JP4878263B2 - Nucleic acid concentration determination method and nucleic acid analysis method - Google Patents

Nucleic acid concentration determination method and nucleic acid analysis method Download PDF

Info

Publication number
JP4878263B2
JP4878263B2 JP2006298366A JP2006298366A JP4878263B2 JP 4878263 B2 JP4878263 B2 JP 4878263B2 JP 2006298366 A JP2006298366 A JP 2006298366A JP 2006298366 A JP2006298366 A JP 2006298366A JP 4878263 B2 JP4878263 B2 JP 4878263B2
Authority
JP
Japan
Prior art keywords
nucleic acid
test sample
concentration
acid concentration
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006298366A
Other languages
Japanese (ja)
Other versions
JP2008113583A (en
Inventor
耕史 前田
真一 福薗
康吉 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Prefecture
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Tochigi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Tochigi Prefecture filed Critical Hitachi High Technologies Corp
Priority to JP2006298366A priority Critical patent/JP4878263B2/en
Publication of JP2008113583A publication Critical patent/JP2008113583A/en
Application granted granted Critical
Publication of JP4878263B2 publication Critical patent/JP4878263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、吸光度測定法を用いて検査試料中の核酸濃度を判定する方法、検査方法およびその装置に関する。   The present invention relates to a method for determining a nucleic acid concentration in a test sample using an absorbance measurement method, a test method, and an apparatus therefor.

生体試料より抽出した核酸を用いて遺伝子検査を行う場合、核酸量が検査精度、検査成功率に大きく関わる。例えば、PCR−SSCP法により検査領域を増幅し、増幅した対立遺伝子の量比を検査するLOH検査の場合、ゲノムDNA量が低下すると正確な検査結果が得られない。そこで検査結果の信頼性を維持するために、定量性の高い濃度測定が必要である。また、DNAシーケンサを用いるフラグメント解析において、ある一定値以上の核酸濃度の検査試料を用いた場合、測定値が検出レンジを超過するため、検査試料を希釈して再度解析しなければならない。また、個人鑑定におけるSTR検査では、STR反応の確実性を高めるため、ヒトゲノムDNAで0.25ng〜2ng程度の狭い範囲での核酸試料溶液濃度が要求される(非特許文献1)。   When genetic testing is performed using nucleic acid extracted from a biological sample, the amount of nucleic acid is greatly related to testing accuracy and testing success rate. For example, in the case of the LOH test in which the test region is amplified by the PCR-SSCP method and the quantity ratio of the amplified allele is examined, an accurate test result cannot be obtained if the amount of genomic DNA decreases. Therefore, in order to maintain the reliability of the test result, concentration measurement with high quantitativeness is required. Further, in a fragment analysis using a DNA sequencer, when a test sample having a nucleic acid concentration of a certain value or more is used, the measured value exceeds the detection range, so the test sample must be diluted and analyzed again. In addition, in the STR test for personal identification, in order to increase the certainty of the STR reaction, the nucleic acid sample solution concentration in a narrow range of about 0.25 ng to 2 ng is required for human genomic DNA (Non-patent Document 1).

上記例に示すように検査試料の核酸濃度が検査結果に影響する場合、検査試料中の核酸濃度の測定が必要である。従来の核酸濃度の測定方法としては2本鎖核酸または1本鎖核酸に特異的に結合する蛍光物質を用いた蛍光発光測定法や蛍光分子の結合したプローブを核酸にハイブリダイゼーションする方法を用いた核酸濃度測定法や、プローブをハイブリダイゼーションし、増幅反応後、増幅反応の副産物であるピロリン酸を化学発光法や電気化学的に検出する方法等が用いられている。これらの測定法は、検査試料中に蛋白等の混入があっても極めて高い精度で核酸濃度を測定できる。しかし、測定に試薬の添加が必要なため測定コストが高く、また、検査試料が測定範囲に入らない場合、検査試料の濃度を変えて再測定を行う必要があり、測定に手間や時間のかかる方法である。また、濃度を測定した後に濃度測定に用いた検査試料は検査に使用できず、希少な検査試料の損失に繋がる問題があった。   As shown in the above example, when the nucleic acid concentration of the test sample affects the test result, it is necessary to measure the nucleic acid concentration in the test sample. Conventional methods for measuring the concentration of nucleic acid include a fluorescence measurement method using a fluorescent substance that specifically binds to a double-stranded nucleic acid or a single-stranded nucleic acid, and a method of hybridizing a probe to which a fluorescent molecule is bound to a nucleic acid. Nucleic acid concentration measurement methods, methods of hybridizing probes, amplification reaction, pyrophosphoric acid as a byproduct of amplification reaction, chemiluminescence method, electrochemical detection, and the like are used. These measurement methods can measure the nucleic acid concentration with extremely high accuracy even if proteins or the like are mixed in the test sample. However, the measurement cost is high because the addition of reagents is necessary for the measurement, and if the test sample does not enter the measurement range, it is necessary to change the concentration of the test sample and perform the measurement again. Is the method. In addition, the inspection sample used for concentration measurement after measuring the concentration cannot be used for inspection, and there is a problem that leads to loss of a rare inspection sample.

一方、吸光度測定法は、検査試料の吸光度を測定し、波長260nmにおける吸光度(以下、A260)から核酸濃度を換算できる。また、波長260nmと波長280nmの吸光度比(以下、A260/A280)から核酸純度を評価できる(非特許文献2)。当該試料に、蛋白成分が混入した場合は、波長280nmの吸光度が上昇し、糖質、ペプチド、低分子成分が混入した場合は、波長230nmでの吸光度が上昇する(非特許文献3)。当該測定法は簡便で試薬添加の必要もない低コストな方法であるが、検査試料中の蛋白成分や糖質、ペプチド、フェノール等の芳香族化合物等の混入も吸光度に影響するため、正確な核酸濃度の測定が困難な場合がある。   On the other hand, the absorbance measurement method can measure the absorbance of a test sample and convert the nucleic acid concentration from the absorbance at a wavelength of 260 nm (hereinafter, A260). Moreover, the nucleic acid purity can be evaluated from the absorbance ratio (hereinafter referred to as A260 / A280) between the wavelength of 260 nm and the wavelength of 280 nm (Non-patent Document 2). When a protein component is mixed in the sample, the absorbance at a wavelength of 280 nm increases, and when a carbohydrate, peptide, or low molecular component is mixed, the absorbance at a wavelength of 230 nm increases (Non-patent Document 3). Although this measurement method is simple and does not require addition of reagents, it is an inexpensive method. However, contamination with protein components, carbohydrates, peptides, aromatic compounds such as phenol, etc. in the test sample also affects the absorbance. Measurement of nucleic acid concentration may be difficult.

J. Forensic Sci.2001 May;46(3):647−60.J. et al. Forensic Sci. 2001 May; 46 (3): 647-60. BioTechniques 22:474−481BioTechniques 22: 474-481 Spectrophotometry of DNA or RNA.MolecuLar Cloning.Third Edition 3:A8.20−A8.21Spectrophotometry of DNA or RNA. Moleclar Cloning. Third Edition 3: A8.20-A8.21

従来の遺伝子検査における課題として、生体試料から抽出した検査試料において蛋白成分や糖質、ペプチド、低分子等が混入した場合、検査試料中の核酸濃度を正確に測定できない問題があった。特に、検査試料中の核酸濃度が低い場合に従来法の波長260nmの吸光度を用いた核酸濃度の測定法では、実際の核酸濃度よりも測定値が高くなる問題が発生することが判明した。したがって、従来法のみでは測定した濃度に従って検査に求められる濃度範囲になるように検査試料濃度を調整しても、測定範囲内で検査できずに検査不良となる問題があった。   As a problem in the conventional genetic test, there is a problem that the nucleic acid concentration in the test sample cannot be accurately measured when protein components, carbohydrates, peptides, small molecules, etc. are mixed in the test sample extracted from the biological sample. In particular, it has been found that when the nucleic acid concentration in the test sample is low, the conventional method of measuring the nucleic acid concentration using the absorbance at a wavelength of 260 nm causes a problem that the measured value is higher than the actual nucleic acid concentration. Therefore, with the conventional method alone, there is a problem in that even if the test sample concentration is adjusted so as to be in the concentration range required for the inspection according to the measured concentration, the inspection cannot be performed within the measurement range and the inspection becomes defective.

本発明は、検査試料中の核酸濃度が所定の値よりも高いか低いかを判定するに当たり、少なくとも波長220nm以上260nm以下で検査試料の吸光度を測定し、検査試料の波長260nmにおける吸光度と所定の核酸濃度から波長260nmにおける吸光度に換算した換算値よりも低い場合に、検査試料の核酸濃度が所定の核酸濃度よりも低いと判定する従来の判定方法に加え、従来の判定方法で検査試料の核酸濃度が高いと判定された場合、検査試料の波長220nm以上260nm未満の範囲における全ての吸光度が、検査試料の波長260nmにおける吸光度よりも高い場合に、検査試料の核酸濃度が所定の核酸濃度よりも低いと判定するステップと、測定した波長260nmの吸光度が所定の核酸濃度から換算した波長260nmの吸光度よりも高く、かつ検査試料の波長220nm以上260nm未満におけるいずれかの吸光度が0より低い場合、検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定するステップを実施する。   In determining whether the nucleic acid concentration in the test sample is higher or lower than the predetermined value, the present invention measures the absorbance of the test sample at least at a wavelength of 220 nm to 260 nm, In addition to the conventional determination method that determines that the nucleic acid concentration of the test sample is lower than the predetermined nucleic acid concentration when the nucleic acid concentration is lower than the converted value converted to the absorbance at a wavelength of 260 nm, the nucleic acid of the test sample is determined by the conventional determination method. When it is determined that the concentration is high, the nucleic acid concentration of the test sample is higher than the predetermined nucleic acid concentration when all the absorbance in the wavelength range of 220 nm to 260 nm of the test sample is higher than the absorbance of the test sample at the wavelength of 260 nm. A step of determining that the concentration is low, and a measured wavelength 260 nm of absorbance at a wavelength of 260 nm converted from a predetermined nucleic acid concentration Higher than the absorbance of, and if any of the absorbance at a wavelength less than 220nm or 260nm of the test sample is less than 0, the nucleic acid concentration in the test sample is carried out low, determining than the predetermined nucleic acid concentration.

本発明によれば、検査試料を所定の濃度を閾値として所定の濃度より高いか低いかを、従来の方法よりも高い精度で判定することが可能になる。特に、検査試料中の核酸濃度が低い場合、従来法では実際の核酸濃度よりも測定値が高く判定される問題を回避することが可能となる。したがって、前もって測定範囲外の検査試料群の濃度を調節できるようになるので、検査回数を減らして検査コストを低減することができる。   According to the present invention, it is possible to determine whether a test sample is higher or lower than a predetermined concentration with a predetermined concentration as a threshold with higher accuracy than the conventional method. In particular, when the nucleic acid concentration in the test sample is low, it is possible to avoid the problem that the conventional method determines that the measured value is higher than the actual nucleic acid concentration. Therefore, since the concentration of the inspection sample group outside the measurement range can be adjusted in advance, the number of inspections can be reduced and the inspection cost can be reduced.

本発明の好ましい実施形態の1つは、吸光度測定法により検査試料の吸光度を少なくとも波長220nm以上260nm以下の範囲で測定し、(A)検査試料の波長260nmにおける吸光度と所定の核酸濃度を波長260nmにおける吸光度に換算して比較し、検査試料の波長260nmにおける吸光度が所定の濃度からの換算値よりも低い場合に、検査試料の核酸濃度が上記所定の濃度よりも低いと判定する判定条件に加え、(B)検査試料の波長220nm以上260nm未満の範囲における全ての吸光度が、検査試料の波長260nmにおける吸光度よりも高い場合に、検査試料の核酸濃度が所定の核酸濃度よりも低いと判定する判定条件を含み、さらに、(C)波長260nm未満のいずれかの吸光度が0より小さい場合に検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定する。そして、いずれの判定条件においても、検査試料の核酸濃度が所定の核酸濃度より低いと判定されない場合は、検査試料の核酸濃度は所定の核酸濃度より高いと判定する。   In one preferred embodiment of the present invention, the absorbance of the test sample is measured in the range of at least a wavelength of 220 nm or more and 260 nm or less by an absorbance measurement method, and (A) the absorbance of the test sample at a wavelength of 260 nm and a predetermined nucleic acid concentration are 260 nm. In addition to the determination condition for determining that the nucleic acid concentration of the test sample is lower than the predetermined concentration when the absorbance at a wavelength of 260 nm of the test sample is lower than the conversion value from the predetermined concentration. (B) Determination that the nucleic acid concentration of the test sample is lower than the predetermined nucleic acid concentration when all the absorbance in the wavelength range of 220 nm to 260 nm of the test sample is higher than the absorbance of the test sample at the wavelength of 260 nm. In addition, (C) if any absorbance at a wavelength of less than 260 nm is less than 0, Determining the nucleic acid concentration in the lower than the predetermined nucleic acid concentration. In any determination condition, when it is not determined that the nucleic acid concentration of the test sample is lower than the predetermined nucleic acid concentration, the nucleic acid concentration of the test sample is determined to be higher than the predetermined nucleic acid concentration.

また、判定条件Aにおいて、検査試料の波長260nmにおける吸光度を核酸濃度に換算し、所定の核酸濃度と比較して、検査試料の核酸濃度が所定の核酸濃度よりも低い場合でも、検査試料の核酸濃度が所定の濃度より低いと判定できる。また、判定条件Bにおいて、より好ましくは、波長250nmから230nmの全ての吸光度と所定の核酸濃度から換算した波長260nmにおける吸光度を比較し、波長250nmから230nmの全ての吸光度が、検査試料の波長260nmの吸光度よりも高い場合に検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定する。   In addition, in the determination condition A, the absorbance at a wavelength of 260 nm of the test sample is converted into the nucleic acid concentration, and even if the nucleic acid concentration of the test sample is lower than the predetermined nucleic acid concentration as compared with the predetermined nucleic acid concentration, It can be determined that the density is lower than the predetermined density. In the determination condition B, more preferably, all absorbances at wavelengths from 250 nm to 230 nm are compared with absorbances at a wavelength of 260 nm converted from a predetermined nucleic acid concentration, and all absorbances at wavelengths from 250 nm to 230 nm are compared with a wavelength of 260 nm of the test sample. When the absorbance is higher than the absorbance, the nucleic acid concentration in the test sample is determined to be lower than the predetermined nucleic acid concentration.

また、上記所定の濃度を1〜100ng/μLの値に設定することができ、特に3〜50ng/μLの値に設定することが好ましい。前記検査試料が尿由来の抽出核酸であっても良く、測定する核酸がゲノムDNAであってもよい。   The predetermined concentration can be set to a value of 1 to 100 ng / μL, and particularly preferably set to a value of 3 to 50 ng / μL. The test sample may be an extracted nucleic acid derived from urine, and the nucleic acid to be measured may be genomic DNA.

本発明の更に他の実施形態は、上記検査試料中の核酸濃度が所定の濃度より高いか低いかを判定した後、検査試料投入量を調節するステップを含む検査試料中の核酸分析方法である。更に又、上記検査試料中の核酸濃度の判定後、所定の核酸濃度より低い検査試料の検査結果の採否を判定することができる。また、上記検査試料中の核酸濃度の判定方法後、判定された検査試料を、希釈または濃縮するステップを含むことができる。   Yet another embodiment of the present invention is a method for analyzing nucleic acid in a test sample, comprising the step of adjusting the input amount of the test sample after determining whether the nucleic acid concentration in the test sample is higher or lower than a predetermined concentration. . Furthermore, after the determination of the nucleic acid concentration in the test sample, it can be determined whether or not the test result of the test sample lower than the predetermined nucleic acid concentration is accepted. In addition, after the method for determining the nucleic acid concentration in the test sample, a step of diluting or concentrating the determined test sample can be included.

本発明の更に他の好ましい実施形態は、検査試料の吸光度を測定する機構と、得られた検査試料の吸光度を全て記憶する機能と、検査試料の濃度を判定するための閾値として予め決める所定の核酸濃度を設定する機能と、吸光度に対応した核酸濃度のデータベース機能、または、吸光度を核酸濃度に換算する、または核酸濃度を吸光度に換算する演算機能と、前記データベースまたは、演算機能を用いて、検査試料の核酸濃度と所定の核酸濃度を比較し、検査試料の核酸濃度が所定の核酸濃度よりも低い場合に、検査試料の核酸濃度が所定の核酸濃度よりも低いと判定する機能と、検査試料の濃度が所定の濃度よりも高いと判定された場合に、検査試料の波長220nm以上260nm以下の全ての吸光度が、検査試料の波長260nmの吸光度よりも高い場合に検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定する機能と、検査試料の濃度が所定の濃度よりも高いと判定された場合に、検査試料の波長220nm以上260nm未満のいずれか吸光度が0よりも低い場合に検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定する機能を有する検査試料の核酸濃度判定装置である。   Still another preferred embodiment of the present invention includes a mechanism for measuring the absorbance of a test sample, a function of storing all the absorbances of the obtained test sample, and a predetermined threshold value for determining the concentration of the test sample. Using the function to set the nucleic acid concentration and the database function of the nucleic acid concentration corresponding to the absorbance, or the calculation function to convert the absorbance to the nucleic acid concentration, or the nucleic acid concentration to the absorbance, and the database or the calculation function, A function that compares the nucleic acid concentration of the test sample with a predetermined nucleic acid concentration and determines that the nucleic acid concentration of the test sample is lower than the predetermined nucleic acid concentration when the nucleic acid concentration of the test sample is lower than the predetermined nucleic acid concentration; When it is determined that the concentration of the sample is higher than the predetermined concentration, all absorbances of the test sample having a wavelength of 220 nm to 260 nm are absorbed by the test sample at a wavelength of 260 nm. A function of determining that the nucleic acid concentration in the test sample is lower than the predetermined nucleic acid concentration when the test sample is higher than the predetermined temperature, and a wavelength of 220 nm or more of the test sample when the test sample concentration is determined to be higher than the predetermined concentration. This is a nucleic acid concentration determination apparatus for a test sample having a function of determining that the nucleic acid concentration in a test sample is lower than a predetermined nucleic acid concentration when any absorbance below 260 nm is lower than 0.

本発明は、生体試料より抽出された185種類のゲノムDNA溶液に対して波長220nmから波長350nmの範囲で吸光度曲線を精査した結果、低濃度の検査試料に特有のパターンを発見し、本発明に至ったものである。   As a result of examining the absorbance curve in a wavelength range of 220 nm to 350 nm with respect to 185 types of genomic DNA solutions extracted from biological samples, the present invention discovered a pattern peculiar to low-concentration test samples. It has come.

すなわち、本発明は、生体試料より抽出された核酸を含む検査試料であり、かつ、当該試料の核酸濃度範囲が、次工程に求められる核酸濃度範囲と異なる検査試料に対して、図1に示す方法を用いて、より正確に所定の濃度を閾値として所定の濃度より高いか、低いかを判定し、次工程における検査不良を低減または検査信頼性を向上できる方法を提供する。以下、図を用いて、本発明の手順について説明する。   That is, the present invention is a test sample containing nucleic acid extracted from a biological sample, and the nucleic acid concentration range of the sample is different from the nucleic acid concentration range required for the next step, as shown in FIG. The present invention provides a method that can more accurately determine whether a predetermined concentration is higher or lower than a predetermined concentration using a predetermined concentration as a threshold, and reduce inspection defects in the next process or improve inspection reliability. Hereinafter, the procedure of the present invention will be described with reference to the drawings.

図1において、1は吸光度測定するステップ、2は吸光度を核酸濃度に換算するステップ、3は換算値を所定濃度と比較するステップ、4は吸光度比較ステップ、5は吸光度評価ステップ、6は所定濃度より高い試料と判定するステップ、7は所定濃度より低い試料と判定するステップである。   In FIG. 1, 1 is a step of measuring absorbance, 2 is a step of converting absorbance to nucleic acid concentration, 3 is a step of comparing the converted value with a predetermined concentration, 4 is an absorbance comparison step, 5 is an absorbance evaluation step, and 6 is a predetermined concentration. A step of determining a higher sample, 7 is a step of determining a sample lower than a predetermined concentration.

ステップ1:吸光度測定法を用いて、検査試料の波長を少なくとも220nm以上260nm以下の範囲で測定する。   Step 1: Using an absorbance measurement method, measure the wavelength of the test sample in a range of at least 220 nm to 260 nm.

ステップ2:図1に示す判定条件A、B、Cを用いて、検査試料を所定の濃度を閾値として、所定の濃度より高いか低いかを判定する。   Step 2: Using the determination conditions A, B, and C shown in FIG. 1, it is determined whether the test sample is higher or lower than a predetermined concentration with a predetermined concentration as a threshold value.

(A)検査試料のA260における核酸濃度換算値が所定の濃度より低い場合に検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定する。   (A) When the nucleic acid concentration conversion value in A260 of the test sample is lower than a predetermined concentration, it is determined that the nucleic acid concentration in the test sample is lower than the predetermined nucleic acid concentration.

(B)波長220nm以上、260nm以下の吸光度の全ての値が、所定の核酸濃度から換算した波長260nmの吸光度より高いか、より好ましくは、波長230nm以上250nm以下の吸光度測定値の全ての値が、所定の核酸濃度から換算した波長260nmの吸光度より高い場合に検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定する。   (B) All values of absorbance at wavelengths of 220 nm or more and 260 nm or less are higher than absorbance at wavelength of 260 nm converted from a predetermined nucleic acid concentration, or more preferably, all values of absorbance measurement values at wavelengths of 230 nm or more and 250 nm or less are When the absorbance at a wavelength of 260 nm converted from the predetermined nucleic acid concentration is higher, it is determined that the nucleic acid concentration in the test sample is lower than the predetermined nucleic acid concentration.

(C)測定した波長260nmの吸光度が所定の核酸濃度から換算した波長260nmの吸光度よりも高く、かつ波長260nm未満の吸光度が0より低い場合に検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定する。   (C) When the measured absorbance at a wavelength of 260 nm is higher than the absorbance at a wavelength of 260 nm converted from a predetermined nucleic acid concentration and the absorbance at a wavelength of less than 260 nm is lower than 0, the nucleic acid concentration in the test sample is higher than the predetermined nucleic acid concentration Judge as low.

さらに、いずれの判定条件においても検査試料中の核酸濃度が所定の濃度より低いと判定されない場合は、検査試料中の核酸濃度が所定の濃度より高いと判定する。   Further, if it is not determined that the nucleic acid concentration in the test sample is lower than the predetermined concentration under any of the determination conditions, it is determined that the nucleic acid concentration in the test sample is higher than the predetermined concentration.

ステップ3:上記の判定法により核酸濃度の決定された検査試料を、次工程に応じて、希釈または濃縮、または次工程への検査試料投入量の調節、次工程において所定の濃度が検査可否の閾値の場合、検査可否の判定を行う。   Step 3: The test sample whose nucleic acid concentration is determined by the above-described determination method is diluted or concentrated according to the next process, or the test sample input amount to the next process is adjusted. In the case of a threshold value, it is determined whether or not inspection is possible.

さらに、本発明による検査試料中の核酸濃度を判定するための装置の概略について図2を用いて説明する。図2に示す線図において、10は吸光光度計、11は吸光度と核酸濃度の換算機能、12は第1比較判定機能、13は第2比較判定機能、14は吸光度評価判定機能、15は出力装置、16はデータベース、17は記憶装置である。各機能は図1に示す各ステップの作業を行う。   Furthermore, an outline of an apparatus for determining a nucleic acid concentration in a test sample according to the present invention will be described with reference to FIG. In the diagram shown in FIG. 2, 10 is an absorptiometer, 11 is a function for converting absorbance and nucleic acid concentration, 12 is a first comparison / determination function, 13 is a second comparison / determination function, 14 is an absorbance evaluation / determination function, and 15 is an output. A device, 16 is a database, and 17 is a storage device. Each function performs each step shown in FIG.

吸光光度計10は、検査試料の吸光度測定を行い、測定結果を記憶装置17に記憶し、換算機能11により260nmにおける吸光度を核酸濃度に換算する。換算により得られた核酸濃度と、データベース16から与えられる所定の濃度とを比較し、第1比較判定機能12において図1の判定条件Aの判定を行う。判定の結果、換算して得られた検査試料の核酸濃度が所定の濃度よりも高ければ、第2比較判定機能13において、図1の判定条件Bの判定を行う。より好ましくは、当該機能は230nm以上250nm以下にわたる全域の吸光度を検査試料の波長260nmの吸光度と比較する。判定の結果、検査試料の核酸濃度が所定の濃度よりも高ければ、吸光度評価判定機能14において、図1の判定条件C判定を行う。いずれの判定条件においても所定の濃度より高いと判定された場合は、検査試料の濃度は所定の濃度よりも高いと判定する。以上の比較、判定の結果を全て記憶装置17に記憶し、必要なデータを出力装置15に出力する。   The absorptiometer 10 measures the absorbance of the test sample, stores the measurement result in the storage device 17, and converts the absorbance at 260 nm into the nucleic acid concentration by the conversion function 11. The nucleic acid concentration obtained by the conversion is compared with a predetermined concentration given from the database 16, and the first comparison determination function 12 determines the determination condition A in FIG. As a result of the determination, if the nucleic acid concentration of the test sample obtained by conversion is higher than a predetermined concentration, the second comparison determination function 13 determines the determination condition B in FIG. More preferably, the function compares the absorbance in the entire region extending from 230 nm to 250 nm with the absorbance at a wavelength of 260 nm of the test sample. As a result of the determination, if the nucleic acid concentration of the test sample is higher than a predetermined concentration, the determination condition C determination of FIG. If it is determined that the concentration is higher than the predetermined concentration under any of the determination conditions, it is determined that the concentration of the test sample is higher than the predetermined concentration. All the results of the above comparison and determination are stored in the storage device 17, and necessary data is output to the output device 15.

本発明における生体試料とは、集団検診、健康診断、ドック検診、郵送検診などの検診試料や、病院における外来・入院患者の血液、組織、尿、また、動物、植物、微生物等、特に限定されず全ての核酸を含む生物試料、及び当該生物試料の付着した物質が対象となる。また、本発明における核酸とは、該試料から抽出されたDNA、RNAを含む全ての核酸が対象となる。   The biological sample in the present invention is particularly limited to screening samples such as group screening, health checkup, dock screening, mail screening, blood, tissues, urine of outpatients and hospitalized patients in hospitals, animals, plants, microorganisms, etc. The target is a biological sample containing all nucleic acids and a substance to which the biological sample is attached. The nucleic acid in the present invention is all nucleic acids including DNA and RNA extracted from the sample.

生体試料より該核酸を抽出する方法は公知の方法によって行うことができる。より好ましくは、シリカカラムに核酸を吸着させて洗浄後、核酸溶解液を用いて核酸を溶出させる方法を用いる。   A method for extracting the nucleic acid from the biological sample can be performed by a known method. More preferably, a method is used in which the nucleic acid is adsorbed on a silica column and washed, and then the nucleic acid is eluted using a nucleic acid solution.

また、本発明における検査試料とは、例えば検査に供する核酸を含む試料であればいかなる試料でもよい。また、本発明における検査とは、本発明の判定方法に引き続いて適用される、核酸を分析する検査であり、分析に供する核酸量が測定結果に影響する分析方法であればいかなる分析方法でもよい。具体的には、核酸濃度を正確に測定する定量検査、一塩基多型を検出するSNP検査、ゲノムのメチル化部位を検出するメチル化検査、染色体の欠失を検出するLOH検査、マイクロサテライト多型を利用して個人を同定するSTR検査(個人識別検査)等が挙げられるが、適用できる検査はこれらに限定されるものではない。   Further, the test sample in the present invention may be any sample as long as it contains a nucleic acid to be used for the test, for example. In addition, the test in the present invention is a test for analyzing nucleic acid, which is applied subsequent to the determination method of the present invention, and any analysis method may be used as long as the amount of nucleic acid to be used for analysis affects the measurement result. . Specifically, quantitative tests that accurately measure nucleic acid concentrations, SNP tests that detect single nucleotide polymorphisms, methylation tests that detect genomic methylation sites, LOH tests that detect chromosome deletions, microsatellite polymorphisms Examples include STR inspection (personal identification inspection) for identifying an individual using a mold, but applicable inspections are not limited to these.

また、本発明における検査試料群とは、複数の個体から得られた複数の検査試料、または、ある同一の個体から経時的に採取された複数の検査試料を意味するが、これらの複数の検査試料は本発明に同時に供される必要はなく、ある1時点においては1つの検査試料のみが本発明の判定方法に供されてもよい。   Further, the test sample group in the present invention means a plurality of test samples obtained from a plurality of individuals or a plurality of test samples collected over time from a certain individual. The sample does not need to be used for the present invention at the same time, and only one test sample may be used for the determination method of the present invention at a certain time point.

本発明における所定の濃度とは、検査試料を判定する閾値の濃度を意味し、少なくとも1ng/μLから100ng/μLが好ましく、従来法より高い判定効果で判定することができる。しかし、所定の濃度が低い場合では、所定の濃度より高い検査試料の適中度が減少し、所定の濃度が高い場合では、所定の濃度より低い検査試料の適中度が減少する。実施例の結果から、所定の濃度が1ng/μL未満では所定の濃度より高い検査試料の適中度や特異度が約40%低下し、所定の濃度が100ng/μLを超えると所定の濃度より低い検査試料の適中度が半分以下となる。より好ましくは、所定の濃度を3ng/μLから50ng/μLと定めるのが望ましい。   The predetermined concentration in the present invention means a threshold concentration for determining the test sample, preferably at least 1 ng / μL to 100 ng / μL, and can be determined with a higher determination effect than the conventional method. However, when the predetermined concentration is low, the appropriateness of the inspection sample higher than the predetermined concentration is decreased, and when the predetermined concentration is high, the appropriateness of the inspection sample lower than the predetermined concentration is decreased. From the results of Examples, when the predetermined concentration is less than 1 ng / μL, the appropriateness and specificity of the test sample higher than the predetermined concentration are reduced by about 40%, and when the predetermined concentration exceeds 100 ng / μL, it is lower than the predetermined concentration. The appropriateness of the test sample is less than half. More preferably, the predetermined concentration is set to 3 ng / μL to 50 ng / μL.

本発明に用いる装置としては、波長350nm〜180nm、少なくとも波長260nm〜220nmの吸光度を測定できればいかなる装置でもよい。具体的には吸光度測定装置、分光光度計が挙げられる。より具体的には、日立ダイオードアレイ型バイオ光度計(日立ハイテクノロジーズ社製)、1μL分光光度計(NanoDrop Technologies社製)等が挙げられるが、本発明では、検査試料中の核酸の吸光度を測定できればよく、上述の分析装置に限定されない。   The apparatus used in the present invention may be any apparatus as long as it can measure absorbance at a wavelength of 350 nm to 180 nm, at least a wavelength of 260 nm to 220 nm. Specific examples include an absorbance measuring device and a spectrophotometer. More specifically, Hitachi diode array type biophotometer (manufactured by Hitachi High-Technologies Corporation), 1 μL spectrophotometer (manufactured by NanoDrop Technologies), etc. can be mentioned. In the present invention, the absorbance of nucleic acids in a test sample is measured. What is necessary is just to be able to do and it is not limited to the above-mentioned analyzer.

上記試料および従来装置を用いて検査試料は一般的に次のように検査される。すなわち、核酸検査に限らず、検査機器には測定範囲が設けられており、検査試料群の濃度範囲が検査機器の測定範囲と異なる場合、最初から検査試料の濃度を複数の濃度で準備する。そして、準備した濃度の試料の全てを検査するか、初期濃度で測定範囲内の検査をできなかった検査試料に対して、濃度を変えて再測定を行う。あるいは、低濃度の検査試料が検査機器で測定不可能な場合、検査機器の測定下限以下の検査は無駄となる。また、ゲノム核酸中の対立遺伝子の量比を測定したい場合、検査試料中の核酸量が検査精度に関わる。これらの例のように、検査試料を濃度測定なしに、検査したとき、検査精度低下、コスト増大、スループット低下に繋がる。   A test sample is generally inspected as follows using the sample and the conventional apparatus. That is, not only in the nucleic acid test, the test instrument is provided with a measurement range. When the concentration range of the test sample group is different from the measurement range of the test instrument, the test sample is prepared with a plurality of concentrations from the beginning. Then, all of the samples having the prepared concentration are inspected, or the test sample that has not been inspected within the measurement range at the initial concentration is subjected to re-measurement by changing the concentration. Alternatively, when a low-concentration inspection sample cannot be measured with an inspection device, inspection below the measurement lower limit of the inspection device is wasted. Moreover, when it is desired to measure the amount ratio of alleles in the genomic nucleic acid, the amount of nucleic acid in the test sample is related to the test accuracy. As in these examples, when the inspection sample is inspected without measuring the concentration, the inspection accuracy decreases, the cost increases, and the throughput decreases.

このため、検査の前に簡便で低コストな方法での検査試料濃度の測定が求められている。このような濃度測定法として、吸光度を測定し、検査試料中の核酸濃度を測定する方法が挙げられる。しかし、この方法は検査試料中に核酸だけでなく生体試料成分、より具体的には、蛋白成分、ペプチド、芳香族アミノ酸等の有機化合物を含む場合、これらが核酸を検出する波長(260nm)の近傍に検出されるため、正確な核酸の濃度を測定できない問題があった。   For this reason, measurement of the test sample concentration by a simple and low-cost method is required before the test. Examples of such a concentration measuring method include a method of measuring the absorbance and measuring the nucleic acid concentration in the test sample. However, in this method, when the test sample contains not only the nucleic acid but also a biological sample component, more specifically, an organic compound such as a protein component, a peptide, an aromatic amino acid, etc., the wavelength at which the nucleic acid is detected (260 nm). Since it is detected in the vicinity, there has been a problem that the exact concentration of nucleic acid cannot be measured.

本発明による核酸濃度の判定方法によれば、検査試料をより正確に所定の濃度より高いか低いかを決定することができる。これによって、測定範囲より高いか、または低い検査試料を前もって決定し、測定範囲内に希釈または濃縮することが可能である。もしくは、測定範囲より低く検査対象外となる検査試料を決定し、無駄な検査を防ぐことが可能となる。   According to the nucleic acid concentration determination method of the present invention, it is possible to more accurately determine whether the test sample is higher or lower than a predetermined concentration. This makes it possible to determine in advance a test sample that is higher or lower than the measurement range and dilute or concentrate it within the measurement range. Alternatively, it is possible to determine an inspection sample that is lower than the measurement range and is not to be inspected, thereby preventing unnecessary inspection.

本発明によれば、(1)吸光度測定法を用いて、検査試料群の波長を220nmから260nmまで測定するステップと、(2)図1に示す判定法に従って、検査試料群を所定の濃度を閾値として、所定の濃度より高い検査試料群と所定の濃度より低い検査試料群に決定するステップと、(3)検査試料の検査の測定条件に合わせて、ステップ2で決定された検査試料群を希釈または濃縮、検査可否の判定、または次ステップへの検査試料投入量の調節を行うステップの3つのステップにより、核酸検査の検査精度向上、またはコストの低下、スループットの向上を図ることができる。   According to the present invention, (1) a step of measuring the wavelength of a test sample group from 220 nm to 260 nm using an absorbance measurement method, and (2) a test sample group having a predetermined concentration according to the determination method shown in FIG. A step of determining a test sample group higher than a predetermined concentration and a test sample group lower than a predetermined concentration as threshold values; and (3) the test sample group determined in step 2 in accordance with the measurement conditions of the test sample test. By three steps of diluting or concentrating, determining whether test is possible, or adjusting the test sample input amount to the next step, it is possible to improve the test accuracy of nucleic acid test, or to reduce cost and improve throughput.

以下、各ステップに従って、本発明を適用する条件を詳細に記述するが、記述する試料、装置等は、後述の方法に限定されない。   Hereinafter, conditions for applying the present invention will be described in detail according to each step, but the sample, apparatus, and the like to be described are not limited to the methods described below.

ステップ1では、検査試料に光を照射し、少なくとも波長220nmから260nmの吸光度を測定する。当該方法には従来用いられている吸光度測定法を用い、分析装置として分光光度計を用いることができるが、本工程では、少なくとも波長220nm以上260nm以下における検査試料の吸光度を測定できればよく、上述の測定手順、測定方法、測定装置に限定されない。   In step 1, the test sample is irradiated with light, and the absorbance at a wavelength of 220 nm to 260 nm is measured. A spectrophotometer can be used as an analyzer using a conventional absorbance measurement method for the method, but in this step, it is only necessary to measure the absorbance of a test sample at a wavelength of 220 nm or more and 260 nm or less. It is not limited to a measurement procedure, a measurement method, or a measurement apparatus.

ステップ2では、検査試料のA260を核酸濃度に換算して、所定の濃度と比較し、換算濃度が所定の濃度より低い検査試料を所定の濃度より低いと判定する判定条件A、波長220nm以上260nm未満の波長帯において得られた吸光度と検査試料のA260を比較して、当該波長帯の全ての吸光度が検査試料のA260よりも高い検査試料を所定の濃度より低い検査試料と判定する判定条件Bにより、少なくとも1ng/μLから100ng/μLを所定の濃度として検査試料の濃度判定の精度を高めることができる。また、検査試料の波長220nm以上260nm未満のいずれかの吸光度が0より低い検査試料を所定の濃度より低い検査試料とする判定条件Cを用いることで、後述する実施例の結果より明らかなように、所定の濃度5ng以下において、判定の精度をより高めることができる。   In step 2, the test sample A260 is converted into a nucleic acid concentration, compared with a predetermined concentration, and a determination condition A for determining that a test sample whose converted concentration is lower than the predetermined concentration is lower than the predetermined concentration. Determination condition B for comparing the absorbance obtained in the wavelength band of less than A260 of the test sample and determining that the test sample having all absorbances in the wavelength band higher than A260 of the test sample is lower than the predetermined concentration Thus, the accuracy of determining the concentration of the test sample can be increased by setting at least 1 ng / μL to 100 ng / μL as the predetermined concentration. Moreover, as will be clear from the results of the examples described later, by using the determination condition C in which any one of the test samples having a wavelength of 220 nm or more and less than 260 nm has an absorbance lower than 0, the test sample is lower than a predetermined concentration. The determination accuracy can be further increased at a predetermined concentration of 5 ng or less.

すなわち、本発明における判定方法は、少なくとも判定条件A、Bどちらかを満たす検査試料を所定の濃度より低い検査試料であると判定し、より好ましくは判定条件A、B、Cのどれかを満たす検査試料を所定の濃度より低い検査試料と判定することを特徴とする。なお、判定条件A、B、Cは上述した判定条件の順番で用いられる必要はなく任意の順番で用いることができる。以下、各判定条件A、Bについてより詳細に記述する。   That is, the determination method in the present invention determines that a test sample satisfying at least one of the determination conditions A and B is a test sample lower than a predetermined concentration, and more preferably satisfies any of the determination conditions A, B, and C. The test sample is determined to be a test sample lower than a predetermined concentration. Note that the determination conditions A, B, and C need not be used in the order of the determination conditions described above, and can be used in any order. Hereinafter, the determination conditions A and B will be described in more detail.

判定条件Aにおいて、測定された検査試料の波長260nmにおける吸光度を核酸濃度に換算する方法としては、公知の方法を用いることができる。より具体的には、検査試料溶液の溶媒が中性から弱アルカリ性で、測定光路長が1cmの条件でA260=1.0のとき、2本鎖DNA核酸は50μg/mL、1本鎖RNAは40μg/mL、1本鎖DNAは33μg/mLであることが知られており、核酸濃度をここから換算することが可能であるが、本方法は波長260nmにおける吸光度から核酸濃度に換算できればよく、上記条件に限定されない。また、上述の吸光度から核酸濃度へ換算する方法とは反対に、所定の濃度を吸光度に換算して、検査試料のA260と比較できるのは言うまでもない。   As a method for converting the absorbance at a wavelength of 260 nm of the measured test sample into the nucleic acid concentration under the determination condition A, a known method can be used. More specifically, when the solvent of the test sample solution is neutral to weakly alkaline and the measurement optical path length is 1 cm and A260 = 1.0, the double-stranded DNA nucleic acid is 50 μg / mL, and the single-stranded RNA is 40 μg / mL, single-stranded DNA is known to be 33 μg / mL, and the nucleic acid concentration can be converted from here, but this method only needs to convert the absorbance at a wavelength of 260 nm to the nucleic acid concentration. It is not limited to the said conditions. Moreover, it goes without saying that a predetermined concentration can be converted to absorbance and compared with A260 of the test sample, contrary to the method of converting the absorbance to the nucleic acid concentration.

判定条件Bにおいて、A260と比較する吸光度は、少なくとも波長220nm以上波長260nm未満の波長帯から得られた吸光度を用いる。より好ましくは、波長230nm以上、波長250nm未満の波長帯における吸光度を用いることで、判定の精度を高めることが可能である。本条件の判定方法としては上記波長帯における吸光度と検査試料のA260と比較して、上記波長帯の全ての吸光度が検査試料のA260より高い検査試料を所定の濃度より低い検査試料であると判定する。   In the determination condition B, as the absorbance compared with A260, an absorbance obtained from a wavelength band of at least a wavelength of 220 nm or more and less than 260 nm is used. More preferably, the determination accuracy can be improved by using absorbance in a wavelength band of 230 nm or more and less than 250 nm. As a determination method of this condition, compared to the absorbance in the wavelength band and A260 of the test sample, it is determined that a test sample whose absorbance in the wavelength band is higher than A260 of the test sample is a test sample lower than a predetermined concentration. To do.

ステップ3では、本発明における次工程の検査の必要に応じて、検査試料の濃度や分取する量を調整する。より具体的な例を挙げると、次工程の検査が核酸濃度20ng/μLから0.2ng/μLの測定範囲の検査である場合、所定の濃度20ng/μLで検査試料群を判定し、20ng/μLより高い濃度の検査試料群に対して、一律に希釈操作を行う。本例において、50倍希釈を行った場合、最大1000ng/μLの検査試料濃度まで、次工程の検査の測定範囲内で測定可能となる。しかし、本工程では、次工程の検査に応じて検査試料を希釈、濃縮、分取量の調節、検査可否の判定が行われればよく上述の例に限定されない。   In step 3, the concentration of the test sample and the amount to be sampled are adjusted according to the need for the next process in the present invention. To give a more specific example, when the inspection in the next step is an inspection in a measurement range of a nucleic acid concentration of 20 ng / μL to 0.2 ng / μL, a test sample group is determined at a predetermined concentration of 20 ng / μL, and 20 ng / A dilution operation is uniformly performed on a test sample group having a concentration higher than μL. In this example, when 50-fold dilution is performed, it is possible to measure up to a maximum test sample concentration of 1000 ng / μL within the measurement range of the next process. However, in this process, it is only necessary to dilute and concentrate the test sample, adjust the amount of separation, and determine whether or not the test can be performed according to the test in the next process.

以下、本発明の選定条件を決定した実施例および、本発明を用いる代表的な用途を示すが本発明はこれらの例に限定されない。   Hereinafter, although the Example which determined the selection conditions of this invention and the typical use which uses this invention are shown, this invention is not limited to these examples.

(実施例)尿より抽出されたヒトゲノム核酸の核酸濃度による決定
1.検査試料の準備
本実験では、185人の自然尿より抽出したゲノム核酸を検査試料として用いた。採取された自然尿は、採取後直ちに4℃に保存され、その後2日以内に3000rpmで10分間遠心後、上清を除去し、PBSで洗浄後、PBSにて1mlに懸濁した。本懸濁液の核酸抽出には、QIAamp DNA Blood Mini Kit(QIAGEN社製)を用い、抽出方法は、公知の方法を用いた。より詳細には、臨床検体を溶解試薬で溶解し、これをシリカカラムに吸着させた。次に、洗浄試薬を用いて洗浄し、核酸溶出試薬を用いて、シリカカラムから溶出させ、これを濃度測定に用いる検査試料とした。
(Example) Determination of nucleic acid concentration of human genomic nucleic acid extracted from urine Preparation of test sample In this experiment, genomic nucleic acid extracted from 185 natural urine samples was used as a test sample. The collected natural urine was stored at 4 ° C. immediately after collection, and then centrifuged at 3000 rpm for 10 minutes within 2 days. The supernatant was removed, washed with PBS, and suspended in 1 ml of PBS. QIAamp DNA Blood Mini Kit (manufactured by QIAGEN) was used for nucleic acid extraction of this suspension, and a known method was used as the extraction method. More specifically, the clinical specimen was dissolved with a lysis reagent and adsorbed onto a silica column. Next, the sample was washed with a washing reagent and eluted from a silica column with a nucleic acid elution reagent, which was used as a test sample for concentration measurement.

2.PicoGreenによる核酸濃度の定量測定
本発明者らは尿より抽出された185種類の検査試料群の正確な2本鎖核酸濃度を定量するために、2本鎖核酸にのみ結合する蛍光試薬であるPicoGreen dsDNA Quantitation Reagent(Molecular Probes社製)を用いて核酸濃度を定量した。本定量方法は公知の方法を用いた。より詳細には、標準核酸を用いて希釈系列を作製し、作製した希釈系列の濃度範囲に入るように検査試料を希釈した。次に、2本鎖核酸とのみ結合する蛍光試薬を添加し、蛍光発光量を測定した。この結果、本検査試料群の核酸濃度は1500ng/μLから0.01ng/μLの濃度範囲であった。
2. Quantitative Measurement of Nucleic Acid Concentration with PicoGreen In order to quantify the exact double-stranded nucleic acid concentration of 185 kinds of test sample groups extracted from urine, the present inventors are PicoGreen, a fluorescent reagent that binds only to double-stranded nucleic acid. Nucleic acid concentration was quantified using dsDNA Quantitation Reagent (Molecular Probes). This quantification method used a known method. More specifically, a dilution series was prepared using a standard nucleic acid, and the test sample was diluted so as to fall within the concentration range of the prepared dilution series. Next, a fluorescent reagent that binds only to the double-stranded nucleic acid was added, and the amount of fluorescence was measured. As a result, the nucleic acid concentration of this test sample group was in the concentration range of 1500 ng / μL to 0.01 ng / μL.

3.吸光度測定法による濃度測定
本発明者らは吸光度測定法を用いて、検査試料中の核酸濃度を測定した。測定装置は1μL分光光度計(NanoDrop Technologies社製)を用い、検査試料から試料溶液を1μ?分取し、吸光度測定を行った。この結果、185種類の検査試料について波長350nmから220nmの範囲で吸光度曲線を得て、波長260nmの吸光度から2本鎖核酸の濃度に換算し、約1900ng/μLから0.09ng/μLの濃度範囲の測定結果が得られた。
3. Concentration measurement by absorbance measurement method The present inventors measured the nucleic acid concentration in the test sample using the absorbance measurement method. Using a 1 μL spectrophotometer (manufactured by NanoDrop Technologies) as the measuring apparatus, 1 μμ of the sample solution was taken from the test sample, and the absorbance was measured. As a result, absorbance curves were obtained in the range of wavelengths from 350 nm to 220 nm for 185 types of test samples, converted from the absorbance at a wavelength of 260 nm to the concentration of double-stranded nucleic acid, and a concentration range of about 1900 ng / μL to 0.09 ng / μL. The measurement result of was obtained.

4.検査試料の決定
検査試料群に対して7つの所定の濃度(1.0ng/μL、3.0ng/μL、5.0ng/μL、10ng/μL、20ng/μL、50ng/μL、100ng/μL)を用いて表1に示す判定条件を複数用いて判定し、PicoGreenにより定量した結果を基準値として各判定手段の適中数を調べ、表2に示した。なお、本発明法における判定手段は表1に示す判定条件を複数用い、各判定条件を表す表記を並列に記載して示した。
4). Determination of test sample Seven predetermined concentrations (1.0 ng / μL, 3.0 ng / μL, 5.0 ng / μL, 10 ng / μL, 20 ng / μL, 50 ng / μL, 100 ng / μL) for the test sample group Was determined using a plurality of determination conditions shown in Table 1, and the appropriate number of each determination means was examined using the result determined by PicoGreen as a reference value. The determination means in the method of the present invention uses a plurality of the determination conditions shown in Table 1, and the notations representing the determination conditions are shown in parallel.

Figure 0004878263
Figure 0004878263

Figure 0004878263
Figure 0004878263

表2より、従来法では、所定の濃度を10ng/μLとして判定したとき、148種類の所定濃度未満の検査試料中60種類に及ぶ当該試料が10ng/μL以上であると判定された。一方、本発明法では、148種類の所定濃度未満の検査試料中14種類の当該試料が10ng/μL以上であると判定された。   From Table 2, in the conventional method, when the predetermined concentration was determined to be 10 ng / μL, it was determined that 60 samples out of 148 types of test samples having a concentration lower than the predetermined concentration were 10 ng / μL or more. On the other hand, in the method of the present invention, it was determined that 14 types of the samples out of 148 types of test samples having a concentration lower than the predetermined concentration were 10 ng / μL or more.

次工程の検査に10ng/μL以上の検査試料が必要な場合、上記結果を用いると、従来法では97種類の検査試料の検査が必要であるのに対し、本発明法では50種類の検査試料を検査すればよい。従って、本例において、検査のスループットは2倍に向上し、コストは1/2に低減できる。   When inspection of 10 ng / μL or more is required for the inspection of the next process, using the above result, 97 types of inspection samples are required in the conventional method, whereas 50 types of inspection samples are required in the method of the present invention. Can be inspected. Therefore, in this example, the inspection throughput can be doubled and the cost can be reduced to ½.

5.判定結果の評価
判定結果の評価法として、スクリーニングの効果指標を用いた。スクリーニングとは、ある状態とそうでない状態を可能なかぎり判定することを意味する。本スクリーニングの能力を表すために、感度、特異度、適中度、有効度の指標を用いた。以下、各指標について説明する。各指標にあるアルファベットは表4に示すスクリーニングによる判定結果の数を表す。そして、各指標の説明に本アルファべットを用いて、算定式を示した。
5. Evaluation of Judgment Result As an evaluation method of the judgment result, a screening effect index was used. Screening means determining as much as possible one state and the other. Sensitivity, specificity, moderateness, and efficacy indices were used to represent the ability of this screening. Hereinafter, each index will be described. The alphabet in each index represents the number of determination results by screening shown in Table 4. And, using this alphabet to explain each index, the calculation formula is shown.

Figure 0004878263
Figure 0004878263

まず、感度とは実際に所定の濃度未満の検査試料が本発明で正しく所定の濃度未満となる割合で、本発明による所定濃度未満を選び出す能力を表す。値が高いほど良い方法と言える。本指標は(式1)の方法で算出できる。   First, sensitivity represents the ability to select less than a predetermined concentration according to the present invention at a rate at which an inspection sample having a concentration lower than a predetermined concentration is actually less than the predetermined concentration according to the present invention. The higher the value, the better. This index can be calculated by the method of (Equation 1).

(式1)
感度=本発明で正しく決定された所定濃度未満の検査試料の数/所定濃度未満の全検査試料の数
=a/(a+c)×100(%)
次に、特異度とは所定濃度以上の検査試料が本発明で正しく所定の濃度以上となる割合で、所定濃度以上の検査試料を所定濃度未満と間違えない能力を表す。値が高いほど良い判定方法と言える。本指標は(式2)の方法で算出できる。
(Formula 1)
Sensitivity = number of inspection samples less than a predetermined concentration correctly determined in the present invention / number of all inspection samples less than a predetermined concentration = a / (a + c) × 100 (%)
Next, the specificity is a ratio at which a test sample having a predetermined concentration or higher is correctly set to a predetermined concentration or higher in the present invention, and represents a capability of not mistaken for a test sample having a predetermined concentration or higher to be less than a predetermined concentration. The higher the value, the better the determination method. This index can be calculated by the method of (Formula 2).

(式2)
特異度=本発明で正しく決定された所定濃度以上の検査試料の数/所定濃度以上の全検査試料の数
=d/(b+d)×100(%)
次に、有効度とは所定濃度未満の有無を正しく反映している割合を意味する。本指標は(式3)の方法で算出できる。
(Formula 2)
Specificity = number of test samples having a predetermined concentration or more correctly determined in the present invention / number of all test samples having a predetermined concentration or more = d / (b + d) × 100 (%)
Next, the effectiveness means a ratio that correctly reflects the presence or absence of less than a predetermined concentration. This index can be calculated by the method of (Equation 3).

(式3)
有効度=(a+d)/(a+b+c+d)×100(%)
そして、適中度には所定濃度未満適中度と所定濃度以上適中度があり、敏感度や特異度は本発明法自体の有効性を示す指標であるが、所定濃度未満適中度は本発明により所定濃度未満と判定された検査試料が実際に所定濃度未満である確率を意味し、所定濃度以上適中度はその逆を意味する。本指標は(式4)、(式5)の方法で算出できる。
(Formula 3)
Effectiveness = (a + d) / (a + b + c + d) × 100 (%)
Appropriateness levels include moderateness less than a predetermined concentration and moderateness above a predetermined concentration. Sensitivity and specificity are indicators of the effectiveness of the method of the present invention. It means the probability that the test sample determined to be less than the concentration is actually less than the predetermined concentration, and the appropriate intermediate level means the opposite. This index can be calculated by the methods of (Equation 4) and (Equation 5).

(式4)
所定濃度未満適中度=実際に所定濃度未満の検査試料の数/所定濃度未満の全検査試料の数
=a/(a+b)×100(%)
(式5)
所定濃度以上適中度=実際に所定濃度以上の検査試料の数/所定濃度以上の全検査試料の数
=d/(c+d)×100(%)
本発明の決定の効果を上述の5つの評価指標を用いて評価した結果を表5〜表10に示す。
(Formula 4)
Less than a predetermined concentration moderateness = the number of inspection samples actually below a predetermined concentration / the number of all inspection samples below a predetermined concentration
= A / (a + b) × 100 (%)
(Formula 5)
Appropriate intermediate level above specified concentration = number of test samples actually above specified concentration / number of all test samples above specified concentration
= D / (c + d) × 100 (%)
Tables 5 to 10 show the results of evaluating the effect of the determination of the present invention using the above five evaluation indexes.

Figure 0004878263
Figure 0004878263

Figure 0004878263
Figure 0004878263

Figure 0004878263
Figure 0004878263

Figure 0004878263
Figure 0004878263

Figure 0004878263
Figure 0004878263

Figure 0004878263
Figure 0004878263

Figure 0004878263
Figure 0004878263

本発明による判定方法の効果を評価した結果、いずれの本発明の判定方法も従来方法より高い有効性を示した。具体的には、判定条件Bでは4種類の波長帯のうち、(B−2)つまり波長230nm以上250nm以下の吸光度を用いたとき、最も高い有効度を示した。また、最も波長帯の範囲の広い(B−4)、つまり波長220nm以上260nm未満の波長帯でも従来法と比較して高い有効度が得られることが分かった。各所定濃度の判定の効果としては、所定濃度を低くすると、所定濃度以上の適中度が下がり、所定濃度を高くすると、所定濃度未満の適中度が低下する傾向があることがわかったが、いずれも従来法よりも高い有効度を示した。   As a result of evaluating the effect of the determination method according to the present invention, any of the determination methods of the present invention showed higher effectiveness than the conventional method. Specifically, the determination condition B showed the highest effectiveness when (B-2), that is, an absorbance having a wavelength of 230 nm or more and 250 nm or less was used among the four wavelength bands. It was also found that a higher effectiveness than that of the conventional method can be obtained even in the widest wavelength range (B-4), that is, in a wavelength range of 220 nm to less than 260 nm. As an effect of the determination of each predetermined concentration, it has been found that if the predetermined concentration is lowered, the appropriateness above the predetermined concentration tends to decrease, and if the predetermined concentration is increased, the appropriateness below the predetermined concentration tends to decrease. Also showed higher effectiveness than the conventional method.

本発明の実施形態による主な効果を簡単に説明すると、以下に示すとおりである。   The main effects of the embodiment of the present invention will be briefly described as follows.

(1)検査試料群の濃度範囲が、次工程の濃度範囲と異なる検査試料群を測定範囲内で検査するために、従来、複数濃度で測定、または1濃度で測定し、測定範囲外の検査試料の濃度を変えて再測定していた検査に対して、前もって測定範囲外の検査試料群の濃度を調節することができるようになり、1濃度で測定可能、または再測定の検査試料が減少し、検査コストを低減できる。   (1) In order to inspect an inspection sample group in which the concentration range of the inspection sample group is different from the concentration range of the next process within the measurement range, conventionally, measurement is performed at a plurality of concentrations or at one concentration, and inspection outside the measurement range For tests that have been remeasured by changing the concentration of the sample, the concentration of the test sample group outside the measurement range can be adjusted in advance, allowing measurement at one concentration, or reducing the number of test samples to be remeasured In addition, the inspection cost can be reduced.

(2)検査に用いる核酸量が検査信頼性に影響する場合、従来の吸光度測定法と比較してより正確に低濃度の検査試料群を決定できるようになり、検査の信頼性が向上する。   (2) When the amount of nucleic acid used for the test affects the test reliability, a test sample group having a low concentration can be determined more accurately than in the conventional absorbance measurement method, and the test reliability is improved.

なお、本発明による検査試料決定の効果指標として、スクリーニング効果の指標を用いて評価した。核酸濃度10ng/μLを所定の濃度として185検体の濃度を決定した結果では、従来法であるA260から換算した核酸濃度による決定結果と比較して、感度32%向上(60%⇒92%)、核酸濃度10ng/μL未満を適中させる確率は37%向上(38%⇒75%)し、有効度は26%向上(67%⇒93%)した。   In addition, it evaluated using the parameter | index of a screening effect as an effect parameter | index of test sample determination by this invention. As a result of determining the concentration of 185 samples with a nucleic acid concentration of 10 ng / μL as a predetermined concentration, the sensitivity is improved by 32% (60% → 92%) compared to the determination result by the nucleic acid concentration converted from A260, which is a conventional method, The probability that the nucleic acid concentration is less than 10 ng / μL was improved by 37% (38% → 75%), and the effectiveness was improved by 26% (67% → 93%).

本発明の実施例による核酸分析法のフロー図。The flowchart of the nucleic acid analysis method by the Example of this invention. 本発明による検査試料中の核酸濃度判定装置の構成を示す線図。The diagram which shows the structure of the nucleic acid concentration determination apparatus in the test sample by this invention.

符号の説明Explanation of symbols

1…吸光度測定するステップ、2…吸光度を核酸濃度に換算するステップ、3…換算値を所定濃度と比較するステップ、4…吸光度比較ステップ、5…吸光度評価ステップ、6…所定濃度より高い試料と判定するステップ、7…所定濃度より低い試料と判定するステップ、10…吸光光度計、11…吸光度の換算機能、12…第1比較判定機能、13…第2比較判定機能、14…吸光度評価判定機能、15…出力装置、16…データベース、17…記憶装置。   DESCRIPTION OF SYMBOLS 1 ... The step which measures absorbance, 2 ... The step which converts an absorbance into a nucleic acid concentration, 3 ... The step which compares a converted value with predetermined concentration, 4 ... Absorbance comparison step, 5 ... Absorbance evaluation step, 6 ... Sample higher than predetermined concentration Step for determining: 7: Step for determining a sample lower than a predetermined concentration, 10: Absorbance photometer, 11: Conversion function of absorbance, 12: First comparison determination function, 13: Second comparison determination function, 14: Absorbance evaluation determination Function, 15 ... output device, 16 ... database, 17 ... storage device.

Claims (11)

検査試料の核酸濃度が所定の核酸濃度よりも高いか低いかを判定する方法において、波長220nm以上260nm以下の範囲における検査試料の吸光度を測定し、検査試料の波長260nmの吸光度が、所定の核酸濃度から換算した波長260nmの吸光度よりも高く、かつ検査試料の波長260nm未満のいずれかの吸光度が0より小さい場合、検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定するステップを含むことを特徴とする検査試料中の核酸濃度の判定方法。 In the method for determining whether the nucleic acid concentration of a test sample is higher or lower than a predetermined nucleic acid concentration, the absorbance of the test sample in a wavelength range of 220 nm to 260 nm is measured, and the absorbance of the test sample at a wavelength of 260 nm A step of determining that the nucleic acid concentration in the test sample is lower than a predetermined nucleic acid concentration when any absorbance at a wavelength of 260 nm less than the wavelength of 260 nm converted from the concentration is lower than 0. A method for determining a nucleic acid concentration in a test sample. 前記所定の核酸濃度を1〜100ng/μLの値に設定することを特徴とする請求項1に記載の検査試料中の核酸濃度の判定方法。 Method of determining nucleic acid concentration in a test sample of the serial loading to claim 1, characterized in that for setting the predetermined nucleic acid concentration to a value of 1-100 ng / [mu] L. 前記所定の核酸濃度を3〜50ng/μLの値に設定することを特徴とする請求項1に記載の検査試料中の核酸濃度の判定方法。 Method of determining nucleic acid concentration in a test sample of the serial loading to claim 1, characterized in that for setting the predetermined nucleic acid concentration to a value of 3~50ng / μL. 前記検査試料が尿由来の抽出核酸であることを特徴とする請求項1に記載の検査試料中の核酸濃度の判定方法。 Method of determining nucleic acid concentration in a test sample of the serial loading to claim 1, wherein the test sample is extracted nucleic acid from the urine. 前記核酸がゲノムDNAであることを特徴とする請求項1または2に記載の検査試料中の核酸濃度の判定方法。 The method for determining a nucleic acid concentration in a test sample according to claim 1 or 2, wherein the nucleic acid is genomic DNA. 検査試料の核酸濃度が所定の核酸濃度よりも高いか低いかを判定する方法において、波長220nm以上260nm以下の範囲における検査試料の吸光度を測定し、検査試料の波長260nmの吸光度が、所定の核酸濃度から換算した波長260nmの吸光度よりも高く、かつ検査試料の波長260nm未満のいずれかの吸光度が0より小さい場合、検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定するステップの後、検査試料の分取量または投入量を調節するステップを含むことを特徴とする検査試料中の核酸分析方法。 In the method for determining whether the nucleic acid concentration of a test sample is higher or lower than a predetermined nucleic acid concentration, the absorbance of the test sample in a wavelength range of 220 nm to 260 nm is measured, and the absorbance of the test sample at a wavelength of 260 nm After the step of determining that the nucleic acid concentration in the test sample is lower than the predetermined nucleic acid concentration when the absorbance at a wavelength of 260 nm converted from the concentration is higher and any absorbance at a wavelength of less than 260 nm of the test sample is smaller than 0 And a method for analyzing a nucleic acid in a test sample, comprising the step of adjusting an amount of the test sample to be dispensed or input. 検査試料の核酸濃度が所定の核酸濃度よりも高いか低いかを判定する方法において、波長220nm以上260nm以下の範囲における検査試料の吸光度を測定し、検査試料の波長260nmの吸光度が、所定の核酸濃度から換算した波長260nmの吸光度よりも高く、かつ検査試料の波長260nm未満のいずれかの吸光度が0より小さい場合、検査試料中の核酸濃度が所定の核酸濃度よりも低いと判定するステップの後、検査試料中の核酸濃度が所定の核酸濃度より低い場合、検査結果の採否の判定を行うステップを含むことを特徴とする検査試料中の核酸分析方法。 In the method for determining whether the nucleic acid concentration of a test sample is higher or lower than a predetermined nucleic acid concentration, the absorbance of the test sample in a wavelength range of 220 nm to 260 nm is measured, and the absorbance of the test sample at a wavelength of 260 nm After the step of determining that the nucleic acid concentration in the test sample is lower than the predetermined nucleic acid concentration when the absorbance at a wavelength of 260 nm converted from the concentration is higher and any absorbance at a wavelength of less than 260 nm of the test sample is smaller than 0 A method for analyzing nucleic acid in a test sample, comprising the step of determining whether or not to accept a test result when the nucleic acid concentration in the test sample is lower than a predetermined nucleic acid concentration. 判定した検査試料の核酸濃度に応じて検査試料の分取量または投入量を調節することを特徴とする請求項7に記載の核酸分析方法The nucleic acid analysis method according to claim 7, wherein adjusting the aliquot or input amount of the test sample in accordance with the nucleic acid concentration of the determined test sample. 判定した検査試料の核酸濃度に応じて検査試料を希釈または濃縮することを特徴とする請求項7に記載の核酸分析方法 The nucleic acid analysis method according to claim 7, characterized in that the test sample is diluted or concentrated depending on the concentration of the nucleic acid test sample is determined. 前記所定の核酸濃度を1〜100ng/μLの値に設定することを特徴とする請求項に記載の核酸分析方法 The nucleic acid analysis method according to claim 7, characterized in that for setting the predetermined nucleic acid concentration to a value of 1-100 ng / [mu] L. 前記所定の核酸濃度を3〜50ng/μLの値に設定することを特徴とする請求項に記載の核酸分析方法 The nucleic acid analysis method according to claim 7, characterized in that for setting the predetermined nucleic acid concentration to a value of 3~50ng / μL.
JP2006298366A 2006-11-02 2006-11-02 Nucleic acid concentration determination method and nucleic acid analysis method Active JP4878263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298366A JP4878263B2 (en) 2006-11-02 2006-11-02 Nucleic acid concentration determination method and nucleic acid analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298366A JP4878263B2 (en) 2006-11-02 2006-11-02 Nucleic acid concentration determination method and nucleic acid analysis method

Publications (2)

Publication Number Publication Date
JP2008113583A JP2008113583A (en) 2008-05-22
JP4878263B2 true JP4878263B2 (en) 2012-02-15

Family

ID=39500087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298366A Active JP4878263B2 (en) 2006-11-02 2006-11-02 Nucleic acid concentration determination method and nucleic acid analysis method

Country Status (1)

Country Link
JP (1) JP4878263B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6158030B2 (en) * 2013-01-30 2017-07-05 株式会社日立ハイテクノロジーズ Analysis equipment

Also Published As

Publication number Publication date
JP2008113583A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US10978173B2 (en) Method for reducing noise level of data set for a target analyte
KR102667912B1 (en) Systems and methods for determining microsatellite instability
US7790368B1 (en) Method for analyzing nucleic acid
Lakkisto et al. Development of circulating microRNA-based biomarkers for medical decision-making: a friendly reminder of what should NOT be done
CN107723358B (en) Phenylketonuria detection kit
CN103614477A (en) Fluorescent quantitative PCR (Polymerase Chain Reaction) kit for diagnosing human spinal muscular atrophy
KR20180035925A (en) Multiple data set analysis to determine the presence or absence of target analyte
CN108165629B (en) DNA point mutation quantitative detection method
JP4878263B2 (en) Nucleic acid concentration determination method and nucleic acid analysis method
CN108342474A (en) A kind of kit for detecting telomere length prediction coronary heart disease risk
CN111088328A (en) Kit and detection method for high-throughput sequencing library quantitative detection
CN111286503B (en) Aptamer and application thereof in PDGF-BB detection kit
Jeon et al. Quantification of cell-free DNA: a comparative study of three different methods
JP4777631B2 (en) Nucleic acid amplification analysis method and apparatus
JP2008022732A (en) Method for inspecting nucleic acid sample, method for judging the inspected result, and method for managing the inspection of the nucleic acid sample based on the judged result
Farrugia et al. Detection of genetic variation in KCNQ1 gene by high-resolution melting analysis in a prospective-based series of postmortem negative sudden death: comparison of results obtained in fresh frozen and formalin-fixed paraffin-embedded tissues
Marotta et al. High resolution melting analysis to genotype the most common variants in the HFE gene
JP7274033B1 (en) Correction method for fluorescence detection
KR102585407B1 (en) Methods for quantification of cell-free DNA
CN117247999B (en) Nucleic acid integrity quality assessment method and application thereof
WO2021132232A1 (en) Method for evaluating quality of serum specimen
ES2483121T3 (en) Improved method to quantify DNA in a biological sample
Brescia et al. Multi-volume analysis of nucleic acids using the EPOCH™ spectrophotometer system
Page et al. Assuring reliability of qPCR & RT-PCR results: Use of spectrophotometry on nucleic acid samples before experiment improves outcome
JP2005348742A (en) Method for analysis of nucleic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

R150 Certificate of patent or registration of utility model

Ref document number: 4878263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350