste and multilayer substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154417A (en) * 1996-11-26 1998-06-09 Toyobo Co Ltd Conductivity paste
JP4576728B2 (en) * 2001-03-06 2010-11-10 ソニー株式会社 Conductive paste, printed wiring board and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP4235885B2 (en) * 2002-05-24 2009-03-11 日立化成工業株式会社 Conductive paste

Also Published As

Publication number Publication date
JP2008034242A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
EP0933010B1 (en) Printable compositions, and their application to dielectric surfaces used in the manufacture of printed circuit boards
US7022266B1 (en) Printable compositions, and their application to dielectric surfaces used in the manufacture of printed circuit boards
KR101293914B1 (en) Conductive ink and device using the same
EP2216790B1 (en) Electrically conductive paste, and electrical and electronic device comprising the same
KR101225497B1 (en) Conductive paste and the manufacturing method thereof and the electric device comprising thereof
JP5964597B2 (en) Anisotropic conductive paste and method of connecting electronic parts using the same
KR101086358B1 (en) conductive paste
EP2412775A2 (en) Solder adhesive and a production method for the same, and an electronic device comprising the same
JP5802081B2 (en) Anisotropic conductive paste
JP5462984B1 (en) Conductive paste, cured product, electrode, and electronic device
JP4882576B2 (en) Conductive paste
JP6152043B2 (en) Conductive material and connection structure
JP6136851B2 (en) Solder flux and solder paste
EP0707524A1 (en) Solderable anisotropically conductive composition and method of using same
KR101617717B1 (en) Conductive paste for heat generation and the manufacturing method thereof and the electric device comprising thereof
Bukat et al. SAC solder paste with carbon nanotubes. Part II: carbon nanotubes’ effect on solder joints’ mechanical properties and microstructure
JPWO2018174066A1 (en) Conductive particles, conductive material and connection structure
JPS62230869A (en) Electrically conductive coating compound to be soldered
JP2018181605A (en) Sheet for joining metal member, method for joining metal member and metal member joint
JPWO2018221587A1 (en) Conductive material and connection structure
JP2004306092A (en) Flux for circuit board soldering, and solder paste
JP2004137345A (en) Electroconductive adhesive and method for producing the same
WO2022138756A1 (en) Solder material and solder material production method
CN115497661A (en) Conductive paste and conductive film formed using same
WO2022250073A1 (en) Conductive paste and multilayer substrate using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4882576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250