JP4879761B2 - Radar equipment - Google Patents
Radar equipment Download PDFInfo
- Publication number
- JP4879761B2 JP4879761B2 JP2007012755A JP2007012755A JP4879761B2 JP 4879761 B2 JP4879761 B2 JP 4879761B2 JP 2007012755 A JP2007012755 A JP 2007012755A JP 2007012755 A JP2007012755 A JP 2007012755A JP 4879761 B2 JP4879761 B2 JP 4879761B2
- Authority
- JP
- Japan
- Prior art keywords
- angle measurement
- target
- reception
- target detection
- measurement information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 claims description 71
- 238000001514 detection method Methods 0.000 claims description 57
- 230000005540 biological transmission Effects 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 8
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Description
この発明は、地上、機上、艦上等に設置され、航空機、船舶等の移動目標を探知するレーダ装置に関するものである。 The present invention relates to a radar device that is installed on the ground, on board, on a ship, and the like and detects a movement target such as an aircraft or a ship.
探知レーダの機能には通常目標探知(近距離目標探知)と超遠距離目標探知がある。超遠距離目標探知のレーダ装置の例として、空中線から繰り返し時間で送信するパルスの周波数をパルス毎(ヒット毎)に変更制御し、空中線で受信した目標の反射電波に対して、上記変更された複数の周波数のそれぞれに対応する複数の受信機で復調し、各復調信号を数値積分処理して、目標からの複数の次数の反射波を抽出するようにしたものがある(例えば特許文献1参照)。この技術によれば、受信信号の次数を判別しているのでレンジアンビギュイティを除去でき、かつ距離確定に要する処理時間を改善することができる。
上記技術は超遠距離目標探知のみを対象とするレーダ装置における目標検出処理方法の改善を図ったものであるが、実際のレーダ装置では、モードを切り替えて通常目標探知と超遠距離目標探知の両機能を行うようにしている(例えば特許文献2参照)。
The functions of the detection radar include normal target detection (short-range target detection) and extremely long-range target detection. As an example of a radar device for super far-range target detection, the frequency of a pulse to be transmitted repeatedly from an antenna is changed for each pulse (for each hit), and the above change is made for the reflected wave of the target received by the antenna. There is one in which a plurality of receivers corresponding to each of a plurality of frequencies are demodulated, and each demodulated signal is numerically integrated to extract reflected waves of a plurality of orders from a target (for example, see Patent Document 1). ). According to this technique, since the order of the received signal is determined, the range ambiguity can be removed, and the processing time required for determining the distance can be improved.
The above technology is intended to improve the target detection processing method in the radar device that targets only the super far-distance target detection. However, in the actual radar device, the mode is switched to switch between the normal target detection and the super-distance target detection. Both functions are performed (for example, refer to Patent Document 2).
このような通常目標探知と超遠距離目標探知の両機能を有するレーダ装置では、通常目標探知に対しては、パルスヒット数(1回のスキャン時のパルス数)を超遠距離目標探知時よりも増大させ、複数のデジタルビームフォーミングを行うことによりクラッタ抑圧性能を向上させて行っている。一方、超遠距離目標探知に対しては、目標速度が通常目標よりも高い目標を探知対象とするため、通常目標探知時よりもパルスヒット数を減少させ、デジタルビームフォーミングは単数にしてレンジドップラウォーク損失の増大を避けるように行っている。そのため通常目標探知と超遠距離目標探知をモード切り替えで行うレーダの場合、超遠距離目標探知時には、通常目標探知に使用する信号処理のリソースが余ってしまうという状況が発生していた。
なお、上記レンジドップラウォーク損失とは次のようなものである。通常、レーダの探知距離を増大させるために、目標に対してコヒーレンシーの保たれた複数のパルスを送受信し、積分処理を行う。複数のパルスを送受信するため、送受信期間中に目標が距離方向に移動してしまうことにより、移動しない場合と比較して積分処理で損失を生じることがある。これをレンジウォーク損失という。また、加速度を伴うような目標の移動についてはドップラ方向の積分で損失を生じることがある。これをドップラウォーク損失という。両者を総称してレンジドップラウォーク損失と呼んでいる。
In such a radar device having both functions of normal target detection and ultra-long distance target detection, for normal target detection, the number of pulse hits (number of pulses at one scan) is set to be greater than that at the time of ultra-long distance target detection. The clutter suppression performance is improved by performing multiple digital beam forming. On the other hand, for super far-distance target detection, since the target whose target speed is higher than the normal target is detected, the number of pulse hits is reduced compared to the case of normal target detection, and digital beamforming is made singular and range Doppler is used. We are trying to avoid an increase in walk loss. Therefore, in the case of a radar that performs mode switching between normal target detection and super far-distance target detection, a situation has occurred in which signal processing resources used for normal target detection remain at the time of super-distance target detection.
The range Doppler walk loss is as follows. Usually, in order to increase the detection distance of the radar, a plurality of pulses having coherency maintained with respect to the target are transmitted and received, and integration processing is performed. Since a plurality of pulses are transmitted / received, the target may move in the distance direction during the transmission / reception period, which may cause a loss in the integration process as compared with a case where the target does not move. This is called range walk loss. Further, with respect to the movement of the target with acceleration, a loss may be caused by integration in the Doppler direction. This is called Doppler walk loss. Both are collectively called Range Doppler Walk Loss.
この発明は、上記問題点を解決するためになされたもので、超遠距離目標探知時に余る信号処理のリソースを活用して、超遠距離目標に対する測角精度の向上を図るレーダ装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and obtains a radar device that improves the angle measurement accuracy with respect to a super far-distance target by utilizing surplus signal processing resources when detecting the super-distance target. With the goal.
この発明に係るレーダ装置は、フェーズドアレイアンテナを用いて通常目標探知時に所定のパルスヒット数の電波を送信し、目標からの反射波を受信して、素子アンテナごとに得られるデジタル受信信号に対して、ビーム形成部、目標検出部および測角処理からなる複数の受信ビーム処理系を用いてデジタルビームフォーミングを行うことにより同時マルチビームを形成し、それぞれの受信ビーム処理系で受信ビームから得られる測角情報および目標振幅情報を相関処理部で送信ビームと相関処理することにより最終的な検出目標および測角結果を得るレーダ装置において、通常目標探知時よりも少ないパルスヒット数でペンシルビームの電波を送信する超遠距離目標探知時には、複数の受信ビーム処理系を用いてそれぞれ受信ビームを形成してそれぞれの測角情報および目標振幅情報を求め、相関処理部では、複数の受信ビーム処理系で得られた各測角情報の中からS/Nの最も高い受信ビームの測角情報を選択し、選択した測角情報について送信ビームと相関処理を行って最終的な測角値を求めるようにしたものである。 The radar apparatus according to the present invention transmits a radio wave having a predetermined number of pulse hits at the time of normal target detection using a phased array antenna, receives a reflected wave from the target, and receives a digital reception signal obtained for each element antenna. Thus, simultaneous multi-beams are formed by performing digital beam forming using a plurality of reception beam processing systems including a beam forming unit, a target detection unit, and angle measurement processing, and can be obtained from reception beams by each reception beam processing system. In a radar device that obtains the final detection target and angle measurement result by correlating the angle measurement information and target amplitude information with the transmission beam in the correlation processing unit, the radio wave of the pencil beam with a smaller number of pulse hits than when detecting the target When detecting a far-distance target that transmits a signal, a plurality of receive beam processing systems are used to form a receive beam. Each angle measurement information and target amplitude information are obtained, and the correlation processing unit selects angle measurement information of the reception beam having the highest S / N from each angle measurement information obtained by a plurality of reception beam processing systems. The final angle measurement value is obtained by performing correlation processing with the transmission beam on the selected angle measurement information.
この発明によれば、超遠距離目標探知時に従来余っていた信号処理のリソースを使用することにより、従来の単数の受信ビーム処理系による場合よりも超遠距離目標探知時における測角精度の向上を図ることができる。 According to the present invention, by using the signal processing resources that have been surplus at the time of detecting a very far distance target, the angle measurement accuracy at the time of detecting the far distance target is improved as compared with the case of using a single received beam processing system. Can be achieved.
実施の形態1.
図1は、この発明の各実施の形態によるレーダ装置の機能構成を示すブロック図である。
図において、相関処理部11における処理が超遠距離目標探知時において異なることを除けば、各部は周知の動作を行うものである。また、空中線部4は、フェーズドアレイアンテナとして動作する部分で、複数の素子アンテナ40のそれぞれに対するサーキュレータ41、電力増幅器42、低雑音増幅器43、移相器44、送受切替器45などからなる送受信モジュール、並びに各送受信モジュールに対する電力分配器46を含んだ周知の構成を持つものである。
FIG. 1 is a block diagram showing a functional configuration of a radar apparatus according to each embodiment of the present invention.
In the figure, each part performs a known operation except that the processing in the
まず、送信動作について説明する。通常目標探知時と超遠距離目標探知時は送信波のパルスヒット数、ビーム形状が異なるが、一般的な送信動作は概して同じである。
レーダ制御部1では、励振部2へ一定の周波数の信号を出力するとともに、空中線制御部3へビームの指向角度情報を出力する。また、レーダ制御部1は、信号処理制御部8へモード情報を出力する。励振部2では、レーダ制御部1から与えられる一定の周波数の信号を一定の繰り返し時間で逓倍して空中線部4へ出力する。空中線制御部3では、レーダ制御部1から与えられるビーム指向角度情報に従って素子アンテナ40ごとに供給する信号の各設定位相を計算して空中線部4内にある対応する移相器44へそれぞれ出力する。移相器44では、空中線制御部3から与えられる設定位相に基づいて、励振部2から与えられた送信信号の位相を、素子ごとのビーム指向角度を与えるために調整する。電力増幅器42では、位相を調整された送信信号を電力増幅し、サーキュレータ41を介して素子アンテナ40に与える。素子アンテナ40は、移相器44で設定されたビーム指向角度に従った電波を目標に向かって放射する。
First, the transmission operation will be described. The number of pulse hits and the beam shape of the transmission wave are different between the normal target detection and the ultra-long distance target detection, but the general transmission operation is generally the same.
The
次に、受信動作について説明する。この場合、通常目標探知時および超遠距離目標探知時において相関処理部11の対応動作が異なるが、その前段までの動作はほぼ同等とみなすことができる。
信号処理制御部8では、レーダ制御部1から与えられるモード情報に基づいて、各ビーム形成部7、目標検出部9、測角処理部10および相関処理部10の動作のオン・オフ制御や処理制御を行う。
素子アンテナ40は、送信された電波の目標などによる反射電波を受信すると、その受信信号をサーキュレータ41を介して低雑音増幅器43に与える。低雑音増幅器43で電力増幅された信号は、移相器44で各素子間の位相調整が行われた後、電力分配器46を介して対応する受信部5に与えられる。各受信部5では、素子アンテナ40のそれぞれに対応する受信信号をダウンコンバートし、さらにA/D変換して受信信号分配部6へ出力する。受信信号分配部6では、受信部5からのデジタル受信信号をビーム形成部7、目標検出部9および測角処理10からなる複数(この例では4)の受信ビーム処理系へ分配出力する。
Next, the reception operation will be described. In this case, although the correspondence operation of the
In the signal
When the
4本の受信ビーム処理系は、従来の超遠距離目標探知時には1本の系のみを動作させていたが、この発明では、通常目標探知時および超遠距離目標探知時のいずれの場合にもすべての系を動作させる。
各処理系のビーム形成部7では、受信信号分配部6から分配されたデジタル受信信号に対して離散フーリエ変換処理を実施してデジタルビームフォーミングを行い、受信マルチビームを生成し、そのビームデータを目標検出部9へ出力する。目標検出部9では、ビーム形成部7で得られる受信ビームに対して、パルス圧縮、積分処理等によるS/N改善を行い、スレッショルドレベルとの比較を行って目標を検出し、その目標情報を測角処理部10へ出力する。測角処理部10では、目標検出部9から与えられた目標情報に基づいて、ビーム内で目標が存在する角度を算出する処理を行う。各測角処理部10で得られた測角情報および目標検出部9で得られた目標振幅情報は相関処理部11へ出力される。
The four receive beam processing systems operate only one system at the time of conventional super far-distance target detection. However, according to the present invention, in both cases of normal target detection and ultra-distance target detection. Operate all systems.
The
通常目標探知時の場合、クラッタ抑圧性能向上のためパルスヒット数を増加させるため、デジタルビームフォーミングにより同時マルチビームを形成する。すなわち、4つのビーム形成部7a〜7dを用いる。相関処理部11では、各測角処理部10で得られた測角情報および目標検出部9で得られた目標振幅情報に基づいて従来と同じ相関処理を行い、最終的な目標検出および測角結果を得るようにしている。
In the case of normal target detection, simultaneous multi-beams are formed by digital beam forming in order to increase the number of pulse hits in order to improve the clutter suppression performance. That is, four
これに対して、超遠距離目標探知時の場合は目標速度が通常目標よりも高い目標を探知対象とするため、通常目標探知時とパルスヒット数が同一であると、レンジドップラウォーク損失が増大してしまう。そこで、従来の方法は、パルスヒット数を抑え、マルチビーム数を1本、例えばビーム形成部7aを、目標検出部9a、測角処理部10aの受信ビーム処理系みを動作させることにしてレンジドップラウォーク損失の軽減を図っていた。そのため、残りの3本の受信ビーム処理系(ビーム形成部7b〜7d、目標検出部9b〜9d、測角処理部10b〜10d)は非動作としており、超遠距離目標探知時にはそのリソースが余る状態となっていた。
この発明では、超遠距離目標探知時の場合、送信ビームはペンシルビームのままとし、受信ビームを残りの3本の受信ビーム処理系においても形成するようにし、目標検出および測角処理を行い、1送信ビームに対して複数の測角情報を得るようにする。測角精度は、受信ビーム幅が一定であるならば、概ね目標信号(受信信号)のS/Nに反比例する。そのため、相関処理部11では、4本の受信ビーム処理系で生成された受信ビームより得られる各測角情報の中からS/Nの最も高い受信ビームの測角情報を選択し、選択した測角情報について送信ビームと相関処理を行って最終的な測角結果を求める。結果、超遠距離目標探知時における測角精度を向上させることができる。
On the other hand, in the case of super far-distance target detection, the target whose target speed is higher than the normal target is detected, so if the number of pulse hits is the same as in normal target detection, range Doppler walk loss increases. Resulting in. Therefore, the conventional method suppresses the number of pulse hits, reduces the number of multi-beams, for example, the
In the present invention, in the case of super far-distance target detection, the transmission beam remains a pencil beam, the reception beam is formed also in the remaining three reception beam processing systems, target detection and angle measurement processing are performed, A plurality of angle measurement information is obtained for one transmission beam. The angle measurement accuracy is approximately inversely proportional to the S / N of the target signal (reception signal) if the reception beam width is constant. For this reason, the
図2は測角精度シミュレーションの一例を示す。図に示すとおり、ビームノーズ付近では精度向上は図れないが、ビームノーズから離れるに従って、従来では受信ビームが無いため、S/Nが劣化し、そのため測角精度も劣化するが、隣接の受信ビームによりS/N劣化を抑えることができ、そのため、測角精度も向上する。超遠距離目標探知時の相関処理部11の処理を式で表すと、以下のようになる。
σ=σ1(S/N1>S/N2,S/N3,S/N4の場合)
σ2(S/N2>S/N1,S/N3,S/N4の場合)
σ3(S/N3>S/N1,S/N2,S/N4の場合)
σ4(S/N4>S/N1,S/N2,S/N3の場合)
ここで、
σ:最終測角値、
σ1:受信ビーム1の測角値、
σ2:受信ビーム2の測角値、
σ3:受信ビーム3の測角値、
σ4:受信ビーム4の測角値、
S/N1:受信ビーム1のS/N、
S/N2:受信ビーム2のS/N、
S/N3:受信ビーム3のS/N、
S/N4:受信ビーム4のS/Nとする。
FIG. 2 shows an example of angle measurement accuracy simulation. As shown in the figure, accuracy cannot be improved in the vicinity of the beam nose. However, as there is no reception beam as the distance from the beam nose increases, the S / N deteriorates and the angle measurement accuracy also deteriorates. S / N degradation can be suppressed by this, and therefore the angle measurement accuracy is also improved. The processing of the
σ = σ1 (when S / N1> S / N2, S / N3, S / N4)
σ2 (when S / N2> S / N1, S / N3, S / N4)
σ3 (when S / N3> S / N1, S / N2, S / N4)
σ4 (when S / N4> S / N1, S / N2, S / N3)
here,
σ: Final angle measurement value,
σ1: Angle value of received
σ2: Angle measurement value of received
σ3: angle measurement value of the reception beam 3,
σ4: Angle measurement value of the reception beam 4,
S / N1: S / N of receive
S / N2: S / N of
S / N3: S / N of the reception beam 3,
S / N4: The S / N of the reception beam 4 is set.
以上のように、この実施の形態1によれば、通常目標探知時よりも少ないパルスヒット数でペンシルビームの電波を送信する超遠距離目標探知時には、通常目標探知時に用いた複数の受信ビーム処理系をすべて用いてそれぞれ受信ビームを形成してそれぞれの測角情報および目標振幅情報を求め、相関処理部では、複数の受信ビーム処理系で得られた各測角情報の中からS/Nの最も高い受信ビームの測角情報を選択し、選択した測角情報について送信ビームと相関処理を行って最終的な測角値を求めるようにしたので、従来の単数の受信ビーム処理系による場合よりも超遠距離目標探知時における測角精度の向上を図ることができる。 As described above, according to the first embodiment, a plurality of reception beam processes used at the time of normal target detection at the time of very long distance target detection that transmits a pencil beam radio wave with a smaller number of pulse hits than at the time of normal target detection. Each of the systems is used to form a reception beam to obtain respective angle measurement information and target amplitude information. The correlation processing unit obtains the S / N of the angle measurement information obtained from the plurality of reception beam processing systems. The angle measurement information of the highest received beam is selected, and the final angle measurement value is obtained by performing correlation processing with the transmission beam on the selected angle measurement information. In addition, it is possible to improve the angle measurement accuracy at the time of detecting a super far distance target.
実施の形態2.
上記実施の形態1では、超遠距離目標探知時の4本の受信ビーム処理系で生成された受信ビームの測角情報のうち、最もS/Nの高い受信ビームの測角情報を相関処理の対象として採用する処理としたが、次のようにしてもよい。
全受信ビームの測角結果に対して、それぞれS/Nによる重み付けを行ったものの和を相関処理の対象とするようにする。実施の形態2の相関処理部11の処理を式で表すと、以下のようになる。この場合の各受信ビームの測角情報への重み付け値は、すべての受信ビームのS/Nの和に対する自ビームのS/Nの比となる。
σ=σ1×K1+σ2×K2+σ3×K3+σ4×K4
ここで、
σ:最終測角値、
σ1:受信ビーム1の測角値、
σ2:受信ビーム2の測角値、
σ3:受信ビーム3の測角値、
σ4:受信ビーム4の測角値、
K1=(S/N1)/(S/N1+S/N2+S/N3+S/N4)、
K2=(S/N2)/(S/N1+S/N2+S/N3+S/N4)、
K3=(S/N3)/(S/N1+S/N2+S/N3+S/N4)、
K4=(S/N4)/(S/N1+S/N2+S/N3+S/N4)、
S/N1:受信ビーム1のS/N、
S/N2:受信ビーム2のS/N、
S/N3:受信ビーム3のS/N、
S/N4:受信ビーム4のS/Nとする。
相関処理部11では、上記のように重み付けした測角情報の和について送信ビームと相関処理を行って最終的な測角値を求める。したがって、実施の形態1の場合より精度を向上させることができる。
In the first embodiment, among the received beam angle measurement information generated by the four received beam processing systems at the time of detecting a very long distance target, the angle measurement information of the received beam with the highest S / N is correlated. Although the processing is adopted as the target, the following processing may be performed.
The sum of weighted results of S / N for the angle measurement results of all received beams is set as the target of correlation processing. The processing of the
σ = σ1 × K1 + σ2 × K2 + σ3 × K3 + σ4 × K4
here,
σ: Final angle measurement value,
σ1: Angle value of received
σ2: Angle measurement value of received
σ3: angle measurement value of the reception beam 3,
σ4: Angle measurement value of the reception beam 4,
K1 = (S / N1) / (S / N1 + S / N2 + S / N3 + S / N4),
K2 = (S / N2) / (S / N1 + S / N2 + S / N3 + S / N4),
K3 = (S / N3) / (S / N1 + S / N2 + S / N3 + S / N4),
K4 = (S / N4) / (S / N1 + S / N2 + S / N3 + S / N4),
S / N1: S / N of receive
S / N2: S / N of
S / N3: S / N of the reception beam 3,
S / N4: The S / N of the reception beam 4 is set.
The
上記各実施の形態では、1次元(方位方向もしくは仰角方向)に対するデジタルビームフォーミングについて述べてきたが、2次元に拡張しても同様に適用できることは言うまでもない。 In each of the above embodiments, digital beam forming in one dimension (azimuth direction or elevation angle direction) has been described, but it goes without saying that it can be similarly applied even if it is expanded in two dimensions.
1 レーダ制御部、2 励振部、3 空中線制御部、4 空中線、5 受信部、6 受信信号分配部、7 ビーム形成部、8 信号処理制御部、9 目標検出部、10 測角処理部、11 相関処理部、40 複数の素子アンテナ、41 サーキュレータ、42 電力増幅器、43 低雑音増幅器、44 移相器、45 送受切替器、46 電力分配器。
DESCRIPTION OF
Claims (3)
前記通常目標探知時よりも少ないパルスヒット数でペンシルビームの電波を送信する超遠距離目標探知時には、前記複数の受信ビーム処理系を用いてそれぞれ受信ビームを形成してそれぞれの測角情報および目標振幅情報を求め、前記相関処理部では、前記複数の受信ビーム処理系で得られた各測角情報の中からS/Nの最も高い受信ビームの測角情報を選択し、選択した測角情報について送信ビームと相関処理を行って最終的な測角値を求めるようにしたことを特徴とするレーダ装置。 When a target is detected using a phased array antenna, radio waves with a predetermined number of pulse hits are transmitted, reflected waves from the target are received, and a beam forming unit and target detection are performed on the digital received signal obtained for each element antenna. A multi-beam is formed by performing digital beam forming using a plurality of reception beam processing systems consisting of a reception unit and an angle measurement processing unit, and angle measurement information and target amplitude information obtained from the reception beam in each reception beam processing system In a radar apparatus that obtains a final detection target and an angle measurement result by performing correlation processing with a transmission beam in a correlation processing unit,
At the time of very long distance target detection in which a pencil beam radio wave is transmitted with a smaller number of pulse hits than at the time of the normal target detection, each of the angle measurement information and target Amplitude information is obtained, and the correlation processing unit selects angle measurement information of the reception beam having the highest S / N from each angle measurement information obtained by the plurality of reception beam processing systems, and the selected angle measurement information A radar apparatus characterized in that a final angle measurement value is obtained by performing a correlation process with a transmission beam on the.
前記通常目標探知時よりも少ないパルスヒット数でペンシルビームの電波を送信する超遠距離目標探知時には、前記複数の受信ビーム処理系を用いてそれぞれ受信ビームを形成してそれぞれの測角情報および目標振幅情報を求め、前記相関処理部では、前記複数の受信ビーム処理系で得られた全受信ビームの測角情報に対してそれぞれS/Nによる重み付けを行った測角情報の和を求め、当該重み付けした測角情報の和について送信ビームと相関処理を行って最終的な測角値を求めるようにしたことを特徴とするレーダ装置。 When a target is detected using a phased array antenna, radio waves with a predetermined number of pulse hits are transmitted, reflected waves from the target are received, and a beam forming unit and target detection are performed on the digital received signal obtained for each element antenna. Multi-beams are formed by digital beam forming using a plurality of receive beam processing systems consisting of a head and angle measurement processing, and angle measurement information and target amplitude information obtained from the receive beams in each receive beam processing system In a radar apparatus that obtains a final target detection and angle measurement result by performing correlation processing with a transmission beam in a correlation processing unit,
At the time of very long distance target detection in which a pencil beam radio wave is transmitted with a smaller number of pulse hits than at the time of the normal target detection, a plurality of reception beam processing systems are used to form reception beams, and each angle measurement information and target Amplitude information is obtained, and the correlation processing unit obtains the sum of angle measurement information obtained by weighting the angle measurement information of all reception beams obtained by the plurality of reception beam processing systems with S / N. A radar apparatus, wherein a final angle measurement value is obtained by performing correlation processing with a transmission beam on a sum of weighted angle measurement information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007012755A JP4879761B2 (en) | 2007-01-23 | 2007-01-23 | Radar equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007012755A JP4879761B2 (en) | 2007-01-23 | 2007-01-23 | Radar equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008180541A JP2008180541A (en) | 2008-08-07 |
JP4879761B2 true JP4879761B2 (en) | 2012-02-22 |
Family
ID=39724557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007012755A Active JP4879761B2 (en) | 2007-01-23 | 2007-01-23 | Radar equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4879761B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011257350A (en) * | 2010-06-11 | 2011-12-22 | Toshiba Corp | Radar device |
US8988278B2 (en) | 2012-07-23 | 2015-03-24 | Toyota Motor Engineering & Manufacturing North America, Inc. | Digital beam forming using phased array architecture |
CN114767087B (en) * | 2022-06-20 | 2022-10-11 | 精华隆智慧感知科技(深圳)股份有限公司 | Multi-target respiratory frequency estimation method, device, equipment and storage medium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3828309C3 (en) * | 1988-08-20 | 1998-07-30 | Bosch Gmbh Robert | Hammer drill |
JPH02251781A (en) * | 1989-03-27 | 1990-10-09 | Mitsubishi Electric Corp | Integrating method of reception signal and apparatus therefor |
JP2576676B2 (en) * | 1990-09-13 | 1997-01-29 | 三菱電機株式会社 | Phased array radar device |
JPH06317653A (en) * | 1993-05-10 | 1994-11-15 | Mitsubishi Electric Corp | Radar equipment |
JP3197217B2 (en) * | 1996-07-09 | 2001-08-13 | 株式会社東芝 | Radar target angle measuring device |
JP3639179B2 (en) * | 2000-03-23 | 2005-04-20 | 株式会社東芝 | Radar equipment |
JP3623183B2 (en) * | 2001-11-07 | 2005-02-23 | 三菱電機株式会社 | Radar equipment |
JP2005062058A (en) * | 2003-08-18 | 2005-03-10 | Toshiba Corp | Search radar system |
-
2007
- 2007-01-23 JP JP2007012755A patent/JP4879761B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008180541A (en) | 2008-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7737879B2 (en) | Split aperture array for increased short range target coverage | |
US11874363B2 (en) | Radar apparatus and antenna apparatus therefor | |
US7423578B1 (en) | Split aperture array for increased short range target coverage | |
US9470782B2 (en) | Method and apparatus for increasing angular resolution in an automotive radar system | |
JP4656124B2 (en) | Direction detection device | |
CN106066473B (en) | The multi-beam joint angle measurement of MIMO radar target and Contact fusion method under orthogonal waveforms | |
CN108008388B (en) | Satellite-borne phased array SAR load beam control method | |
CA2411615A1 (en) | Surface wave radar | |
US10247815B1 (en) | Phased array radar system with specular multipath mitigation | |
CN102809744B (en) | Near-field strong interference source inhibition method in underwater far-field target passive positioning process | |
JP5025359B2 (en) | Radar equipment | |
JP2005233723A (en) | Distributed aperture radar device | |
JP4879761B2 (en) | Radar equipment | |
AU2009237438B2 (en) | A process for minimising jammer noise in receiver systems | |
JP2010197138A (en) | Radar device | |
EP2153244B1 (en) | Tracking waveform selection for multifunction radar | |
JP2011180004A (en) | Search radar device, and method of inhibiting unnecessary wave component in the search radar device | |
JP2005189107A (en) | Radar system | |
US11606151B2 (en) | Array antenna apparatus using spatial power spectrum combining and method of controlling the same | |
JP2023170302A (en) | Target speed detection device and target speed detection method | |
JP2007240184A (en) | Radar device | |
JP2006071597A (en) | Height-measuring radar apparatus and its processing method for angle-measuring | |
JP2000171551A (en) | Multibeam radar apparatus | |
US8325083B2 (en) | Radar apparatus | |
KR100493727B1 (en) | Method for detecting target in multi-function radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080704 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111122 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4879761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |