JP4881774B2 - Thin film forming apparatus, thin film forming method, polarization inversion enabling method, ferroelectric characteristic measuring method - Google Patents

Thin film forming apparatus, thin film forming method, polarization inversion enabling method, ferroelectric characteristic measuring method Download PDF

Info

Publication number
JP4881774B2
JP4881774B2 JP2007079132A JP2007079132A JP4881774B2 JP 4881774 B2 JP4881774 B2 JP 4881774B2 JP 2007079132 A JP2007079132 A JP 2007079132A JP 2007079132 A JP2007079132 A JP 2007079132A JP 4881774 B2 JP4881774 B2 JP 4881774B2
Authority
JP
Japan
Prior art keywords
thin film
film forming
substrate
deposition
deposition source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007079132A
Other languages
Japanese (ja)
Other versions
JP2008240025A (en
Inventor
聡 堀江
謙司 石田
和美 松重
哲浩 小谷
明天 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Kobe University NUC
Original Assignee
Daikin Industries Ltd
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Kobe University NUC filed Critical Daikin Industries Ltd
Priority to JP2007079132A priority Critical patent/JP4881774B2/en
Publication of JP2008240025A publication Critical patent/JP2008240025A/en
Application granted granted Critical
Publication of JP4881774B2 publication Critical patent/JP4881774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

この発明は、例えば被蒸着基板にフッ化ビニリデンオリゴマーの薄膜を形成するような薄膜形成装置と薄膜形成方法、これらで形成された薄膜を分極反転可能化するような分極反転可能化方法、前記薄膜の強誘電特性を測定するような強誘電特性測定方法関する。 The present invention includes, for example, a thin film forming apparatus and a thin film forming method for forming a vinylidene fluoride oligomer thin film on a deposition substrate, a polarization reversal enabling method for enabling polarization reversal of the thin film formed by these, and the thin film It relates ferroelectric properties of the ferroelectric characteristic measuring method for measuring the.

従来、低分子材料による機能性有機薄膜の作成法として、真空蒸着法が一般に知られている。この真空蒸着法は、10−5Pa程度の高真空下で「るつぼ」に入れた材料を加熱し、昇華させ、基板表面に物理吸着させるものである。 Conventionally, a vacuum deposition method is generally known as a method for producing a functional organic thin film using a low molecular material. In this vacuum deposition method, a material placed in a “crucible” is heated under a high vacuum of about 10 −5 Pa, sublimated, and physically adsorbed on the substrate surface.

この真空蒸着法は、膜中に不純物が混入することを防止できる清浄な膜形成方法である。しかし、この真空蒸着法は、高真空にするための装置が大型かつ高価であり、高真空到達から成膜完了までに長時間を要するという製造面での不利な点が存在する。   This vacuum deposition method is a clean film formation method that can prevent impurities from entering the film. However, this vacuum deposition method has a disadvantage in terms of manufacturing in that a device for making a high vacuum is large and expensive, and it takes a long time from reaching a high vacuum to completion of film formation.

一方、被蒸着基板の薄膜形成面に膜材料を蒸着させることによって薄膜を形成する薄膜形成方法が提案されている(特許文献1参照)。
この薄膜形成方法は、被蒸着基板の薄膜形成面と、膜材料を材料供給面に担持した供給基板の材料供給面とを、所定の間隙を確保した状態で近接対向配置し、前記材料供給面上の前記膜材料を蒸発させることにより、前記薄膜形成面に前記膜材料の薄膜を形成する。
On the other hand, a thin film forming method has been proposed in which a thin film is formed by depositing a film material on a thin film forming surface of a deposition target substrate (see Patent Document 1).
In this thin film forming method, the thin film forming surface of the deposition substrate and the material supply surface of the supply substrate carrying the film material on the material supply surface are arranged in close proximity to each other with a predetermined gap secured, and the material supply surface By evaporating the film material above, a thin film of the film material is formed on the thin film forming surface.

この薄膜形成方法により、被蒸着基板と供給基板との間隔を大きくとらなくても、被蒸着基板の薄膜形成面に良好な薄膜を成膜することができ、低真空雰囲気中で蒸着できるとされている。   According to this thin film forming method, it is possible to form a good thin film on the thin film forming surface of the evaporation target substrate without increasing the distance between the evaporation target substrate and the supply substrate, and to deposit in a low vacuum atmosphere. ing.

しかし、この薄膜形成方法は、均一に配向、結晶化された膜質を得るために蒸着速度が0.5nm/min以下(段落[0064]参照)となっており、必要な厚みの薄膜を得るためにある程度の時間が必要であるという問題点が残っている。   However, in this thin film formation method, in order to obtain a uniformly oriented and crystallized film quality, the deposition rate is 0.5 nm / min or less (see paragraph [0064]), and a thin film having a necessary thickness is obtained. However, there remains a problem that a certain amount of time is required.

また、フッ化ビニリデンオリゴマーの薄膜を製造する方法として、フッ化ビニリデンオリゴマー薄膜製造方法が提案されている(特許文献2参照)。このフッ化ビニリデンオリゴマー薄膜製造方法では、基板を−130℃以下に冷却しつつ、フッ化ビニリデンオリゴマーを蒸着または噴霧することで薄膜が形成されている。   As a method for producing a vinylidene fluoride oligomer thin film, a method for producing a vinylidene fluoride oligomer thin film has been proposed (see Patent Document 2). In this method for producing a vinylidene fluoride oligomer thin film, a thin film is formed by depositing or spraying a vinylidene fluoride oligomer while cooling the substrate to −130 ° C. or lower.

この特許文献2で基板が冷却されるのは、フッ化ビニリデンオリゴマーを基板に対して平行配向させるためである。
詳述すると、フッ化ビニリデンオリゴマーは、炭素直鎖にH、F原子を有するものであり、H+とF−の電気陰性度の差から永久双極子モーメントをもつ。この材料が強誘電性を示すためには、電極で挟んだ強誘電キャパシタ構造を考えたときに、電極に対して、炭素直鎖が平行に配向している必要がある。
The reason why the substrate is cooled in Patent Document 2 is to align the vinylidene fluoride oligomer in parallel with the substrate.
More specifically, the vinylidene fluoride oligomer has H and F atoms in a carbon straight chain, and has a permanent dipole moment due to the difference in electronegativity between H + and F−. In order for this material to exhibit ferroelectricity, when considering a ferroelectric capacitor structure sandwiched between electrodes, it is necessary that carbon straight chains be oriented parallel to the electrodes.

上記特許文献2で、仮に基板温度を室温程度にすると、分子が基板に吸着した際、立った形で基板上をさまよって拡散し、他の吸着した分子と出会って結晶を作り始める。このとき、立った分子同士であるから、結晶は基板に対して垂直に配向され、平行配向されないことになる。   In Patent Document 2, if the substrate temperature is set to about room temperature, when molecules are adsorbed to the substrate, the molecules diffuse in a standing manner and meet other adsorbed molecules to start forming crystals. At this time, since the molecules are standing, the crystals are oriented perpendicular to the substrate and are not parallel oriented.

このため、上記特許文献2では、基板を低温にしている。これにより、基板に吸着した分子は、基板から受ける熱エネルギーが小さいことから拡散することがなく、その場で倒れて平行配向する。この状態で結晶化が進むため、上記特許文献2の方法によって強誘電結晶ができる。   For this reason, in the said patent document 2, the board | substrate is made into low temperature. Thereby, the molecules adsorbed on the substrate do not diffuse because the thermal energy received from the substrate is small, and fall down on the spot and are parallel-aligned. Since crystallization proceeds in this state, a ferroelectric crystal can be formed by the method of Patent Document 2.

しかし、上記特許文献2の方法は、冷却する装置が必要になり、高真空を得るための装置とあわせて装置の価格が高価になるという問題点を有している。   However, the method of Patent Document 2 requires a device for cooling, and has a problem that the cost of the device becomes expensive together with a device for obtaining a high vacuum.

特開2006−152352号公報JP 2006-152352 A 特開2004−76108号公報JP 2004-76108 A

この発明は、上述の問題点に鑑み、短時間で効率よく薄膜を形成できる薄膜形成装置、薄膜形成方法、分極反転可能化方法、強誘電特性測定方法提供することを目的とする。 The present invention, in view of the above problems, efficiently in a short time a thin film forming apparatus in which a thin film can be formed, a thin film formation method, polarization inversion possible methods, and to provide a ferroelectric characteristic measuring method.

この発明は、被蒸着基板の薄膜形成面にフッ化ビニリデンオリゴマーを蒸着させて該フッ化ビニリデンオリゴマーの薄膜を形成する薄膜形成装置であって、被蒸着基板を保持する被蒸着基板保持部と、フッ化ビニリデンオリゴマーが配置された蒸着源を保持する蒸着源保持部と、前記蒸着源を加熱する加熱手段と、前記被蒸着基板と前記蒸着源との間に配置され、前記被蒸着基板側から前記蒸着源側まで貫通する貫通孔が設けられた断熱部材と、前記被蒸着基板保持部と前記蒸着源保持部の少なくとも一方を移動させて、前記被蒸着基板と前記蒸着源が離間する離間状態と、前記被蒸着基板の薄膜形成面と前記蒸着源のフッ化ビニリデンオリゴマー供給面が前記断熱部材を挟んで対向し近接する近接状態とに変化させる移動手段とを備え、該移動手段を、前記加熱手段の加熱により前記蒸着源が所定の温度になったときに前記離間状態から前記近接状態に変化させる構成にした薄膜形成装置であることを特徴とする。 The present invention is a thin film forming apparatus for forming a thin film of vinylidene fluoride oligomer by vapor-depositing a vinylidene fluoride oligomer on a thin film forming surface of a deposition target substrate, and a deposition target substrate holding unit that holds the deposition target substrate; A vapor deposition source holding unit that holds a vapor deposition source in which a vinylidene fluoride oligomer is disposed, a heating unit that heats the vapor deposition source, and a vapor deposition substrate disposed between the vapor deposition substrate and the vapor deposition source, from the vapor deposition substrate side. A heat-insulating member provided with a through-hole penetrating to the vapor deposition source side, and a separated state in which at least one of the vapor deposition substrate holding part and the vapor deposition source holding part is moved to separate the vapor deposition substrate and the vapor deposition source. When, and a moving means for changing the on and proximity state vinylidene fluoride oligomer supply side of the deposition source and film formation surface of the deposition substrate is closely face each other across the insulating member, the The motion means, the deposition source by heating the heating means is characterized by a thin film forming apparatus was configured to vary the proximity from the separation state to when a predetermined temperature.

たこの発明の態様として、前記被蒸着基板保持部を、前記被蒸着基板と前記断熱部材とを固定する構成とすることができる。 Or as an aspect of the octopus invention, the deposition target substrate holder, wherein it can be configured to fix the heat insulating member and the deposition substrate.

またこの発明の態様として、前記離間状態の際に前記断熱部材と前記蒸着源との間を仕切り、前記近接状態に変化させる際に前記断熱部材と前記蒸着源との間を開放する開閉シャッタを備えることができる。   Further, as an aspect of the present invention, there is provided an open / close shutter that partitions the heat insulating member and the vapor deposition source in the separated state and opens the space between the heat insulating member and the vapor deposition source when changing to the close state. Can be provided.

またこの発明の態様として、前記被蒸着基板保持部と前記断熱部材と前記蒸着源保持部を減圧雰囲気内に配置することができる。   As an aspect of the present invention, the deposition target substrate holding unit, the heat insulating member, and the deposition source holding unit can be disposed in a reduced pressure atmosphere.

またこの発明の態様として、前記断熱部材の貫通孔の配置と形状により前記被蒸着基板の薄膜形成面に形成する薄膜をパターンニングする構成とすることができる。   Moreover, as an aspect of this invention, it can be set as the structure which patterns the thin film formed in the thin film formation surface of the said to-be-deposited substrate by arrangement | positioning and shape of the through-hole of the said heat insulation member.

またこの発明の態様として、前記断熱部材の貫通孔を前記被蒸着基板の薄膜形成領域より大きく形成し、前記被蒸着基板の薄膜形成面に形成する薄膜をパターンニングするマスク部材を前記被蒸着基板の薄膜形成面に重ねる構成とすることができる。   According to another aspect of the present invention, a mask member for patterning a thin film formed on a thin film forming surface of the deposition substrate is formed by forming a through hole of the heat insulating member larger than a thin film formation region of the deposition substrate. It can be set as the structure piled up on the thin film formation surface.

またこの発明の態様として、前記被蒸着基板保持部に、前記近接状態のときに前記被蒸着基板と前記断熱部材が前記蒸着源に倣って角度変位可能とする変位許容部を備えることができる。   Further, as an aspect of the present invention, the deposition target substrate holding unit can be provided with a displacement allowing portion that allows the deposition target substrate and the heat insulating member to be angularly displaced following the deposition source when in the proximity state.

またこの発明は、被蒸着基板の薄膜形成面にフッ化ビニリデンオリゴマーを蒸着させることによって該フッ化ビニリデンオリゴマーの薄膜を形成する薄膜形成方法であって、フッ化ビニリデンオリゴマーが配置された蒸着源と被蒸着基板とを離間させた状態で前記蒸着源を加熱する加熱工程と、該加熱工程での加熱により前記蒸着源が所定の温度になったときに、前記被蒸着基板と前記蒸着源が離間する離間状態から、前記被蒸着基板と前記蒸着源のとの少なくとも一方を移動させて、前記被蒸着基板の薄膜形成面と前記蒸着源のフッ化ビニリデンオリゴマー供給面が断熱部材を挟んで対向し近接する近接状態に変化させる移動工程と、前記近接状態で前記フッ化ビニリデンオリゴマーの薄膜を前記薄膜形成面に蒸着する蒸着工程とを有する薄膜形成方法とすることができる。 The present invention also provides a thin film forming method for forming a vinylidene fluoride oligomer thin film by depositing a vinylidene fluoride oligomer on a thin film forming surface of a substrate to be vapor-deposited, wherein the vinylidene fluoride oligomer is disposed; A heating step of heating the vapor deposition source in a state where the vapor deposition substrate is spaced apart, and the vapor deposition source and the vapor deposition source are separated when the vapor deposition source reaches a predetermined temperature by heating in the heating step. At least one of the deposition substrate and the deposition source is moved from the separated state, and the thin film formation surface of the deposition substrate and the vinylidene fluoride oligomer supply surface of the deposition source face each other with a heat insulating member interposed therebetween. A moving step of changing to a close proximity state, and a vapor deposition step of depositing a thin film of the vinylidene fluoride oligomer on the thin film forming surface in the close state. It may be a film forming method.

この発明の態様として、前記断熱部材と前記蒸着源との間を仕切っているシャッタを前記移動工程の直前または途中に開状態に移動させるシャッタ開工程を備えることができる。   As an aspect of the present invention, a shutter opening step of moving a shutter partitioning between the heat insulating member and the vapor deposition source to an open state immediately before or during the moving step can be provided.

またこの発明の態様として、前記蒸着工程を減圧雰囲気下で実施することができる。
またこの発明の態様として、室温程度の前記被蒸着基板を用いて前記各工程を実施することができる。
As an aspect of the present invention, the vapor deposition step can be performed in a reduced pressure atmosphere.
Further, as an aspect of the present invention, each of the steps can be performed using the deposition target substrate at about room temperature.

またこの発明の態様として、前記被蒸着源に、前記フッ化ビニリデンオリゴマーがパターンニングされたものを用いる   Further, as an aspect of the present invention, a material obtained by patterning the vinylidene fluoride oligomer is used as the deposition source.

またこの発明の態様として、前記蒸着工程により、薄膜化したフッ化ビニリデンオリゴマーに、前記被蒸着基板に対して平行配向された成分を存在させることができる。   As an aspect of the present invention, the vinylidene fluoride oligomer that has been thinned by the vapor deposition step can have components that are aligned in parallel to the vapor deposition substrate.

またこの発明は、前記薄膜形成方法で形成したフッ化ビニリデンオリゴマーの薄膜に抗電界以上の電界の矩形波を繰り返し印加して分極反転を可能にする分極反転可能化方法とすることができる。   In addition, the present invention can be a polarization inversion enabling method that enables polarization inversion by repeatedly applying a rectangular wave having an electric field higher than the coercive electric field to the vinylidene fluoride oligomer thin film formed by the thin film formation method.

またこの発明は、前記薄膜形成方法で形成したフッ化ビニリデンオリゴマーの薄膜について、前記被蒸着基板を加熱して昇温させながら電界を印加して分極反転を可能にする分極反転可能化方法とすることができる。   In addition, the present invention provides a polarization inversion enabling method for applying polarization to the thin film of vinylidene fluoride oligomer formed by the thin film forming method by applying an electric field while heating the deposition target substrate and raising the temperature. be able to.

またこの発明は、前記薄膜形成方法で形成したフッ化ビニリデンオリゴマーの薄膜に抗電界以上の電界の矩形波を繰り返し印加する電界断続印加工程を行った後、前記薄膜の強誘電特性を測定する測定工程を行う強誘電特性測定方法とすることができる The present invention also provides a measurement for measuring the ferroelectric characteristics of the thin film after performing an electric field intermittent application step of repeatedly applying a rectangular wave having an electric field higher than the coercive electric field to the vinylidene fluoride oligomer thin film formed by the thin film forming method. It can be set as the ferroelectric characteristic measuring method which performs a process .

この発明により、短時間で効率よく薄膜を形成できる薄膜形成装置、薄膜形成方法、分極反転可能化方法、強誘電特性測定方法提供することができる。 According to the present invention, it is possible to provide a thin film forming apparatus, a thin film forming method, a polarization inversion enabling method, and a ferroelectric characteristic measuring method that can efficiently form a thin film in a short time.

この発明の一実施形態を以下図面と共に説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1は、実施例1の薄膜形成装置1の構成を示す正面一部断面図であり、図2は、断熱マスク20の平面図である。   FIG. 1 is a partial front sectional view showing the configuration of the thin film forming apparatus 1 of the first embodiment, and FIG. 2 is a plan view of the heat insulating mask 20.

薄膜形成装置1は、図示省略するロータリポンプにより減圧されて内部に0.3〜1Paの低真空雰囲気を作り出すチャンバ2内に、上下に昇降するホルダ3と、左右に開閉するシャッタ27と、ステージ40と、セラミックヒータ45とが上からこの順で配置されて主に構成されている。チャンバ2内は、特に温度調整されておらず、室温程度の温度になっている。   The thin film forming apparatus 1 includes a holder 3 that moves up and down, a shutter 27 that opens and closes left and right, and a stage in a chamber 2 that is decompressed by a rotary pump (not shown) to create a low vacuum atmosphere of 0.3 to 1 Pa inside. 40 and the ceramic heater 45 are arranged mainly in this order from the top. The temperature in the chamber 2 is not particularly adjusted, and is about room temperature.

ホルダ3は、平面視略四角形の板部5と、板部5の縁部下面に設けられた固定爪4とで構成されている。このホルダ3は、板部5の上面中央にフレキシブルカップリング6が装着されている。また、このフレキシブルカップリング6には、鉛直に延びる円柱形のアーム7が装着されている。   The holder 3 includes a plate portion 5 having a substantially square shape in plan view and a fixed claw 4 provided on the lower surface of the edge portion of the plate portion 5. The holder 3 has a flexible coupling 6 attached to the center of the upper surface of the plate portion 5. The flexible coupling 6 is provided with a cylindrical arm 7 extending vertically.

ホルダ3は、板部5の水平な下面に重なるように配置された被蒸着基板10と、該被蒸着基板10の下面に重なるように密着して配置された断熱マスク20とを、固定爪4で固定する。これにより、図示省略する昇降駆動部によりホルダ3が上下動すると、被蒸着基板10および断熱マスク20が互いに密着した状態のままホルダ3と共に上下動する。   The holder 3 attaches the vapor deposition substrate 10 disposed so as to overlap the horizontal lower surface of the plate portion 5 and the heat insulating mask 20 disposed in close contact with the lower surface of the vapor deposition substrate 10 to the fixing claw 4. Secure with. As a result, when the holder 3 moves up and down by an elevating drive unit (not shown), the deposition target substrate 10 and the heat insulating mask 20 move up and down together with the holder 3 while being in close contact with each other.

また、フレキシブルカップリング6は、柔軟に曲がって偏角や偏心を吸収する部材である。このフレキシブルカップリング6により、ホルダ3を最下位置まで下降させたときに、ホルダ3が蒸着源30に倣って偏角あるいは偏心し、断熱マスク20の下面が蒸着源30の上面に密着する。   The flexible coupling 6 is a member that bends flexibly and absorbs declination and eccentricity. When the holder 3 is lowered to the lowest position by the flexible coupling 6, the holder 3 is deviated or decentered following the vapor deposition source 30, and the lower surface of the heat insulating mask 20 is in close contact with the upper surface of the vapor deposition source 30.

被蒸着基板10は、肉厚一定の水平な板形状に形成されており、この実施例では平面視四角形に形成された石英基板を用いている。被蒸着基板10の下面は、薄膜形成面11であり、この実施例ではアルミのマスクパターンが施されている。   The deposition target substrate 10 is formed in a horizontal plate shape having a constant thickness, and in this embodiment, a quartz substrate formed in a square shape in plan view is used. The lower surface of the vapor deposition substrate 10 is a thin film forming surface 11, and an aluminum mask pattern is applied in this embodiment.

断熱マスク20は、肉厚一定の水平な板形状で肉厚方向に貫通する貫通孔21が複数形成されている。この実施例では、図2に示すように、直径1mmの貫通孔21が、互いの孔中心間の距離が2mmの間隔で縦横に6×6の36個形成されている。断熱マスク20の肉厚は、2mmに形成されている。従って、貫通孔21は、直径1mmで高さ2mmの円筒形状に形成されている。また、断熱マスク20は、石英またはセラミックなどのガラス加工が可能な断熱素材で形成され、この実施形態では、特殊合成石英により形成されている。この特殊合成石英は、2mmの肉厚で、片面に摂氏300℃の熱を1分間受けると、反対面の被蒸着基板10が摂氏40℃となる程度に熱伝達を抑制できるものである。なお、断熱マスク20の貫通孔21の形状および配置パターンは、これに限らず、被蒸着基板10に薄膜形成したいパターンに合わせて適宜の形状とすればよい。このとき、断熱マスク20の上面における貫通孔21の配置パターンが、被蒸着基板10に薄膜形成したいパターンの鏡面パターンとなるようにすればよい。   The heat insulating mask 20 is formed with a plurality of through holes 21 penetrating in the thickness direction in a horizontal plate shape having a constant thickness. In this embodiment, as shown in FIG. 2, 36 through-holes 21 having a diameter of 1 mm are formed 6 × 6 in a vertical and horizontal direction at a distance of 2 mm between each hole center. The thickness of the heat insulating mask 20 is 2 mm. Accordingly, the through hole 21 is formed in a cylindrical shape having a diameter of 1 mm and a height of 2 mm. The heat insulating mask 20 is made of a heat insulating material capable of glass processing such as quartz or ceramic. In this embodiment, the heat insulating mask 20 is made of special synthetic quartz. This special synthetic quartz has a thickness of 2 mm and can suppress heat transfer to such an extent that when the heat of 300 ° C. is applied to one side for 1 minute, the deposition target substrate 10 on the opposite side becomes 40 ° C. Note that the shape and arrangement pattern of the through holes 21 of the heat insulating mask 20 are not limited to this, and may be an appropriate shape according to a pattern in which a thin film is to be formed on the deposition target substrate 10. At this time, the arrangement pattern of the through holes 21 on the upper surface of the heat insulating mask 20 may be a mirror pattern of a pattern to be formed into a thin film on the deposition target substrate 10.

図1に示すように、チャンバ2の中央付近の高さには、水平なシャッタ27が設けられている。このシャッタ27は、図示する閉状態のときにチャンバ2内を上下に仕切り、上部空間2aと下部空間2bとを完全に遮断する。これにより、セラミックヒータ45等による下部空間2bからの輻射熱を上部空間2aの断熱マスク20および被蒸着基板10に伝えないようにしている。図示省略する開閉駆動部によりシャッタ27が図1の右方向にスライド移動されて開状態になると、チャンバ2内は仕切りがなくなり、上部空間2aと下部空間2bが連通する。   As shown in FIG. 1, a horizontal shutter 27 is provided at a height near the center of the chamber 2. The shutter 27 partitions the interior of the chamber 2 up and down in the illustrated closed state, and completely blocks the upper space 2a and the lower space 2b. Thereby, the radiant heat from the lower space 2b by the ceramic heater 45 or the like is not transmitted to the heat insulating mask 20 and the deposition target substrate 10 in the upper space 2a. When the shutter 27 is slid rightward in FIG. 1 by the opening / closing drive unit (not shown) and opened, the chamber 2 is not partitioned, and the upper space 2a and the lower space 2b communicate with each other.

チャンバ2の下部空間2bには、底部付近にセラミックヒータ45が配置され、その上にステージ40が重ねて配置され、さらにその上に蒸着源30が重ねて配置されている。   In the lower space 2b of the chamber 2, a ceramic heater 45 is disposed near the bottom, a stage 40 is disposed thereon, and a vapor deposition source 30 is disposed thereon.

蒸着源30は、肉厚一定で水平な板状に形成されたプレート31の上面に、膜材料であるVDF(フッ化ビニリデン)オリゴマー[CF(CHCF)nC]33が配置されて構成されている。ここで、化学式中「n」は量体数であり、「CHCF」の繰り返し数を表している。この実施例では、「n」が「13.4」のVDFオリゴマー33を用いている。なお、nは本来整数であるが、上記「13.4」は、合成した段階の平均分子量を示している。 The vapor deposition source 30 has a VDF (vinylidene fluoride) oligomer [CF 3 (CH 2 CF 2 ) nC 2 H 5 ] 33 as a film material on the upper surface of a plate 31 formed in a flat plate shape with a constant thickness. Arranged and configured. Here, “n” in the chemical formula is the number of monomers, and represents the number of repetitions of “CH 2 CF 2 ”. In this embodiment, the VDF oligomer 33 whose “n” is “13.4” is used. In addition, although n is an integer originally, the above “13.4” indicates an average molecular weight at the stage of synthesis.

プレート31の上面は、VDFオリゴマー供給面32である。この蒸着源30は、一例として、VDFオリゴマー13.4量体粉末をアセトンに1wt%の割合で溶解させ、その溶液をヒートステージ上に滴下、乾燥させて製作することができる。この実施例では、蒸着源30の形状を、被蒸着基板10および断熱マスク20の形状に合わせて平面視四角形の形状に形成している。また、この実施例では、被蒸着基板10に薄膜形成したいパターン、すなわち断熱マスク20の貫通孔21の配置パターンと同一の配置パターンにVDFオリゴマー33が配置されている。なお、VDFオリゴマー33の配置は、これに限らず、適宜のパターンに配置しても良く、またプレート31の上面全面に配置してもよい。   The upper surface of the plate 31 is a VDF oligomer supply surface 32. For example, the vapor deposition source 30 can be manufactured by dissolving VDF oligomer 13.4-mer powder in acetone at a rate of 1 wt%, and dropping and drying the solution on a heat stage. In this embodiment, the shape of the vapor deposition source 30 is formed in a square shape in plan view according to the shapes of the vapor deposition substrate 10 and the heat insulating mask 20. In this embodiment, the VDF oligomer 33 is arranged in the same arrangement pattern as the arrangement pattern of the through holes 21 of the heat insulating mask 20, that is, the pattern to be formed into a thin film on the deposition target substrate 10. The arrangement of the VDF oligomer 33 is not limited to this, and may be arranged in an appropriate pattern, or may be arranged on the entire upper surface of the plate 31.

ステージ40は、肉厚一定で水平な板形状であり、熱伝導性の高い素材で形成されている。この実施例では、銅素材により、被蒸着基板10および断熱マスク20の形状に合わせて平面視四角形の形状に形成されている。   The stage 40 has a uniform plate thickness and a horizontal plate shape, and is formed of a material having high thermal conductivity. In this embodiment, the copper material is formed into a quadrangular shape in plan view in accordance with the shapes of the deposition target substrate 10 and the heat insulating mask 20.

セラミックヒータ45は、高速に昇温可能なセラミックヒータで構成されている。この実施例では、蒸着源30を3分で摂氏300℃まで昇温可能なセラミックヒータにより構成されており、被蒸着基板10および断熱マスク20の形状に合わせて平面視四角形に形成されている。   The ceramic heater 45 is composed of a ceramic heater that can raise the temperature at high speed. In this embodiment, the vapor deposition source 30 is composed of a ceramic heater capable of raising the temperature to 300 degrees Celsius in 3 minutes, and is formed in a square shape in plan view according to the shapes of the vapor deposition substrate 10 and the heat insulating mask 20.

このように構成された薄膜形成装置1は、図示省略する制御部により、ホルダ3の上下駆動、シャッタ27の開閉駆動、およびセラミックヒータ45の昇熱実行が制御される。   In the thin film forming apparatus 1 configured in this manner, the vertical drive of the holder 3, the opening / closing drive of the shutter 27, and the heating increase of the ceramic heater 45 are controlled by a control unit (not shown).

図3は、薄膜形成装置1による薄膜形成方法を示すフローチャートであり、図4は薄膜形成装置1の構成を示す正面一部断面図であり、図5はVDFオリゴマー33が蒸着する様子を説明する説明図である。   FIG. 3 is a flowchart showing a method of forming a thin film by the thin film forming apparatus 1, FIG. 4 is a partial front sectional view showing the structure of the thin film forming apparatus 1, and FIG. 5 explains how the VDF oligomer 33 is deposited. It is explanatory drawing.

薄膜形成装置1は、図1に示したように、ホルダ3を最上位置に上昇させ、シャッタ27を閉状態にし、ロータリポンプでチャンバ2内を0.3〜1Paの低真空雰囲気に減圧する減圧工程を実施して、初期状態に移行する(ステップS1)。このとき、ホルダ3にはVDFオリゴマー33蒸着前の被蒸着基板10と断熱マスク20が固定されており、ステージ40上にはVDFオリゴマー33蒸発前の蒸着源30が固定されている。   As shown in FIG. 1, the thin film forming apparatus 1 raises the holder 3 to the uppermost position, closes the shutter 27, and reduces the pressure in the chamber 2 to a low vacuum atmosphere of 0.3 to 1 Pa with a rotary pump. A process is implemented and it transfers to an initial state (step S1). At this time, the deposition target substrate 10 before the VDF oligomer 33 deposition and the heat insulating mask 20 are fixed to the holder 3, and the deposition source 30 before the VDF oligomer 33 evaporation is fixed on the stage 40.

薄膜形成装置1は、加熱工程を実施してセラミックヒータ45を加熱し(ステップS2)、予め設定した蒸着開始温度(この実施例では摂氏120℃程度)になるまで加熱を続ける(ステップS3:NO)。   The thin film forming apparatus 1 performs the heating process to heat the ceramic heater 45 (step S2), and continues the heating until reaching a preset deposition start temperature (in this example, about 120 ° C.) (step S3: NO). ).

蒸着開始温度になると(ステップS3:YES)、薄膜形成装置1は、シャッタ開工程を実施し、シャッタ27を水平にスライド移動させて図4に示す全開状態とする(ステップS4)。そして、薄膜形成装置1は、近接工程を実施し、ホルダ3を下降させて断熱マスク20の下面を蒸着源30の上面にしっかりと面接触させる(ステップS5)。   When the deposition start temperature is reached (step S3: YES), the thin film forming apparatus 1 performs a shutter opening process, and slides the shutter 27 horizontally to a fully opened state shown in FIG. 4 (step S4). Then, the thin film forming apparatus 1 performs the proximity process, lowers the holder 3, and makes the lower surface of the heat insulating mask 20 come into surface contact with the upper surface of the vapor deposition source 30 (step S5).

このとき、図5に示すように、断熱マスク20に形成された貫通孔21の上下の開口部は、対向し近接する被蒸着基板10の薄膜形成面11と蒸着源30のVDFオリゴマー供給面32との間でほぼ密閉される。したがって、貫通孔21は、直径1mmで高さ2mmの局所的な閉空間となる。   At this time, as shown in FIG. 5, the upper and lower openings of the through holes 21 formed in the heat insulating mask 20 are opposed to and adjacent to the thin film forming surface 11 of the evaporation target substrate 10 and the VDF oligomer supply surface 32 of the evaporation source 30. It is almost sealed between. Therefore, the through hole 21 is a local closed space having a diameter of 1 mm and a height of 2 mm.

そして、VDFオリゴマー33は、ステージ40およびプレート31を介してセラミックヒータ45の熱を受けて昇華して気体分子33aとなり、VDFオリゴマー供給面32から離脱して貫通孔21内に解き放たれる。貫通孔21内は、ほぼ密閉されることで極めて制限された空間になっているため、蒸気圧が平衡蒸気圧を上回り、過飽和度が高い状態となる。このため、気相からの液晶成長が効率的に促進する状態になっている。   Then, the VDF oligomer 33 receives the heat of the ceramic heater 45 through the stage 40 and the plate 31 and sublimates to become gas molecules 33a, which is released from the VDF oligomer supply surface 32 and released into the through hole 21. Since the inside of the through hole 21 is a very limited space by being almost sealed, the vapor pressure exceeds the equilibrium vapor pressure, and the degree of supersaturation is high. For this reason, the liquid crystal growth from the gas phase is effectively promoted.

薄膜形成装置1は、ホルダ3を下降させてから予め設定された蒸着時間(この実施例では45秒)が経過するまで待機して蒸着工程を実施し(ステップS6:NO)、蒸着を進行させる。   The thin film forming apparatus 1 waits until a predetermined vapor deposition time (45 seconds in this embodiment) elapses after the holder 3 is lowered, and performs the vapor deposition process (step S6: NO) to advance the vapor deposition. .

ここで、貫通孔21内は、急激な温度勾配を有しており、下方の蒸着源30側が高温(この実施例では蒸着源30が摂氏120℃〜180℃程度)で、上方の被蒸着基板10側が低温(この実施例では被蒸着基板10が摂氏50℃程度以下)になっている。   Here, the inside of the through-hole 21 has a steep temperature gradient, the lower vapor deposition source 30 side is at a high temperature (in this embodiment, the vapor deposition source 30 is about 120 ° C. to 180 ° C.), and the upper vapor deposition substrate. The 10 side is at a low temperature (in this embodiment, the deposition target substrate 10 is about 50 ° C. or less).

特に、ホルダ3が下降して貫通孔21が密閉された瞬間は、被蒸着基板10がチャンバ2内の雰囲気温度(この実施例では室温)で、蒸着源30が摂氏120℃程度である。したがって、この瞬間は、被蒸着基板10と蒸着源30の間に非常に急激な温度勾配が形成される。   In particular, at the moment when the holder 3 is lowered and the through hole 21 is sealed, the substrate to be deposited 10 is at the atmospheric temperature in the chamber 2 (room temperature in this embodiment), and the deposition source 30 is about 120 degrees Celsius. Therefore, at this moment, a very steep temperature gradient is formed between the deposition target substrate 10 and the deposition source 30.

また、蒸着時間(この実施例では45秒)が経過した時点でも、断熱マスク20の断熱機能により、被蒸着基板10が摂氏50℃程度、蒸着源30が摂氏180℃程度である。したがって、蒸着工程を実施している間、被蒸着基板10と蒸着源30の間の急激な温度勾配を維持できる。   Further, even when the vapor deposition time (45 seconds in this embodiment) elapses, due to the heat insulation function of the heat insulation mask 20, the vapor deposition substrate 10 is about 50 degrees Celsius and the vapor deposition source 30 is about 180 degrees Celsius. Therefore, a steep temperature gradient between the evaporation target substrate 10 and the evaporation source 30 can be maintained while the evaporation process is performed.

この急激な温度勾配の維持には、蒸着源30の温度を、蒸着開始時点よりも蒸着完了時点の方が高温となるように上げ続けることも寄与している。この実施例では、蒸着時間中に被蒸着基板10が温度上昇する温度差と同程度またはそれ以上に蒸着源30の温度を上昇させている。   In order to maintain this rapid temperature gradient, it is also contributed that the temperature of the vapor deposition source 30 is continuously increased so that the temperature at the time of completion of vapor deposition is higher than the time of vapor deposition. In this embodiment, the temperature of the vapor deposition source 30 is increased to the same degree or more than the temperature difference at which the temperature of the vapor deposition substrate 10 increases during the vapor deposition time.

このように非常に急激な温度勾配により、蒸着源30から離脱した気体分子33aは、最も温度が低い被蒸着基板10の薄膜形成面11に蒸着し、気体分子33aの配向にバラツキのある状態で効率よく堆積していく。   Thus, the gas molecules 33a separated from the vapor deposition source 30 due to a very rapid temperature gradient are vapor-deposited on the thin film forming surface 11 of the vapor deposition substrate 10 having the lowest temperature, and the orientation of the gas molecules 33a varies. It accumulates efficiently.

蒸着時間が経過すると(ステップS6:YES)、薄膜形成装置1は、離間工程を実施してホルダ3を最上位置まで上昇させる(ステップS7)。そして、薄膜形成装置1は、シャッタ閉工程を実施し、シャッタ27を水平にスライド移動させて全閉状態にする(ステップS8)。   When the deposition time elapses (step S6: YES), the thin film forming apparatus 1 performs the separation process and raises the holder 3 to the uppermost position (step S7). Then, the thin film forming apparatus 1 performs a shutter closing process, and slides the shutter 27 horizontally to make it fully closed (step S8).

以上の工程により、断熱マスク20の上面に形成された貫通孔21のパターン形状と鏡面パターンとなる薄膜を、被蒸着基板10の薄膜形成面11に低真空雰囲気内で短時間に効率よく形成することができる。   Through the above steps, a thin film having a pattern shape and a mirror pattern of the through holes 21 formed on the upper surface of the heat insulating mask 20 is efficiently formed in a low vacuum atmosphere on the thin film forming surface 11 of the evaporation target substrate 10 in a short time. be able to.

この実施例における45秒の蒸着時間で形成された薄膜の厚みは400nm程度であった。したがって、従来例の0.5nm/minの薄膜形成速度に対して、本実施例は、約533nm/minという非常に高速な薄膜形成速度を実現できた。   In this example, the thickness of the thin film formed with the deposition time of 45 seconds was about 400 nm. Therefore, in contrast to the conventional thin film formation rate of 0.5 nm / min, this example realized a very high thin film formation rate of about 533 nm / min.

また、低真空雰囲気で、かつ被蒸着基板10を冷却せずとも室温のままでVDFオリゴマー33の薄膜51を形成できるため、薄膜形成装置1を安価に提供することができる。   Moreover, since the thin film 51 of the VDF oligomer 33 can be formed at room temperature without cooling the deposition target substrate 10 in a low vacuum atmosphere, the thin film forming apparatus 1 can be provided at low cost.

また、上述した実施例により、直鎖状分子であるVDFオリゴマー33を、直鎖を平行にして被蒸着基板10上に配向させることができ、配向制御を行うことができる。
詳述すると、特許文献2に示される従来例の方法で仮に基板を室温程度とすると、通常は、垂直配向が支配的になり、VDFオリゴマーが平行配向されることはないと考えられる。
しかし、上述した実施例では、過飽和度を十分に高めているため、蒸着雰囲気内(貫通孔21内)に分子が多数存在する。そして、被蒸着基板10の薄膜形成面11に到達したVDFオリゴマーの分子は、拡散する前に他の分子と出会い、吸着して薄膜化してゆく。これにより、分子の配向は、ランダムになり、通常のるつぼからの成膜に比べて確率的に平行配向成分が多くなる。このようにして、平行配向させるように配向制御を行うことができる。
Further, according to the above-described embodiment, the VDF oligomer 33 that is a linear molecule can be aligned on the evaporation target substrate 10 with the linear chain being parallel, and the alignment can be controlled.
More specifically, if the substrate is set to about room temperature by the method of the conventional example shown in Patent Document 2, normally, the vertical alignment is dominant, and it is considered that the VDF oligomer is not parallel aligned.
However, in the above-described embodiment, the degree of supersaturation is sufficiently increased, so that a large number of molecules exist in the vapor deposition atmosphere (in the through hole 21). Then, the molecules of the VDF oligomer that have reached the thin film forming surface 11 of the deposition target substrate 10 meet other molecules before being diffused, and are absorbed and thinned. As a result, the orientation of the molecules becomes random, and the number of parallel orientation components increases stochastically as compared with film formation from a normal crucible. In this way, alignment control can be performed so as to achieve parallel alignment.

図6は、上述した実施例により薄膜形成した被蒸着基板10を用いて製造したキャパシタ50の平面図である。このキャパシタ50の平面視は、図1に示した被蒸着基板10の底面視に該当する。   FIG. 6 is a plan view of a capacitor 50 manufactured using the evaporation target substrate 10 having a thin film formed according to the above-described embodiment. The plan view of the capacitor 50 corresponds to the bottom view of the deposition target substrate 10 shown in FIG.

被蒸着基板10には、あらかじめアルミのパターン配線による一直線状の下部電極13が複数形成されており、その上に上述した薄膜形成方法によってVDFオリゴマーの薄膜51が形成されている。下部電極13は、幅0.1〜0.5mmの棒状であり、薄膜51は、直径1mm程度の円形である。   A plurality of straight lower electrodes 13 are formed in advance on the deposition substrate 10 using aluminum pattern wiring, and a VDF oligomer thin film 51 is formed thereon by the thin film formation method described above. The lower electrode 13 has a rod shape with a width of 0.1 to 0.5 mm, and the thin film 51 has a circular shape with a diameter of about 1 mm.

そして、薄膜51の上には、アルミのパターン配線による上部電極55が複数形成されている。この上部電極55は、幅0.1〜0.5mmの棒状であり、下部電極13と直行する配置で薄膜51の中心を通るように形成されている。したがって、上部電極55と下部電極13は、互いにショートしないように、間に挟まれた薄膜51によって完全に絶縁されている。   On the thin film 51, a plurality of upper electrodes 55 made of aluminum pattern wiring are formed. The upper electrode 55 has a rod shape with a width of 0.1 to 0.5 mm, and is formed so as to pass through the center of the thin film 51 so as to be orthogonal to the lower electrode 13. Therefore, the upper electrode 55 and the lower electrode 13 are completely insulated by the thin film 51 sandwiched therebetween so as not to short-circuit each other.

図7は、キャパシタ50に対してポーリングを行う検査装置60の構成図であり、図8は、矩形波印加前のキャパシタ50のIV、QV特性を示すグラフ図であり、図9は、矩形波印加途中のキャパシタ50のIV特性を示すグラフ図であり、図10は、矩形波印加後のキャパシタ50のIV、QV特性を示すグラフ図である。   FIG. 7 is a configuration diagram of the inspection device 60 that performs polling on the capacitor 50, FIG. 8 is a graph showing the IV and QV characteristics of the capacitor 50 before the rectangular wave is applied, and FIG. FIG. 10 is a graph showing the IV characteristics of the capacitor 50 during application, and FIG. 10 is a graph showing the IV and QV characteristics of the capacitor 50 after application of the rectangular wave.

検査装置60は、電界印加装置61がキャパシタ50の上部電極55に接続され、下部電極13が測定器62に接続されている。電界印加装置61と測定器62は、いずれもアースされている。   In the inspection device 60, the electric field applying device 61 is connected to the upper electrode 55 of the capacitor 50, and the lower electrode 13 is connected to the measuring device 62. Both the electric field applying device 61 and the measuring device 62 are grounded.

電界印加装置61は、矩形波と三角波の電界を印加できる装置である。測定器62は、電界印加装置61で三角波電圧を印加したときの電流応答を測定するものである。   The electric field applying device 61 is a device that can apply a rectangular wave and a triangular wave electric field. The measuring device 62 measures a current response when a triangular wave voltage is applied by the electric field applying device 61.

ここで、検査装置60を用いて、室温、N2雰囲気下にて、電界印加装置61から150V20Hzの三角波を印加してIV,QV特性を測定すると、図8(A),(B)に示すような特性となる。図8(B)のQV特性ではプロペラ型のヒステリシスを描いており、分域の自発分極の向きがまちまちであることが示唆されている。   Here, when the IV and QV characteristics are measured by applying a 150 V 20 Hz triangular wave from the electric field applying device 61 in the N2 atmosphere at room temperature using the inspection device 60, as shown in FIGS. 8A and 8B. Characteristics. The QV characteristics in FIG. 8B depict propeller-type hysteresis, suggesting that the direction of spontaneous polarization in the domain varies.

そこで、この検査装置60を用いて、室温、N2雰囲気下にて、電界印加装置61から±140Vで20Hzの矩形波を1000サイクルまで印加する電界断続印加工程を実施した。また、この1000サイクル間の任意のタイミングで電界印加装置61から150Vで20Hzの三角波を印加し、測定器62により電気特性を測定する測定工程を実施した。この任意のタイミングは、最初の1〜10サイクルで均等に3回、次の10〜100サイクルで均等に3回、最後の100〜1000サイクルで均等に3回とした。   Therefore, an electric field intermittent application step of applying a square wave of 20 Hz at ± 140 V and ± 140 V from the electric field application device 61 was performed at room temperature in an N2 atmosphere using the inspection device 60. In addition, a measurement process was performed in which a triangular wave of 20 Hz at 150 V was applied from the electric field application device 61 at an arbitrary timing between the 1000 cycles, and the electrical characteristics were measured by the measuring device 62. This arbitrary timing was equally 3 times in the first 1 to 10 cycles, 3 times equally in the next 10 to 100 cycles, and 3 times equally in the last 100 to 1000 cycles.

この測定の結果、図9のIV特性に示すように、最初あった4つのピークAが低電圧側に少しずつシフトを起こし、400サイクルを超えた段階で±60V付近に新たなピークBが形成された。このピークBは、分極反転に伴うスイッチング電流である。さらに印加を続けると、当初の4つのピーク(ヒステリシス)Aがほぼ消失し、新たなピークBの電流値がピークCに急峻に増大した。   As a result of this measurement, as shown in the IV characteristic of FIG. 9, the first four peaks A gradually shift to the low voltage side, and a new peak B is formed around ± 60 V after 400 cycles. It was done. This peak B is a switching current accompanying polarization inversion. When the application was further continued, the initial four peaks (hysteresis) A almost disappeared, and the current value of the new peak B increased sharply to the peak C.

1000サイクルの矩形波の印加を完了し、改めて三角波を印加したときのIV,QV特性を測定したところ、図10(A)に示すIV特性、および図9(B)に示すQV特性に示すように、明瞭な分極反転を示す電気特性が得られた。すなわち、矩形波を繰り返し印加することによって、強誘電特性を示す明瞭なDEヒステリシスが得られた。この例では、膜厚400nm、電極面積0.018mm2から抗電界160MV/m、残留分極量60mC/m2と計算された。   When the application of 1000 cycles of rectangular waves was completed and the triangular wave was applied again, the IV and QV characteristics were measured. As shown in the IV characteristics shown in FIG. 10A and the QV characteristics shown in FIG. 9B. In addition, electrical characteristics showing clear polarization reversal were obtained. That is, a clear DE hysteresis showing ferroelectric characteristics was obtained by repeatedly applying a rectangular wave. In this example, the coercive electric field was 160 MV / m and the remanent polarization amount was 60 mC / m 2 from a film thickness of 400 nm, an electrode area of 0.018 mm 2.

このようにして、キャパシタ50の薄膜51が強誘電特性を示すことを確認できた。
つまり、永久双極子モーメントの向きがまちまちである薄膜51に電界をかけることで、永久双極子モーメントの向きを揃え、薄膜51内の平行成分に強誘電特性を持たせることができた。
In this way, it was confirmed that the thin film 51 of the capacitor 50 exhibited ferroelectric characteristics.
That is, by applying an electric field to the thin film 51 in which the direction of the permanent dipole moment varies, the direction of the permanent dipole moment can be aligned, and the parallel component in the thin film 51 can have ferroelectric characteristics.

なお、以上の実施例1では、矩形波を繰り返し印加して強誘電特性を発現させたが、他の方法によって強誘電特性を発現させてもよい。たとえば、薄膜51を蒸着した後の被蒸着基板10を加熱し、この加熱を継続しつつ電界を印加してもよい。この場合、被蒸着基板10の加熱は、薄膜51の昇華を避けるために、摂氏50℃〜80℃以下とすることが好ましい。この場合でも、強誘電特性を発現させることができる。   In Example 1 described above, the rectangular wave is repeatedly applied to develop the ferroelectric characteristics. However, the ferroelectric characteristics may be developed by other methods. For example, the deposition target substrate 10 after the thin film 51 is deposited may be heated, and the electric field may be applied while continuing this heating. In this case, in order to avoid the sublimation of the thin film 51, the deposition target substrate 10 is preferably heated to 50 ° C. to 80 ° C. or less. Even in this case, ferroelectric characteristics can be exhibited.

図11、図12は、実施例2の薄膜形成装置1Aの構成を示す正面一部断面図である。図11は、初期の状態であり、図12は、蒸着工程の状態である。
この薄膜形成装置1Aは、ホルダ3の下面に被蒸着基板10が重ねて配置され、その下面に薄板状のマスク部材70が重ねて配置されている。そして、被蒸着基板10と薄板状のマスク部材70は、平面視四角形の断熱材20Aでホルダ3に固定されている。
11 and 12 are partial front sectional views showing the configuration of the thin film forming apparatus 1A of the second embodiment. FIG. 11 shows the initial state, and FIG. 12 shows the state of the vapor deposition process.
In this thin film forming apparatus 1 </ b> A, a deposition target substrate 10 is placed on the lower surface of the holder 3, and a thin plate-like mask member 70 is placed on the lower surface. The deposition target substrate 10 and the thin plate-like mask member 70 are fixed to the holder 3 with a heat insulating material 20A having a square shape in plan view.

マスク部材70は、薄い板状で平面視四角形に形成されており、薄膜を形成するパターン形状に貫通孔71が形成されている。
断熱材20Aは、マスク部材70の大きさよりも小さく、かつマスク部材70に貫通孔71が設けられている領域よりも大きい貫通孔21Aが形成されている。そして、断熱材20Aは、この貫通孔21Aより上方位置に被蒸着基板10と薄板状のマスク部材70を固定している。
The mask member 70 has a thin plate shape and is formed in a square shape in plan view, and a through hole 71 is formed in a pattern shape for forming a thin film.
The heat insulating material 20 </ b> A has a through hole 21 </ b> A that is smaller than the size of the mask member 70 and larger than a region where the through hole 71 is provided in the mask member 70. The heat insulating material 20A fixes the deposition target substrate 10 and the thin plate-shaped mask member 70 at a position above the through hole 21A.

その他の構成は、実施例1の薄膜形成装置1と同一であるので、同一要素に同一符号を付して詳細な説明を省略する。
この実施例2の薄膜形成装置1Aは、実施例1の薄膜形成装置1と同一の工程により薄膜を形成することができる。蒸着工程の際には、図12に示すように、断熱材20Aの底面が蒸着源30のVDFオリゴマー供給面32に密着する。そして、マスク部材70の下面と蒸着源30の上面(VDFオリゴマー供給面32)が、わずかに隙間のある状態で近接対向する。したがって、断熱材20Aの貫通孔21Aとマスク部材70の貫通孔71が一体になって局所的な閉空間を形成し、VDFオリゴマー供給面32から離脱した気体分子33aは、貫通孔21Aおよび貫通孔71を経由して最も低温である被蒸着基板10の薄膜形成面11に蒸着する。
Since other configurations are the same as those of the thin film forming apparatus 1 of the first embodiment, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
The thin film forming apparatus 1A of the second embodiment can form a thin film by the same process as the thin film forming apparatus 1 of the first embodiment. In the vapor deposition process, as shown in FIG. 12, the bottom surface of the heat insulating material 20 </ b> A comes into close contact with the VDF oligomer supply surface 32 of the vapor deposition source 30. And the lower surface of the mask member 70 and the upper surface (VDF oligomer supply surface 32) of the vapor deposition source 30 are closely opposed to each other with a slight gap. Accordingly, the through holes 21A of the heat insulating material 20A and the through holes 71 of the mask member 70 are integrated to form a local closed space, and the gas molecules 33a detached from the VDF oligomer supply surface 32 are separated from the through holes 21A and the through holes. The film is deposited on the thin film forming surface 11 of the deposition target substrate 10 having the lowest temperature via 71.

このようにして、実施例2の薄膜形成装置1Aは、実施例1の薄膜形成装置1Aと同様、VDFオリゴマー33の薄膜51を被蒸着基板10の薄膜形成面11に形成することができる。そして、実施例1と同様に矩形波を印加し、分極反転させて強誘電特性を得ることができる。   In this way, the thin film forming apparatus 1A of the second embodiment can form the thin film 51 of the VDF oligomer 33 on the thin film forming surface 11 of the evaporation target substrate 10 in the same manner as the thin film forming apparatus 1A of the first embodiment. Then, similarly to the first embodiment, a rectangular wave can be applied and the polarization can be reversed to obtain ferroelectric characteristics.

この発明の構成と、上述の実施形態との対応において、
この発明の被蒸着基板保持部および移動手段は、実施形態のホルダ3に対応し、
以下同様に、
変位許容部は、フレキシブルカップリング6に対応し、
断熱部材は、断熱マスク20および断熱材20Aに対応し、
開閉シャッタは、シャッタ27に対応し、
蒸着源保持部は、プレート31に対応し、
加熱手段は、セラミックヒータ45に対応し、
所定の温度は、摂氏120℃に対応し、
離間状態は、図1に示す状態に対応し、
近接状態は、図4に示す状態に対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In correspondence between the configuration of the present invention and the above-described embodiment,
The vapor deposition substrate holding part and the moving means of the present invention correspond to the holder 3 of the embodiment,
Similarly,
The displacement allowable portion corresponds to the flexible coupling 6,
The heat insulating member corresponds to the heat insulating mask 20 and the heat insulating material 20A,
The open / close shutter corresponds to the shutter 27,
The vapor deposition source holding part corresponds to the plate 31,
The heating means corresponds to the ceramic heater 45,
The predetermined temperature corresponds to 120 degrees Celsius,
The separated state corresponds to the state shown in FIG.
The proximity state corresponds to the state shown in FIG.
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.

薄膜形成装置の構成を示す正面一部断面図。The partial front sectional view showing the configuration of the thin film forming apparatus. 断熱マスクの平面図。The top view of a heat insulation mask. 薄膜形成装置による薄膜形成方法を示すフローチャート。The flowchart which shows the thin film formation method by a thin film formation apparatus. 薄膜形成装置の構成を示す正面一部断面図。The partial front sectional view showing the configuration of the thin film forming apparatus. VDFオリゴマーが蒸着する様子を説明する説明図。Explanatory drawing explaining a mode that VDF oligomer vapor-deposits. 被蒸着基板を用いて製造したキャパシタの平面図。The top view of the capacitor manufactured using the to-be-deposited board | substrate. キャパシタに対してポーリングを行う検査装置の構成図。The block diagram of the test | inspection apparatus which polls with respect to a capacitor. 矩形波印加前のIV、QV特性のグラフ図。The graph of the IV and QV characteristics before square wave application. 矩形波印加途中のIV特性のグラフ図。The graph of the IV characteristic in the middle of rectangular wave application. 矩形波印加後のIV、QV特性のグラフ図。The graph of the IV and QV characteristics after rectangular wave application. 実施例2の薄膜形成装置の構成を示す正面一部断面図。FIG. 5 is a partial front sectional view showing the configuration of the thin film forming apparatus of Example 2. 実施例2の薄膜形成装置の構成を示す正面一部断面図。FIG. 5 is a partial front sectional view showing the configuration of the thin film forming apparatus of Example 2.

1,1A…薄膜形成装置、3…ホルダ、10…被蒸着基板、11…薄膜形成面、20…断熱マスク、20A…断熱材、21…貫通孔、27…シャッタ、30…蒸着源、31…プレート、32…VDFオリゴマー供給面、33…VDFオリゴマー、45…セラミックヒータ、51…薄膜、70…マスク部材、71…貫通孔
DESCRIPTION OF SYMBOLS 1,1A ... Thin film formation apparatus, 3 ... Holder, 10 ... Substrate to be vapor-deposited, 11 ... Thin film formation surface, 20 ... Heat insulation mask, 20A ... Heat insulation material, 21 ... Through-hole, 27 ... Shutter, 30 ... Deposition source, 31 ... Plate, 32 ... VDF oligomer supply surface, 33 ... VDF oligomer, 45 ... ceramic heater, 51 ... thin film, 70 ... mask member, 71 ... through hole

Claims (16)

被蒸着基板の薄膜形成面にフッ化ビニリデンオリゴマーを蒸着させて該フッ化ビニリデンオリゴマーの薄膜を形成する薄膜形成装置であって、
被蒸着基板を保持する被蒸着基板保持部と、
フッ化ビニリデンオリゴマーが配置された蒸着源を保持する蒸着源保持部と、
前記蒸着源を加熱する加熱手段と、
前記被蒸着基板と前記蒸着源との間に配置され、前記被蒸着基板側から前記蒸着源側まで貫通する貫通孔が設けられた断熱部材と、
前記被蒸着基板保持部と前記蒸着源保持部の少なくとも一方を移動させて、前記被蒸着基板と前記蒸着源が離間する離間状態と、前記被蒸着基板の薄膜形成面と前記蒸着源のフッ化ビニリデンオリゴマー供給面が前記断熱部材を挟んで対向し近接する近接状態とに変化させる移動手段とを備え
該移動手段を、前記加熱手段の加熱により前記蒸着源が所定の温度になったときに前記離間状態から前記近接状態に変化させる構成にした
薄膜形成装置。
A thin film forming apparatus for forming a thin film of vinylidene fluoride oligomer by depositing a vinylidene fluoride oligomer on a thin film forming surface of a substrate to be deposited,
A deposition substrate holding unit that holds the deposition substrate;
A deposition source holding unit that holds a deposition source in which a vinylidene fluoride oligomer is disposed;
Heating means for heating the vapor deposition source;
A heat insulating member provided between the deposition target substrate and the deposition source and provided with a through hole penetrating from the deposition target substrate side to the deposition source side;
At least one of the deposition target substrate holding unit and the deposition source holding unit is moved so that the deposition target substrate and the deposition source are separated from each other, the thin film forming surface of the deposition target substrate, and the fluorination of the deposition source. The vinylidene oligomer supply surface is provided with a moving means that changes to an adjacent state that faces and approaches the heat insulating member ,
The thin film forming apparatus , wherein the moving unit is configured to change from the separated state to the close state when the vapor deposition source reaches a predetermined temperature due to the heating of the heating unit.
前記被蒸着基板保持部を、前記被蒸着基板と前記断熱部材とを固定する構成とした
請求項記載の薄膜形成装置。
Wherein the deposition target substrate holder, the thin film forming device according to claim 1, wherein a structure for fixing the heat insulating member and the deposition substrate.
前記離間状態の際に前記断熱部材と前記蒸着源との間を仕切り、前記近接状態に変化させる際に前記断熱部材と前記蒸着源との間を開放する開閉シャッタを備えた
請求項1または2記載の薄膜形成装置。
3. An opening / closing shutter that partitions the space between the heat insulating member and the vapor deposition source in the separated state and opens the space between the heat insulating member and the vapor deposition source when changing to the close state. The thin film forming apparatus described.
前記被蒸着基板保持部と前記断熱部材と前記蒸着源保持部を減圧雰囲気内に配置した
請求項1からのいずれか1つに記載の薄膜形成装置。
The thin film forming apparatus according to any one of the heat insulating member and the deposited substrate holder the deposition source holding unit from claim 1 disposed in a vacuum atmosphere 3.
前記断熱部材の貫通孔の配置と形状により前記被蒸着基板の薄膜形成面に形成する薄膜をパターンニングする構成とした
請求項1からのいずれか1つに記載の薄膜形成装置。
The thin-film formation apparatus according to any one of the four from the claim 1, the arrangement and shape of the through hole of the heat insulating member is configured to thin film patterned to form a thin film formation surface of the vapor-deposited substrate.
前記断熱部材の貫通孔を前記被蒸着基板の薄膜形成領域より大きく形成し、
前記被蒸着基板の薄膜形成面に形成する薄膜をパターンニングするマスク部材を前記被蒸着基板の薄膜形成面に重ねる構成とした
請求項1からのいずれか1つに記載の薄膜形成装置。
Forming a through hole of the heat insulating member larger than a thin film forming region of the deposition target substrate;
The thin film forming apparatus according to any one of claims 1 to mask member for a thin film patterning for forming a thin film formation surface of the deposition substrate was configured to overlay the thin-film forming surface of the deposition target substrate 4.
前記被蒸着基板保持部に、前記近接状態のときに前記被蒸着基板と前記断熱部材が前記蒸着源に倣って角度変位可能とする変位許容部を備えた
請求項1からのいずれか1つに記載の薄膜形成装置。
Wherein the deposition target substrate holder, any one of claims 1 to 6 with the displacement permitting portion in which the heat insulating member and the deposition substrate to allow angular displacement following the said deposition source when the proximity state The thin film forming apparatus described in 1.
被蒸着基板の薄膜形成面にフッ化ビニリデンオリゴマーを蒸着させることによって該フッ化ビニリデンオリゴマーの薄膜を形成する薄膜形成方法であって、
フッ化ビニリデンオリゴマーが配置された蒸着源と被蒸着基板とを離間させた状態で前記蒸着源を加熱する加熱工程と、
該加熱工程での加熱により前記蒸着源が所定の温度になったときに、前記被蒸着基板と前記蒸着源が離間する離間状態から、前記被蒸着基板と前記蒸着源のとの少なくとも一方を移動させて、前記被蒸着基板の薄膜形成面と前記蒸着源のフッ化ビニリデンオリゴマー供給面が断熱部材を挟んで対向し近接する近接状態に変化させる移動工程と、
前記近接状態で前記フッ化ビニリデンオリゴマーの薄膜を前記薄膜形成面に蒸着する蒸着工程とを有する
薄膜形成方法。
A thin film forming method for forming a vinylidene fluoride oligomer thin film by depositing a vinylidene fluoride oligomer on a thin film forming surface of a substrate to be deposited,
A heating step of heating the vapor deposition source in a state where the vapor deposition source in which the vinylidene fluoride oligomer is arranged and the deposition target substrate are separated from each other;
When the vapor deposition source reaches a predetermined temperature by heating in the heating step, at least one of the vapor deposition substrate and the vapor deposition source is moved from a separated state in which the vapor deposition substrate and the vapor deposition source are separated from each other. A moving step in which the thin film forming surface of the deposition substrate and the vinylidene fluoride oligomer supply surface of the deposition source are opposed to and in close proximity with a heat insulating member interposed therebetween;
A thin film forming method comprising: depositing a thin film of the vinylidene fluoride oligomer on the thin film forming surface in the proximity state.
前記断熱部材と前記蒸着源との間を仕切っているシャッタを前記移動工程の直前または途中に開状態に移動させるシャッタ開工程を有する
請求項記載の薄膜形成方法。
The thin film forming method according to claim 8, further comprising: a shutter opening step of moving a shutter partitioning between the heat insulating member and the vapor deposition source to an open state immediately before or during the moving step.
前記蒸着工程を減圧雰囲気下で実施する
請求項8または9記載の薄膜形成方法。
The thin film formation method according to claim 8 or 9, wherein the vapor deposition step is performed in a reduced pressure atmosphere.
室温程度の前記被蒸着基板を用いて前記各工程を実施する
請求項8、9または10記載の薄膜形成方法。
The thin film forming method according to claim 8, 9 or 10, wherein each of the steps is performed using the deposition target substrate at about room temperature.
前記被蒸着源に、前記フッ化ビニリデンオリゴマーがパターンニングされたものを用いる
請求項8から11のいずれか1つに記載の薄膜形成方法。
The thin film formation method according to any one of claims 8 to 11 , wherein the deposition source is one in which the vinylidene fluoride oligomer is patterned.
前記蒸着工程により、薄膜化したフッ化ビニリデンオリゴマーに、前記被蒸着基板に対して平行配向された成分を存在させる
請求項8から12のいずれか1つに記載の薄膜形成方法。
The thin film formation method according to any one of claims 8 to 12 , wherein a component oriented parallel to the deposition target substrate is present in the vinylidene fluoride oligomer thinned by the vapor deposition step.
請求項8から13のいずれか1つに記載の薄膜形成方法で形成したフッ化ビニリデンオリゴマーの薄膜に抗電界以上の電界の矩形波を繰り返し印加して分極反転を可能にする
分極反転可能化方法。
A polarization inversion enabling method for enabling polarization inversion by repeatedly applying a rectangular wave having an electric field equal to or higher than the coercive electric field to a vinylidene fluoride oligomer thin film formed by the thin film formation method according to claim 8. .
請求項8から13のいずれか1つに記載の薄膜形成方法で形成したフッ化ビニリデンオリゴマーの薄膜について、前記被蒸着基板を加熱して昇温させながら電界を印加して分極反転を可能にする
分極反転可能化方法。
The vinylidene fluoride oligomer thin film formed by the thin film forming method according to claim 8 is applied to an electric field while heating and elevating the temperature of the evaporation target substrate, thereby enabling polarization reversal. Method for enabling polarization reversal.
請求項8から13のいずれか1つに記載の薄膜形成方法で形成したフッ化ビニリデンオリゴマーの薄膜に抗電界以上の電界の矩形波を繰り返し印加する電界断続印加工程を行った後、
前記薄膜の強誘電特性を測定する測定工程を行う
強誘電特性測定方法。
After performing an intermittent electric field application step of repeatedly applying a rectangular wave having an electric field equal to or higher than the coercive electric field to the vinylidene fluoride oligomer thin film formed by the thin film forming method according to any one of claims 8 to 13 .
A ferroelectric property measuring method for performing a measuring step for measuring the ferroelectric property of the thin film.
JP2007079132A 2007-03-26 2007-03-26 Thin film forming apparatus, thin film forming method, polarization inversion enabling method, ferroelectric characteristic measuring method Expired - Fee Related JP4881774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079132A JP4881774B2 (en) 2007-03-26 2007-03-26 Thin film forming apparatus, thin film forming method, polarization inversion enabling method, ferroelectric characteristic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079132A JP4881774B2 (en) 2007-03-26 2007-03-26 Thin film forming apparatus, thin film forming method, polarization inversion enabling method, ferroelectric characteristic measuring method

Publications (2)

Publication Number Publication Date
JP2008240025A JP2008240025A (en) 2008-10-09
JP4881774B2 true JP4881774B2 (en) 2012-02-22

Family

ID=39911711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079132A Expired - Fee Related JP4881774B2 (en) 2007-03-26 2007-03-26 Thin film forming apparatus, thin film forming method, polarization inversion enabling method, ferroelectric characteristic measuring method

Country Status (1)

Country Link
JP (1) JP4881774B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000447A1 (en) * 2010-02-17 2011-08-18 Aixtron Ag, 52134 Coating device and method for operating a coating device with a screen plate
JP2011179976A (en) * 2010-03-01 2011-09-15 Kobe Univ Polarization inspection method and polarization inspection device
WO2011122018A1 (en) * 2010-03-30 2011-10-06 国立大学法人神戸大学 Thin film formation device and thin film formation method
JP2014107421A (en) * 2012-11-28 2014-06-09 Shimadzu Corp Deposition device, radiation detector and radiation detector manufacturing method
JP2016069714A (en) * 2014-10-01 2016-05-09 新日鐵住金株式会社 Substrate holder, and film deposition apparatus equipped with the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081922B2 (en) * 1991-01-25 1996-01-10 株式会社東芝 Wafer-holding device
US5937272A (en) * 1997-06-06 1999-08-10 Eastman Kodak Company Patterned organic layers in a full-color organic electroluminescent display array on a thin film transistor array substrate
JP3867709B2 (en) * 2003-03-26 2007-01-10 ダイキン工業株式会社 Thin film formation method
JP4716277B2 (en) * 2004-11-26 2011-07-06 国立大学法人京都大学 Thin film forming method, vapor deposition source substrate, and vapor deposition source substrate manufacturing method
JP4590560B2 (en) * 2005-07-29 2010-12-01 国立大学法人京都大学 Organic monomolecular film forming apparatus and method

Also Published As

Publication number Publication date
JP2008240025A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4881774B2 (en) Thin film forming apparatus, thin film forming method, polarization inversion enabling method, ferroelectric characteristic measuring method
JP4441528B2 (en) Production of anisotropic film
TWI433369B (en) Method for manufacturing organic semiconductor film
RU2007145102A (en) METHOD FOR FORMING THIN FERROELECTRIC FILMS, ITS APPLICATION AND REMEMBERING DEVICE BASED ON FERROELECTRIC OLIGOMERIC REMEMBERING MATERIAL
CN105144417A (en) Organic semiconductor thin film production method
Lee et al. Epitaxially Grown Ferroelectric PVDF‐TrFE Film on Shape‐Tailored Semiconducting Rubrene Single Crystal
JPWO2015194458A1 (en) Multilayer film manufacturing method and multilayer film
CN100500931C (en) Vacuum coating device
JP2005320590A5 (en) Combinatorial film forming method and film forming apparatus used therefor
JP2014518013A (en) Oriented crystallization method for various materials
WO2004109749A2 (en) Pyroelectric compound and method of its preparation
WO2004026459A1 (en) Thin film and method for manufacturing same
JP4590560B2 (en) Organic monomolecular film forming apparatus and method
KR101069010B1 (en) Method for controlling orientation of polyvinylidene fluoride-co-trifluoroethylene thin films
Gao et al. BST thin films deposited by RF-magnetron sputtering and dielectric property research
Shu et al. Study of dielectric properties of laser processed BaTiO3 thin films on Si (100) with TiN buffer layer
JPH08176803A (en) Production of molecular-oriented organic film
RU2135648C1 (en) Method of preparing crystalline fullerenes
JP3834757B2 (en) Ultra high vacuum sputtering apparatus for continuous formation of multilayer thin film and ultra high vacuum sputtering method for continuous formation of multilayer thin film
KR100270907B1 (en) apparatus for fabricating PVDF film and electret
Wang et al. Moisture effect on the dielectric and structure of BaTiO3-based devices
Aygun Processing science of barium titanate
Li et al. The Preparation and Characterization of the PZT Thin Film with (100) Peak Preferred Orientation
KR100338385B1 (en) Substrate holder of vapor deposition apparatus
JP2004253535A (en) Device and method for dielectric thin film forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees