JP4876006B2 - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP4876006B2
JP4876006B2 JP2007081415A JP2007081415A JP4876006B2 JP 4876006 B2 JP4876006 B2 JP 4876006B2 JP 2007081415 A JP2007081415 A JP 2007081415A JP 2007081415 A JP2007081415 A JP 2007081415A JP 4876006 B2 JP4876006 B2 JP 4876006B2
Authority
JP
Japan
Prior art keywords
water
filter
solid
liquid separation
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007081415A
Other languages
Japanese (ja)
Other versions
JP2008238032A (en
Inventor
盛雄 今宮
誠 水野
孝次 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Nippon Steel Corp
Original Assignee
Kurita Water Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Nippon Steel Corp filed Critical Kurita Water Industries Ltd
Priority to JP2007081415A priority Critical patent/JP4876006B2/en
Publication of JP2008238032A publication Critical patent/JP2008238032A/en
Application granted granted Critical
Publication of JP4876006B2 publication Critical patent/JP4876006B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtering Materials (AREA)
  • Separation Of Particles Using Liquids (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は、製鉄高炉、製鋼転炉、電気炉、キュポラ、ダスト溶解炉、非鉄金属精錬炉及びスクラップ溶解炉等の湿式集塵機を有するプロセスにおける排ガス集塵水を処理する系統において、効率良く排水を循環回収する水処理システムに関する。   The present invention is a system for treating exhaust gas dust collection water in a process having a wet dust collector such as an iron blast furnace, a steel making converter, an electric furnace, a cupola, a dust melting furnace, a non-ferrous metal refining furnace, a scrap melting furnace, etc. The present invention relates to a water treatment system for circulating recovery.

一般的に、排ガスの湿式集塵機から発生する固形分濃度(以下、SS濃度と言う)の高い集塵水の処理系統(以下、集塵系と言う)は、図1に示すように、湿式集塵機1、集塵水処理設備であるシックナー2、処理水槽3及び集塵水ポンプ4で構成される。シックナーとは、排水(集塵戻水)中の固形分と上澄水とを固液分離処理する沈澱槽である。また、当該集塵系は、1つのクローズドされた水循環回収システムであるが、蒸発及び飛散によって失われる分(水量;γ1)を適宜補給することにより、水量バランスが組まれている。   In general, a processing system (hereinafter referred to as a dust collection system) of dust collection water having a high solid content concentration (hereinafter referred to as SS concentration) generated from a wet dust collector of exhaust gas is a wet dust collector as shown in FIG. 1, a thickener 2 that is a dust collection water treatment facility, a treatment water tank 3, and a dust collection water pump 4. Thickener is a sedimentation tank that performs solid-liquid separation processing of solid content and supernatant water in drainage (dust collection return water). In addition, the dust collection system is a closed water circulation recovery system, but the water amount balance is established by appropriately replenishing the amount lost by evaporation and scattering (water amount; γ1).

一方、汚水供給系6からSS濃度の高い排水(水量;α)をシックナー2に受け入れて処理する場合もある。この場合、前述したように、集塵系においては水量バランスが組まれているため、αがγ1よりも多い場合には、受け入れ後の処理水はそのまま当該系から余剰水として系外5へ排出させる必要が生じる。また、汚水供給系6では、蒸発及び飛散によって失われる分(水量;γ2)とは別にシックナー2へ受け入れた分を余分に補給しなければならない。つまり、集塵系ではαがγ1より大きければ、α−γ1の余剰水が常時発生し、汚水供給系6では引き抜かれたαを従来のγ2に加えて常時補給することになる。   On the other hand, wastewater (water amount; α) having a high SS concentration from the sewage supply system 6 may be received by the thickener 2 for treatment. In this case, as described above, since the water balance is established in the dust collection system, if α is larger than γ1, the treated water after acceptance is discharged from the system as surplus water to the outside of the system 5 as it is. Need to be made. Further, in the sewage supply system 6, the amount received by the thickener 2 must be replenished separately from the amount lost by evaporation and scattering (water amount; γ2). In other words, if α is larger than γ1 in the dust collection system, α-γ1 surplus water is always generated, and the sewage supply system 6 always supplies α in addition to the conventional γ2.

例えば、図2のように製鋼転炉の排水処理は、転炉湿式集塵機6、転炉シックナー7、処理水槽8、集塵水ポンプ9から構成される集塵系Aとブロワー及びポンプ類11、循環水処理設備である冷却塔12、処理水槽13及び冷却洗浄水ポンプ14より構成される転炉循環水系統Bがある。尚、転炉循環水系統(以下、循環系Bと言う)は、給水SS濃度と同等濃度の排水が戻ってくる排出系aと給水SS濃度より高い濃度の排水が戻ってくる排出系bを有する。よって、排出系aの排水はそのまま冷却塔12で冷却処理され、処理水槽13に回収することにより、冷却洗浄水ポンプ14を用いて再循環利用できるが、排出系bの排水は給水SS濃度以下まで固形分を除去しないと冷却塔12で冷却処理され、処理水槽13に回収することができない。   For example, as shown in FIG. 2, the wastewater treatment of the steelmaking converter is performed by the dust collection system A, the blower and the pumps 11, which are composed of the converter wet dust collector 6, the converter thickener 7, the treatment water tank 8, and the dust collection water pump 9. There is a converter circulating water system B composed of a cooling tower 12, which is a circulating water treatment facility, a treated water tank 13, and a cooling washing water pump. The converter circulation water system (hereinafter referred to as circulation system B) includes a discharge system a in which drainage with a concentration equal to the feedwater SS concentration returns and a discharge system b in which drainage with a concentration higher than the feedwater SS concentration returns. Have. Therefore, the waste water in the discharge system a is cooled as it is in the cooling tower 12 and recovered in the treated water tank 13, so that it can be recycled by using the cooling washing water pump 14, but the waste water in the discharge system b is less than the feed water SS concentration. If the solid content is not removed, the cooling tower 12 performs the cooling process and cannot be recovered in the treated water tank 13.

これまで、排出系bから発生するSS濃度の高い排水は、集塵系Aにおける転炉シックナー7に送水し、固液分離処理していた。このため、集塵系Aはクローズドされた水循環システムであることから、排出系bからSS濃度の高い排水(水量;α)を受け入れた場合は、図1でも説明したように、その処理水がそのまま集塵系Aから余剰水(水量;α−γ1)として転炉系外10へ排出していた。また、循環系Bにおいては、循環回収できなかった排水の水量分(水量;γ2+α)を処理水槽13に余計に補給していた。   Until now, wastewater with a high SS concentration generated from the discharge system b has been sent to the converter thickener 7 in the dust collection system A for solid-liquid separation treatment. For this reason, since the dust collection system A is a closed water circulation system, when the waste water (water amount; α) having a high SS concentration is received from the discharge system b, the treated water is treated as described in FIG. It was discharged as it was from the dust collection system A as surplus water (water amount: α-γ1) to the outside of the converter system 10. In the circulation system B, the treated water tank 13 was replenished with an amount of water (water amount; γ2 + α) of wastewater that could not be circulated and collected.

以上より、図1及び図2のような設備システム構成からなる転炉各水処理系統においては、効率的な排水の循環回収ができていなかった。   As described above, in each converter water treatment system having the equipment system configuration as shown in FIG. 1 and FIG.

特開2006−231115号公報JP 2006-231115 A

前述の集塵系A及び循環系Bにおける効率的な排水の循環回収としては、図3に示すような循環回収方案が一般的であった。すなわち、まず、排出系bから発生するSS濃度の高い排水を回収するために、当該排水が原水槽16、沈澱槽17及び処理水槽18で構成される凝集沈殿設備15で1次沈澱処理される。次に、その沈澱処理水がろ過ポンプ19を用いて砂ろ過機20へ圧送、ろ過されて、冷却洗浄水として再利用可能なSS濃度の低い処理水にまで2次ろ過処理される方案があった。   As an efficient wastewater circulation recovery in the above-described dust collection system A and circulation system B, a circulation recovery method as shown in FIG. 3 has been common. That is, first, in order to collect wastewater having a high SS concentration generated from the discharge system b, the wastewater is subjected to primary precipitation treatment in a coagulation sedimentation facility 15 including a raw water tank 16, a precipitation tank 17, and a treated water tank 18. . Next, there is a method in which the precipitated treated water is pumped and filtered to the sand filter 20 using the filtration pump 19 and subjected to secondary filtration treatment to treated water with low SS concentration that can be reused as cooling washing water. It was.

上記方案によれば、排出系bから発生するSS濃度の高い排水を処理水槽13へ回収することができ、集塵系A及び循環系Bにおける排水の循環回収ができる。   According to the above method, wastewater having a high SS concentration generated from the discharge system b can be collected into the treated water tank 13, and the wastewater can be circulated and collected in the dust collection system A and the circulation system B.

ここで、図3をもとに本発明が解決しようとする課題について説明する。   Here, the problem to be solved by the present invention will be described with reference to FIG.

図3に示す水処理システムでは、循環系Bにおける余分な補給水(水量;α)の削減が図れるものの、2次ろ過処理として砂ろ過機20を採用しているため、多量の洗浄汚水が発生する。なぜなら、当該ろ過機20は、ろ材間に補足した固形分の詰り解消を目的に、転炉系外21を水源とした多量の水にて定期的にろ過機20内を洗浄しなければならないからである。その結果、砂ろ過機20からは凝集沈殿対象となるSS濃度の高い多量の洗浄汚水(水量;β1)が発生することとなる。   In the water treatment system shown in FIG. 3, although extra makeup water (water amount; α) in the circulation system B can be reduced, the sand filter 20 is used as the secondary filtration treatment, so a large amount of washing sewage is generated. To do. This is because the filter 20 must periodically clean the inside of the filter 20 with a large amount of water using the outside of the converter system 21 as a water source for the purpose of eliminating clogging of solids captured between the filter media. It is. As a result, the sand filter 20 generates a large amount of washed sewage (water amount; β1) having a high SS concentration, which is a target for aggregation and precipitation.

結局、当該汚水は転炉シックナー7に受け入れられて処理され、その処理水(水量;β1)はそのまま集塵系Aから余剰水として転炉系外10へ排出されることになり、集塵系Aにおいて効率的な排水循環回収ができない問題が残る。   Eventually, the sewage is received and processed by the converter thickener 7, and the treated water (water amount; β1) is discharged from the dust collection system A as surplus water to the outside of the converter system 10 as it is. In A, there remains a problem that efficient drainage circulation recovery cannot be performed.

つまり、図3に示す水処理システムでは、循環系Bにおける排出系bから集塵系Aにおける転炉シックナー7へ受け入れられて処理される汚水が無くなり(水量;α→0)、循環系Bにおける補給水量は本来所要の補給水量(蒸発等によって失われた水量を補足する量)にまで削減された(水量;γ2+α→γ2)。しかしながら、当該汚水のろ過処理過程で発生した多量の洗浄汚水(水量;β1)を集塵系Aにおける転炉シックナー7へ受け入れて処理するため、集塵系Aから多量の余剰水(水量;β1−γ1)が転炉系外10へ排出される問題は解消されない。   That is, in the water treatment system shown in FIG. 3, there is no sewage received from the discharge system b in the circulation system B to the converter thickener 7 in the dust collection system A and processed (water amount; α → 0). The amount of make-up water was reduced to the required amount of make-up water (the amount supplementing the amount of water lost due to evaporation etc.) (water amount; γ2 + α → γ2). However, since a large amount of washed sewage (water amount; β1) generated in the filtration process of the sewage is received and processed by the converter thickener 7 in the dust collection system A, a large amount of excess water (water amount; β1) is collected from the dust collection system A. The problem that -γ1) is discharged outside the converter system 10 is not solved.

また、砂ろ過機20を採用した場合には、ろ過機20を洗浄する水を貯留する洗浄水槽、洗浄するためのポンプ及びブロワー、洗浄排水を受入れる排水槽等付帯設備が必要となる。そのため、設備コストの増大のみならず、設備占有スペースも大きくなることから、狭隘な水処理場内に設置する際には、スペース的課題も抱えることになる。   In addition, when the sand filter 20 is employed, additional facilities such as a washing water tank for storing water for washing the filter 20, a pump and blower for washing, and a drain tank for receiving washing wastewater are required. For this reason, not only the equipment cost increases, but also the equipment occupying space becomes large. Therefore, when it is installed in a narrow water treatment plant, there is a space problem.

そこで、集塵系Aから余剰水を極力転炉系外10へ排出させること無く、循環系Bから発生するSS濃度の高い排水を回収する省スペースで安価な水処理設備が要望されていた。   Accordingly, there has been a demand for a space-saving and inexpensive water treatment facility that collects wastewater with a high SS concentration generated from the circulation system B without discharging excess water from the dust collection system A to the outside of the converter system 10 as much as possible.

本発明である効率的で省スペースかつ安価な排水の循環回収システム(水処理システム)は、湿式集塵機を有する排ガス集塵水の処理系統における種々の問題に鑑み考案されたものである。   The efficient, space-saving and inexpensive wastewater circulation and recovery system (water treatment system) according to the present invention has been devised in view of various problems in the exhaust gas dust collection system having a wet dust collector.

本発明は、前記問題点に鑑みなされたものであり、その要旨とするところは、
(1) 湿式集塵機、前記湿式集塵機からの集塵排水に対して固液分離処理を行う固液分離手段前記固液分離手段で固形分が分離された処理水を前記湿式集塵機に供給する供給手段を有する集塵系と、循環水処理装置、前記循環水処理装置からの排水に対して固液分離処理を行うろ過機を有する固液分離処理手段、前記固液分離処理手段で固形分が分離された処理水を前記循環水処理装置に供給する供給手段を有する循環系と、前記循環系のろ過機からろ材洗浄水を前記集塵系の固液分離手段に供給する供給手段とを有し、前記ろ過機は、浮上性ろ材を用いて固液分離処理を行うことを特徴とする水処理システム。
The present invention has been made in view of the above problems, and the gist thereof is as follows.
(1) Wet dust collector, for supplying said row cormorants solid-liquid separation means to the solid-liquid separation treatment with respect to the dust collecting waste water from the wet dust collector, the treated water solids separated in the solid-liquid separation means to the wet dust collector A dust collection system having a supply means, a circulating water treatment device, a solid-liquid separation treatment means having a filter for performing solid-liquid separation treatment on the waste water from the circulation water treatment device , and a solid content in the solid-liquid separation treatment means supply There supplying a circulation system having a supply means for supplying treated water separated in the circulating water treatment apparatus, a filtration media cleansing dirty water from the filtration unit of the circulatory system, solid-liquid separation means of the dust collecting system a means, the said filtration unit, the water treatment system and carrying out solid-liquid separation process using the flying characteristics filter medium.

(2) 前記集塵系の固液分離手段は、前記集塵排水に対して固液分離処理を行うシックナーを有しており、前記循環系のろ過機からのろ材洗浄汚水を集塵系に供給する供給手段は、前記ろ材洗浄水を前記シックナーに供給することを特徴とする上記(1)に記載の水処理システム。 (2) The dust-collecting solid-liquid separation means has a thickener that performs solid-liquid separation processing on the dust-collecting wastewater, and the filter medium cleaning sewage from the circulating filter is used as the dust collecting system. supply means for supplying the water treatment system according to the above (1), wherein the supplying the filter material washing dirty water to the thickener.

(3) 前記循環系の固液分離処理手段は、前記固形分を含む排水に対して第1の固液分離処理を行う凝集沈殿設備と、前記凝集沈殿設備からの排水に対して第2の固液分離処理を行う前記ろ過機とを有しており、前記凝集沈殿設備に供給される排水の固形分濃度が、700mg/L以上8000mg/L以下であり、前記ろ過機に供給される排水の固形分濃度が400mg/L以下であることを特徴とする上記(1)又は(2)に記載の水処理システム。 (3) The solid-liquid separation processing means of the circulation system includes a coagulation sedimentation facility that performs a first solid-liquid separation process on the wastewater containing the solid content, and a second coagulation facility for the wastewater from the aggregation precipitation facility. Waste water supplied to the filter, the solid content concentration of waste water supplied to the coagulation sedimentation facility is 700 mg / L or more and 8000 mg / L or less. The solid content concentration of the water treatment system according to (1) or (2), wherein the solid content concentration is 400 mg / L or less.

(4) 前記ろ過機に供給される排水の固形分濃度が、100mg/L〜400mg/Lであることを特徴とする上記(3)に記載の水処理システム。   (4) The water treatment system according to (3) above, wherein a solid content concentration of waste water supplied to the filter is 100 mg / L to 400 mg / L.

(5) 前記ろ材が、球状又は円柱状であることを特徴とする上記(1)から(4)のいずれかに記載の水処理システム。   (5) The water treatment system according to any one of (1) to (4), wherein the filter medium is spherical or cylindrical.

(6) 前記ろ材の比重が、1.0よりも小さいことを特徴とする上記(1)から(5)のいずれかに記載の水処理システム。   (6) The water treatment system according to any one of (1) to (5) above, wherein a specific gravity of the filter medium is smaller than 1.0.

(7) 前記ろ材の大きさが、0.1mm〜1.5mmであることを特徴とする上記(1)から(6)のいずれかに記載の水処理システム。   (7) The water treatment system according to any one of (1) to (6), wherein the size of the filter medium is 0.1 mm to 1.5 mm.

(8) 前記ろ過機に供給される排水が、pH6〜12であることを特徴とする上記(1)から(7)のいずれかに記載の水処理システム。   (8) The water treatment system according to any one of (1) to (7), wherein the wastewater supplied to the filter has a pH of 6 to 12.

本発明は、湿式集塵機を有する集塵系と、固形分を含む排水に対して固液分離処理を行うろ過機を含む処理手段とを有し、ろ過機の洗浄水を集塵系に供給する水処理システムにおいて、浮上性ろ材を用いたろ過機を採用することにより、より効率的で省スペースかつ安価な排水循環回収システムを提供でき、集塵系外への排出水及び集塵系への補給水の削減が効果的に行える。   The present invention has a dust collection system having a wet dust collector, and a processing means including a filter that performs solid-liquid separation processing on waste water containing solids, and supplies washing water of the filter to the dust collection system. By adopting a filter using levitating filter media in the water treatment system, it is possible to provide a more efficient, space-saving and inexpensive drainage circulation collection system, and to discharge water to the dust collection system and to the dust collection system. Reduction of makeup water can be done effectively.

以下、本発明を実施するための最良の形態について、まず、図4を用いて概略説明する。   In the following, the best mode for carrying out the present invention will first be outlined with reference to FIG.

本実施形態の集塵系Aの主要な構成は、湿式集塵機1、シックナー2、処理水槽3及び集塵水ポンプ4を有している。ただし、湿式集塵機1を用いて排ガス集塵水を処理するものであれば、集塵系Aを構成する個別機器の型式及び形状は選ばない。また、集塵系A(シックナー2)に洗浄汚水を供給する汚水供給系6は、図2に示す転炉循環系Bのように、給水SS濃度と同等濃度の排水が戻ってくる排出系aと給水SS濃度より高い濃度の排水が戻ってくる排出系bを2系統有する必要はない。例えば、給水SS濃度より高い濃度の汚水が発生し、図4のように当該汚水はろ過機を含む処理設備7を用いて処理されなければ給水として再利用できない循環系であれば何れでも良い。   The main configuration of the dust collection system A of the present embodiment includes a wet dust collector 1, a thickener 2, a treated water tank 3, and a dust collection water pump 4. However, as long as the exhaust gas dust collected water is processed using the wet dust collector 1, the type and shape of the individual devices constituting the dust collection system A are not selected. Further, the sewage supply system 6 that supplies the cleaning sewage to the dust collection system A (thickener 2) is a discharge system a in which waste water having a concentration equivalent to the feed water SS concentration returns like the converter circulation system B shown in FIG. And it is not necessary to have two discharge systems b to which drainage with a concentration higher than the feedwater SS concentration returns. For example, any circulatory system can be used as long as sewage with a concentration higher than the feedwater SS concentration is generated and the sewage cannot be reused as feedwater unless it is treated using the treatment facility 7 including a filter.

ここで、ろ過機のろ材洗浄工程において、後述するように洗浄汚水量が少量となるろ過機を適用することにより、汚水供給系6(ろ過機)で発生するSS濃度の高い洗浄汚水(水量;β)を極力集塵系Aに持ち込ませないようにすれば、集塵系Aから系外5への余剰水を最大限に削減できる。   Here, in the filter medium washing process of the filter, by applying a filter in which the amount of washing sewage is small as will be described later, washing sewage (water amount; water amount; generated in the sewage supply system 6 (filter) is high. If β) is not brought into the dust collection system A as much as possible, surplus water from the dust collection system A to the outside 5 can be reduced to the maximum.

つまり、βがγ1に近づけば余剰水をより削減できるし、βがγ1以下ならば、βは集塵系A(処理水槽3)における補給水の一部となり、系外5への余剰水は発生しない。   That is, if β approaches γ1, excess water can be further reduced. If β is γ1 or less, β becomes a part of makeup water in the dust collection system A (treated water tank 3), and excess water to the outside 5 is Does not occur.

次に、本発明を実施するための最良の形態について、転炉集塵水処理を一例として図5に示す。ここでは、ろ材の洗浄汚水量が少量となるろ過機を適用したろ過処理システムについて詳細に説明する。   Next, regarding the best mode for carrying out the present invention, converter dust collection water treatment is shown as an example in FIG. Here, the filtration processing system to which a filter with a small amount of washed sewage for the filter medium is applied will be described in detail.

まず、機器構成について説明する。転炉集塵系Aおよび循環系Bの水処理における機器構成は砂ろ過機を採用した図3に示す構成と変わらない。   First, the device configuration will be described. The equipment configuration in the water treatment of the converter dust collection system A and the circulation system B is the same as that shown in FIG. 3 employing a sand filter.

循環系Bは給水SS濃度と同等濃度の排水が戻ってくる排出系aと給水SS濃度より高い濃度の排水が戻ってくる排出系bを2系統有するが、排出系aの排水はそのまま冷却塔12で冷却処理し、処理水槽13へ回収することにより、冷却洗浄水として再循環利用する。また、排出系bの排水は、原水槽16に一旦貯留された後、沈澱槽17にて排水を固形分と上澄水とに分離する。ここで、分離された一次処理水は処理水槽18に貯められた後、ろ過ポンプ19を用いることにより浮上性ろ材が充填されたろ過機21へ圧送される。さらに、一次処理水中の固形分はろ過機21により補足され、冷却洗浄水として再利用できるSS濃度の低い処理水まで二次処理される。最後に、冷却塔12で冷却処理し、処理水槽13に回収することにより、冷却洗浄水として再循環利用する。   The circulation system B has two systems, a discharge system a in which drainage having a concentration equal to the feedwater SS concentration returns and a discharge system b in which drainage having a concentration higher than the feedwater SS concentration returns. 12 is cooled and recovered in the treated water tank 13 to be recycled as cooling washing water. Further, the waste water of the discharge system b is once stored in the raw water tank 16, and then separated into solid content and supernatant water in the precipitation tank 17. Here, the separated primary treated water is stored in the treated water tank 18 and then pumped to the filter 21 filled with the floatable filter medium by using the filtration pump 19. Furthermore, the solid content in the primary treated water is supplemented by the filter 21 and subjected to secondary treatment to treated water having a low SS concentration that can be reused as cooling washing water. Finally, it is cooled in the cooling tower 12 and recovered in the treated water tank 13 to be recycled as cooling washing water.

ここで、循環系Bから発生するSS濃度の高い排水を二次ろ過処理するためのろ過機において、砂ろ過機を適用した場合は、洗浄汚水量(水量;β1)が多量になる。そこで、本発明は、発泡ポリスチレンのような浮上性ろ材を機内に充填したろ過機21を用いることにより、他の水源を必要とせずろ過機21内に流入される原水にて機内洗浄ができ、その洗浄汚水量(水量;β2)をろ過機を用いた場合に比べて大幅に低減できることに着目したものである。   Here, when a sand filter is applied to a filter for secondary filtration of wastewater having a high SS concentration generated from the circulation system B, the amount of washing sewage (water amount; β1) becomes large. Therefore, in the present invention, by using the filter 21 in which a floatable filter medium such as expanded polystyrene is filled in the machine, the machine can be washed with raw water flowing into the filter 21 without requiring another water source, It pays attention to the fact that the amount of washing sewage (water amount; β2) can be greatly reduced as compared with the case of using a filter.

次に、浮上性ろ材を機内に充填したろ過機21を適用したろ過処理システムの転炉水処理システムにおける水量バランス効果ついて詳細に説明する。ここで、浮上性ろ材を用いたろ過機21は、ろ過槽内に浮上したろ過材でろ材層を形成し、原液を上向流でろ過層中を通過させる構造である。   Next, the water amount balance effect in the converter water treatment system of the filtration treatment system to which the filter 21 filled with the floatable filter medium is applied will be described in detail. Here, the filter 21 using the floatable filter medium has a structure in which a filter medium layer is formed with the filter medium that has floated in the filtration tank, and the stock solution is passed through the filter layer in an upward flow.

本発明者らは、砂ろ過機から発生する洗浄汚水が多量であることから、当該汚水量を低減できるろ過方式について探索・検討を行った。その結果、浮上性ろ材を用いたろ過機21を採用すれば、例えば、循環系Bにおける補給水量は砂ろ過機に比べて約5%増加するものの、洗浄汚水が転炉シックナー7に流入する水量を約96%低減できることを見出した。   Since the washing sewage generated from the sand filter is large, the present inventors have searched for and examined a filtration method that can reduce the amount of sewage. As a result, if the filter 21 using a floatable filter medium is employed, for example, the amount of makeup water in the circulation system B is increased by about 5% compared to the sand filter, but the amount of water in which the washed sewage flows into the converter thickener 7. Was found to be reduced by about 96%.

すなわち、β2がβ1の4%程度と極めて少量となるので(一例;β2=0.04×β1<<β1)、循環系Bへの補給は従来(図3)のγ2に加えてβ2の分だけ増加するが、その増加分は約5%程度と微少である(一例;β2=0.05×γ2)。また、β2とγ1との差が小さくなるため、集塵系Aから転炉系外10への余剰水は砂ろ過機に比べ、操業上及び設備設計上無視できる程、大幅に低減できる(β2−γ1<<β1−γ1)。さらに、浮上性ろ材の洗浄汚水がγ1以下ならば(β2−γ1<0)、当該汚水は集塵系Aにおける補給水の一部となり、転炉系外10への余剰水は発生しない。   That is, since β2 is a very small amount of about 4% of β1 (example: β2 = 0.04 × β1 << β1), the replenishment to the circulatory system B is a fraction of β2 in addition to the conventional γ2 (FIG. 3). However, the increase is as small as about 5% (example: β2 = 0.05 × γ2). In addition, since the difference between β2 and γ1 is reduced, surplus water from the dust collection system A to the outside of the converter system 10 can be significantly reduced compared to the sand filter so that it can be ignored in terms of operation and equipment design (β2 -Γ1 << β1-γ1). Further, if the washing sewage of the floatable filter medium is γ1 or less (β2−γ1 <0), the sewage becomes a part of makeup water in the dust collection system A, and no excess water is generated outside the converter system 10.

さらに、本ろ過処理システムの運用形態について詳細に説明する。   Furthermore, the operation form of this filtration processing system is demonstrated in detail.

ろ過機21に充填した浮上性ろ材は砂に比べて比重が小さいため、ろ過機21内に設置した攪拌機での機械的攪拌が可能となる。そして、従来の水流攪拌より強力な攪拌機の攪拌により浮上性ろ材に付着した固形分を良好に剥離できることから、浮上性ろ材の洗浄水量は砂ろ材に比べ少量で済む。その結果、砂ろ材はSS濃度10〜100mg/l程度の比較的低い洗浄水を使用する必要があるのに対し、浮上性ろ材はSS濃度100〜400mg/l程度の濁度の高いろ過機流入原水を洗浄水として使用できる。   Since the floatable filter medium filled in the filter 21 has a specific gravity smaller than that of sand, mechanical stirring with a stirrer installed in the filter 21 is possible. And since the solid content adhering to the floatable filter medium can be satisfactorily peeled off by stirring with a stirrer stronger than conventional water flow stirring, the amount of washing water of the floatable filter medium is smaller than that of the sand filter medium. As a result, sand filter media need to use relatively low wash water with an SS concentration of about 10 to 100 mg / l, whereas floatable filter media flow into a highly turbid filter with an SS concentration of about 100 to 400 mg / l. Raw water can be used as washing water.

その結果、ろ過機21の洗浄工程から発生し、転炉シックナー7に供給される洗浄汚水の量が低減できる。つまり、集塵系Aから転炉系外10への余剰水を大幅に低減することができる。ここで、洗浄汚水量β2が集塵系Aにおける補給水量γ1以下となれば、集塵系Aから転炉系外10への余剰水は発生せず、より効率的な排水の循環回収が達成できる。   As a result, the amount of cleaning sewage generated from the cleaning process of the filter 21 and supplied to the converter thickener 7 can be reduced. That is, excess water from the dust collection system A to the outside of the converter system 10 can be significantly reduced. Here, if the amount of washed sewage β2 is less than or equal to the amount of makeup water γ1 in the dust collection system A, surplus water from the dust collection system A to the outside of the converter system 10 is not generated, and more efficient circulation and collection of waste water is achieved. it can.

次に、前記浮上性能を示すろ材の材質としては、発泡性のある高分子樹脂がよい。特に、発泡ポリウレタン、発泡ポリプロピレン、発泡ポリスチレンが好適である。   Next, as a material of the filter medium showing the floating performance, a foamable polymer resin is preferable. In particular, foamed polyurethane, foamed polypropylene, and foamed polystyrene are suitable.

ろ材の形状としては、球状(断面が円又は楕円を含む形状)または円柱状(長手方向と直交する断面が円又は楕円を含む形状)がよく、特に、球状が好適である。立方体のような突起状のものであれば、ろ過機内の衝突時の摩擦により攪拌効率が悪くなるため、角部を少なくした球状また円柱状が最適である。円柱の縦横比率としては、縦横比が1:1〜3が良く、特に1:1〜2が好適である。   As the shape of the filter medium, a spherical shape (a shape whose cross section includes a circle or an ellipse) or a cylindrical shape (a shape whose cross section perpendicular to the longitudinal direction includes a circle or an ellipse) is preferable, and a spherical shape is particularly preferable. In the case of a projection like a cube, the stirring efficiency is deteriorated due to friction at the time of collision in the filter, and therefore a spherical or cylindrical shape with fewer corners is optimal. As the aspect ratio of the cylinder, the aspect ratio is preferably 1: 1 to 3, and particularly preferably 1: 1 to 2.

ろ材の比重としては、1.0未満が良く、0.01〜0.5がより好ましい。特に、かさ比重としては、0.05が好適である。比重が1.0以上であれば、ろ過機21内の目詰り解消を目的としたろ材の洗浄水量(すなわち、洗浄汚水量β2)が多くなり、ろ材の攪拌動力も大きくなる。また、比重が0.5よりも小さければ、ろ材の磨耗による寿命短縮と言った問題が生じる。   The specific gravity of the filter medium is preferably less than 1.0 and more preferably 0.01 to 0.5. In particular, 0.05 is preferable as the bulk specific gravity. If the specific gravity is 1.0 or more, the amount of washing water for the filter medium (that is, the amount of washing sewage β2) for the purpose of eliminating clogging in the filter 21 increases, and the stirring power of the filter medium also increases. Moreover, if specific gravity is smaller than 0.5, the problem of shortening the lifetime by abrasion of a filter medium will arise.

ろ材の大きさ(球状の場合には最大径、円柱状の場合には最大長さ)としては、0.1mm〜2.0mmが良く、特に、1.0mm〜2.0mmが好適である。大きさが2.0mmよりも大きければ、ろ過機21内の目詰り解消を目的としたろ材の洗浄水量が多くなり、ろ材の攪拌動力も大きくなる。また、大きさが0.1mmよりも小さければ、ろ過機21の差圧が立ちやすいあるいは、ろ過機21外へのろ材の流出と言った問題が生じる。   The size of the filter medium (maximum diameter in the case of a spherical shape, maximum length in the case of a cylindrical shape) is preferably 0.1 mm to 2.0 mm, and particularly preferably 1.0 mm to 2.0 mm. If the size is larger than 2.0 mm, the amount of washing water for the filter medium for the purpose of eliminating clogging in the filter 21 increases, and the stirring power of the filter medium also increases. Further, if the size is smaller than 0.1 mm, there arises a problem that the differential pressure of the filter 21 is likely to stand or the filter medium flows out of the filter 21.

使用ろ材の適用pHとしては、6〜12がよく、特に、7〜9が好適である。pHが6以下の酸性、12以上のアルカリ性であれば、ろ材表面が溶損し、凹凸状態になり、固形分の捕捉効率や洗浄効率が低下すると言った問題が生じる。   The applied pH of the filter medium to be used is preferably 6 to 12, particularly 7 to 9. If the pH is 6 or lower and the alkali is 12 or higher, the surface of the filter medium is melted and uneven, resulting in a problem that the solid content capturing efficiency and the cleaning efficiency are lowered.

使用ろ材の適用SS濃度としては、400mg/l以下がよく、特に、100mg/l以下が好適である。SS濃度が400mg/l以上であれば、短時間で浮上性ろ材の目詰りが進行し、洗浄時間の増大に伴い固形分処理量が低下する、あるいはろ材の磨耗が進行すると言った問題が生じる。   The applied SS concentration of the filter medium to be used is preferably 400 mg / l or less, and particularly preferably 100 mg / l or less. If the SS concentration is 400 mg / l or more, the clogging of the floatable filter medium proceeds in a short time, and there arises a problem that the solid content throughput decreases or the filter medium wear progresses as the cleaning time increases. .

最後に、浮上性ろ材を充填したろ過機21は、砂ろ過方式と異なり、機内洗浄用の水源をろ過機21に流入する原水とし、機内に装備された攪拌機で攪拌洗浄しており、ろ過機逆洗ポンプ及び逆洗ブロワーといった逆洗設備を必要としない。また、浮上性ろ材は、砂に比べて比重が小さくろ過機21へ送水するポンプの動力を低減できることから、砂ろ過機を用いた場合に比べて設備費安価及び省スペース化となる。   Finally, unlike the sand filtration method, the filter 21 filled with the floatable filter medium uses raw water flowing into the filter 21 as a water source for cleaning the machine, and is stirred and washed with a stirrer installed in the machine. There is no need for backwash equipment such as backwash pumps and backwash blowers. In addition, the floatable filter medium has a smaller specific gravity than sand and can reduce the power of a pump that feeds water to the filter 21, so that the equipment cost is lower and the space is saved compared to the case where a sand filter is used.

以下、図5に示す装置構成の水処理を行った本発明の効果を詳細に説明する。   Hereinafter, the effect of this invention which performed the water treatment of the apparatus structure shown in FIG. 5 is demonstrated in detail.

(実施例1)
転炉水処理系統において、図5の装置のように浮上性ろ材を充填したろ過機21を導入した場合の効果を一例として述べる。ここで、表1に示すように、循環系Bから発生する汚水量αは3.0m/min、水質はろ過前処理工程である凝集沈殿設備15の入り側でSS濃度800〜8,000mg/l及びpH10〜11、ろ過機21の入り側でSS濃度100〜400mg/l及びpH10〜11である。
Example 1
In the converter water treatment system, the effect of introducing a filter 21 filled with a floatable filter medium as in the apparatus of FIG. 5 will be described as an example. Here, as shown in Table 1, the amount of sewage α generated from the circulation system B is 3.0 m 3 / min, and the water quality is an SS concentration of 800 to 8,000 mg on the entry side of the coagulation sedimentation facility 15 which is a pretreatment process for filtration. / L and pH 10-11, SS concentration 100-400 mg / l and pH 10-11 at the entrance side of the filter 21.

また、ろ過機21に充填される浮上性ろ材については、材質が発泡ポリスチレン、形状が円柱状、比重が0.05、大きさが1.1mmを有するものを採用した。   Moreover, about the floatable filter medium with which the filter 21 is filled, the material used is a foamed polystyrene, the shape is cylindrical, the specific gravity is 0.05, and the size is 1.1 mm.

なお、比較例については、循環系Bで発生する汚水の量α及び水質は、本実施例と同様とした。また、ろ過機20に充填されるろ材としては、材質が砂/アンスラ、形状が球状又は突起状、比重が1.2〜0.5、大きさが0.8〜1.6のものを使用した。   In addition, about the comparative example, the quantity (alpha) and water quality of the wastewater which generate | occur | produce in the circulation system B were made into the same as that of a present Example. Moreover, as a filter medium with which the filter 20 is filled, the material is sand / anthra, the shape is spherical or protruding, the specific gravity is 1.2 to 0.5, and the size is 0.8 to 1.6. did.

上記ケースにおいて浮上性ろ材を充填したろ過機21を導入した場合、表2に示すように砂ろ過機20を採用した場合の比較例に対して、洗浄汚水量β2をβ1の96%程度低減することができた。その結果、本実施例における循環系Bでの補給水量γ(γ2+β2)は比較例(補給水量γ2)に対して5%程度増加するものの集塵系Aからの余剰水(β2−γ1)をほぼゼロにすることができた。ここで、表2において、集塵系Aからの余剰水の値(β2−γ1)がマイナスの場合には、「0」として示している。なお、上記値(β2−γ1)がマイナスの場合には、洗浄汚水β2が集塵系Aにおける補給水の一部となっている。   When the filter 21 filled with the floatable filter medium is introduced in the above case, the amount of washing sewage β2 is reduced by about 96% of β1 as compared with the comparative example in which the sand filter 20 is adopted as shown in Table 2. I was able to. As a result, although the supplementary water amount γ (γ2 + β2) in the circulation system B in this example increases by about 5% compared to the comparative example (supplementary water amount γ2), the surplus water (β2−γ1) from the dust collection system A is almost equal. I was able to make it zero. Here, in Table 2, when the value of excess water (β2−γ1) from the dust collection system A is negative, it is indicated as “0”. When the value (β2−γ1) is negative, the cleaning wastewater β2 is a part of makeup water in the dust collection system A.

また、砂ろ過機20用の逆洗ポンプ及びブロワ−といった洗浄設備が必要なく、浮上性ろ材が砂に比べて通水抵抗が小さくろ過機21へ送水するポンプの動力も低減できるため、設備費で30%、設置スペースで40%削減できる。   Further, there is no need for cleaning equipment such as a backwash pump and a blower for the sand filter 20, and the floatable filter medium has a smaller resistance to water flow than sand and can reduce the power of the pump that sends water to the filter 21. Can be reduced by 30% and installation space by 40%.

(実施例2)
循環系Bから発生する汚水量及び水質条件は実施例1と同様である。また、表1に示すように、ろ過機21内に充填されるろ材については、材質、形状及び大きさは実施例1と同様であるが、比重が0.5を有するものを採用した。
(Example 2)
The amount of sewage generated from the circulation system B and the water quality conditions are the same as in Example 1. Moreover, as shown in Table 1, the filter medium filled in the filter 21 was the same in material, shape and size as in Example 1, but a specific gravity of 0.5 was adopted.

本実施例においても、実施例1と同様の効果が得られた。すなわち、ろ過機21の洗浄汚水量β2を大幅に低減でき、集塵系Aからの余剰水をほぼゼロにすることができた。   Also in this example, the same effect as in Example 1 was obtained. That is, the amount of washing sewage β2 of the filter 21 can be greatly reduced, and surplus water from the dust collection system A can be made substantially zero.

(実施例3)
循環系Bから発生する汚水量及び水質条件は実施例1と同様である。また、表1に示すように、ろ過機21内に充填されるろ材については、材質、形状及び比重は実施例1と同様であるが、大きさが2.0mmを有するものを採用した。
(Example 3)
The amount of sewage generated from the circulation system B and the water quality conditions are the same as in Example 1. In addition, as shown in Table 1, the filter medium filled in the filter 21 was the same in material, shape, and specific gravity as in Example 1, but a filter having a size of 2.0 mm was used.

本実施例においても、実施例1と同様の効果が得られた。すなわち、ろ過機21の洗浄汚水量β2を大幅に低減でき、集塵系Aからの余剰水をほぼゼロにすることができた。   Also in this example, the same effect as in Example 1 was obtained. That is, the amount of washing sewage β2 of the filter 21 can be greatly reduced, and surplus water from the dust collection system A can be made substantially zero.

Figure 0004876006
Figure 0004876006

Figure 0004876006
Figure 0004876006

湿式集塵系の水量バランスを示す概略図Schematic showing water balance in wet dust collection system 転炉湿式集塵系の水量バランスを示す概略図Schematic showing water balance in converter wet dust collection system 図2の転炉湿式集塵系に対する設備対策を示す概略図Schematic showing equipment measures for the converter wet dust collection system of FIG. 湿式集塵系の水量バランス是正効果を示す概略図Schematic showing water balance correction effect of wet dust collection system 図2の転炉湿式集塵系に対する設備対策を示す概略図Schematic showing equipment measures for the converter wet dust collection system of FIG.

符号の説明Explanation of symbols

A:集塵系
B:循環系
6:転炉湿式集塵機
7:シックナー
8:処理水槽
12:冷却塔
13:処理水槽
15:凝集沈殿設備
21:浮上性ろ材を用いたろ過機
A: Dust collection system B: Circulation system 6: Converter wet dust collector 7: Thickener 8: Treated water tank 12: Cooling tower 13: Treated water tank 15: Coagulation sedimentation equipment 21: Filter using a floatable filter medium

Claims (8)

湿式集塵機、前記湿式集塵機からの集塵排水に対して固液分離処理を行う固液分離手段前記固液分離手段で固形分が分離された処理水を前記湿式集塵機に供給する供給手段を有する集塵系と、
循環水処理装置、前記循環水処理装置からの排水に対して固液分離処理を行うろ過機を有する固液分離処理手段、前記固液分離処理手段で固形分が分離された処理水を前記循環水処理装置に供給する供給手段を有する循環系と、
前記循環系のろ過機からろ材洗浄水を前記集塵系の固液分離手段に供給する供給手段とを有し、前記ろ過機は、浮上性ろ材を用いて固液分離処理を行うことを特徴とする水処理システム。
Wet dust collector, row cormorants solid-liquid separation means solid-liquid separation treatment with respect to the dust collecting waste water from the wet dust collector, the supply means for supplying treated water solids separated in the solid-liquid separation means to the wet dust collector A dust collection system,
Circulating water treatment device, solid-liquid separation processing means having a filter for performing solid-liquid separation processing on waste water from the circulating water treatment device, circulating the treated water from which the solid content has been separated by the solid-liquid separation processing means A circulation system having a supply means for supplying to the water treatment device;
The filter material washing dirty water from the filtration unit of the circulatory system has a supply means for supplying a solid-liquid separation means of the dust collection system, said filtration machine, a solid-liquid separation process using the flying characteristics filter medium A water treatment system characterized by performing.
前記集塵系の固液分離手段は、前記集塵排水に対して固液分離処理を行うシックナーを有しており、
前記循環系のろ過機のろ材洗浄汚水を集塵系に供給する供給手段は、前記ろ材洗浄水を前記シックナーに供給することを特徴とする請求項1に記載の水処理システム。
The solid-liquid separation means of the dust collection system has a thickener that performs a solid-liquid separation process on the dust collection waste water,
The circulation system supply means for supplying to the dust collecting system the filter media cleaning sewage filtration machine, the water treatment system of claim 1, wherein the supplying the filter material washing dirty water to the thickener.
前記循環系の固液分離処理手段は、前記固形分を含む排水に対して第1の固液分離処理を行う凝集沈殿設備と、前記凝集沈殿設備からの排水に対して第2の固液分離処理を行う前記ろ過機とを有しており、
前記凝集沈殿設備に供給される排水の固形分濃度が、700mg/L以上、8000mg/L以下であり、
前記ろ過機に供給される排水の固形分濃度が400mg/L以下であることを特徴とする請求項1又は2に記載の水処理システム。
The solid-liquid separation processing means of the circulation system includes a coagulation precipitation facility that performs a first solid-liquid separation process on the wastewater containing the solid content, and a second solid-liquid separation with respect to the wastewater from the aggregation precipitation facility. Having the filter to perform the treatment,
The solid content concentration of the wastewater supplied to the coagulation sedimentation facility is 700 mg / L or more and 8000 mg / L or less,
3. The water treatment system according to claim 1, wherein a solid content concentration of waste water supplied to the filter is 400 mg / L or less.
前記ろ過機に供給される排水の固形分濃度が、100mg/L〜400mg/Lであることを特徴とする請求項3に記載の水処理システム。   The water treatment system according to claim 3, wherein the solid content concentration of the waste water supplied to the filter is 100 mg / L to 400 mg / L. 前記ろ材が、球状又は円柱状であることを特徴とする請求項1から4のいずれかに記載の水処理システム。   The water treatment system according to claim 1, wherein the filter medium is spherical or cylindrical. 前記ろ材の比重が、1.0よりも小さいことを特徴とする請求項1から5のいずれかに記載の水処理システム。   The water treatment system according to claim 1, wherein a specific gravity of the filter medium is smaller than 1.0. 前記ろ材の大きさが、0.1mm〜1.5mmであることを特徴とする請求項1から6のいずれかに記載の水処理システム。   The water treatment system according to any one of claims 1 to 6, wherein a size of the filter medium is 0.1 mm to 1.5 mm. 前記ろ過機に供給される排水が、pH6〜12であることを特徴とする請求項1から7のいずれかに記載の水処理システム。   The water treatment system according to any one of claims 1 to 7, wherein the wastewater supplied to the filter has a pH of 6 to 12.
JP2007081415A 2007-03-27 2007-03-27 Water treatment system Expired - Fee Related JP4876006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081415A JP4876006B2 (en) 2007-03-27 2007-03-27 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081415A JP4876006B2 (en) 2007-03-27 2007-03-27 Water treatment system

Publications (2)

Publication Number Publication Date
JP2008238032A JP2008238032A (en) 2008-10-09
JP4876006B2 true JP4876006B2 (en) 2012-02-15

Family

ID=39910007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081415A Expired - Fee Related JP4876006B2 (en) 2007-03-27 2007-03-27 Water treatment system

Country Status (1)

Country Link
JP (1) JP4876006B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286073A (en) * 2012-02-29 2013-09-11 宝山钢铁股份有限公司 Recycling and supplying method for mix jet flow cleaned media
CN103223273B (en) * 2013-04-25 2015-04-29 哈尔滨工业大学 Cold-region water purification structure solar energy combined warming water circulation system
CN104841190B (en) * 2015-01-26 2016-06-29 常州大学 A kind of technique of zero discharge treatment cutting waste fluid
JP6422809B2 (en) * 2015-03-31 2018-11-14 株式会社神戸製鋼所 Dust collection method
CN104787866A (en) * 2015-04-02 2015-07-22 珠海克林格林环保设备制造有限公司 Water circulation treatment system for wet electric dust collector
CN108499182A (en) * 2018-04-27 2018-09-07 苏州清荷坊环保科技有限公司 A kind of efficient circulation stirring-type multi-stage sewage treating column

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230108A (en) * 1997-02-20 1998-09-02 Kurita Water Ind Ltd Method and device for filtration
JP4457027B2 (en) * 2005-02-22 2010-04-28 新日本製鐵株式会社 Disposal water treatment method

Also Published As

Publication number Publication date
JP2008238032A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4876006B2 (en) Water treatment system
WO2013170507A1 (en) Water treatment process for recycling produced water from heavy oil recovery to serve as boiler feed water
CN103582710A (en) System and process for the continuous recovery of metals
CN105498316A (en) Multi-medium filtering method and filtering device thereof
JP2010284753A (en) Cutting waste filtration and conveyance processing apparatus
JP2011056487A (en) Cleaning treatment method and apparatus
CN110585866A (en) Desulfurization and dust removal method for copper-containing industrial sludge smelting flue gas
CN102605114A (en) Slag flushing process and system for ironmaking
JP3184396U (en) Circulating water supply system for PET bottle cleaning and crushing equipment
CN117222777A (en) On-line silicon separation on pickling plant
JP4181972B2 (en) Coagulation sedimentation processing equipment
CN110294541A (en) Desalted water recycling system and method for galvanized wire finishing and withdrawal and straightening sections
RU2372408C2 (en) Method of water recycling for steel degassing installations
JPH05212385A (en) Vertical electrolytic floating-up drainage treating method and its application device
CN209575989U (en) Draining sediment system and slag disposal system suitable for drum process slag treatment process
KR101659752B1 (en) Method for treating cold rolling wastewater and apparatus for treating cold rolling wastewater
CN107265564A (en) Solution purification pretreatment unit
JP4073442B2 (en) Carbide cleaning equipment for waste carbonization equipment
RU73677U1 (en) SYSTEM OF ROTARY WATER SUPPLY OF STEEL VACUUMING UNITS OF STEEL
JP5683004B2 (en) Sludge separation processing equipment for continuous electroplating equipment
CN210993741U (en) Desulfurization and dust removal system for copper-containing industrial sludge smelting flue gas
JPH06246330A (en) Method and device for circulating water-soluble rolling liquid
JP2018114454A (en) Sludge transporting equipment
KR101119640B1 (en) Micro bubble filtering apparatus
JP2009215090A (en) METHOD FOR PREVENTING ELUTION OF As FROM COPPER SLAG

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees