JP4877335B2 - Chemical substance detection apparatus and chemical substance detection method - Google Patents

Chemical substance detection apparatus and chemical substance detection method Download PDF

Info

Publication number
JP4877335B2
JP4877335B2 JP2009025508A JP2009025508A JP4877335B2 JP 4877335 B2 JP4877335 B2 JP 4877335B2 JP 2009025508 A JP2009025508 A JP 2009025508A JP 2009025508 A JP2009025508 A JP 2009025508A JP 4877335 B2 JP4877335 B2 JP 4877335B2
Authority
JP
Japan
Prior art keywords
ion
organic acid
ions
generated
explosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009025508A
Other languages
Japanese (ja)
Other versions
JP2009103711A (en
Inventor
久志 永野
泉 和氣
安章 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009025508A priority Critical patent/JP4877335B2/en
Publication of JP2009103711A publication Critical patent/JP2009103711A/en
Application granted granted Critical
Publication of JP4877335B2 publication Critical patent/JP4877335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、環境物質、有害化学物質、麻薬、爆発物等の化学物質探知技術に係わり、特に質量分析計を用いた化学物質探知装置に関する。   The present invention relates to a chemical substance detection technique for environmental substances, harmful chemical substances, narcotics, explosives, and the like, and more particularly to a chemical substance detection apparatus using a mass spectrometer.

麻薬や爆発物を探知する探知技術には、X線透視装置のように物体の形状や密度から判別する、いわゆるバルク検出と、検査対象に付着した極微量の化学物質を検出する、いわゆるトレース検出に大別される。トレース検出において、爆発物を探知する技術には化学発光方式、イオン移動度方式、質量分析方式などがある。   The detection technology for detecting narcotics and explosives includes so-called bulk detection that distinguishes from the shape and density of an object like an X-ray fluoroscopy device, and so-called trace detection that detects a very small amount of chemical substances adhering to the inspection target. It is divided roughly into. Techniques for detecting explosives in trace detection include chemiluminescence, ion mobility, and mass spectrometry.

化学発光方式では、採取した試料をガスクロマトグラフィで分離し、発光試薬と反応させて発光を検出することで、化学物質の同定を行ない爆薬の探知を行なう(従来技術1:特許文献1を参照)。採取物質をあらかじめガスクロマトグラフで分離するため、特定の探知対象物質に対して極めて感度が高く、物質を見分ける能力(以下、選択性と呼ぶ)が高い。   In the chemiluminescence method, a collected sample is separated by gas chromatography and reacted with a luminescent reagent to detect luminescence, thereby identifying a chemical substance and detecting an explosive (refer to Patent Document 1: Patent Document 1). . Since the collected substance is separated in advance by a gas chromatograph, it is extremely sensitive to a specific detection target substance and has a high ability to distinguish the substance (hereinafter referred to as selectivity).

イオン移動度方式では、採取した試料を加熱蒸気化し、ガス状の試料を放射線を用いたイオン源でイオン化する。このイオンを電界により大気中をドリフトさせ、移動度を測定することで化学物質の同定を行ない、爆薬の探知を行なう(従来技術2:特許文献2を参照)。   In the ion mobility method, a collected sample is heated and vaporized, and a gaseous sample is ionized with an ion source using radiation. The ions are drifted in the atmosphere by an electric field, and the chemical substance is identified by measuring the mobility, and explosives are detected (refer to Prior Art 2: Patent Document 2).

また、イオン移動度方式では、イオン化を行なう際に塩素又は塩素化合物(以下、塩素ドーパントと呼ぶ)を導入することで、爆薬分子と塩素イオンが反応し、爆薬分子に塩素イオンが付加された付加イオンを生成する。この付加イオンを検出することで爆薬の探知を行なう。(従来技術3:特許文献3を参照)。塩素イオンの付加イオンを検出する方法では、付加イオンの生成効率が高いので、観測される信号強度は高くなり、探知する際の感度が高くなる。また、探知対象物質が本来のイオン化過程を経てイオン化されたイオンも、塩素による付加イオンと同時に観測されるため、信号の数が増え、選択性が高まる。   In the ion mobility method, the introduction of chlorine or a chlorine compound (hereinafter referred to as chlorine dopant) during ionization causes the explosive molecules to react with the chlorine ions, and the addition of chlorine ions to the explosive molecules. Generate ions. Explosives are detected by detecting these additional ions. (Refer to Prior Art 3: Patent Document 3). In the method of detecting the adduct ion of chlorine ion, since the generation efficiency of the adduct ion is high, the observed signal intensity is high, and the sensitivity at the time of detection is high. In addition, ions obtained by ionizing the detection target substance through the original ionization process are also observed at the same time as the additional ions by chlorine, so that the number of signals increases and the selectivity increases.

質量分析方式を用いた探知装置として、大気圧化学イオン化法を用いた方法が知られている(従来技術4:特許文献4を参照)。この方法は大気圧化で化学反応により爆薬分子をイオン化し、生成したイオンの質量分析を行なうことで、物質の同定および爆薬の探知を行なう。採取物質を直接大気圧化のイオン源に導入し、質量分析を行なうため濃縮や分離と言った前処理が必要とせず、連続かつスピーディな探知が可能である。さらに、負の大気圧化学イオン化法は、電子親和力の高いニトロ化合物を選択的にイオン化する特徴を持っており、夾雑物の影響を受けにくいうえ、信号強度が高いので感度が高い。また、検出部は四重極質量分析計やイオントラップ質量分析計などの精密化学分析に使用される質量分析計を用いているため、分子量1の差を見分けられるため、選択性が高い。このため、実運用においても、夾雑成分と探知対象物質を見分けることが可能である。   As a detection apparatus using a mass spectrometry method, a method using an atmospheric pressure chemical ionization method is known (refer to Prior Art 4: Patent Document 4). In this method, explosive molecules are ionized by chemical reaction under atmospheric pressure, and mass identification of the generated ions is performed to identify substances and detect explosives. Since the collected material is directly introduced into the atmospheric pressure ion source and mass spectrometry is performed, pretreatment such as concentration and separation is not required, and continuous and speedy detection is possible. Further, the negative atmospheric pressure chemical ionization method has a feature of selectively ionizing a nitro compound having a high electron affinity, and is not easily affected by impurities, and has high sensitivity because of high signal intensity. In addition, since the detection unit uses a mass spectrometer used for fine chemical analysis such as a quadrupole mass spectrometer or an ion trap mass spectrometer, the difference in molecular weight 1 can be discriminated, so that the selectivity is high. For this reason, even in actual operation, it is possible to distinguish between the contaminating component and the substance to be detected.

また、質量分析方式においても塩素ドーパントを用いて爆薬分子に対して塩素イオンが付加した付加イオンを検出する方法も提案されている(従来技術5:非特許文献1を参照)。   Also in the mass spectrometry method, a method for detecting an adduct ion in which a chlorine ion is added to an explosive molecule using a chlorine dopant has been proposed (see Prior Art 5: Non-Patent Document 1).

また、有機極性化合物の質量分析法において、水酸基またはカルボキシル基を含む有機極性化合物をハロゲン化合物と混合させてハロゲン化合物のイオン化に利用している(従来技術6:特許文献5を参照)。   In mass spectrometry of organic polar compounds, an organic polar compound containing a hydroxyl group or a carboxyl group is mixed with a halogen compound and used for ionization of the halogen compound (see Prior Art 6: Patent Document 5).

質量分析方式を用いた化学物質のモニタにおいて、測定すべき分子種が複数ある場合に同時にタンデム質量分析を行う方法が開示されている。(従来技術7:特許文献6を参照)。   A method of performing tandem mass spectrometry simultaneously when there are a plurality of molecular species to be measured in monitoring a chemical substance using a mass spectrometry method is disclosed. (See Prior Art 7: Patent Document 6).

米国特許5092155号明細書US Pat. No. 5,092,155 特開平5−264505号公報Japanese Patent Laid-Open No. 5-264505 特開平7−6729号公報JP 7-6729 A 特開2000−28579号公報JP 2000-28579 A 特許2667576号公報Japanese Patent No. 2667576 特開2000−162189号公報JP 2000-162189 A

7th International Symposium on Analysis and Detection of Explosives, 2001, Samantha L.Richards et al, The Detection of Explosive Residues from Boarding Passes, PP.607th International Symposium on Analysis and Detection of Explosives, 2001, Samantha L. Richards et al, The Detection of Explosive Residues from Boarding Passes, PP.60

従来技術1の方法では、採取物質を濃縮したり、ガスクロマトグラフで分離したりする前処理が必要なため、探知までに時間がかかる。このため、空港の手荷物検査などの様に膨大な数の検査を行う場合には向いていない。   In the method of the prior art 1, since a pretreatment for concentrating the collected material or separating the collected material by a gas chromatograph is necessary, it takes time until detection. For this reason, it is not suitable for a large number of inspections such as baggage inspections at airports.

従来技術2の方法では、短時間での探知は可能であるが探知対象物質に対して十分な信号強度が得られにくく感度が低い。また、衝突の多い大気圧条件でドリフトさせるので、分離が悪く、選択性が低い。選択性が低いと、必然的に誤報が多いと言う課題がある。   In the method of Prior Art 2, detection in a short time is possible, but it is difficult to obtain a sufficient signal intensity for the detection target substance, and the sensitivity is low. Moreover, since it is made to drift under atmospheric pressure conditions with many collisions, the separation is poor and the selectivity is low. If the selectivity is low, there is a problem that there are inevitably many false alarms.

従来技術3では、従来技術2の感度と選択性の課題を解決するため、低濃度の塩素ドーパントを導入する。しかしながら、クリーンな環境下での検出では感度が高いと言えるが、実運用では検出するもの以外の妨害物質が多く存在しており、その妨害物質環境下での運用では、十分な感度や選択性が得られているとは言えない。この妨害成分は、以下では夾雑成分と呼び、例えばカバンの拭き取り試験を考えると、カバン由来の成分(カバンそのものの素材の匂いなど)や、カバンの表面に付着した汚れ、油、化粧品等が該当する。つまり、探知対象物質以外の夾雑成分を誤って判定したり、似た複数の探知対象物質を誤って判定する誤探知が多い。また、ドーパント原料として塩素化合物を用いているため人体や環境に影響が出る可能性がある。さらに、イオン源には放射性同位体を用いているため使用や保管に許可が必要であり、運用面の制約となる。   In prior art 3, a low concentration chlorine dopant is introduced in order to solve the problems of sensitivity and selectivity of prior art 2. However, although it can be said that the sensitivity is high in detection in a clean environment, there are many interfering substances other than those to be detected in actual operation, and sufficient sensitivity and selectivity are expected in operation in the environment of the interfering substance. It cannot be said that has been obtained. This interfering component is referred to as a “contaminating component” in the following. For example, considering a bag wiping test, the component derived from the bag (such as the smell of the material of the bag itself), dirt, oil, and cosmetics attached to the surface of the bag To do. In other words, there are many false detections in which a miscellaneous component other than the detection target substance is erroneously determined or a plurality of similar detection target substances are erroneously determined. In addition, since a chlorine compound is used as a dopant raw material, there is a possibility of affecting the human body and the environment. Furthermore, since radioisotopes are used in the ion source, permission is required for use and storage, which is an operational limitation.

従来技術4では、採取物質を直接大気圧化のイオン源に導入し、質量分析を行なうが、さらに感度や選択性の向上が望まれていた。   In Prior Art 4, the collected material is directly introduced into the ion source at atmospheric pressure and mass spectrometry is performed. However, further improvement in sensitivity and selectivity has been desired.

従来技術5では、質量分析方式において更なる感度向上、選択性向上を得るために、従来技術3と同様に、塩素ドーパントを導入して探知対象物質に塩素イオンが付加された塩素付加イオンを検出する方法を行っている。しかしながら、塩素化合物を用いているため、人体や環境に影響が出る可能性がある。   In prior art 5, in order to obtain further sensitivity improvement and selectivity improvement in the mass spectrometry method, as in the prior art 3, a chlorine dopant is introduced to detect a chlorine adduct ion in which a chlorine ion is added to a detection target substance. Have a way to go. However, since chlorine compounds are used, it may affect the human body and the environment.

なお、従来技術6では、ハロゲン化物の検出に対して有効な方法であるが、爆薬の多くが含まれるニトロ化合物に対しては効果が少なかった。
従来技術7では、夾雑成分の排除にタンデム質量分析を有効に利用しているが、爆薬の探知などのような極微量成分の検出のためには、更なる工夫が必要である。
The prior art 6 is an effective method for detecting halides, but has little effect on nitro compounds containing many explosives.
In the prior art 7, tandem mass spectrometry is effectively used for eliminating contaminant components, but further measures are required for detection of trace components such as explosive detection.

本発明の目的は、スピード・感度・選択性に優れた危険物探知装置を提供することである。本発明の他の目的は、放射性同位体やハロゲン化物などの、人体や環境への影響が懸念される物質を使用しない高性能の探知機を提供することである。   An object of the present invention is to provide a dangerous object detection device excellent in speed, sensitivity, and selectivity. Another object of the present invention is to provide a high-performance detector that does not use substances such as radioisotopes and halides that are likely to affect the human body and the environment.

本発明は、負の大気圧化学イオン化法において、ニトロ化合物に代表される爆薬分子に有機酸のような比較的分子量の大きな物質が付加したイオンが生成されることを新たに発見したことに基づいてなされた。   The present invention is based on the newly discovered that in a negative atmospheric pressure chemical ionization method, ions in which a substance having a relatively large molecular weight such as an organic acid is added to an explosive molecule represented by a nitro compound are generated. It was done.

本発明の化学物質探知装置では、有機酸ガスを発生させる発生器から有機酸又は有機酸塩(以下、これら全てを有機酸と記し、有機酸ガスを有機酸ドーパントと記す)のガスを発生させ、試料ガスと混合させてイオン源に導入し、イオン化を行う。このイオンを質量分析部で分析し、質量スペクトルを得る。データ処理装置では質量スペクトルと探知のデータベースと比較する。データ処理装置が、探知対象とする目的化学物質から生成される分子に有機酸から生成された分子(有機酸、あるいは、有機酸が分解して生成された分子、有機酸が他の分子と反応し生成した分子の総称で、以下では有機酸分子と記す)が付加された付加イオン(以下、有機酸付加イオンと記す)の検出の有無を判定する。この固有のm/zを有する有機酸付加イオンが検出された場合、探知対象の目的化学物質が存在すると判断して警報を鳴らす。   In the chemical substance detection apparatus of the present invention, an organic acid or an organic acid salt (hereinafter, these are all referred to as an organic acid, and an organic acid gas is referred to as an organic acid dopant) is generated from a generator that generates an organic acid gas. Then, it is mixed with a sample gas and introduced into an ion source to perform ionization. This ion is analyzed by a mass spectrometer to obtain a mass spectrum. The data processor compares the mass spectrum with the database of detection. Data processing device detects molecules generated from organic acids into molecules generated from target chemical substances to be detected (organic acids, molecules generated by decomposition of organic acids, organic acids react with other molecules) The presence or absence of detection of an adduct ion (hereinafter referred to as an organic acid adduct ion) added with a generic name of the molecule thus formed, hereinafter referred to as an organic acid molecule) is determined. When an organic acid addition ion having this specific m / z is detected, it is judged that the target chemical substance to be detected exists and an alarm is sounded.

本発明の化学物質探知装置をより詳細に以下に説明する。   The chemical substance detection apparatus of the present invention will be described in more detail below.

本発明の化学物質探知装置は、イオン源、分析部、データ処理装置(データ処理部)から構成される。試料はイオン源でイオン化され、分析部で試料のイオン種を測定する。データ処理装置は、検査対象とする目的化学物質の試料中での存在の有無を判定する。データ処理装置は、目的化学物質の分子と、質量数が40以上400以下の有機酸又は有機酸塩の分子との反応により生じた生成イオンの検出の有無を判定する。この判定の結果、有りと判定された場合には警報が鳴らされる。   The chemical substance detection apparatus of the present invention includes an ion source, an analysis unit, and a data processing device (data processing unit). The sample is ionized by the ion source, and the ion species of the sample is measured by the analysis unit. The data processing apparatus determines whether or not the target chemical substance to be inspected exists in the sample. The data processing apparatus determines the presence or absence of detection of product ions generated by the reaction between the target chemical substance molecule and the organic acid or organic acid salt molecule having a mass number of 40 or more and 400 or less. As a result of this determination, if it is determined that there is, an alarm is sounded.

分析部ではイオン種の分析を行なうが、四重極質量分析装置、イオントラップ質量分析装置、イオン移動度を分析する装置等から選ばれる。例えば、分析部として、試料のイオンの質量スペクトルを取得する質量分析部を用いる。   The analysis unit analyzes ion species, and is selected from a quadrupole mass spectrometer, an ion trap mass spectrometer, and an ion mobility analyzer. For example, a mass analyzer that acquires a mass spectrum of ions of a sample is used as the analyzer.

有機酸又は有機酸塩は、水酸基又はカルボキシル基を有する有機酸又は有機酸塩であり、代表的に、乳酸又は乳酸塩をもちいる。   The organic acid or organic acid salt is an organic acid or organic acid salt having a hydroxyl group or a carboxyl group, and typically lactic acid or lactate is used.

データ処理装置は、(1)上記生成イオンの検出の有無、あるいは、有機酸又は有機酸塩から生成した分子と目的化学物質の分子との反応により生じた生成イオンの検出の有無を判定し、(2)目的化学物質から生成したイオンの検出の有無、上記生成イオンの検出の有無、及び、有機酸又は有機酸塩から生成した分子と目的化学物質の分子との反応により生成したイオンの検出の有無の、いずれか一つ以上の検出の有無を判定し、目的化学物質の存在の有無を判定する。   The data processing device (1) determines the presence or absence of detection of the generated ions, or the presence or absence of detection of the generated ions generated by the reaction between the molecule generated from the organic acid or the organic acid salt and the molecule of the target chemical substance, (2) Presence / absence of detection of ions generated from the target chemical substance, presence / absence of detection of the above-mentioned generated ions, and detection of ions generated by reaction of molecules generated from organic acids or organic acid salts with molecules of the target chemical substance The presence / absence of any one or more detections is determined, and the presence / absence of the target chemical substance is determined.

本発明の化学物質探知装置では、タンデム質量分析を行なう。   The chemical substance detection apparatus of the present invention performs tandem mass spectrometry.

(1)上記生成イオンに対してタンデム質量分析を行なう。データ処理装置は、上記生成イオンの分解イオンの検出の有無を判定し、目的化学物質の存在の有無を判定する。   (1) Tandem mass spectrometry is performed on the product ions. The data processing apparatus determines whether or not the decomposition ions of the generated ions are detected, and determines whether or not the target chemical substance is present.

(2)有機酸又は有機酸塩から生成した分子と目的化学物質の分子との反応により生成したイオンに対してタンデム質量分析を行なう。データ処理装置は、生成したイオンの分解イオンの検出の有無を判定し、目的化学物質の存在の有無を判定する。   (2) Tandem mass spectrometry is performed on ions generated by the reaction between molecules generated from organic acids or organic acid salts and molecules of the target chemical substance. The data processing device determines whether or not the decomposition ions of the generated ions are detected, and determines whether or not the target chemical substance is present.

(3)目的化学物質から生成したイオン、上記生成イオン、及び、有機酸又は有機酸塩から生成した分子と目的化学物質の分子との反応により生成したイオンのいずれか一つ以上のイオンに対して同時にタンデム質量分析を行なう。データ処理装置は、目的化学物質から生成したイオンの分解イオンの検出の有無、上記生成イオンの分解イオンの検出の有無を判定し、目的化学物質の存在の有無を判定する。   (3) For any one or more of the ions generated from the target chemical substance, the above-mentioned generated ions, and the ions generated by the reaction of the molecule generated from the organic acid or organic acid salt with the molecule of the target chemical substance Simultaneously perform tandem mass spectrometry. The data processing apparatus determines whether or not the decomposition ions of the ions generated from the target chemical substance are detected and whether or not the decomposition ions of the generated ions are detected, and determines whether or not the target chemical substance exists.

本発明の化学物質探知装置の構成例では、試料のガスを生成する加熱部と、質量数が40以上400以下の有機酸又は有機酸塩のガスを発生させるガス発生器と、加熱部で生成された試料のガスに、有機酸又は有機酸塩のガスを混合させ混合ガスを生成するガス混合部と、混合ガスのイオンの質量スペクトルを取得する質量分析部と、質量スペクトルに基づいて、検査対象とする目的化学物質の試料中での存在の有無を判定するデータ処理装置とを有する。   In the configuration example of the chemical substance detection apparatus of the present invention, the heating unit that generates a sample gas, the gas generator that generates an organic acid or organic acid salt gas having a mass number of 40 to 400, and the heating unit The sample gas is mixed with an organic acid or organic acid salt gas to generate a mixed gas, a mass analyzer for obtaining a mass spectrum of ions of the mixed gas, and an inspection based on the mass spectrum. And a data processing device for determining the presence or absence of the target chemical substance in the sample.

本発明の化学物質探知装置の他の構成例では、試料ガスを吸引する吸引部と、質量数が40以上400以下の有機酸又は有機酸塩のガスを発生させるガス発生器と、吸引部で吸引された試料ガスに、有機酸又は有機酸塩のガスを混合させ混合ガスを生成するガス混合部と、混合ガスのイオンの質量スペクトルを取得する質量分析部と、質量スペクトルに基づいて、検査対象とする目的化学物質の試料ガス中での存在の有無を判定するデータ処理装置とを有する。   In another configuration example of the chemical substance detection apparatus of the present invention, a suction unit that sucks a sample gas, a gas generator that generates an organic acid or organic acid salt gas having a mass number of 40 or more and 400 or less, and a suction unit Based on the mass spectrum, a gas mixing unit that generates a mixed gas by mixing a gas of an organic acid or an organic acid salt with the aspirated sample gas, a mass analysis unit that acquires a mass spectrum of ions of the mixed gas, And a data processing device for determining the presence or absence of the target target chemical substance in the sample gas.

本発明の化学物質探知装置の他の構成例では、質量数が40以上400以下の有機酸又は有機酸塩が含浸され、検査対象から試料を採取する拭き取り部材と、拭き取り部材を加熱して試料のガスと有機酸又は有機酸塩のガスが混合された混合ガスを生成する加熱部と、混合ガスのイオンの質量スペクトルを取得する質量分析部と、質量スペクトルに基づいて、検査対象とする目的化学物質の試料中での存在の有無を判定するデータ処理装置とを有する。   In another configuration example of the chemical substance detection apparatus of the present invention, a wipe member that is impregnated with an organic acid or an organic acid salt having a mass number of 40 or more and 400 or less, collects a sample from an inspection object, and heats the wipe member to sample A heating unit that generates a mixed gas in which a gas of an organic acid or an organic acid salt is mixed, a mass analyzer that acquires a mass spectrum of ions of the mixed gas, and an object to be inspected based on the mass spectrum And a data processing device for determining the presence or absence of the chemical substance in the sample.

なお、上記構成例において、データ処理装置は、目的化学物質の分子と、有機酸又は有機酸塩の分子との反応により生じた生成イオンの検出の有無を判定し、目的化学物質の存在の有無を判定する。   In the above configuration example, the data processing device determines the presence or absence of detection of product ions generated by the reaction between the molecule of the target chemical substance and the molecule of the organic acid or organic acid salt, and the presence or absence of the target chemical substance. Determine.

本発明の化学物質探知方法では、試料をイオン化する工程と、試料のイオン種を分析する工程と、イオン種の分析結果に基づいて、目的化学物質の分子と、質量数が40以上400以下の有機酸又は有機酸塩の分子との反応により生じた生成イオンの検出の有無を判定し、目的化学物質の存在の有無を判定する工程とを有することに特徴がある。   In the chemical substance detection method of the present invention, based on the result of ionization of the sample, the step of analyzing the ion species of the sample, and the analysis result of the ion species, the molecule of the target chemical substance and the mass number of 40 or more and 400 or less And a step of determining the presence or absence of detection of a product ion generated by the reaction with an organic acid or organic acid salt molecule, and determining the presence or absence of the target chemical substance.

また、本発明の化学物質探知方法では、試料ガスを生成する工程と、試料ガスに、質量数が40以上400以下の有機酸又は有機酸塩のガスを混合させ混合ガスを生成する工程と、混合ガスをイオン化する工程と、混合ガスのイオンの質量スペクトルを取得する工程と、目的化学物質の分子と、有機酸又は有機酸塩の分子との反応により生じた生成イオンの検出の有無を判定し、目的化学物質の存在の有無を判定する工程とを有することに特徴がある。   In the chemical substance detection method of the present invention, a step of generating a sample gas, a step of mixing a gas of an organic acid or an organic acid salt having a mass number of 40 or more and 400 or less into the sample gas, and generating a mixed gas, Determining whether or not to detect the ions produced by the reaction between the ionization of the mixed gas, the mass spectrum of the ions in the mixed gas, and the molecules of the target chemical substance and the organic acid or organic acid salt molecule And a step of determining the presence or absence of the target chemical substance.

本発明によれば、有機酸を添加することにより従来の塩素ドーパントよりも少ない消費量で検出感度を高めることができる。また、有機酸は負イオンになりやすく、かつ爆薬分子と容易に付加イオンを生成するので、爆発物探知装置に適している。また、塩素付加イオンより高い質量数に有機酸付加イオンが検出されるため、探知対象物質から生成された分子イオンとの見分けが容易になり選択性が向上する。この結果、誤探知を防ぐことが可能となる。   According to the present invention, by adding an organic acid, the detection sensitivity can be increased with less consumption than conventional chlorine dopants. In addition, organic acids tend to be negative ions and easily generate additional ions with explosive molecules, making them suitable for explosives detection devices. Further, since the organic acid addition ion is detected at a mass number higher than that of the chlorine addition ion, it can be easily distinguished from the molecular ion generated from the detection target substance, and the selectivity is improved. As a result, erroneous detection can be prevented.

本発明の実施例1の爆発物探知装置の構成例を示す図。The figure which shows the structural example of the explosives detection apparatus of Example 1 of this invention. 本発明の実施例1におけるイオン源及び分析部の一例を示す図である。It is a figure which shows an example of the ion source and analysis part in Example 1 of this invention. 従来の爆発物探知装置で得られる、塩素付加イオンの質量スペクトルの一例を示す図。The figure which shows an example of the mass spectrum of a chlorine addition ion obtained with the conventional explosives detection apparatus. 本発明の実施例の爆発物探知装置により得られる、有機酸付加イオンの質量スペクトルの一例を示す図。The figure which shows an example of the mass spectrum of the organic acid addition ion obtained by the explosives detection apparatus of the Example of this invention. 従来の質量分析計による爆発物探知装置において得られる、爆薬RDXのみの質量スペクトルを示す図。The figure which shows the mass spectrum of only the explosive RDX obtained in the explosives detection apparatus by the conventional mass spectrometer. 本発明の実施例1において、有機酸ドーパントとして乳酸を用いた場合に得られる、爆薬RDXの質量スペクトルを示す図。The figure which shows the mass spectrum of explosive RDX obtained when lactic acid is used as an organic acid dopant in Example 1 of this invention. 本発明の実施例1の爆発物探知装置における、爆発物の探知フローチャートの一例を示す図。The figure which shows an example of the explosive detection flowchart in the explosive detection apparatus of Example 1 of this invention. 本発明の実施例1の爆発物探知装置において、塩素ドーパントを用いた場合の、塩素濃度に対する塩素付加イオンの信号強度の変化を示す図。The figure which shows the change of the signal intensity | strength of the chlorine addition ion with respect to a chlorine concentration at the time of using a chlorine dopant in the explosive substance detection apparatus of Example 1 of this invention. 本発明の実施例1の爆発物探知装置において、乳酸ドーパントを用いた場合の、乳酸濃度に対する乳酸付加イオンの信号強度の変化を示す図。The figure which shows the change of the signal strength of the lactic acid addition ion with respect to a lactic acid density | concentration at the time of using a lactic acid dopant in the explosives detection apparatus of Example 1 of this invention. 本発明の実施例2において、RDX乳酸付加イオンのタンデム質量分析によるフラグメント質量スペクトルを示す図。In Example 2 of this invention, the figure which shows the fragment mass spectrum by tandem mass spectrometry of RDX lactic acid addition ion. 本発明の実施例4の爆発物探知装置の構成例を示す図。The figure which shows the structural example of the explosives detection apparatus of Example 4 of this invention. 本発明の実施例5の爆発物探知装置の構成例を示す図。The figure which shows the structural example of the explosives detection apparatus of Example 5 of this invention. 本発明の実施例6において、こはく酸をドーパントとして用いた場合に得られる、爆薬RDXの質量スペクトルを示す図。In Example 6 of this invention, the figure which shows the mass spectrum of explosive RDX obtained when succinic acid is used as a dopant. 本発明の実施例6において、酪酸をドーパントとして用いた場合に得られる、爆薬RDXの質量スペクトルを示す図。The figure which shows the mass spectrum of explosive RDX obtained when butyric acid is used as a dopant in Example 6 of this invention. 本発明の実施例6において、乳酸ナトリウムをドーパントとして用いた場合に得られる、爆薬RDXの質量スペクトルを示す図。The figure which shows the mass spectrum of explosive RDX obtained when using sodium lactate as a dopant in Example 6 of this invention.

以下、本発明の実施の形態について、図を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

なお、以下で説明する、図3、図4、図5、図6、図10、図13、図14、図15において、横軸はm/zであり、縦軸は信号強度を示す。   3, 4, 5, 6, 10, 13, 14, and 15 described below, the horizontal axis represents m / z, and the vertical axis represents signal intensity.

本発明の化学物質探知装置では、有機酸又は有機酸塩から生成される分子と反応し生成されるイオンを検出することにより、環境物質、有害化学物質、麻薬、爆発物の探知を行なうことが可能である。   The chemical substance detection apparatus of the present invention can detect environmental substances, harmful chemical substances, narcotics, and explosives by detecting ions generated by reaction with molecules generated from organic acids or organic acid salts. Is possible.

以下の説明では、化学物質探知装置の一例として爆発物探知装置をとって説明する。爆薬の例としてRDXを使用したが、これに限定されるものではない。   In the following description, an explosive detection device will be described as an example of a chemical substance detection device. Although RDX was used as an example of an explosive, it is not limited to this.

まず、本発明の対比として、参考のため塩素ドーパントを用いる従来方法により得られる質量スペクトルを説明する。   First, as a comparison with the present invention, a mass spectrum obtained by a conventional method using a chlorine dopant will be described for reference.

図3を用いて塩素ドーパントを導入した場合の質量スペクトルを説明する。通常、塩素ドーパントを導入しない場合は、探知対象物質の分子イオン((M)-)のイオンピーク、及び探知対象物質から生成した固有の特定分子脱離イオン((M1-)又は特定分子付加イオン((M-)が検出される。塩素ドーパントを導入することで塩素イオン((Cl)-)のイオンピークが検出される。また、探知対象物質に塩素イオンが付加した塩素付加イオン((M+Cl)-)が検出される。適量の塩素ドーパントを導入すると、塩素付加イオンが効率よく生成されるため、塩素を導入しないときの探知対象物質から生成した固有のイオンピーク、すなわち(M)-、(M1-や(M-の信号強度よりも塩素付加イオンの強度の方が強い。つまり、探知対象物質の量が少なくても塩素付加イオンのイオンピークの信号が強く観測されるため、感度が高くなり、極微量の試料でも検出できるようになる。また、探知対象物質のイオンピークと共に、塩素付加イオンのイオンピークが塩素(質量数35と37)の分だけ高い質量数の位置に検出されるため、複数のイオンピークでの検出および判定を行うことが可能になり、選択性が向上する。
図4は、本発明の実施例の爆発物探知装置により得られる、有機酸付加イオンの質量スペクトルの一例を示す図である。
図4を用い、本発明の有機酸ドーパントを用いた場合に得られる質量スペクトルを説明する。通常、有機酸ドーパントを導入しない場合は、探知対象物質から生成される分子イオン((M)-)のイオンピーク、探知対象物質から特定分子が脱離した特定分子脱離イオン((M1-)、又は付加された特定分子付加イオン((M-)が検出される。有機酸ドーパントを導入することで有機酸分子から生成されるイオン((D)-)が検出される。また、有機酸分子イオンが付加した有機酸付加イオン((M+D)-)が検出される。
有機酸と検出対象とする爆薬の種類によっては、水素が脱離した(M+D-H)-や、水素が付加した(M+D+H)-が検出される場合もある。また、有機酸から生成されるイオンは複数種類得られる場合があるので、有機酸付加イオンも複数種類得られる場合もある。検出対象とする爆薬は様々な種類があり、さらに爆薬と有機酸から生成されるイオンとの付加反応は複雑であるため、どの様な付加イオンが得られるかを予め予測することは難しい。そこで、実験に基づき探知データベースを取得しておく事は重要であり、データ処理装置に格納された探知データベースに基づき対象物質の有無を判定する。
A mass spectrum when a chlorine dopant is introduced will be described with reference to FIG. Usually, when no chlorine dopant is introduced, the ion peak of the molecular ion ((M) ) of the detection target substance, and the specific specific molecule desorption ion ((M 1 ) ) or specific molecule generated from the detection target substance Additional ions ((M 2 ) ) are detected. By introducing a chlorine dopant, an ion peak of chlorine ions ((Cl) ) is detected. Further, a chlorine addition ion ((M + Cl) ) in which a chlorine ion is added to the detection target substance is detected. When an appropriate amount of chlorine dopant is introduced, a chlorine adduct ion is efficiently generated. Therefore, a specific ion peak generated from a substance to be detected when chlorine is not introduced, that is, (M) , (M 1 ) and (M 2) - stronger than the intensity of chlorine adduct ion than the signal strength of the. In other words, even if the amount of the detection target substance is small, the signal of the ion peak of the chlorine addition ion is strongly observed, so that the sensitivity becomes high and even a very small amount of sample can be detected. Moreover, since the ion peak of the chlorine addition ion is detected at a position having a mass number higher than that of chlorine (mass numbers 35 and 37) together with the ion peak of the detection target substance, detection and determination are performed with a plurality of ion peaks. And the selectivity is improved.
FIG. 4 is a diagram showing an example of a mass spectrum of an organic acid addition ion obtained by the explosive detection device of the embodiment of the present invention.
A mass spectrum obtained when the organic acid dopant of the present invention is used will be described with reference to FIG. Usually, when an organic acid dopant is not introduced, an ion peak of a molecular ion ((M) ) generated from the detection target substance, a specific molecular desorption ion ((M 1 ) where a specific molecule is desorbed from the detection target substance) - ), Or the added specific molecule addition ion ((M 2 ) - ) is detected. By introducing the organic acid dopant, ions ((D) ) generated from the organic acid molecule are detected. Further, an organic acid addition ion ((M + D) ) added with an organic acid molecular ion is detected.
Depending on the organic acid and the type of explosive to be detected, hydrogen desorbed (M + D−H) or hydrogen added (M + D + H) may be detected. In addition, since a plurality of types of ions generated from the organic acid may be obtained, a plurality of types of organic acid addition ions may be obtained. There are various types of explosives to be detected, and the addition reaction between explosives and ions generated from organic acids is complicated, so it is difficult to predict in advance what kind of additional ions will be obtained. Therefore, it is important to acquire a detection database based on experiments, and the presence or absence of the target substance is determined based on the detection database stored in the data processing apparatus.

図1は、本発明の実施例1の爆発物探知装置の構成例を示す図である。実施例1の化学物質探知装置では、有機酸ガス発生器を用いたワイプ方式の装置構成とする。   FIG. 1 is a diagram illustrating a configuration example of an explosive detection device according to a first embodiment of the present invention. The chemical substance detection apparatus according to the first embodiment has a wipe-type apparatus configuration using an organic acid gas generator.

図1に示すように、装置は、吸引部1(上部加熱ヒータ)及び下部加熱ヒータを備えた加熱器2、有機酸ガス発生器3、イオン源4、質量分析部5、データ処理部6で構成される。有機酸ガス発生器3には、有機酸の一例である乳酸を約400μL(マイクロリットル)入れ、発生器ヒータ9で約40°Cに加熱し、乳酸蒸気を発生させる。さらに、押出ポンプ7及び押出マスフローコントローラ8で約0.1L(リットル)/分の流量でイオン源4に導入する。その際、押出流量は吸引部1側に逆流しない流量であれば良い。   As shown in FIG. 1, the apparatus comprises a suction unit 1 (upper heater) and a heater 2 having a lower heater, an organic acid gas generator 3, an ion source 4, a mass analyzer 5, and a data processor 6. Composed. The organic acid gas generator 3 is charged with about 400 μL (microliter) of lactic acid, which is an example of an organic acid, and heated to about 40 ° C. by the generator heater 9 to generate lactic acid vapor. Further, it is introduced into the ion source 4 at a flow rate of about 0.1 L (liter) / min by the extrusion pump 7 and the extrusion mass flow controller 8. In that case, the extrusion flow rate should just be a flow rate which does not flow backward to the suction part 1 side.

イオン源4には、吸引部1から蒸気又は微粒子を吸引するために、吸気ポンプ10及び吸気マスフローコントローラ11で約0.5L/分の流量でガスが引き込まれる。イオン源4では試料のイオン化が行われる。イオン源4で生成されたイオンは、内径0.2mm程度の細孔を介して、真空に排気された質量分析部5に取り込まれる。細孔からは、約0.5L/分で質量分析部5側にガスが引き込まれるので、吸引部1から吸引された試料ガスの流量は約0.9L/分になる。   Gas is drawn into the ion source 4 at a flow rate of about 0.5 L / min by the intake pump 10 and the intake mass flow controller 11 in order to suck vapor or fine particles from the suction unit 1. In the ion source 4, the sample is ionized. Ions generated by the ion source 4 are taken into the mass analyzer 5 evacuated to a vacuum through pores having an inner diameter of about 0.2 mm. Since the gas is drawn from the pores to the mass analysis unit 5 side at about 0.5 L / min, the flow rate of the sample gas sucked from the suction unit 1 is about 0.9 L / min.

検査は、手荷物などをワイプ材12で拭取り、極微量の爆薬成分を採取する。このワイプ材12を吸引部1(上部加熱ヒータ)及び下部加熱ヒータで構成される加熱器2に挿入する。吸引部1(上部加熱ヒータ)と加熱器2は採取試料が蒸発する温度に保持されていれば良い。今回は、共に210°Cで加熱した。   In the inspection, baggage and the like are wiped off with a wipe 12, and a very small amount of explosive component is collected. This wipe material 12 is inserted into a heater 2 composed of a suction unit 1 (upper heater) and a lower heater. The suction part 1 (upper heater) and the heater 2 only need to be held at a temperature at which the collected sample evaporates. This time, both were heated at 210 ° C.

ワイプ材12が挿入されると、加熱器2が上昇し、ワイプ材12を挟み込むことで加熱して爆薬試料を蒸発させる。蒸発した試料は、加熱されたフィルタ13(例えば、210°Cで加熱されている)及び配管ヒータ15で加熱された配管14(例えば、180°Cで加熱されている)を通って、有機酸ガス発生装置3で発生した乳酸蒸気と混合部16で混合され、イオン源4に導入される。フィルタ13は、埃などが吸引されることを防止するために設けられている。イオン源4では混合ガスをイオン化し、質量分析部5で質量分析を行なう。
次に、イオン源及び質量分析の詳細を説明する。
図2は、本発明の実施例1の化学物質探知装置における、イオン源及び分析部の一例を示す図である。
When the wipe material 12 is inserted, the heater 2 rises, and the wipe material 12 is sandwiched and heated to evaporate the explosive sample. The evaporated sample passes through a heated filter 13 (for example, heated at 210 ° C.) and a pipe 14 (for example, heated at 180 ° C.) heated by a pipe heater 15, and then an organic acid. The lactic acid vapor generated in the gas generator 3 is mixed in the mixing unit 16 and introduced into the ion source 4. The filter 13 is provided to prevent dust and the like from being sucked. The ion source 4 ionizes the mixed gas, and the mass analyzer 5 performs mass analysis.
Next, details of the ion source and mass spectrometry will be described.
FIG. 2 is a diagram illustrating an example of an ion source and an analysis unit in the chemical substance detection apparatus according to the first embodiment of the present invention.

イオン源は、試料のイオン種を生成できるものであれば良い。例えば、放射線源や電子線、光、レーザー、コロナ放電などを用いることができる。分析部はイオン種の分析ができるものであれば良く、必ずしも質量分析でなくとも、例えば、イオン移動度方式でも良い。
図2ではイオン源に大気圧イオン化法を用い、イオン種の分析にイオントラップ質量分析計を用いた構成を示した。このイオン源では、大気中のコロナ放電を利用して一次イオンを生成し、この一次イオンと試料分子との化学反応を利用して試料分子をイオン化する。イオン源には針電極17が配置され、対向電極18との間に高電圧が印加され、針電極先端付近にコロナ放電が発生する。このコロナ放電により、空気中の窒素、酸素、水蒸気などがイオン化され、一次イオンとなる。
Any ion source may be used as long as it can generate the ion species of the sample. For example, a radiation source, electron beam, light, laser, corona discharge, or the like can be used. The analysis unit is not limited as long as it can analyze the ion species, and may be an ion mobility method, for example.
FIG. 2 shows a configuration in which an atmospheric pressure ionization method is used for the ion source and an ion trap mass spectrometer is used for analyzing the ion species. In this ion source, primary ions are generated using corona discharge in the atmosphere, and sample molecules are ionized using a chemical reaction between the primary ions and sample molecules. The needle electrode 17 is disposed in the ion source, a high voltage is applied between the counter electrode 18 and a corona discharge is generated near the tip of the needle electrode. By this corona discharge, nitrogen, oxygen, water vapor, etc. in the air are ionized to become primary ions.

生成された一次イオンは電界により細孔付電極(第一細孔)19側に移動する。配管を介して吸引された被検出物質が含まれた試料の蒸気又は微粒子は、対向電極18の開口部を通って針電極17側に流れ込む。その際、一次イオンと反応することで、蒸気又は微粒子はイオン化される。針電極17に負の高電圧を印加して負イオンを生成する負イオン化モードの場合、一次イオンは酸素分子イオンである場合が多い。試料分子(M)における代表的な負イオン化反応を以下に示す。   The generated primary ions move to the pored electrode (first pore) 19 side by an electric field. The vapor or fine particles of the sample containing the substance to be detected sucked through the pipe flows into the needle electrode 17 side through the opening of the counter electrode 18. In that case, vapor | steam or microparticles | fine-particles are ionized by reacting with a primary ion. In the negative ionization mode in which a negative high voltage is applied to the needle electrode 17 to generate negative ions, the primary ions are often oxygen molecular ions. A typical negative ionization reaction in the sample molecule (M) is shown below.

M+(O2)−→M−+O2
生成された試料分子イオンは、対向電極18と細孔付電極(第一細孔)19間に1kV程度の電位差があるため、細孔付電極側(第一細孔)19に移動し、第一細孔20を介して差動排気部21に入る。差動排気部21では断熱膨張が起こり、イオンに溶媒分子が付着するクラスタリングが発生する。このクラスタリングを軽減させるために細孔付電極(第一細孔)19をヒータなどで加熱することが望ましい。
M + (O2) − → M− + O2
Since the generated sample molecular ions have a potential difference of about 1 kV between the counter electrode 18 and the electrode with pores (first pore) 19, they move to the electrode side with pores (first pore) 19, The differential exhaust part 21 is entered through the one pore 20. In the differential exhaust part 21, adiabatic expansion occurs, and clustering in which solvent molecules adhere to ions occurs. In order to reduce this clustering, it is desirable to heat the electrode with pores (first pore) 19 with a heater or the like.

図2の構造のイオン源を用いた場合、コロナ放電で生成された一次イオンは、対向電極18から細孔付電極(第一細孔)19の方向に移動する。一方、試料分子が含まれた蒸気や微粒子のガスは、対向電極18と細孔付電極(第一細孔)19の間に供給され、一次イオンとイオン化反応を起こす。この時、コロナ放電で生じた中性の一酸化窒素(NO)などのイオン化反応を阻害する中性分子は、ガスが対向電極18から針電極17の方向に流れているため、試料分子と一次イオンがイオン化反応する領域から除去される。このようにコロナ放電による一次イオン生成領域と、一次イオンと試料分子とのイオン化反応領域が分離されるため、放電で生成される一酸化窒素(NO)と、試料由来の一酸化窒素(NO)の識別が可能になった。   When the ion source having the structure shown in FIG. 2 is used, primary ions generated by corona discharge move from the counter electrode 18 toward the electrode with pores (first pore) 19. On the other hand, vapor or particulate gas containing sample molecules is supplied between the counter electrode 18 and the electrode with pores (first pore) 19 to cause an ionization reaction with primary ions. At this time, neutral molecules that inhibit the ionization reaction such as neutral nitric oxide (NO) generated by corona discharge flow in the direction from the counter electrode 18 to the needle electrode 17, so that the primary molecules and the primary molecules are primary. Ions are removed from the region where the ionization reaction occurs. Since the primary ion generation region by corona discharge and the ionization reaction region between the primary ions and the sample molecules are thus separated, nitric oxide (NO) generated by the discharge and nitric oxide (NO) derived from the sample Can now be identified.

生成された試料分子イオンは、細孔付電極(第一細孔)19に開口された第一細孔20、第一排気系24で排気された差動排気部21、細孔付電極(第二細孔)22に開口された第二細孔23を経由して、第二排気系25で排気された真空部26に導入される。   The generated sample molecular ions are the first pore 20 opened in the electrode with pores (first pore) 19, the differential exhaust part 21 exhausted by the first exhaust system 24, the electrode with pores (first electrode). It is introduced into the vacuum part 26 evacuated by the second exhaust system 25 through the second pore 23 opened in the second pore 22.

細孔付電極(第一細孔)19と細孔付電極(第二細孔)22との間には、ドリフト電圧と呼ばれる電圧が印加される。ドリフト電圧には、差動排気部21に取り込まれたイオンを第二細孔23の方向にドリフトさせることで、第二細孔23のイオン透過率を向上させる効果と、差動排気部21に残留するガス分子との衝突でイオンに付着した水などの溶媒分子を脱離させる効果がある。   A voltage called a drift voltage is applied between the electrode with pores (first pore) 19 and the electrode with pores (second pore) 22. The drift voltage has the effect of improving the ion transmittance of the second pore 23 by drifting the ions taken into the differential exhaust portion 21 in the direction of the second pore 23, and the differential exhaust portion 21. There is an effect of desorbing solvent molecules such as water adhering to ions by collision with the remaining gas molecules.

さらに、細孔付電極(第二細孔)22に加速電圧を印加させ、エンドキャップ電極27、28及びリング電極29などで構成されたイオントラップ部へ、試料分子イオンを導入する。その際、加速電圧によりイオントラップへの入射エネルギーが変化するため、イオントラップへのイオンの閉じ込め効率が変化する。そのため閉じ込め効率が高くなるように加速電圧を設定する。   Further, an acceleration voltage is applied to the electrode with pores (second pore) 22 to introduce sample molecular ions into an ion trap part composed of the end cap electrodes 27 and 28 and the ring electrode 29. At this time, since the incident energy to the ion trap changes depending on the acceleration voltage, the ion confinement efficiency in the ion trap changes. Therefore, the acceleration voltage is set so as to increase the confinement efficiency.

真空部26に導入されたイオンは、イオン収束レンズ30で収束された後、イオントラップ部に導入される。イオントラップ部は、エンドキャップ電極27、28及びリング電極29、石英リング31で構成されており、ガス供給器32からガス導入管33を介してヘリウムなどの衝突ガスが導入される。石英リング31は、エンドキャップ電極27、28及びリング電極29との間の電気絶縁を維持する。ゲート電極34は、イオントラップ部に捕捉したイオンを分析するタイミングにおいて、外部から新たにイオンがイオントラップ内に導入されないよう制御する役目をする。   The ions introduced into the vacuum unit 26 are converged by the ion focusing lens 30 and then introduced into the ion trap unit. The ion trap part is composed of end cap electrodes 27, 28, a ring electrode 29, and a quartz ring 31, and a collision gas such as helium is introduced from a gas supply device 32 through a gas introduction pipe 33. The quartz ring 31 maintains electrical insulation between the end cap electrodes 27 and 28 and the ring electrode 29. The gate electrode 34 serves to control that ions are not newly introduced into the ion trap from the outside at the timing of analyzing the ions trapped in the ion trap portion.

イオントラップ内部に導入されたイオンはヘリウムなどの衝突ガスとの衝突で軌道が小さくなった後、エンドキャップ電極27、28とリング電極29間に印加された高周波電圧を走査することで、質量数毎にイオンがイオントラップ外に排出される。この排出されたイオンを、変換電極34、シンチレータ35、フォトマルチプライヤ36で構成される検出部で検出する。イオンは、加速する電圧が印加された変換電極34に衝突し、表面から荷電粒子が放出される。この荷電粒子をシンチレータ35で検知し、フォトマルチプライヤ36で増幅する。検出された信号はデータ処理部37に送られる。データ処理部37で得られた質量スペクトルについて以下に詳細を説明する。   The ions introduced into the ion trap have a smaller orbit due to collision with a collision gas such as helium, and then scanned with a high-frequency voltage applied between the end cap electrodes 27 and 28 and the ring electrode 29, whereby the mass number Every time, ions are discharged out of the ion trap. The discharged ions are detected by a detection unit including the conversion electrode 34, the scintillator 35, and the photomultiplier 36. The ions collide with the conversion electrode 34 to which an accelerating voltage is applied, and charged particles are released from the surface. The charged particles are detected by the scintillator 35 and amplified by the photomultiplier 36. The detected signal is sent to the data processing unit 37. Details of the mass spectrum obtained by the data processing unit 37 will be described below.

図5は、従来の質量分析計による爆発物探知装置を用いて得られた爆薬RDXの質量スペクトルを示す図である。RDXはプラスチック爆薬の主剤としてよく用いられる爆薬である。   FIG. 5 is a diagram showing a mass spectrum of explosive RDX obtained using a conventional explosive detection device using a mass spectrometer. RDX is an explosive often used as a main component of plastic explosives.

図5に示すように、m/z=46、267に、爆薬RDXから生成された固有のm/zの分子イオン(RDX由来イオン)がイオンピークとして検出される。m/z=267は(M+NO、46は(NOだと推定される。従来の爆発物探知装置では、この爆薬から生成された固有のm/zの分子イオンのイオンピークを検出対象として探知を行なっている。 As shown in FIG. 5, at m / z = 46, 267, an intrinsic m / z molecular ion (RDX-derived ion) generated from the explosive RDX is detected as an ion peak. It is estimated that m / z = 267 is (M + NO 2 ) and 46 is (NO 2 ) . In the conventional explosive detection device, detection is carried out using the ion peak of a specific molecular ion of m / z generated from this explosive as a detection target.

図6は、本発明の実施例1において、有機酸ドーパントとして乳酸を用いた場合に得られる、爆薬RDXの質量スペクトルを示す図である。   FIG. 6 is a diagram showing a mass spectrum of explosive RDX obtained when lactic acid is used as the organic acid dopant in Example 1 of the present invention.

図6に示すように、ドーパントである乳酸から生成された分子イオン(乳酸由来イオン)が、m/z=89にイオンピークとして検出される。m/z=89は乳酸から水素が脱離したイオンと推定される。図5と同様に、爆薬RDXから生成された固有のm/zの分子イオン(RDX由来イオン)が、m/z=46、267にイオンピークとして検出されている。
また、爆薬RDXから生成された固有のm/zのイオンピーク以外に、m/z=310に爆薬RDXに乳酸から生成された分子が付加された分子イオン(RDX乳酸由来付加イオン)のイオンピークが検出される。これは爆薬RDX(質量数222)に乳酸分子(質量数89)が付加され、水素(質量数1)が脱離したものである。そこで、この爆薬分子に乳酸から生成された分子が付加した固有のm/zのイオンピーク(RDXの場合、310)を検出することでRDXを探知することができる。
As shown in FIG. 6, a molecular ion (lactic acid-derived ion) generated from lactic acid as a dopant is detected as an ion peak at m / z = 89. It is estimated that m / z = 89 is an ion from which hydrogen is eliminated from lactic acid. Similar to FIG. 5, an intrinsic m / z molecular ion (ion derived from RDX) generated from the explosive RDX is detected as an ion peak at m / z = 46,267.
In addition to the intrinsic m / z ion peak generated from the explosive RDX, the ion peak of a molecular ion (RDX lactic acid-derived adduct ion) in which a molecule generated from lactic acid is added to the explosive RDX at m / z = 310. Is detected. In this case, lactic acid molecules (mass number 89) are added to explosive RDX (mass number 222), and hydrogen (mass number 1) is desorbed. Therefore, RDX can be detected by detecting a specific m / z ion peak (310 in the case of RDX) in which a molecule generated from lactic acid is added to the explosive molecule.

図7は、本発明の実施例1の爆発物探知装置における、爆発物の探知フローチャートの一例を示す図である。   FIG. 7 is a diagram illustrating an example of an explosive detection flowchart in the explosive detection apparatus according to the first embodiment of the present invention.

図7に示すように、検査が開始され質量スペクトル測定が行われ、図1のデータ処理部に送られる。図1のデータ処理部に送られた質量スペクトルから、検出しようとしていた探知対象物質から生成される固有のm/zのイオンピークの存在の有無を判断し、検出された場合には警報を鳴らす。さらに、探知対象物質から生成される固有のm/zのイオンピークが検出されなくても、乳酸から生成される分子が付加した固有のm/zのイオンピークの有無を判定して、検出された場合には警報を鳴らす。   As shown in FIG. 7, the inspection is started, the mass spectrum is measured, and sent to the data processing unit of FIG. From the mass spectrum sent to the data processing unit in FIG. 1, it is determined whether or not there is an inherent m / z ion peak generated from the detection target substance to be detected, and an alarm is sounded if detected. . Furthermore, even if a specific m / z ion peak generated from the substance to be detected is not detected, it is detected by determining the presence or absence of a specific m / z ion peak added by a molecule generated from lactic acid. If an alarm occurs, an alarm will sound.

つまり、探知対象物質から生成された分子のm/zのイオンピークと、探知対象物質に乳酸から生成された分子が付加された固有のm/zのイオンピークのどちらかが検出された場合、警報を鳴らしても良い。これらの作業を繰り返すことで爆発物探知装置として機能させる。   That is, when either an m / z ion peak of a molecule generated from a detection target substance or a specific m / z ion peak obtained by adding a molecule generated from lactic acid to the detection target substance is detected, An alarm may be sounded. By repeating these operations, it functions as an explosive detection device.

また、探知対象物質から生成された固有のm/zのイオンピークと、探知対象物質乳酸から生成された分子が付加された固有のm/zのイオンピークの両方が検出した場合のように、複数のイオンピークの有無で判定する場合は、単体のイオンピークで判定するより確実性が高まり、誤報が低減できる効果がある。このように、有機酸ドーパントを用いることにより、本来の爆薬由来の信号と爆薬分子に有機酸から生成されたイオンが付加した付加イオンの2種類以上のイオンを検出対象とするため、探知の選択性が向上する。   In addition, as in the case where both an intrinsic m / z ion peak generated from the detection target substance and an intrinsic m / z ion peak to which molecules generated from the detection target lactic acid are added are detected, When the determination is made based on the presence or absence of a plurality of ion peaks, there is an effect that the certainty is higher than the determination by a single ion peak, and the false alarm can be reduced. As described above, since the organic acid dopant is used, two or more types of ions, that is, a signal derived from the original explosive and an additional ion obtained by adding an ion generated from the organic acid to the explosive molecule, are selected for detection. Improves.

これらの探知に使う探知対象物質から生成された固有のm/zのイオンピーク、または、探知対象物質に乳酸から生成された分子が付加した固有のm/zのイオンピークの情報は予めデータ処理部又は外部にあるデータベースに登録されており、今回のRDX以外の爆薬についても、探知対象物質から生成された固有のm/zのイオンピーク、または、探知対象物質に乳酸から生成された分子が付加した固有のm/zのイオンピークの情報は、データベースに登録することで探知対象物質の数を増やしている。   Data processing is performed in advance on the specific m / z ion peak generated from the detection target substance used for detection or the specific m / z ion peak added by the molecule generated from lactic acid to the detection target substance. The explosives other than this RDX are registered in the database in the department or outside, and the specific m / z ion peak generated from the detection target substance or the molecule generated from lactic acid in the detection target substance The added information on the specific m / z ion peak is registered in the database to increase the number of substances to be detected.

図8は、本発明の実施例1の爆発物探知装置において、塩素ドーパントを用いた場合の、塩素濃度(横軸)に対する塩素付加イオンの信号強度(縦軸)の変化を示す図である。   FIG. 8 is a diagram showing a change in the signal intensity (vertical axis) of the chlorine-added ion with respect to the chlorine concentration (horizontal axis) when a chlorine dopant is used in the explosive substance detection apparatus of Example 1 of the present invention.

図9は、本発明の実施例1の爆発物探知装置において、乳酸ドーパントを用いた場合の、乳酸濃度(横軸)に対する乳酸付加イオンの信号強度(縦軸)の変化を示す図である。乳酸ドーパントとは、装置に導入する乳酸を意味する。   FIG. 9 is a diagram showing a change in the signal intensity (vertical axis) of lactic acid addition ions with respect to the lactic acid concentration (horizontal axis) when a lactic acid dopant is used in the explosive detection device of Example 1 of the present invention. Lactic acid dopant means lactic acid introduced into the apparatus.

図8に示すように、塩素ドーパントを装置に導入した場合、塩素付加イオン(RDX+Cl)の信号が、1.0E+7Counts以上の信号強度を得るには、塩素濃度100ppmが必要である。   As shown in FIG. 8, when a chlorine dopant is introduced into the apparatus, a chlorine concentration of 100 ppm is required to obtain a signal intensity of chlorine addition ions (RDX + Cl) of 1.0E + 7Counts or more.

図9に示すように、乳酸ドーパントの場合には、乳酸付加イオン(RDX+La)の信号が、乳酸濃度10ppmで1.0E+7Counts以上の信号強度が得られる。よって乳酸ドーパントの方が、塩素ドーパントに比べて少ない量で効果がある。従って、乳酸ドーパントの方が消費量が少なく、ドーパント剤の補充等の作業も少なくてすむ。また、塩素ドーパントより乳酸ドーパントの方が、環境や人体に影響を与える心配が少ない。   As shown in FIG. 9, in the case of a lactic acid dopant, a signal intensity of lactic acid adduct ion (RDX + La) is 1.0E + 7Counts or more at a lactic acid concentration of 10 ppm. Accordingly, the lactic acid dopant is more effective than the chlorine dopant. Accordingly, the lactic acid dopant consumes less and requires less work such as replenishment of the dopant agent. In addition, the lactic acid dopant is less likely to affect the environment and the human body than the chlorine dopant.

また、塩素イオン(質量数35と37)の質量数に対して、乳酸から生成された分子イオン(質量数89)の質量数が大きく、さらに、爆薬に付加しやすい特定分子である(NO(質量数46)や(NO(質量数62)よりも質量数が大きいため、爆薬に付加した場合、他の付加しやすい特定分子より高い質量数に付加イオンピークが検出される。これは、塩素付加イオンピークより、特定分子が付加したイオンピークと乳酸付加イオンピークとの分離が容易になるため、イオン移動度方式などのように選択性が低い検出法を用いた場合でも誤探知が少なくなるという利点がある。 In addition, the molecular number (mass number 89) generated from lactic acid is larger than the mass number of chlorine ions (mass numbers 35 and 37), and is a specific molecule that is easy to add to explosives (NO 2 ) - (mass number 46) and (NO 3) - (for mass number than the mass number 62) is large, when added to the explosive, the additional ion peak was detected at a higher mass number than other additional easily identify molecules The This is because the separation of the ion peak added by a specific molecule and the lactate-added ion peak is easier than the chlorine-added ion peak, so even if a detection method with low selectivity such as the ion mobility method is used. There is an advantage that detection is reduced.

実施例2では、爆薬乳酸付加イオンをタンデム質量分析し、解離した特有のフラグメントイオンを検出対象とする爆発物探知装置について説明する。   In the second embodiment, an explosive detection device that detects tandem mass spectrometry of explosive lactic acid adduct ions and detects dissociated specific fragment ions will be described.

質量分析装置において選択性を高める方法として、タンデム質量分析法が知られている。このタンデム質量分析法を実施する装置として、三連四重極質量分析計や四重極イオントラップ質量分析計などがある。タンデム分析法では、2段階で質量分析を行なう。一段目の質量分析としてイオン源で生成されたイオンのm/zを測定する。様々なm/zを有するイオンの中から特定のm/zを有するイオンを選択する。   Tandem mass spectrometry is known as a method for enhancing selectivity in a mass spectrometer. As a device for performing this tandem mass spectrometry, there are a triple quadrupole mass spectrometer, a quadrupole ion trap mass spectrometer, and the like. In tandem analysis, mass spectrometry is performed in two stages. As the first-stage mass analysis, m / z of ions generated by the ion source is measured. An ion having a specific m / z is selected from ions having various m / z.

選択されたイオン(プリカーサーイオン)を中性ガスなどとの衝突により解離させ、分解物イオン(フラグメントイオン)を生成する。二段目の質量分析としてフラグメントイオンの質量分析を行なう。プリカーサーイオンが解離する場合、分子中のどの部位が切れるかは部位ごとの化学結合の強さに依存する。従って、フラグメントイオンを分析するとプリカーサーイオンの分子構造の情報を含んだ質量スペクトルが得られる。   The selected ions (precursor ions) are dissociated by collision with a neutral gas or the like to generate decomposition product ions (fragment ions). Mass analysis of fragment ions is performed as the second stage mass analysis. When the precursor ion is dissociated, which part of the molecule is cut depends on the strength of the chemical bond for each part. Therefore, when the fragment ion is analyzed, a mass spectrum including information on the molecular structure of the precursor ion can be obtained.

つまり、イオン源で生成されたイオンのm/zが偶然同じでも、フラグメントイオンの質量スペクトルを調べることで、探知の対象物が含まれているか否か判別できる。三連四重極質量分析計や四重極イオントラップ質量分析計を用いたタンデム質量分析法は広く知られているので、詳しい説明は省略する。   That is, even if the m / z of the ions generated by the ion source is coincidentally the same, it can be determined whether or not an object to be detected is included by examining the mass spectrum of the fragment ions. Tandem mass spectrometry using a triple quadrupole mass spectrometer or a quadrupole ion trap mass spectrometer is widely known and will not be described in detail.

代表的な爆薬の一種であるRDXにおいてタンデム質量分析を行なった詳細を説明する。プリカーサーイオンとしてm/z=310のRDX乳酸付加イオンを選択してそれ以外のイオンを排除する。さらに、このプリカーサーイオンに対してエネルギーを与えて解離させ、フラグメントイオンの質量スペクトルを得る。   Details of tandem mass spectrometry performed on RDX, which is a type of typical explosive, will be described. An RDX lactic acid addition ion of m / z = 310 is selected as a precursor ion to exclude other ions. Furthermore, energy is applied to the precursor ions to dissociate them, and a mass spectrum of fragment ions is obtained.

図10は、本発明の実施例2において、RDX乳酸付加イオンのタンデム質量分析によるフラグメント質量スペクトルを示す図である。図10は、乳酸ドーパントを装置に導入した場合、爆薬RDX乳酸付加イオン(m/z=310)のプリカーサーイオンに対してタンデム質量分析を行なったフラグメント質量スペクトルの一例を示す図である。   FIG. 10 is a diagram showing a fragment mass spectrum of RDX lactic acid adduct ion by tandem mass spectrometry in Example 2 of the present invention. FIG. 10 is a diagram showing an example of a fragment mass spectrum obtained by performing tandem mass spectrometry on the precursor ion of the explosive RDX lactic acid addition ion (m / z = 310) when a lactic acid dopant is introduced into the apparatus.

爆薬RDXから解離分解され生成された特有のフラグメントイオンが、m/z=46及び92にイオンピークとして検出される。これらはRDXから分解され生成されたフラグメントイオン(RDX由来フラグメントイオン)である。   Specific fragment ions generated by dissociation and decomposition from the explosive RDX are detected as ion peaks at m / z = 46 and 92. These are fragment ions generated by decomposing from RDX (fragment ions derived from RDX).

さらに、フラグメントイオンとしてm/z=89、135にイオンピークが検出される。これらは乳酸から生成されたフラグメントイオン(乳酸由来フラグメントイオン)である。図10に示すフラグメントイオンを検出対象とし、モニタすることで爆発物探知装置として運用する。
また、m/z=267の様な爆薬だけから生成されるイオンに対してタンデム質量分析を行ない、乳酸付加イオンのタンデム質量分析の結果と組み合わせて、判定し、探知の精度を更に高めても良い。
また、爆薬によっては乳酸付加イオンをタンデム質量分析した場合、乳酸から生成される固有のフラグメントイオンと、爆薬から生成されるフラグメントイオンの信号が共に強く得られる場合がある、その場合は、爆薬から生成されるフラグメントイオンを検出対象とした方が、爆薬の分子構造の特徴を良くあらわしているので好適である。あるいは乳酸から生成された分子のフラグメントイオン及び爆薬から生成された分子のフラグメントイオンの両方を検出対象としても良い。
Furthermore, an ion peak is detected at m / z = 89,135 as fragment ions. These are fragment ions generated from lactic acid (fragment ions derived from lactic acid). By operating the fragment ion shown in FIG. 10 as a detection target and monitoring it, it operates as an explosive detection device.
Also, tandem mass spectrometry can be performed on ions generated only from explosives such as m / z = 267, combined with the results of tandem mass spectrometry of lactate-added ions, and judgment can be further improved. good.
Also, depending on the explosives, when lactic acid addition ions are subjected to tandem mass spectrometry, both intrinsic fragment ions generated from lactic acid and fragment ions generated from explosives may be obtained strongly. It is preferable to use the generated fragment ions as the detection target because the molecular structure of the explosive is well expressed. Alternatively, both a fragment ion of a molecule generated from lactic acid and a fragment ion of a molecule generated from an explosive may be detected.

実施例3では、爆薬から生成されるイオンと爆薬に乳酸から生成される分子が付加したイオンを同時にタンデム質量分析して解離分解し、爆薬のフラグメントイオン又は乳酸から生成された分子のフラグメントイオンを検出対象とする爆発物探知装置について説明する。   In Example 3, an ion generated from an explosive and an ion obtained by adding a molecule generated from lactic acid to the explosive are simultaneously dissociated and decomposed by tandem mass spectrometry to obtain a fragment ion of the explosive or a molecule generated from lactic acid. The explosive detection device to be detected will be described.

通常のタンデム質量分析の場合、一つのプリカーサーイオンに対して分析を行なうが、実施例3では、二つ以上のプリカーサーイオンに対してタンデム質量分析を同時に行なった。爆薬から生成されるイオンは複数のイオンピークとして検出される。また、同様に、爆薬に乳酸から生成された分子が付加したイオンピークも複数検出される場合もある。これら多くのイオンピークの中から幾つかをプリカーサーイオンとして選択し、解離させる。この方法は、爆薬から生成されるイオンと、乳酸付加イオンとで、同じフラグメントイオンを生成する場合があるが、そのような場合には特に有効である。複数のイオンピークから解離されたフラグメントイオンが同じm/zを有する場合、複数のイオンピーク全てを同時にタンデム質量分析を行なった場合、検出されるフラグメントイオンのm/zは同一であるため、積算されたイオンピークとして検出される。つまり、単独でタンデム質量分析を行なった場合より信号強度が高くなり、検出感度が向上する。   In the case of normal tandem mass spectrometry, analysis is performed on one precursor ion. In Example 3, tandem mass spectrometry was performed on two or more precursor ions at the same time. Ions generated from the explosive are detected as a plurality of ion peaks. Similarly, a plurality of ion peaks in which molecules generated from lactic acid are added to the explosive may be detected. Some of these many ion peaks are selected as precursor ions and dissociated. This method may generate the same fragment ion with an ion generated from an explosive and a lactate-added ion, and is particularly effective in such a case. When fragment ions dissociated from a plurality of ion peaks have the same m / z, when tandem mass spectrometry is performed on all of the plurality of ion peaks at the same time, the m / z of the detected fragment ions is the same, so integration is performed. Detected as an ion peak. That is, the signal intensity is higher than when tandem mass spectrometry is performed alone, and the detection sensitivity is improved.

RDXの場合について説明する。RDXの場合、爆薬から生成されるイオンとしてm/z=267がある。これをタンデム質量分析した場合、m/z=46及び92にフラグメントイオンが検出される。また、乳酸付加イオンとしてm/z=310に対してもタンデム質量分析を行なった場合、m/z=46及び92に爆薬から生成されるフラグメントイオンと、m/z=89及び135に乳酸から生成されたフラグメントイオンが検出される。m/z=267とm/z=310を同時にタンデム質量分析を行なえば、爆薬から生成されるm/z=46及び92のフラグメントイオンは、それぞれ単独で行なった場合のものが積算されたイオンピーク信号として検出される。つまり、単独でタンデム質量分析を行なった場合より信号強度が高くなり、検出感度が向上する。   The case of RDX will be described. In the case of RDX, m / z = 267 is an ion generated from the explosive. When this is subjected to tandem mass spectrometry, fragment ions are detected at m / z = 46 and 92. In addition, when tandem mass spectrometry is performed on m / z = 310 as a lactic acid addition ion, fragment ions generated from explosives at m / z = 46 and 92, and lactic acid at m / z = 89 and 135, The generated fragment ions are detected. If tandem mass spectrometry is performed simultaneously with m / z = 267 and m / z = 310, the fragment ions of m / z = 46 and 92 generated from the explosives are ions that are accumulated when performed independently. Detected as a peak signal. That is, the signal intensity is higher than when tandem mass spectrometry is performed alone, and the detection sensitivity is improved.

なお、実施例3で得られたフラグメント質量スペクトル(図示せず)は、図10に示すフラグメント質量スペクトルと同じパターンであるが、m/z=46及び92の信号強度は高くなっていた。   The fragment mass spectrum (not shown) obtained in Example 3 has the same pattern as the fragment mass spectrum shown in FIG. 10, but the signal intensities at m / z = 46 and 92 were high.

実施例4では、乳酸を含浸させたワイプ材を使用した爆発物探知装置について説明する。   In Example 4, an explosive detection device using a wipe material impregnated with lactic acid will be described.

図11は、本発明の実施例4の爆発物探知装置の構成例を示す図である。図11に示す装置では、含浸ワイプ材を用いた。   FIG. 11 is a diagram illustrating a configuration example of the explosives detection apparatus according to the fourth embodiment of the present invention. In the apparatus shown in FIG. 11, an impregnated wipe material was used.

図11に示すように、装置は吸引部1(上部加熱ヒータ)及び下部加熱ヒータを備えた加熱器2、イオン源4、質量分析部5、データ処理部6で構成される。イオン源4では吸引部1から導入される試料の蒸気又は微粒子を吸引するために、吸気ポンプ10及び吸気マスフローコントローラ11で約0.5L/分を吸引する。   As shown in FIG. 11, the apparatus includes a suction unit 1 (upper heater) and a heater 2 including a lower heater, an ion source 4, a mass analyzer 5, and a data processor 6. In the ion source 4, approximately 0.5 L / min is sucked by the suction pump 10 and the suction mass flow controller 11 in order to suck the vapor or fine particles of the sample introduced from the suction unit 1.

含浸ワイプ材38には、予め、例えば、0.1μgの乳酸を含ませている。この乳酸の量は乳酸付加イオンが検出されるのに十分な乳酸ガスを発生させられる量であれば良い。また、乳酸を含浸させなくとも材料に乳酸を含んだワイプ材を使用しても良い。例えば、コットンなどには天然のセルロースを使用しているため、微量の乳酸を含んでいる。これらのワイプ材の素材に含まれる乳酸を利用しても良い。   For example, 0.1 μg of lactic acid is included in the impregnated wipe material 38 in advance. The amount of lactic acid may be an amount that can generate sufficient lactic acid gas to detect lactic acid addition ions. Further, a wiping material containing lactic acid may be used without impregnating lactic acid. For example, since natural cellulose is used for cotton or the like, it contains a small amount of lactic acid. You may utilize the lactic acid contained in the raw material of these wipe materials.

また、乳酸を全く含ませないワイプ材を使用しても、手荷物等を拭き取った場合、手荷物に付着した微量の乳酸が拭き取られる場合がある。これは、多くの化粧品には乳酸が使われていることが多く、この化粧品の成分や人体からの乳酸成分が手荷物に付着し、ワイプ材でふき取ることにより、ワイプ材に転写され、乳酸を含浸させた状態と同じになる。   Even when a wipe material that does not contain lactic acid at all is used, a small amount of lactic acid attached to the baggage may be wiped off when the baggage is wiped off. This is because lactic acid is often used in many cosmetics, and the components of this cosmetic and the lactic acid component from the human body adhere to the baggage and are wiped off with a wipe material, which is transferred to the wipe material and impregnated with lactic acid. It will be the same as the state you let it.

検査は、手荷物を含浸ワイプ材38で拭取り、極微量の爆薬成分を採取する。この含浸ワイプ材38を吸引部1(上部加熱ヒータ)及び下部加熱ヒータで構成される加熱器2に挿入する。上部加熱ヒータ及び下部加熱ヒータは採取試料が蒸発する温度に保持されていればよく、例えば、上部及び下部加熱ヒータの両方210°Cで加熱した。ワイプ材12が挿入されることにより下部加熱ヒータが上昇し、ワイプ材12を加熱して爆薬試料を蒸発させる。その際、含浸ワイプ材に含まれた乳酸がガス化され、試料ガスと混合され、混合ガスとなる。混合ガスは、加熱されたフィルタ13(例えば、210°Cで加熱されている)及び配管ヒータ15で加熱された配管14(例えば、180°Cで加熱されている)を通って、イオン源4に導入される。イオン源4では、混合ガスをイオン化し、質量分析部5で質量分析を行なう。   In the inspection, the baggage is wiped with the impregnated wipe 38 and a very small amount of explosive component is collected. The impregnated wipe material 38 is inserted into the heater 2 including the suction unit 1 (upper heater) and the lower heater. The upper heater and the lower heater are only required to be maintained at a temperature at which the collected sample evaporates. For example, both the upper and lower heaters were heated at 210 ° C. When the wipe material 12 is inserted, the lower heater is raised, and the wipe material 12 is heated to evaporate the explosive sample. At that time, lactic acid contained in the impregnated wipe material is gasified, mixed with the sample gas, and becomes a mixed gas. The mixed gas passes through the heated filter 13 (for example, heated at 210 ° C.) and the pipe 14 (for example, heated at 180 ° C.) heated by the pipe heater 15, and then the ion source 4. To be introduced. In the ion source 4, the mixed gas is ionized and the mass analysis unit 5 performs mass analysis.

得られた質量スペクトルはデータ処理部6に送られ、検出しようとしていた探知対象物質から生成される固有のm/zのイオンピークの存在の有無を判断し、検出された場合には警報を鳴らす。さらに、探知対象物質から生成される固有のm/zのイオンピークが検出されなくても、乳酸から生成される分子が付加した固有のm/zのイオンピークの有無を判定して、検出された場合には警報を鳴らす。   The obtained mass spectrum is sent to the data processing unit 6 to determine the presence or absence of a specific m / z ion peak generated from the detection target substance to be detected, and if detected, an alarm is sounded. . Furthermore, even if a specific m / z ion peak generated from the substance to be detected is not detected, it is detected by determining the presence or absence of a specific m / z ion peak added by a molecule generated from lactic acid. If an alarm occurs, an alarm will sound.

つまり、探知対象物質から生成された分子のm/zのイオンピークと、探知対象物質に乳酸から生成された分子が付加された固有のm/zのイオンピークのどちらかが検出された場合、警報を鳴らしても良い。これらの作業を繰り返すことで爆発物探知装置として機能させる。   That is, when either an m / z ion peak of a molecule generated from a detection target substance or a specific m / z ion peak obtained by adding a molecule generated from lactic acid to the detection target substance is detected, An alarm may be sounded. By repeating these operations, it functions as an explosive detection device.

実施例5では、有機酸ガス発生器を用いた吸引法による爆発物探知装置について説明する。   In the fifth embodiment, an explosive detection device using a suction method using an organic acid gas generator will be described.

図12は、本発明の実施例5の爆発物探知装置の構成例を示す図である。図12に示す装置では、試料の吸引法により採取し、有機酸ガス発生器を用いた。   FIG. 12 is a diagram illustrating a configuration example of the explosives detection apparatus according to the fifth embodiment of the present invention. In the apparatus shown in FIG. 12, a sample was collected by a suction method and an organic acid gas generator was used.

図12に示すように、装置は、吸引口39、有機酸ガス発生器3、イオン源4、質量分析部5、データ処理部6で構成される。有機酸ガス発生器3に有機酸の一例である乳酸を約400μL入れ、発生器ヒータ9で約40°Cに加熱し、乳酸蒸気を発生させる。さらに、押出ポンプ7及び押出マスフローコントローラ8で約0.1L/分の流量でイオン源4に導入する。その際、押出流量は吸引部側に逆流しない流量であれば良い。イオン源4では吸引口39から挿入される試料の蒸気又は微粒子を吸引するために、吸気ポンプ10及び吸気マスフローコントローラ11で約0.5L/分を排気する。イオン源4と質量分析部5の間にはイオンが通る細孔があり、約0.5L/分で質量分析部5の真空ポンプで排気されているため、吸引部1に吸引された試料ガスは約0.9L/分で吸引されていることになる。   As shown in FIG. 12, the apparatus includes a suction port 39, an organic acid gas generator 3, an ion source 4, a mass analyzer 5, and a data processor 6. About 400 μL of lactic acid, which is an example of an organic acid, is placed in the organic acid gas generator 3 and heated to about 40 ° C. by the generator heater 9 to generate lactic acid vapor. Further, it is introduced into the ion source 4 at a flow rate of about 0.1 L / min by the extrusion pump 7 and the extrusion mass flow controller 8. In that case, the extrusion flow rate should just be a flow rate which does not flow backward to the suction part side. In the ion source 4, about 0.5 L / min is exhausted by the intake pump 10 and the intake mass flow controller 11 in order to suck the vapor or fine particles of the sample inserted from the suction port 39. Since there are pores through which ions pass between the ion source 4 and the mass analysis unit 5 and the gas is exhausted by the vacuum pump of the mass analysis unit 5 at about 0.5 L / min, the sample gas sucked into the suction unit 1 Is sucked at about 0.9 L / min.

検査は、吸引口39から人体や手荷物等に付着した爆薬の微粒子や蒸気を吸引する。その際、爆薬の微粒子や蒸気はエアーなどの吹き付けガスで飛ばしたものを吸引しても良い。また、吸引口には、フィルタなどの濃縮器を備え付けて、一度、爆薬の微粒子や蒸気を捕捉し、それを加熱して蒸発させる機構を備えても良い。吸気ポンプ10とは別に吸引口の濃縮器には大容量のポンプを備えて、一度に爆薬の微粒子や蒸気を捕捉させる機構を備えても良い。   In the inspection, fine particles or vapor of explosive adhering to a human body or baggage is sucked from the suction port 39. At this time, explosive fine particles and vapor may be sucked by a blown gas such as air. In addition, the suction port may be provided with a concentrator such as a filter, and may be provided with a mechanism that once captures fine particles and vapor of the explosive and heats and evaporates them. Aside from the intake pump 10, the suction port concentrator may be provided with a large-capacity pump and a mechanism for capturing explosive fine particles and vapor at a time.

吸引口39は、採取試料が蒸発する温度に保持されていればよく、例えば、210°Cで加熱した。また、人体や手荷物などに直接、加熱部が接触させないように距離を保つ機構を備える。吸引した試料は、加熱されたフィルタ13(例えば、210°Cで加熱されている)及び配管ヒータ15で加熱された配管14(例えば、180°Cで加熱されている)を通って、有機酸ガス発生装置3で発生した乳酸蒸気と混合部16で混合ガスされ、イオン源4に導入される。イオン源4では、混合ガスをイオン化し、質量分析部5で質量分析を行なう。   The suction port 39 only needs to be maintained at a temperature at which the collected sample evaporates, and is heated at 210 ° C., for example. In addition, a mechanism is provided to maintain a distance so that the heating unit does not directly contact a human body or baggage. The sucked sample passes through a heated filter 13 (for example, heated at 210 ° C.) and a pipe 14 (for example, heated at 180 ° C.) heated by a pipe heater 15, and is then treated with an organic acid. The lactic acid vapor generated in the gas generator 3 is mixed with the mixing unit 16 and introduced into the ion source 4. In the ion source 4, the mixed gas is ionized and the mass analysis unit 5 performs mass analysis.

得られた質量スペクトルは、データ処理部6に送られ、検出しようとしていた探知対象物質から生成される固有のm/zのイオンピークの存在の有無を判断し、検出された場合には警報を鳴らす。さらに、探知対象物質から生成される固有のm/zのイオンピークが検出されなくても、乳酸から生成される分子が付加した固有のm/zのイオンピークの有無を判定して、検出された場合には警報を鳴らす。   The obtained mass spectrum is sent to the data processing unit 6 to determine the presence or absence of a specific m / z ion peak generated from the detection target substance to be detected, and if detected, an alarm is issued. Sound. Furthermore, even if a specific m / z ion peak generated from the substance to be detected is not detected, it is detected by determining the presence or absence of a specific m / z ion peak added by a molecule generated from lactic acid. If an alarm occurs, an alarm will sound.

つまり、探知対象物質から生成された分子のm/zのイオンピークと、探知対象物質に乳酸から生成された分子が付加された固有のm/zのイオンピークのどちらかが検出された場合、警報を鳴らしても良い。これらの作業を繰り返すことで爆発物探知装置として機能させる。   That is, when either an m / z ion peak of a molecule generated from a detection target substance or a specific m / z ion peak obtained by adding a molecule generated from lactic acid to the detection target substance is detected, An alarm may be sounded. By repeating these operations, it functions as an explosive detection device.

以上の各実施例では、有機酸ドーパントとして乳酸を使用したが、実施例6では、他の有機酸又は有機酸塩をドーパントとして使用した結果について説明する。   In each of the above examples, lactic acid was used as the organic acid dopant, but in Example 6, the results of using another organic acid or organic acid salt as the dopant will be described.

まず、こはく酸を有機酸ドーパントとして用いた実施例を説明する。   First, an example using succinic acid as an organic acid dopant will be described.

図13は、本発明の実施例6において、こはく酸をドーパントとして装置に導入した場合に得られる、爆薬RDXの質量スペクトルを示す図である。   FIG. 13 is a diagram showing a mass spectrum of explosive RDX obtained when succinic acid is introduced as a dopant into the apparatus in Example 6 of the present invention.

こはく酸は、乳酸と同じような水酸基及びカルボキシル基を含む有機酸である。さらに、乳酸(質量数90)よりこはく酸(質量数118)の質量数が大きい特徴がある。こはく酸を、有機酸ガス発生器3に約400μL入れて、こはく酸ガスを発生させた。爆薬RDX50ngをワイプ材に滴下し、加熱器2に挿入した。こはく酸から生成された固有の分子イオン(こはく酸由来イオン)がm/z=117に検出された。これは、こはく酸の水素脱離イオンと推定される。   Succinic acid is an organic acid containing a hydroxyl group and a carboxyl group similar to lactic acid. Furthermore, there is a feature that the mass number of succinic acid (mass number 118) is larger than lactic acid (mass number 90). About 400 μL of succinic acid was placed in the organic acid gas generator 3 to generate succinic acid gas. Explosive RDX 50 ng was dropped onto the wipe material and inserted into the heater 2. A unique molecular ion (succinic acid-derived ion) generated from succinic acid was detected at m / z = 117. This is presumed to be a hydrogen desorption ion of succinic acid.

さらに、RDXにこはく酸から生成された分子が付加した、こはく酸付加イオン(RDXこはく酸由来付加イオン)がm/z=338に検出される。このm/z=338を検出対象とする。従って、乳酸より質量数の大きい有機酸においても有機酸付加イオンが生成される。また、主な爆薬の質量数はおおむね400以下であることから、有機酸の質量数40から400程度のものを利用したほうが良い。有機酸の分子量が大きすぎると、蒸気圧が下がりガスを発生させにくくなるほか、大き過ぎる分子イオンは爆薬との付加イオンを生成しにくくなるためである。   Furthermore, a succinic acid addition ion (an RDX succinic acid-derived additional ion) added by a molecule generated from succinic acid to RDX is detected at m / z = 338. This m / z = 338 is set as a detection target. Therefore, an organic acid addition ion is generated even in an organic acid having a mass number larger than that of lactic acid. Moreover, since the mass number of main explosives is about 400 or less, it is better to use the organic acid having a mass number of about 40 to 400. This is because when the molecular weight of the organic acid is too large, the vapor pressure is lowered and it is difficult to generate gas, and too large molecular ions are difficult to generate additional ions with the explosive.

次に、酪酸を有機酸ドーパントとして用いた実施例を説明する。   Next, examples using butyric acid as an organic acid dopant will be described.

図14は、本発明の実施例6において、酪酸をドーパントとして装置に導入した場合に得られる、爆薬RDXの質量スペクトルを示す図である。   FIG. 14 is a diagram showing a mass spectrum of explosive RDX obtained when butyric acid is introduced into the apparatus as a dopant in Example 6 of the present invention.

酪酸は、乳酸と同じように水酸基及びカルボキシル基を含む有機酸である。また、乳酸(質量数90)と酪酸(質量数89)の質量数は、ほぼ同じである。酪酸を有機酸ガス発生器3に約400μL入れて、酪酸ガスを発生させた。爆薬RDX50ngをワイプ材に滴下し、加熱器2に挿入した。酪酸から生成された固有の分子イオン(酪酸由来イオン)がm/z=89に検出された。さらに、RDXに酪酸から生成された分子が付加した酪酸付加イオン(RDX酪酸由来付加イオン)がm/z=310に検出される。このm/z=310を検出対象とする。   Butyric acid is an organic acid containing a hydroxyl group and a carboxyl group in the same manner as lactic acid. The mass numbers of lactic acid (mass number 90) and butyric acid (mass number 89) are substantially the same. About 400 μL of butyric acid was added to the organic acid gas generator 3 to generate butyric acid gas. Explosive RDX 50 ng was dropped onto the wipe material and inserted into the heater 2. A unique molecular ion (butyric acid-derived ion) generated from butyric acid was detected at m / z = 89. Furthermore, butyric acid adduct ions (RDX butyric acid-derived adduct ions) in which molecules generated from butyric acid are added to RDX are detected at m / z = 310. This m / z = 310 is set as a detection target.

次に、有機酸塩の一例として乳酸が塩となった乳酸ナトリウムを有機酸ドーパントとして用いた実施例を説明する。   Next, an example using sodium lactate in which lactic acid is converted to a salt as an example of an organic acid salt will be described.

図15は、本発明の実施例6において、乳酸ナトリウムをドーパントとして装置に導入した場合に得られる、爆薬RDXの質量スペクトルを示す図である。   FIG. 15 is a diagram showing a mass spectrum of explosive RDX obtained when sodium lactate is introduced into the apparatus as a dopant in Example 6 of the present invention.

乳酸ナトリウムの質量数は112であり、乳酸(質量数90)より質量数は大きい。乳酸ナトリウムを有機酸ガス発生器3に約400μL入れて、乳酸ナトリウムガスを発生させた。爆薬RDX50ngをワイプ材に滴下し、加熱器2に挿入した。乳酸ナトリウムから生成された固有の分子イオン(乳酸ナトリウム由来イオン)がm/z=89に検出された。   The mass number of sodium lactate is 112, which is larger than lactic acid (mass number 90). About 400 μL of sodium lactate was placed in the organic acid gas generator 3 to generate sodium lactate gas. Explosive RDX 50 ng was dropped onto the wipe material and inserted into the heater 2. A unique molecular ion (sodium lactate-derived ion) generated from sodium lactate was detected at m / z = 89.

さらに、RDXに乳酸ナトリウムから生成された分子が付加したこ乳酸ナトリウム付加イオン(RDX乳酸ナトリウム由来付加イオン)がm/z=310に検出される。このm/z=310を検出対象とする。これは乳酸ナトリウムが加熱により熱分解して乳酸ガスになった可能性もある。従って、分子量が40から400までの有機酸又は有機酸塩を使用しても、有機酸又は有機酸塩は熱分解を起こしたりして有機酸分子が探知対象物質の付加イオンを生成する。   Further, this sodium lactate addition ion (addition ion derived from RDX sodium lactate) in which a molecule generated from sodium lactate is added to RDX is detected at m / z = 310. This m / z = 310 is set as a detection target. This may be due to the fact that sodium lactate is thermally decomposed by heating into lactic acid gas. Therefore, even when an organic acid or organic acid salt having a molecular weight of 40 to 400 is used, the organic acid or organic acid salt is thermally decomposed, and the organic acid molecule generates an additional ion of the detection target substance.

本発明の化学物質探知装置によれば、有機酸又は有機酸塩から生成される分子と反応し生成されるイオンを検出することにより、環境物質、有害化学物質、麻薬、爆発物の探知を行なうことが可能である   According to the chemical substance detection apparatus of the present invention, environmental substances, harmful chemical substances, narcotics, and explosives are detected by detecting ions generated by reaction with molecules generated from organic acids or organic acid salts. Is possible

1…吸引部(上部加熱ヒータ)、2…加熱器、3…有機酸ガス発生器、4…イオン源、5…質量分析部、6…データ処理部、7…押出ポンプ、8…押出マスフローコントローラ、9…発生器ヒータ、10…吸気ポンプ、11…吸気マスフローコントローラ、12…ワイプ材、13…フィルタ、14…配管、15…配管ヒータ、16…混合部、17…針電極、18…対向電極、19…細孔付電極(第一細孔)、20…第一細孔、21…差動排気部、22…細孔付電極(第二細孔)、23…第二細孔、24…第一排気系、25…第二排気系、26…真空部、27…エンドキャップ電極a、28…エンドキャップ電極b、29…リング電極、30…イオン収束レンズ、31…石英リング、32…ガス供給器、33…ガス導入管、34…変換電極、35…シンチレータ、36…フォトマルチプライヤ、37…データ処理部、38…含浸ワイプ材、39…吸引口。 DESCRIPTION OF SYMBOLS 1 ... Suction part (upper heater), 2 ... Heater, 3 ... Organic acid gas generator, 4 ... Ion source, 5 ... Mass analysis part, 6 ... Data processing part, 7 ... Extrusion pump, 8 ... Extrusion mass flow controller DESCRIPTION OF SYMBOLS 9 ... Generator heater, 10 ... Intake pump, 11 ... Intake mass flow controller, 12 ... Wipe material, 13 ... Filter, 14 ... Pipe, 15 ... Pipe heater, 16 ... Mixing part, 17 ... Needle electrode, 18 ... Counter electrode 19 ... Electrode with pores (first pore), 20 ... First pore, 21 ... Differential exhaust part, 22 ... Electrode with pores (second pore), 23 ... Second pore, 24 ... 1st exhaust system, 25 ... 2nd exhaust system, 26 ... vacuum part, 27 ... end cap electrode a, 28 ... end cap electrode b, 29 ... ring electrode, 30 ... ion focusing lens, 31 ... quartz ring, 32 ... gas Feeder 33 ... gas introduction pipe 34 ... conversion electrode 3 ... scintillator, 36 ... photomultiplier 37 ... data processing unit, 38 ... impregnated wipes, 39 ... suction port.

Claims (3)

試料のガスを生成する加熱部と、
質量数が40以上400以下の有機酸又は有機酸塩を有する有機酸源と、
前記有機酸源から前記有機酸又は有機酸塩のガスを発生させるガス発生器と、
前記加熱部で生成された前記試料のガスに、前記有機酸又は前記有機酸塩のガスを混合させ混合ガスを生成するガス混合部とを有し、
前記混合ガスから、前記試料の分子に対し、前記有機酸由来のイオン又は前記有機酸塩由来のイオンが付加されたイオンを生成することを特徴とするイオン源。
A heating unit for generating a sample gas;
An organic acid source having an organic acid or an organic acid salt having a mass number of 40 or more and 400 or less;
A gas generator for generating a gas of the organic acid or organic acid salt from the organic acid source;
A gas mixing unit that mixes the gas of the organic acid or the organic acid salt with the gas of the sample generated in the heating unit to generate a mixed gas;
An ion source characterized in that, from the mixed gas, ions obtained by adding ions derived from the organic acid or ions derived from the organic acid salt to molecules of the sample are generated.
請求項1に記載のイオン源において、前記有機酸又は前記有機酸塩が、水酸基又はカルボキシル基を有する有機酸又は有機酸塩、あるいは、乳酸又は乳酸塩であることを特徴とするイオン源。   The ion source according to claim 1, wherein the organic acid or the organic acid salt is an organic acid or organic acid salt having a hydroxyl group or a carboxyl group, or lactic acid or a lactate. 請求項1に記載のイオン源において、前記有機酸源は、前記有機酸又は有機酸塩が含浸された拭き取り部材であることを特徴とするイオン源。   The ion source according to claim 1, wherein the organic acid source is a wiping member impregnated with the organic acid or organic acid salt.
JP2009025508A 2009-02-06 2009-02-06 Chemical substance detection apparatus and chemical substance detection method Expired - Lifetime JP4877335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025508A JP4877335B2 (en) 2009-02-06 2009-02-06 Chemical substance detection apparatus and chemical substance detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025508A JP4877335B2 (en) 2009-02-06 2009-02-06 Chemical substance detection apparatus and chemical substance detection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003329294A Division JP4356410B2 (en) 2003-09-22 2003-09-22 Chemical substance detection apparatus and chemical substance detection method

Publications (2)

Publication Number Publication Date
JP2009103711A JP2009103711A (en) 2009-05-14
JP4877335B2 true JP4877335B2 (en) 2012-02-15

Family

ID=40705487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025508A Expired - Lifetime JP4877335B2 (en) 2009-02-06 2009-02-06 Chemical substance detection apparatus and chemical substance detection method

Country Status (1)

Country Link
JP (1) JP4877335B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481246B2 (en) 2020-12-09 2024-05-10 株式会社日立ハイテクソリューションズ Ion Source and Analyser

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340875A (en) * 2001-05-18 2002-11-27 Takeda Chem Ind Ltd Lc/ms/ms determination method using alkylamine

Also Published As

Publication number Publication date
JP2009103711A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4356410B2 (en) Chemical substance detection apparatus and chemical substance detection method
JP3894118B2 (en) Detection method and detection apparatus using ion trap mass spectrometer
US6571649B2 (en) Explosive detection system and sample collecting device
CN103688164B (en) Method and apparatus for ionizing gases using uv radiation and electrons and identifying said gases
US6797943B2 (en) Method and apparatus for ion mobility spectrometry
CA2474561A1 (en) Faims apparatus and method for detecting trace amounts of a vapour in a carrier gas
JP2005108578A (en) Mass spectroscope
US20140030816A1 (en) Reagent impregnated swipe for chemical detection
JP2004286648A (en) Detection device and detection method of chemicals
US6943343B2 (en) Chemical agent detection apparatus and method
US6987262B2 (en) FAIMS apparatus and method for detecting trace amounts of a vapour in a carrier gas
JP4054493B2 (en) Ion source
JP4877335B2 (en) Chemical substance detection apparatus and chemical substance detection method
US20030136902A1 (en) Apparatus for inspecting the inside of a container and method of inspecting the same
WO2008036439A2 (en) Compact high performance chemical detector
Chen et al. Applications of environmental mass spectrometry in atmospheric haze chemistry
JP4197676B2 (en) Monitoring system
JPH07182585A (en) Method and device for detecting fire
JP2010014726A (en) Detection method and detection system using ion trap mass spectrometer
JP2009047710A (en) Detection method of chemical
WO2017081370A1 (en) Method and arrangement for detecting harmful substances
JP2004340704A (en) Analytical method and analyzer for air pollutant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R151 Written notification of patent or utility model registration

Ref document number: 4877335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

EXPY Cancellation because of completion of term