JP4877204B2 - Silicon carbide single crystal manufacturing equipment - Google Patents

Silicon carbide single crystal manufacturing equipment Download PDF

Info

Publication number
JP4877204B2
JP4877204B2 JP2007294164A JP2007294164A JP4877204B2 JP 4877204 B2 JP4877204 B2 JP 4877204B2 JP 2007294164 A JP2007294164 A JP 2007294164A JP 2007294164 A JP2007294164 A JP 2007294164A JP 4877204 B2 JP4877204 B2 JP 4877204B2
Authority
JP
Japan
Prior art keywords
thermal expansion
single crystal
expansion coefficient
silicon carbide
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007294164A
Other languages
Japanese (ja)
Other versions
JP2009120419A (en
Inventor
英美 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007294164A priority Critical patent/JP4877204B2/en
Publication of JP2009120419A publication Critical patent/JP2009120419A/en
Application granted granted Critical
Publication of JP4877204B2 publication Critical patent/JP4877204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体や発光ダイオードなどの素材に利用することができる炭化珪素(以下、SiCという)単結晶の製造装置に関するものである。   The present invention relates to an apparatus for producing a silicon carbide (hereinafter referred to as SiC) single crystal that can be used for a material such as a semiconductor or a light emitting diode.

従来より、SiC単結晶を成長させる方法として、昇華再結晶法が広く用いられている。この昇華再結晶法は、黒鉛製るつぼ内に配置した黒鉛台座に種結晶を接合すると共に、るつぼ底部に配したSiC原料を加熱昇華させ、その昇華ガスを種結晶に供給することによって種結晶上にSiC単結晶を成長させるものである。   Conventionally, a sublimation recrystallization method has been widely used as a method for growing a SiC single crystal. This sublimation recrystallization method involves joining a seed crystal to a graphite pedestal placed in a graphite crucible, heating and sublimating the SiC raw material arranged at the bottom of the crucible, and supplying the sublimation gas to the seed crystal. To grow a SiC single crystal.

このような昇華再結晶法を用いたSiC単結晶の製造装置において、SiC単結晶の成長空間を構成する容器には、例えば黒鉛製るつぼが用いられている。従来の黒鉛製るつぼは、上面が開口している有底円筒状のるつぼ本体と、るつぼ本体の開口部を塞ぐ蓋材とを備えて構成されている。そして、蓋材の中央部において突き出した部分を台座として、台座上に種結晶となるSiC単結晶基板が接着剤等を介して接合されると共に、るつぼ本体の底面にSiC原料粉末が配置される。   In a SiC single crystal manufacturing apparatus using such a sublimation recrystallization method, for example, a graphite crucible is used as a container constituting the growth space of the SiC single crystal. A conventional graphite crucible includes a bottomed cylindrical crucible body having an open top surface and a lid member that closes the opening of the crucible body. Then, with the portion protruding at the center of the lid as a pedestal, an SiC single crystal substrate serving as a seed crystal is bonded onto the pedestal via an adhesive or the like, and SiC raw material powder is disposed on the bottom surface of the crucible body. .

このような構成の黒鉛製るつぼを用い、黒鉛製るつぼの外周に配置された加熱装置によって原料粉末を加熱昇華させてSiC単結晶基板の表面に供給することで、SiC単結晶基板の表面にSiC単結晶を結晶成長させている。   Using the graphite crucible having such a configuration, the raw material powder is heated and sublimated by a heating device arranged on the outer periphery of the graphite crucible and supplied to the surface of the SiC single crystal substrate. A single crystal is grown.

しかしながら、種結晶となるSiC単結晶基板を接着剤等で黒鉛製の台座に直接貼り付けると、SiCと黒鉛との熱膨張係数の相違により、SiC単結晶基板および成長したSiC単結晶に熱応力が発生し、SiC単結晶中に結晶欠陥が発生するという問題がある。   However, if the SiC single crystal substrate to be a seed crystal is directly attached to a graphite pedestal with an adhesive or the like, thermal stress is applied to the SiC single crystal substrate and the grown SiC single crystal due to the difference in thermal expansion coefficient between SiC and graphite. Occurs, and crystal defects are generated in the SiC single crystal.

この問題を解決すべく、特許文献1〜3に示される技術が提案されている。具体的には、特許文献1では、種結晶となるSiC単結晶基板の裏面に保護膜を配置した上で、SiC単結晶基板および保護膜を台座に接着させることなくSiC単結晶基板の外周を囲むフックにて固定することにより、SiC単結晶基板に熱応力が発生することを抑制している。特許文献2では、種結晶となるSiC単結晶基板と台座との間に緩衝材を配置し、緩衝材を介してSiC単結晶基板を台座に接着剤にて貼り付けることにより、SiC単結晶基板に熱応力が発生することを抑制している。特許文献3では、種結晶となるSiC単結晶基板の裏面に保護膜を配置した上で、SiC単結晶基板および保護膜と台座との間に緩衝材を配置し、緩衝材を介してSiC単結晶基板および保護膜を台座に接着剤にて貼り付けることにより、SiC単結晶基板に熱応力が発生することを抑制している。
特開2002−201097号公報 特開2004−269297号公報 特開2004−338971号公報
In order to solve this problem, techniques disclosed in Patent Documents 1 to 3 have been proposed. Specifically, in Patent Document 1, a protective film is disposed on the back surface of an SiC single crystal substrate that serves as a seed crystal, and the outer periphery of the SiC single crystal substrate is bonded without adhering the SiC single crystal substrate and the protective film to a pedestal. Fixing with the surrounding hook suppresses generation of thermal stress in the SiC single crystal substrate. In Patent Document 2, a buffer material is disposed between an SiC single crystal substrate that serves as a seed crystal and a pedestal, and the SiC single crystal substrate is bonded to the pedestal with an adhesive via the buffer material, whereby an SiC single crystal substrate is obtained. The generation of thermal stress is suppressed. In Patent Document 3, a protective film is disposed on the back surface of an SiC single crystal substrate that serves as a seed crystal, a buffer material is disposed between the SiC single crystal substrate and the protective film, and a pedestal, and the SiC single crystal is interposed via the buffer material. By sticking the crystal substrate and the protective film to the pedestal with an adhesive, the occurrence of thermal stress on the SiC single crystal substrate is suppressed.
JP 2002-201097 A JP 2004-269297 A JP 2004-338971 A

しかしながら、特許文献1の構造ではSiC単結晶基板と黒鉛台座との間に生じた隙間により、また、特許文献2、3の構造では熱伝導の悪い緩衝材によって成長したSiC単結晶の台座への放熱が妨げられることになる。そのため、SiC単結晶の成長速度を低下させると共に、成長結晶の面内温度分布が不均一になり、SiC単結晶に結晶欠陥を発生させる原因となる。   However, in the structure of Patent Document 1, due to a gap generated between the SiC single crystal substrate and the graphite pedestal, and in the structures of Patent Documents 2 and 3, the SiC single crystal grown on the pedestal of the buffer having poor heat conduction. Heat dissipation will be hindered. For this reason, the growth rate of the SiC single crystal is reduced, and the in-plane temperature distribution of the grown crystal becomes non-uniform, which causes crystal defects in the SiC single crystal.

なお、ここでは昇華再結晶法を用いる場合のSiC単結晶の製造装置に関して説明したが、原料ガスを黒鉛製るつぼの外部から供給するガス供給法を用いるSiC単結晶の製造装置に関しても同様の問題がある。   In addition, although the SiC single crystal manufacturing apparatus in the case of using the sublimation recrystallization method has been described here, the same problem also applies to the SiC single crystal manufacturing apparatus using the gas supply method in which the source gas is supplied from the outside of the graphite crucible. There is.

本発明は上記点に鑑みて、種結晶となるSiC単結晶基板と台座との間の熱膨張係数の相違による熱応力の発生を抑制しつつ、成長結晶となるSiC単結晶から台座への放熱を良好に行うことができるSiC単結晶の製造装置を提供することを目的とする。   In view of the above points, the present invention suppresses the generation of thermal stress due to the difference in thermal expansion coefficient between the SiC single crystal substrate serving as the seed crystal and the pedestal, and releases heat from the SiC single crystal serving as the grown crystal to the pedestal. It aims at providing the manufacturing apparatus of the SiC single crystal which can perform this well.

上記目的を達成するため、本発明では、昇華再結晶法やガス供給法におけるSiC単結晶の製造装置に用いる容器(1)を、一面が開口した中空形状の本体(1a)と、本体(1a)の開口する一面側に配置される蓋材(1b)と、SiC単結晶基板(3)が配置される台座(5)とを備える構造とし、蓋材(1b)と台座(5)とを別部材で構成すると共に、台座(5)を3層以上からなる複数層の黒鉛部材(5a〜5c)にて構成し、複数層の黒鉛部材(5a〜5c)のそれぞれの熱膨張係数βの平均値が該複数層の黒鉛部材(5a〜5c)それぞれの熱膨張係数βよりも炭化珪素基板(3)の熱膨張係数βに近づくようにすることを特徴としている。   In order to achieve the above object, in the present invention, a container (1) used in a SiC single crystal production apparatus in a sublimation recrystallization method or a gas supply method is composed of a hollow main body (1a) having an open surface and a main body (1a). ) And a base (5) on which the SiC single crystal substrate (3) is arranged, and the lid (1b) and the base (5) are provided. The pedestal (5) is composed of three or more layers of graphite members (5a to 5c), and the thermal expansion coefficient β of each of the multiple layers of graphite members (5a to 5c). It is characterized in that the average value is closer to the thermal expansion coefficient β of the silicon carbide substrate (3) than the thermal expansion coefficient β of each of the multiple-layer graphite members (5a to 5c).

このように、台座(5)を3層以上の多層構造にて構成し、複数層の黒鉛部材(5a〜5c)の熱膨張係数βの平均値をSiC単結晶基板(3)の熱膨張係数βに近づけている。このため、台座(5)にSiC単結晶基板(3)を貼り付けるような構造にしても、SiCと黒鉛との熱膨張係数βの相違によってSiC単結晶基板(3)および成長したSiC単結晶(4)に熱応力が発生することを抑制でき、SiC単結晶(4)中に結晶欠陥が発生することを抑制できる。これにより、台座(5)にSiC単結晶基板(3)を貼り付けることが可能になるため、SiC単結晶基板(3)およびSiC単結晶(4)の台座(5)への放熱が妨げられることがなく、SiC単結晶(4)の成長速度の低下を防止できる。そして、成長結晶の面内温度分布が不均一になることを防止でき、SiC単結晶(4)に結晶欠陥を発生させることを抑制できる。   Thus, the pedestal (5) has a multilayer structure of three or more layers, and the average value of the thermal expansion coefficient β of the multiple-layer graphite members (5a to 5c) is the thermal expansion coefficient of the SiC single crystal substrate (3). It is close to β. Therefore, even if the SiC single crystal substrate (3) is attached to the pedestal (5), the SiC single crystal substrate (3) and the grown SiC single crystal are different due to the difference in thermal expansion coefficient β between SiC and graphite. Generation of thermal stress in (4) can be suppressed, and generation of crystal defects in the SiC single crystal (4) can be suppressed. Thereby, since it becomes possible to affix a SiC single crystal substrate (3) to a base (5), the heat dissipation to the base (5) of a SiC single crystal substrate (3) and a SiC single crystal (4) is prevented. Without a decrease in the growth rate of the SiC single crystal (4). And it can prevent that the in-plane temperature distribution of a growth crystal becomes non-uniform | heterogenous, and can suppress generating a crystal defect in a SiC single crystal (4).

具体的には、複数層の黒鉛部材(5a〜5c)のそれぞれの1000℃を超える温度の熱膨張係数βの平均値が該複数層の黒鉛部材(5a〜5c)それぞれの1000℃を超える温度の熱膨張係数βよりも炭化珪素基板(3)の1000℃を超える温度の熱膨張係数βに近づけられるようにすると良い。   Specifically, the temperature at which the average value of the thermal expansion coefficient β of each of the multiple layers of graphite members (5a to 5c) exceeds 1000 ° C. exceeds 1000 ° C. of each of the multiple layers of graphite members (5a to 5c). It is preferable that the thermal expansion coefficient β of the silicon carbide substrate (3) be closer to the thermal expansion coefficient β at a temperature exceeding 1000 ° C. than the thermal expansion coefficient β.

例えば、台座(5)を構成する複数層の黒鉛部材(5a〜5c)のそれぞれの2500℃における熱膨張係数βの平均値を該複数層の黒鉛部材(5a〜5c)それぞれの2500℃における熱膨張係数βよりも炭化珪素基板(3)の2500℃における熱膨張係数βに近づけると良い。   For example, the average value of the thermal expansion coefficient β at 2500 ° C. of each of the multiple layers of graphite members (5a to 5c) constituting the pedestal (5) is calculated as the heat at 2500 ° C. of each of the multiple layers of graphite members (5a to 5c). The thermal expansion coefficient β at 2500 ° C. of the silicon carbide substrate (3) may be closer to the expansion coefficient β.

さらに、複数層の黒鉛部材(5a〜5c)のそれぞれの1000℃以下の熱膨張係数βの平均値を該複数層の黒鉛部材(5a〜5c)それぞれの1000℃以下の熱膨張係数βよりも炭化珪素基板(3)の1000℃以下の熱膨張係数βに近づけ、かつ、複数層の黒鉛部材(5a〜5c)のそれぞれの1000℃を超える温度の熱膨張係数βの平均値を該複数層の黒鉛部材(5a〜5c)それぞれの1000℃を超える温度の熱膨張係数βよりも炭化珪素基板(3)の1000℃を超える温度の熱膨張係数βに近づけるようにすると好ましい。   Further, the average value of the thermal expansion coefficient β of 1000 ° C. or less of each of the multiple layers of graphite members (5a to 5c) is set to be smaller than the thermal expansion coefficient β of 1000 ° C. or less of each of the multiple layers of graphite members (5a to 5c). The average value of the thermal expansion coefficient β at a temperature close to the thermal expansion coefficient β of 1000 ° C. or less of the silicon carbide substrate (3) and exceeding 1000 ° C. of each of the multiple-layer graphite members (5a to 5c). It is preferable to make the thermal expansion coefficient β of the silicon carbide substrate (3) closer to the thermal expansion coefficient β of the silicon carbide substrate (3) than the thermal expansion coefficient β of the graphite member (5a to 5c) at a temperature higher than 1000 ° C.

このように、1000℃を超える温度のときだけでなく1000℃以下のときにも複数層の黒鉛部材(5a〜5c)の熱膨張係数βの平均値がSiC単結晶基板(3)に近づけられることで、より顕著に上記特徴による効果を得ることが可能となる。   As described above, the average value of the thermal expansion coefficient β of the multiple-layer graphite members (5a to 5c) can be brought close to the SiC single crystal substrate (3) not only at a temperature exceeding 1000 ° C. but also at 1000 ° C. or less. As a result, it becomes possible to obtain the effects of the above characteristics more remarkably.

例えば、1000℃を超える温度として2500℃のときを挙げることができ、1000℃以下の温度として1000℃を挙げることができる。   For example, the temperature exceeding 1000 ° C. can be exemplified at 2500 ° C., and the temperature below 1000 ° C. can be exemplified as 1000 ° C.

以上の説明では、複数層の黒鉛部材(5a〜5c)のそれぞれの熱膨張係数βの平均値をSiC基板(3)の熱膨張係数βに近づけると説明したが、勿論、これらを同等にすると最も良い。   In the above description, the average value of the thermal expansion coefficient β of each of the multiple-layer graphite members (5a to 5c) is described as being close to the thermal expansion coefficient β of the SiC substrate (3). The best.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
本発明の第1実施形態について説明する。図1は、本実施形態にかかるSiC単結晶の製造装置を用いてSiC単結晶を成長させている様子を示した断面図である。
(First embodiment)
A first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a state in which a SiC single crystal is grown using the SiC single crystal manufacturing apparatus according to the present embodiment.

図1に示すように、SiC単結晶の製造装置の容器として円筒状の黒鉛製るつぼ1が用いられている。黒鉛製るつぼ1は、黒鉛製るつぼ1の底部に備えられたSiC原料粉末(SiC原料)2を加熱することによって昇華させ、昇華した原料ガスを供給することにより、相対的に低温な種結晶である厚さ例えば1mmのSiC単結晶基板3上にSiC単結晶4を結晶成長させるものである。   As shown in FIG. 1, a cylindrical graphite crucible 1 is used as a container of a SiC single crystal production apparatus. The graphite crucible 1 is obtained by sublimating the SiC raw material powder (SiC raw material) 2 provided at the bottom of the graphite crucible 1 by heating and supplying the sublimated raw material gas, thereby forming a relatively low temperature seed crystal. The SiC single crystal 4 is grown on a SiC single crystal substrate 3 having a certain thickness, for example, 1 mm.

この黒鉛製るつぼ1は、上面が開口している有底円筒状のるつぼ本体1aと、るつぼ本体1aの開口部を塞ぐ蓋材1bとを備えて構成されている。この黒鉛製るつぼ1を構成する蓋材1bの中央部には、台座5が貼り合わされている。   The graphite crucible 1 includes a bottomed cylindrical crucible body 1a having an open top surface and a lid 1b that closes the opening of the crucible body 1a. A pedestal 5 is bonded to the central portion of the lid 1b constituting the graphite crucible 1.

台座5は、SiCと熱膨張係数がほぼ同等となるように次のような構成とされている。具体的には、台座5は、例えば同じ厚さとされた3層以上の多層構造で構成され、本実施形態では第1、第2、第3黒鉛部材5a、5b、5cの3層構造により構成されている。第1〜第3黒鉛部材5a〜5cはそれぞれ種結晶とされるSiC単結晶基板3とほぼ同等の径の円径板材とされ、互いにカーボン粉末と高分子材料(例えばフェノール樹脂)、有機溶媒(例えばフェノールとエチルアルコール)を原料とした接着剤5d、5fにて貼り合わされている。これら接着剤5d、5eは、厚みが0.001〜0.1mmとされている。   The pedestal 5 is configured as follows so that the thermal expansion coefficient is substantially equal to that of SiC. Specifically, the pedestal 5 is configured by, for example, a multilayer structure of three or more layers having the same thickness. In the present embodiment, the pedestal 5 is configured by a three-layer structure of first, second, and third graphite members 5a, 5b, and 5c. Has been. Each of the first to third graphite members 5a to 5c is a circular plate material having a diameter substantially the same as that of the SiC single crystal substrate 3 which is a seed crystal, and carbon powder, a polymer material (for example, phenol resin), an organic solvent ( For example, phenol and ethyl alcohol) are used as adhesives 5d and 5f. These adhesives 5d and 5e have a thickness of 0.001 to 0.1 mm.

また、第1〜第3黒鉛部材5a〜5cは、これら第1〜第3黒鉛部材5a〜5cのうち最も蓋材1b側に位置する第1黒鉛部材5aがカーボン粉末と高分子材料(例えばフェノール樹脂)、有機溶媒(例えばフェノールとエチルアルコール)を原料とした接着剤6を介して蓋材1bに貼り付けられることで台座5が構成されており、最もSiC単結晶基板3側に位置する第3黒鉛部材5cにカーボン粉末と高分子材料(例えばフェノール樹脂)、有機溶媒(例えばフェノールとエチルアルコール)を原料とした接着剤7を介してSiC単結晶基板3が貼り付けられている。   The first to third graphite members 5a to 5c are composed of carbon powder and a polymer material (for example, phenol) in which the first graphite member 5a located closest to the lid 1b among the first to third graphite members 5a to 5c. Resin) and an organic solvent (for example, phenol and ethyl alcohol) as a raw material, the base 5 is configured by being attached to the lid member 1b via an adhesive 6 and is located closest to the SiC single crystal substrate 3 side. The SiC single crystal substrate 3 is bonded to the graphite member 5c via an adhesive 7 made of carbon powder, a polymer material (for example, phenol resin), and an organic solvent (for example, phenol and ethyl alcohol).

第1、第3黒鉛部材5a、5cとこれら第1、第3黒鉛部材5a、5cに挟み込まれる第2黒鉛部材5bとは熱膨張係数が異なる黒鉛にて構成されている。第1〜第3黒鉛部材5a〜5cの熱膨張係数βの選定は、種結晶となるSiC単結晶基板3の熱膨張係数βに基づいて行われており、2500℃における第1〜第3黒鉛部材5a〜5cの熱膨張係数の平均値がSiC単結晶基板3の熱膨張係数βとほぼ同等となるようにしている。例えば、第1、第3黒鉛部材5a、5cは、2500℃における熱膨張係数βが8×10-6[1/K]の黒鉛にて構成され、第2黒鉛部材5bは、2500℃における熱膨張係数βが2×10-6[1/K]の黒鉛にて構成されている。このような熱膨張係数の黒鉛を選定した場合、第1〜第3黒鉛部材5a〜5cの熱膨張係数の平均値が6×10-6[1/K]となり、SiC単結晶基板3の熱膨張係数βである6×10-6[1/K]と同等の値となる。なお、黒鉛の熱膨張係数βは、型を取るときの圧縮力などによって適宜調整可能であり、製造メーカにおいてもスペックとして様々な熱膨張係数βのものが販売されているため、第1〜第3黒鉛部材5a〜5cの熱膨張係数βを適宜選定することが可能である。 The first and third graphite members 5a and 5c and the second graphite member 5b sandwiched between the first and third graphite members 5a and 5c are made of graphite having different thermal expansion coefficients. The selection of the thermal expansion coefficient β of the first to third graphite members 5a to 5c is performed based on the thermal expansion coefficient β of the SiC single crystal substrate 3 serving as a seed crystal, and the first to third graphites at 2500 ° C. The average value of the thermal expansion coefficients of members 5 a to 5 c is made substantially equal to the thermal expansion coefficient β of SiC single crystal substrate 3. For example, the first and third graphite members 5a and 5c are made of graphite having a thermal expansion coefficient β of 8 × 10 −6 [1 / K] at 2500 ° C., and the second graphite member 5b is heated at 2500 ° C. It is made of graphite having an expansion coefficient β of 2 × 10 −6 [1 / K]. When graphite having such a thermal expansion coefficient is selected, the average value of the thermal expansion coefficients of the first to third graphite members 5a to 5c is 6 × 10 −6 [1 / K], and the heat of the SiC single crystal substrate 3 is increased. It becomes a value equivalent to 6 × 10 −6 [1 / K] which is the expansion coefficient β. Note that the coefficient of thermal expansion β of graphite can be adjusted as appropriate depending on the compression force when taking the mold, etc., and manufacturers have various thermal expansion coefficients β as specs. It is possible to appropriately select the thermal expansion coefficient β of the three graphite members 5a to 5c.

このような第1〜第3黒鉛部材5a〜5cの熱膨張係数βにて台座5を構成することにより、結晶成長時に台座5と種結晶となるSiC単結晶基板3との間の熱膨張係数差に起因する応力の発生を抑制する。   By configuring the pedestal 5 with such a thermal expansion coefficient β of the first to third graphite members 5a to 5c, the thermal expansion coefficient between the pedestal 5 and the SiC single crystal substrate 3 which becomes a seed crystal during crystal growth. The generation of stress due to the difference is suppressed.

なお、黒鉛製るつぼ1の外部には、黒鉛製るつぼ1の外周を囲むように誘導コイル等の図示しない加熱装置が備えられており、この加熱装置のパワーを制御することにより、黒鉛製るつぼ1内の温度を制御できるように構成されている。例えば、SiC単結晶4を結晶成長させる際には、この加熱装置のパワーを調節することによって種結晶であるSiC単結晶基板3の温度がSiC原料粉末2の温度よりも100℃程度低温に保たれるようにすることができる。また、図示しないが、黒鉛製るつぼ1は、アルゴンガスが導入できる真空容器の中に収容されており、この真空容器内で加熱できるようになっている。   A graphite crucible 1 is provided outside the graphite crucible 1 by an unillustrated heating device such as an induction coil so as to surround the outer periphery of the graphite crucible 1. The graphite crucible 1 is controlled by controlling the power of the heating device. It is configured so that the temperature inside can be controlled. For example, when the SiC single crystal 4 is grown, the temperature of the SiC single crystal substrate 3 as a seed crystal is kept at a temperature about 100 ° C. lower than the temperature of the SiC raw material powder 2 by adjusting the power of the heating device. Can be drunk. Moreover, although not shown in figure, the graphite crucible 1 is accommodated in the vacuum vessel which can introduce | transduce argon gas, and it can heat now in this vacuum vessel.

このように構成されたSiC単結晶の製造装置を用いたSiC単結晶の製造工程について説明する。   An SiC single crystal manufacturing process using the SiC single crystal manufacturing apparatus configured as described above will be described.

まず、SiC原料粉末2を黒鉛製るつぼ1の本体1aの底面側に配置すると共に、蓋材1bに接着剤6を介して貼り合わされた台座5に接着剤7を介して種結晶であるSiC単結晶基板3を貼り付ける。そして、蓋材1bを本体1aに取付け、黒鉛製るつぼ1を図示しない真空容器内に収容し、真空容器内をアルゴンガス雰囲気にする。その後、図示しない加熱装置にて、SiC原料粉末2の温度を2000〜2500℃に加熱し、加熱装置の調節等により、SiC単結晶基板3の温度がSiC原料粉末2の温度よりも低くなるように、黒鉛製るつぼ1内に温度勾配を設ける。   First, the SiC raw material powder 2 is disposed on the bottom surface side of the main body 1a of the graphite crucible 1, and the SiC single crystal, which is a seed crystal, is bonded to the pedestal 5 bonded to the lid 1b via the adhesive 6. A crystal substrate 3 is attached. Then, the lid 1b is attached to the main body 1a, the graphite crucible 1 is accommodated in a vacuum container (not shown), and the inside of the vacuum container is made an argon gas atmosphere. Then, the temperature of SiC raw material powder 2 is heated to 2000-2500 degreeC with the heating apparatus which is not illustrated, and the temperature of SiC single crystal substrate 3 becomes lower than the temperature of SiC raw material powder 2 by adjustment of a heating apparatus, etc. In addition, a temperature gradient is provided in the graphite crucible 1.

次に、真空容器の真空度を調整することで黒鉛製るつぼ1内の圧力を13.3Pa〜26.7kPaとして、昇華法成長を開始すると、SiC原料粉末2が昇華して昇華ガスとなり、SiC単結晶4に到達し、SiC原料粉末2側よりも相対的に低温となるSiC単結晶基板3の表面上にSiC単結晶4が成長する。この後は、SiC原料粉末2の減少量が一定となるようにさせつつ、SiC単結晶4を結晶成長させる。例えば、加熱装置のパワーを調整することにより黒鉛製るつぼ1内の温度分布を調整することができる。このようにすることで、るつぼ1内の珪素/炭素比を安定化させることができる。   Next, the pressure in the graphite crucible 1 is adjusted to 13.3 Pa to 26.7 kPa by adjusting the degree of vacuum of the vacuum vessel, and when the sublimation growth starts, the SiC raw material powder 2 sublimates to become a sublimation gas, and SiC The SiC single crystal 4 grows on the surface of the SiC single crystal substrate 3 that reaches the single crystal 4 and is at a relatively lower temperature than the SiC raw material powder 2 side. Thereafter, the SiC single crystal 4 is grown while making the amount of reduction of the SiC raw material powder 2 constant. For example, the temperature distribution in the graphite crucible 1 can be adjusted by adjusting the power of the heating device. By doing in this way, the silicon / carbon ratio in the crucible 1 can be stabilized.

このSiC単結晶4の成長中に、台座5を構成する第1〜第3黒鉛部材5a〜5cとSiC単結晶基板3およびSiC単結晶4との間に熱膨張係数差による熱応力が発生する可能性がある。しかしながら、上述したように、第1〜第3黒鉛部材5a〜5cの熱膨張係数βの平均値をSiC単結晶基板3の熱膨張係数βとほぼ同等にしているため、台座5やSiC単結晶基板3およびSiC単結晶4の反りを抑制することが可能となる。   During the growth of the SiC single crystal 4, thermal stress due to a difference in thermal expansion coefficient is generated between the first to third graphite members 5 a to 5 c constituting the pedestal 5, the SiC single crystal substrate 3, and the SiC single crystal 4. there is a possibility. However, as described above, since the average value of the thermal expansion coefficient β of the first to third graphite members 5a to 5c is substantially equal to the thermal expansion coefficient β of the SiC single crystal substrate 3, the pedestal 5 and the SiC single crystal Warping of substrate 3 and SiC single crystal 4 can be suppressed.

この効果を確認するために、第1、第3黒鉛部材5a、5cの2500℃における熱膨張係数βを8×10-6[1/K]、第2黒鉛部材5bの2500℃における熱膨張係数βを2×10-6[1/K]、SiC単結晶基板3およびSiC単結晶4の熱膨張係数βを6×10-6[1/K]として、シミュレーションにて熱応力解析を行った。 In order to confirm this effect, the thermal expansion coefficient β at 2500 ° C. of the first and third graphite members 5a and 5c is 8 × 10 −6 [1 / K], and the thermal expansion coefficient of the second graphite member 5b at 2500 ° C. Thermal stress analysis was performed by simulation with β being 2 × 10 −6 [1 / K] and the thermal expansion coefficient β of the SiC single crystal substrate 3 and the SiC single crystal 4 being 6 × 10 −6 [1 / K]. .

図2(a)は、熱応力解析に用いた台座5、SiC単結晶基板3およびSiC単結晶4の断面模式図であり、図2(b)は台座5の熱応力の変位分布を示した図である。この図に示されるように、台座5に反りが発生しておらず、厚み方向にほぼ真っ直ぐ均等に分布していることが判る。この結果からも、台座5の反りを抑制でき、台座5の反りの影響がSiC単結晶基板3およびSiC単結晶4に伝わることを抑制できていると言える。   FIG. 2A is a schematic cross-sectional view of the pedestal 5, the SiC single crystal substrate 3, and the SiC single crystal 4 used for the thermal stress analysis, and FIG. 2B shows the thermal stress displacement distribution of the pedestal 5. FIG. As shown in this figure, it can be seen that the pedestal 5 is not warped and is distributed almost straight and evenly in the thickness direction. From this result, it can be said that the warp of the pedestal 5 can be suppressed, and the influence of the warp of the pedestal 5 can be suppressed from being transmitted to the SiC single crystal substrate 3 and the SiC single crystal 4.

また、このように反りを抑制できることにより、得られるSiC単結晶4の結晶欠陥の発生を抑制できる。実際に、SiC単結晶4内の転位密度を確認したところ種結晶であるSiC単結晶基板3と同等の3000個/cm2であった。 Moreover, generation | occurrence | production of the crystal defect of the obtained SiC single crystal 4 can be suppressed because curvature can be suppressed in this way. Actually, the dislocation density in the SiC single crystal 4 was confirmed and found to be 3000 / cm 2 which is equivalent to the SiC single crystal substrate 3 which is the seed crystal.

さらに、台座5にSiC単結晶基板3を貼り付けることが可能になるため、SiC単結晶基板3およびSiC単結晶4の台座5への放熱が妨げられることがなくなる。このため、SiC単結晶4の成長速度の低下を防止できる。この成長速度を測定したところ、従来のように緩衝材を使用した場合の成長速度0.3mm/hよりも大きい0.5mm/hであった。   Furthermore, since SiC single crystal substrate 3 can be affixed to pedestal 5, the heat dissipation of SiC single crystal substrate 3 and SiC single crystal 4 to pedestal 5 is not hindered. For this reason, a decrease in the growth rate of the SiC single crystal 4 can be prevented. When this growth rate was measured, it was 0.5 mm / h, which is larger than the growth rate of 0.3 mm / h when a buffer material is used as in the prior art.

以上説明したように、本実施形態では、台座5を3層以上の多層構造にて構成し、第1〜第3黒鉛部材5a〜5cの熱膨張係数βの平均値をSiC単結晶基板3の熱膨張係数βとほぼ同等にしている。このため、台座5にSiC単結晶基板3を貼り付けるような構造にしても、SiCと黒鉛との熱膨張係数の相違によってSiC単結晶基板3および成長したSiC単結晶4に熱応力が発生することを抑制でき、SiC単結晶4中に結晶欠陥が発生することを抑制できる。これにより、台座5にSiC単結晶基板3を貼り付けることが可能になるため、SiC単結晶基板3およびSiC単結晶4の台座5への放熱が妨げられることがなく、SiC単結晶4の成長速度の低下を防止できる。そして、成長結晶の面内温度分布が不均一になることを防止でき、SiC単結晶4に結晶欠陥を発生させることを抑制できる。   As described above, in the present embodiment, the pedestal 5 is constituted by a multilayer structure of three or more layers, and the average value of the thermal expansion coefficients β of the first to third graphite members 5a to 5c is determined by the SiC single crystal substrate 3. The coefficient of thermal expansion is approximately equal to β. For this reason, even if the SiC single crystal substrate 3 is attached to the pedestal 5, thermal stress is generated in the SiC single crystal substrate 3 and the grown SiC single crystal 4 due to the difference in thermal expansion coefficient between SiC and graphite. This can be suppressed, and the occurrence of crystal defects in the SiC single crystal 4 can be suppressed. As a result, the SiC single crystal substrate 3 can be attached to the pedestal 5, so that the heat dissipation of the SiC single crystal substrate 3 and the SiC single crystal 4 to the pedestal 5 is not hindered, and the SiC single crystal 4 is grown. A decrease in speed can be prevented. And it can prevent that the in-plane temperature distribution of a growth crystal becomes non-uniform | heterogenous, and can suppress generating a crystal defect in the SiC single crystal 4. FIG.

参考として、台座5を2層とした場合について、同様の効果が得られるか否か実験した。具体的には、台座5として第1黒鉛部材5aと第2黒鉛部材5bとを接着剤5dにて貼り合わせた構成を想定し、第1黒鉛部材5a側を接着剤6にて蓋材1bに貼り付け、第2黒鉛部材5b側に接着剤7を介してSiC単結晶基板3を貼り付けた構造とし、第1黒鉛部材5aの2500℃における熱膨張係数βを8×10-6[1/K]、第2黒鉛部材5bの2500℃における熱膨張係数βを4×10-6[1/K]、SiC単結晶基板3およびSiC単結晶4の熱膨張係数βを6×10-6[1/K]として、シミュレーションにて熱応力解析を行った。 As a reference, an experiment was conducted to determine whether the same effect can be obtained when the pedestal 5 has two layers. Specifically, assuming a configuration in which the first graphite member 5a and the second graphite member 5b are bonded together with an adhesive 5d as the pedestal 5, the first graphite member 5a side is attached to the lid 1b with the adhesive 6. The SiC single crystal substrate 3 is pasted on the second graphite member 5b side with an adhesive 7 and the thermal expansion coefficient β at 2500 ° C. of the first graphite member 5a is 8 × 10 −6 [1 / K], the thermal expansion coefficient β of the second graphite member 5b at 2500 ° C. is 4 × 10 −6 [1 / K], and the thermal expansion coefficients β of the SiC single crystal substrate 3 and the SiC single crystal 4 are 6 × 10 −6 [ 1 / K], thermal stress analysis was performed by simulation.

図3(a)は、熱応力解析に用いた台座5、SiC単結晶基板3およびSiC単結晶4の断面模式図であり、図3(b)は台座5の熱応力の変位分布を示した図である。この図に示されるように、台座5に反りが発生しており、厚み方向に傾斜した分布となっていることが判る。この結果からも、台座5が反ることにより、SiC単結晶基板3およびSiC単結晶4への影響を防止できていないと言える。したがって、台座5を3層以上の多層構造にすることが有効である。また、SiC単結晶4内の転位密度を確認したところ種結晶であるSiC単結晶基板3よりも多い10000個/cm2であった。ただし、SiC単結晶基板3を台座5に直接貼り付けた構造であるため、SiC単結晶4の成長速度の低下は防止でき、上述したように台座5を3層構造とした場合と同様に、成長速度が0.5mm/hであった。 FIG. 3A is a schematic cross-sectional view of the pedestal 5, the SiC single crystal substrate 3 and the SiC single crystal 4 used for the thermal stress analysis, and FIG. 3B shows the thermal stress displacement distribution of the pedestal 5. FIG. As shown in this figure, it can be seen that the base 5 is warped and has a distribution inclined in the thickness direction. Also from this result, it can be said that the influence on the SiC single crystal substrate 3 and the SiC single crystal 4 cannot be prevented by warping the base 5. Therefore, it is effective to make the base 5 have a multilayer structure of three or more layers. Further, when the dislocation density in the SiC single crystal 4 was confirmed, it was 10000 / cm 2 which was larger than that of the SiC single crystal substrate 3 which is a seed crystal. However, since it is a structure in which the SiC single crystal substrate 3 is directly attached to the pedestal 5, it is possible to prevent a decrease in the growth rate of the SiC single crystal 4 and, as described above, as in the case where the pedestal 5 has a three-layer structure, The growth rate was 0.5 mm / h.

(第2実施形態)
本発明の第2実施形態について説明する。本実施形態のSiC単結晶の製造装置は、第1実施形態に対して第1〜第3黒鉛部材5a〜5cの熱膨張係数βの選定を変更したものであり、その他に関しては第1実施形態と同様であるため、異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment of the present invention will be described. The SiC single crystal manufacturing apparatus of the present embodiment is obtained by changing the selection of the thermal expansion coefficient β of the first to third graphite members 5a to 5c with respect to the first embodiment. Therefore, only different parts will be described.

第1実施形態では、例えば、第1、第3黒鉛部材5a、5cの2500℃における熱膨張係数βが8×10-6[1/K]、第2黒鉛部材5bの2500℃における熱膨張係数βを2×10-6[1/K]とした場合について説明した。これはSiC単結晶基板3やSiC単結晶4の2500℃における熱膨張係数βが6×10-6[1/K]と想定しているためであるが、1000℃にける熱膨張係数βが例えば5×10-6[1/K]になる場合もある。この場合、第1実施形態のように、2500℃における第1〜第3黒鉛部材5a〜5cの熱膨張係数βの平均値が6×10-6[1/K]となるようにしても、1000℃において第1〜第3黒鉛部材5a〜5cの熱膨張係数βの平均値がSiC単結晶基板3やSiC単結晶4の熱膨張係数βと同等の5×10-6[1/K]に一致するとは限らない。 In the first embodiment, for example, the thermal expansion coefficient β at 2500 ° C. of the first and third graphite members 5a and 5c is 8 × 10 −6 [1 / K], and the thermal expansion coefficient of the second graphite member 5b at 2500 ° C. The case where β is 2 × 10 −6 [1 / K] has been described. This is because the thermal expansion coefficient β at 2500 ° C. of the SiC single crystal substrate 3 and the SiC single crystal 4 is assumed to be 6 × 10 −6 [1 / K], but the thermal expansion coefficient β at 1000 ° C. is For example, it may be 5 × 10 −6 [1 / K]. In this case, as in the first embodiment, the average value of the thermal expansion coefficients β of the first to third graphite members 5a to 5c at 2500 ° C. may be 6 × 10 −6 [1 / K]. The average value of the thermal expansion coefficient β of the first to third graphite members 5a to 5c at 1000 ° C. is 5 × 10 −6 [1 / K] which is equivalent to the thermal expansion coefficient β of the SiC single crystal substrate 3 or the SiC single crystal 4. Does not necessarily match.

このため、本実施形態では、1000℃における熱膨張係数βも考慮して第1〜第3黒鉛部材5a〜5cを構成する黒鉛を選定している。具体的には、第1、第3黒鉛部材5a、5cを、1000℃における熱膨張係数βが7.5×10-6[1/K]、かつ、2500℃における熱膨張係数βが8×10-6[1/K]の黒鉛にて構成され、第2黒鉛部材5bを、1000℃における熱膨張係数βが1×10-6[1/K]、かつ、2500℃における熱膨張係数βが2×10-6[1/K]の黒鉛にて構成している。このような黒鉛とすることにより、第1〜第3黒鉛部材5a〜5cの熱膨張係数の平均値が1000℃のときに5×10-6[1/K]となり、2500℃のときに6×10-6[1/K]となるため、1000℃のときにも2500℃のときにもSiC単結晶基板3やSiC単結晶4の熱膨張係数βと同等の値となる。 For this reason, in this embodiment, the graphite which comprises the 1st-3rd graphite members 5a-5c is selected also considering the thermal expansion coefficient (beta) in 1000 degreeC. Specifically, the first and third graphite members 5a and 5c have a thermal expansion coefficient β at 1000 ° C. of 7.5 × 10 −6 [1 / K] and a thermal expansion coefficient β at 2500 ° C. of 8 ×. The second graphite member 5b is composed of 10 −6 [1 / K] graphite, and the thermal expansion coefficient β at 1000 ° C. is 1 × 10 −6 [1 / K], and the thermal expansion coefficient β at 2500 ° C. Is made of 2 × 10 −6 [1 / K] graphite. By using such graphite, the average value of the thermal expansion coefficient of the first to third graphite members 5a to 5c is 5 × 10 −6 [1 / K] when the temperature is 1000 ° C., and 6 when the average temperature is 2500 ° C. Since × 10 −6 [1 / K], the thermal expansion coefficient β of the SiC single crystal substrate 3 and the SiC single crystal 4 is equal to both at 1000 ° C. and 2500 ° C.

このように、2500℃のときだけでなく1000℃のときにも第1〜第3黒鉛部材5a〜5cの熱膨張係数βの平均値がSiC単結晶基板3やSiC単結晶4の熱膨張係数βと同等になるようにすることで、より顕著に第1実施形態に示した効果を得ることが可能となる。   Thus, not only at 2500 ° C. but also at 1000 ° C., the average value of the thermal expansion coefficient β of the first to third graphite members 5 a to 5 c is the thermal expansion coefficient of the SiC single crystal substrate 3 or the SiC single crystal 4. By making it equal to β, the effects shown in the first embodiment can be obtained more remarkably.

(第3実施形態)
本発明の第3実施形態について説明する。上記第1、第2実施形態では、昇華再結晶法を用いたSiC単結晶の製造装置について説明したが、本実施形態では、ガス供給法を用いたSiC単結晶の製造装置について説明する。なお、本実施形態で説明するSiC単結晶の製造装置の基本構造は第1実施形態のものとほぼ同様であるため、異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment of the present invention will be described. In the first and second embodiments, the SiC single crystal manufacturing apparatus using the sublimation recrystallization method has been described. In the present embodiment, an SiC single crystal manufacturing apparatus using the gas supply method will be described. The basic structure of the SiC single crystal manufacturing apparatus described in the present embodiment is substantially the same as that of the first embodiment, and only different parts will be described.

図4は、本実施形態にかかるSiC単結晶の製造装置を用いてSiC単結晶を成長させている様子を示した断面図である。この図に示されるように、黒鉛製るつぼ1のるつぼ本体1aの底面にガス供給通路1cが備えられており、このガス供給通路1cを通じて原料ガスが導入されるように構成されている。そして、蓋材1bとるつぼ本体の間に隙間が空けられており、この隙間を通じて原料ガスが排出されることにより、原料ガスが絶えずSiC単結晶基板3や成長したSiC単結晶4の成長表面に供給される構成とされている。   FIG. 4 is a cross-sectional view showing a state in which the SiC single crystal is grown using the SiC single crystal manufacturing apparatus according to the present embodiment. As shown in this figure, a gas supply passage 1c is provided on the bottom surface of a crucible body 1a of a graphite crucible 1, and a raw material gas is introduced through the gas supply passage 1c. A gap is formed between the lid 1b and the crucible body, and the source gas is continuously discharged onto the growth surface of the SiC single crystal substrate 3 or the grown SiC single crystal 4 by discharging the source gas through the gap. It is set as the structure supplied.

このようなガス供給法を用いたSiC単結晶の製造装置においても、蓋材1bに貼り付けられる台座5の構成を第1実施形態もしくは第2実施形態のような構成とすることにより、第1、第2実施形態と同様の効果を得ることが可能となる。   Also in the SiC single crystal manufacturing apparatus using such a gas supply method, the first base or the second embodiment has the same structure as that of the first embodiment or the second embodiment. It is possible to obtain the same effect as in the second embodiment.

(他の実施形態)
上記実施形態では、台座5を3層構造とする場合について説明したが、3層以上の多層構造であれば良い。この場合、台座5を構成する各層の熱膨張係数βの2500℃の平均値がSiC単結晶基板3やSiC単結晶4の2500℃における熱膨張係数βとほぼ同等になるようにすれば第1実施形態と同様の効果を得ることができる。さらに、台座5を構成する各層の熱膨張係数βの1000℃の平均値もSiC単結晶基板3やSiC単結晶4の1000℃における熱膨張係数βとほぼ同等になるようにすれば第2実施形態と同様の効果を得ることができる。
(Other embodiments)
In the above embodiment, the case where the pedestal 5 has a three-layer structure has been described, but a multilayer structure of three or more layers may be used. In this case, if the average value of 2500 ° C. of the thermal expansion coefficient β of each layer constituting the pedestal 5 is substantially equal to the thermal expansion coefficient β at 2500 ° C. of the SiC single crystal substrate 3 or the SiC single crystal 4, the first is achieved. The same effect as the embodiment can be obtained. Furthermore, if the average value of the thermal expansion coefficient β of each layer constituting the pedestal 5 at 1000 ° C. is made substantially equal to the thermal expansion coefficient β at 1000 ° C. of the SiC single crystal substrate 3 or the SiC single crystal 4, the second embodiment is carried out. The same effect as the form can be obtained.

また、上記各実施形態において、台座5を構成する各層の熱膨張係数βの一例を挙げたが、これらは単なる一例を挙げたに過ぎず、他の熱膨張係数βのものを選定しても構わない。この場合、各層の1000℃もしくは2500℃の熱膨張係数βの平均値がSiC単結晶基板3やSiC単結晶4の1000℃もしくは2500℃の熱膨張係数βと同等になるのが最も良いが、必ずしも完全に同等になる必要は無く、少なくとも各層の個々の熱膨張係数βに比べて他の層の熱膨張係数βと平均化されたときの熱膨張係数βの平均値の方がSiC単結晶基板3やSiC単結晶4の熱膨張係数βに近づいていれば、上記各実施形態と比べて効果は小さくなるものの、上記効果を得ることができる。   In each of the above embodiments, an example of the thermal expansion coefficient β of each layer constituting the pedestal 5 has been described. However, these are merely examples, and other thermal expansion coefficients β may be selected. I do not care. In this case, it is best that the average value of the thermal expansion coefficient β of 1000 ° C. or 2500 ° C. of each layer is equal to the thermal expansion coefficient β of 1000 ° C. or 2500 ° C. of the SiC single crystal substrate 3 or SiC single crystal 4. It is not necessarily required to be completely equivalent, and at least the average value of the thermal expansion coefficient β when averaged with the thermal expansion coefficient β of the other layers is higher than the individual thermal expansion coefficient β of each layer. If the thermal expansion coefficient β of the substrate 3 or the SiC single crystal 4 is approached, the above effect can be obtained although the effect is reduced as compared with the above embodiments.

また、上記第2実施形態では、1000℃や2500℃での第1〜第3の黒鉛部材5a〜5cの熱膨張係数βの平均値がこれら第1〜第3の黒鉛部材5a〜5cそれぞれの1000℃や2500℃での熱膨張係数βよりも炭化珪素基板3の1000℃や2500℃での熱膨張係数βに近づくようにした例を挙げた。しかしながら、これらは単なる一例であり、少なくとも、第1〜第3の黒鉛部材5a〜5cのそれぞれの1000℃以下の熱膨張係数βの平均値が第1〜第3の黒鉛部材5a〜5cそれぞれの1000℃以下の熱膨張係数βよりも炭化珪素基板3の1000℃以下の熱膨張係数βに近づけられており、かつ、第1〜第3の黒鉛部材5a〜5cのそれぞれの1000℃を超える温度の熱膨張係数βの平均値が第1〜第3の黒鉛部材5a〜5cそれぞれの1000℃を超える温度の熱膨張係数βよりも炭化珪素基板3の1000℃を超える温度の熱膨張係数βに近づけられていれば、上記のような効果を得ることができる。   Moreover, in the said 2nd Embodiment, the average value of the thermal expansion coefficient (beta) of the 1st-3rd graphite members 5a-5c in 1000 degreeC or 2500 degreeC is each of these 1st-3rd graphite members 5a-5c. An example was given in which the thermal expansion coefficient β at 1000 ° C. or 2500 ° C. of the silicon carbide substrate 3 was made closer to the thermal expansion coefficient β at 1000 ° C. or 2500 ° C. However, these are merely examples, and at least the average value of the thermal expansion coefficient β of 1000 ° C. or less of each of the first to third graphite members 5a to 5c is that of each of the first to third graphite members 5a to 5c. The temperature that is closer to the thermal expansion coefficient β of 1000 ° C. or lower of the silicon carbide substrate 3 than the thermal expansion coefficient β of 1000 ° C. or lower, and exceeds the respective 1000 ° C. of the first to third graphite members 5a to 5c. The thermal expansion coefficient β of the silicon carbide substrate 3 at a temperature exceeding 1000 ° C. is higher than the thermal expansion coefficient β at a temperature exceeding 1000 ° C. of each of the first to third graphite members 5a to 5c. If they are close to each other, the above effects can be obtained.

本発明の第1実施形態にかかるSiC単結晶の製造装置を用いてSiC単結晶を成長させている様子を示した断面図である。It is sectional drawing which showed a mode that the SiC single crystal was grown using the SiC single crystal manufacturing apparatus concerning 1st Embodiment of this invention. (a)は、熱応力解析に用いた台座5、SiC単結晶基板3およびSiC単結晶4の断面模式図であり、(b)は台座5中の熱応力の変位分布を示した図である。(A) is the cross-sectional schematic diagram of the base 5, the SiC single crystal substrate 3, and the SiC single crystal 4 which were used for the thermal stress analysis, (b) is the figure which showed the displacement distribution of the thermal stress in the base 5. . (a)は、熱応力解析に用いた台座5、SiC単結晶基板3およびSiC単結晶4の断面模式図であり、(b)は台座5中の熱応力の変位分布を示した図である。(A) is the cross-sectional schematic diagram of the base 5, the SiC single crystal substrate 3, and the SiC single crystal 4 which were used for the thermal stress analysis, (b) is the figure which showed the displacement distribution of the thermal stress in the base 5. . 本発明の第2実施形態にかかるSiC単結晶の製造装置を用いてSiC単結晶を成長させている様子を示した断面図である。It is sectional drawing which showed a mode that the SiC single crystal was grown using the manufacturing apparatus of the SiC single crystal concerning 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…黒鉛製るつぼ、1a…本体、1b…蓋材、1c…原料ガス供給通路、2…SiC原料粉末、3…単結晶基板、4…SiC単結晶、5…台座、5a〜5c…第1〜第3黒鉛部材、5d、5e…接着剤、6、7…接着剤   DESCRIPTION OF SYMBOLS 1 ... Graphite crucible, 1a ... Main body, 1b ... Cover material, 1c ... Raw material gas supply path, 2 ... SiC raw material powder, 3 ... Single crystal substrate, 4 ... SiC single crystal, 5 ... Base, 5a-5c ... 1st -3rd graphite member, 5d, 5e ... adhesive, 6, 7 ... adhesive

Claims (11)

容器(1)内に、種結晶となる炭化珪素単結晶基板(3)を配置し、該炭化珪素単結晶基板(3)の表面に炭化珪素の原料ガスを供給することにより前記炭化珪素単結晶基板(3)上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造装置において、
前記容器(1)は、
一面が開口した中空形状の本体(1a)と、
前記本体(1a)の前記開口する一面側に配置される蓋材(1b)と、
前記炭化珪素単結晶基板(3)が配置される台座(5)とを備え、
前記蓋材(1b)と前記台座(5)とが別部材で構成され、前記台座(5)が3層以上からなる複数層の黒鉛部材(5a〜5c)にて構成されていると共に、前記複数層の黒鉛部材(5a〜5c)のそれぞれの熱膨張係数βの平均値が該複数層の黒鉛部材(5a〜5c)それぞれの熱膨張係数βよりも前記炭化珪素基板(3)の熱膨張係数βに近づけられていることを特徴とする炭化珪素単結晶の製造装置。
A silicon carbide single crystal substrate (3) serving as a seed crystal is placed in a container (1), and a silicon carbide source gas is supplied to the surface of the silicon carbide single crystal substrate (3) to thereby form the silicon carbide single crystal. In a silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal (4) on a substrate (3),
The container (1)
A hollow body (1a) having an open surface;
A lid (1b) disposed on the one surface side of the main body (1a) to be opened;
A pedestal (5) on which the silicon carbide single crystal substrate (3) is disposed,
The lid member (1b) and the pedestal (5) are composed of separate members, and the pedestal (5) is composed of multiple layers of graphite members (5a to 5c) composed of three or more layers, The thermal expansion of the silicon carbide substrate (3) is such that the average value of the thermal expansion coefficient β of each of the multiple layers of graphite members (5a to 5c) is greater than the thermal expansion coefficient β of each of the multiple layers of graphite members (5a to 5c). An apparatus for producing a silicon carbide single crystal characterized by being close to a coefficient β.
前記複数層の黒鉛部材(5a〜5c)のそれぞれの1000℃を超える温度の熱膨張係数βの平均値が該複数層の黒鉛部材(5a〜5c)それぞれの1000℃を超える温度の熱膨張係数βよりも前記炭化珪素基板(3)の1000℃を超える温度の熱膨張係数βに近づけられていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。 The average thermal expansion coefficient β of each of the multiple-layer graphite members (5a to 5c) at a temperature exceeding 1000 ° C. is a thermal expansion coefficient at a temperature exceeding 1000 ° C. for each of the multiple-layer graphite members (5a to 5c). The apparatus for producing a silicon carbide single crystal according to claim 1, wherein the silicon carbide substrate (3) is closer to a thermal expansion coefficient β of a temperature exceeding 1000 ° C than β. 前記台座(5)を構成する前記複数層の黒鉛部材(5a〜5c)のそれぞれの2500℃における熱膨張係数βの平均値が該複数層の黒鉛部材(5a〜5c)それぞれの2500℃における熱膨張係数βよりも前記炭化珪素基板(3)の2500℃における熱膨張係数βに近づけられていることを特徴とする請求項2に記載の炭化珪素単結晶の製造装置。 The average value of the thermal expansion coefficient β at 2500 ° C. of each of the plurality of layers of graphite members (5a to 5c) constituting the pedestal (5) is the heat at 2500 ° C. of each of the plurality of layers of graphite members (5a to 5c). The apparatus for producing a silicon carbide single crystal according to claim 2, wherein the thermal expansion coefficient β of the silicon carbide substrate (3) at 2500 ° C is made closer to the expansion coefficient β. 前記複数層の黒鉛部材(5a〜5c)のそれぞれの1000℃以下の熱膨張係数βの平均値が該複数層の黒鉛部材(5a〜5c)それぞれの1000℃以下の熱膨張係数βよりも前記炭化珪素基板(3)の1000℃以下の熱膨張係数βに近づけられており、かつ、前記複数層の黒鉛部材(5a〜5c)のそれぞれの1000℃を超える温度の熱膨張係数βの平均値が該複数層の黒鉛部材(5a〜5c)それぞれの1000℃を超える温度の熱膨張係数βよりも前記炭化珪素基板(3)の1000℃を超える温度の熱膨張係数βに近づけられていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。 The average value of the thermal expansion coefficient β of 1000 ° C. or less of each of the multiple-layer graphite members (5a to 5c) is more than the thermal expansion coefficient β of 1000 ° C. or less of each of the multiple-layer graphite members (5a to 5c). Average value of thermal expansion coefficient β at a temperature exceeding 1000 ° C. of each of the multiple-layer graphite members (5a to 5c), which is close to the thermal expansion coefficient β of 1000 ° C. or less of the silicon carbide substrate (3). Is closer to the thermal expansion coefficient β of the silicon carbide substrate (3) than 1000 ° C. than the thermal expansion coefficient β of the temperature exceeding 1000 ° C. of each of the multiple-layer graphite members (5a to 5c). The apparatus for producing a silicon carbide single crystal according to claim 1. 前記複数層の黒鉛部材(5a〜5c)のそれぞれの1000℃の熱膨張係数βの平均値が該複数層の黒鉛部材(5a〜5c)それぞれの1000℃の熱膨張係数βよりも前記炭化珪素基板(3)の1000℃の熱膨張係数βに近づけられており、かつ、前記複数層の黒鉛部材(5a〜5c)のそれぞれの2500℃の熱膨張係数βの平均値が該複数層の黒鉛部材(5a〜5c)それぞれの2500℃の熱膨張係数βよりも前記炭化珪素基板(3)の2500℃の熱膨張係数βに近づけられていることを特徴とする請求項4に記載の炭化珪素単結晶の製造装置。 The average value of the thermal expansion coefficient β at 1000 ° C. of each of the multiple layers of graphite members (5a to 5c) is greater than the thermal expansion coefficient β of 1000 ° C. of each of the multiple layers of graphite members (5a to 5c). The thermal expansion coefficient β of 1000 ° C. of the substrate (3) is approximated, and the average value of the thermal expansion coefficient β of 2500 ° C. of each of the multilayer graphite members (5a to 5c) is the multilayer graphite. 5. The silicon carbide according to claim 4, wherein a thermal expansion coefficient β of 2500 ° C. of the silicon carbide substrate (3) is closer to a thermal expansion coefficient β of 2500 ° C. of each of the members (5 a to 5 c). Single crystal manufacturing equipment. 前記複数層の黒鉛部材(5a〜5c)のそれぞれの熱膨張係数βの平均値が前記炭化珪素基板(3)の熱膨張係数βと同等であることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。
2. The carbonization according to claim 1, wherein an average value of the thermal expansion coefficients β of the plurality of layers of graphite members (5 a to 5 c) is equal to the thermal expansion coefficient β of the silicon carbide substrate (3). Silicon single crystal manufacturing equipment.
前記台座(5)を構成する前記複数層の黒鉛部材(5a〜5c)のそれぞれの2500℃における熱膨張係数βの平均値が前記炭化珪素基板(3)の2500℃における熱膨張係数βと同等であることを特徴とする請求項2に記載の炭化珪素単結晶の製造装置。 The average value of the thermal expansion coefficient β at 2500 ° C. of each of the multiple-layer graphite members (5a to 5c) constituting the pedestal (5) is equivalent to the thermal expansion coefficient β at 2500 ° C. of the silicon carbide substrate (3). The apparatus for producing a silicon carbide single crystal according to claim 2, wherein: 前記複数層の黒鉛部材(5a〜5c)のそれぞれの1000℃の熱膨張係数βの平均値が前記炭化珪素基板(3)の1000℃の熱膨張係数βと同等であり、かつ、前記複数層の黒鉛部材(5a〜5c)のそれぞれの2500℃の熱膨張係数βの平均値が前記炭化珪素基板(3)の2500℃の熱膨張係数βと同等であることを特徴とする請求項7に記載の炭化珪素単結晶の製造装置。 The average value of the thermal expansion coefficient β at 1000 ° C. of each of the multiple layers of graphite members (5a to 5c) is equivalent to the thermal expansion coefficient β of 1000 ° C. of the silicon carbide substrate (3), and the multiple layers The average value of the thermal expansion coefficient β at 2500 ° C. of each of the graphite members (5a to 5c) is equal to the thermal expansion coefficient β at 2500 ° C. of the silicon carbide substrate (3). The manufacturing apparatus of the silicon carbide single crystal of description. 前記複数層の黒鉛部材(5a〜5c)はカーボン粉末と高分子材料、有機溶媒を原料とした接着剤(5d、5e)にて貼り合わされていることを特徴とする請求項1ないし8のいずれか1つに記載の炭化珪素単結晶の製造装置。 The multilayered graphite member (5a to 5c) is bonded with an adhesive (5d, 5e) using carbon powder, a polymer material, and an organic solvent as raw materials. The manufacturing apparatus of the silicon carbide single crystal as described in any one. 前記高分子材料がフェノール樹脂であり、前記有機溶媒がフェノールとエチルアルコールであることを特徴とする請求項9に記載の炭化珪素単結晶の製造装置。 The apparatus for producing a silicon carbide single crystal according to claim 9, wherein the polymer material is a phenol resin, and the organic solvent is phenol and ethyl alcohol. 前記接着剤(5d、5e)の厚みが0.001〜0.1mmであることを特徴とする請求項9または10に記載の炭化珪素単結晶の製造装置。 The thickness of the said adhesive agent (5d, 5e) is 0.001-0.1 mm, The manufacturing apparatus of the silicon carbide single crystal of Claim 9 or 10 characterized by the above-mentioned.
JP2007294164A 2007-11-13 2007-11-13 Silicon carbide single crystal manufacturing equipment Active JP4877204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294164A JP4877204B2 (en) 2007-11-13 2007-11-13 Silicon carbide single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294164A JP4877204B2 (en) 2007-11-13 2007-11-13 Silicon carbide single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2009120419A JP2009120419A (en) 2009-06-04
JP4877204B2 true JP4877204B2 (en) 2012-02-15

Family

ID=40813002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294164A Active JP4877204B2 (en) 2007-11-13 2007-11-13 Silicon carbide single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4877204B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087375B2 (en) * 2007-11-28 2012-12-05 株式会社ブリヂストン Method for manufacturing silicon carbide semiconductor device
JP5398492B2 (en) * 2009-11-27 2014-01-29 昭和電工株式会社 Method for producing silicon carbide single crystal
JP5346788B2 (en) * 2009-11-30 2013-11-20 昭和電工株式会社 Method for producing silicon carbide single crystal
DE112017000725T5 (en) 2016-02-09 2018-10-31 Sumitomo Electric Industries, Ltd. Silicon carbide single crystal substrate
JP6550198B1 (en) * 2019-02-28 2019-07-24 株式会社アドマップ SiC film structure
JP2022103720A (en) 2020-12-28 2022-07-08 昭和電工株式会社 Silicon carbide single crystal manufacturing apparatus and method of manufacturing silicon carbide single crystal
CN115233301B (en) * 2022-09-21 2022-12-02 青禾晶元(天津)半导体材料有限公司 Porous silicon carbide ceramic crystal support and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224755B2 (en) * 2001-10-16 2009-02-18 株式会社デンソー Seed crystal fixation method
JP4321107B2 (en) * 2003-05-13 2009-08-26 株式会社デンソー SiC single crystal manufacturing equipment
JP4556634B2 (en) * 2004-11-18 2010-10-06 パナソニック株式会社 Seed crystal fixing part and seed crystal fixing method

Also Published As

Publication number Publication date
JP2009120419A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP4877204B2 (en) Silicon carbide single crystal manufacturing equipment
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
US20120234231A1 (en) Process for producing silicon carbide single crystals
JP2004269297A (en) SiC SINGLE CRYSTAL AND ITS MANUFACTURING METHOD
JP4089073B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
WO2013115272A1 (en) Seed crystal holder, crystal growing device, and crystal growing method
JP4556634B2 (en) Seed crystal fixing part and seed crystal fixing method
JP2018140884A (en) Single crystal production apparatus, and single crystal production method
US9777401B2 (en) Method for producing single crystal
US20140216348A1 (en) Apparatus for fabricating ingot
JP4844470B2 (en) Seed crystal fixation method
JP4967925B2 (en) Silicon carbide single crystal manufacturing equipment
US20140158042A1 (en) Apparatus for fabricating ingot
JP4238450B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2004338971A (en) METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
WO2012039257A1 (en) Apparatus for producing single crystals
WO2010125674A1 (en) METHOD FOR FABRICATING SiC SUBSTRATE
JP2011132079A (en) Aluminum nitride single crystal, method and apparatus for manufacturing the same
US20140283735A1 (en) Method for growth of ingot
KR20130014274A (en) Apparatus and method for fabricating ingot
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2009256193A (en) Method for producing silicon carbide single crystal
JP2012020893A (en) Apparatus for manufacturing silicon carbide single crystal, and method for manufacturing silicon carbide single crystal
JP5541269B2 (en) Silicon carbide single crystal manufacturing equipment
JP2010180117A (en) Apparatus for manufacturing silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R151 Written notification of patent or utility model registration

Ref document number: 4877204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250