JP4875860B2 - Insoles, shoes, and socks - Google Patents

Insoles, shoes, and socks Download PDF

Info

Publication number
JP4875860B2
JP4875860B2 JP2005193004A JP2005193004A JP4875860B2 JP 4875860 B2 JP4875860 B2 JP 4875860B2 JP 2005193004 A JP2005193004 A JP 2005193004A JP 2005193004 A JP2005193004 A JP 2005193004A JP 4875860 B2 JP4875860 B2 JP 4875860B2
Authority
JP
Japan
Prior art keywords
region
sole
insole
dynamic friction
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005193004A
Other languages
Japanese (ja)
Other versions
JP2007007204A (en
Inventor
眞理 勝
徹郎 倉科
直子 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asics Corp
Original Assignee
Asics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asics Corp filed Critical Asics Corp
Priority to JP2005193004A priority Critical patent/JP4875860B2/en
Publication of JP2007007204A publication Critical patent/JP2007007204A/en
Application granted granted Critical
Publication of JP4875860B2 publication Critical patent/JP4875860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、着用者の動作性能を向上させることができる靴の中敷、及びこれを備える靴、並びに靴下に関する。   The present invention relates to an insole for a shoe that can improve a wearer's operating performance, a shoe including the shoe, and a sock.

競技スポーツなどに於いて、着用者の動作性能を向上させるためには、足の力が靴を通じて、地面へ効果的に伝わることが重要である。その要素の一つとして、足裏と中敷きの間に発生する滑りの抑制が、従来より注目されている。
例えば、特許文献1の第1図などに、前方足裏部分に滑り止め用の凹凸やゴム等を設けた中敷が開示されている。また、特許文献2には、足親指と他の4足指とが踏圧する位置、又は足親指と足親指から土踏まずの間の丘部とが踏圧する位置に、摩擦抵抗を高めるパッド層を設けた中敷が開示されている。さらに、特許文献3には、着用者の足を支持するため多数の滑り止め小突起が形成しつつ、足の圧力が強く作用する部分の小突起を設けないようにした中敷が開示されている。
In competitive sports and the like, in order to improve the wearer's performance, it is important that the force of the foot is effectively transmitted to the ground through the shoes. As one of the elements, the suppression of the slip generated between the sole and the insole has been attracting attention.
For example, FIG. 1 of Patent Document 1 discloses an insole that is provided with anti-slip irregularities and rubber on the front sole portion. Further, in Patent Document 2, a pad layer for increasing frictional resistance is provided at a position where the toe and the other four toes step on or a position where the toe and the hill between the toe and the arch step on. An insole is disclosed. Furthermore, Patent Document 3 discloses an insole in which a large number of anti-slip small protrusions are formed to support the wearer's foot, but the small protrusions of the portion where the foot pressure acts strongly are not provided. Yes.

上記特許文献1の中敷は、足裏前方部分に滑り止め手段が設けられた靴下と相乗して、足裏前方部分に於ける足の動きと力を靴に伝えることができる旨が記載されている。また、特許文献2の中敷は、足親指と他の4足指とが踏圧する位置などに於いて足が滑ることを防止できるので、人体の足親指と他の4足指のパワー、又は足親指と足親指から土踏まずの間の丘部のパワーがシューズに十分に伝達し、各種の動作を敏捷に行うことができる旨が記載されている。さらに、特許文献3の中敷は、多数の滑り止め小突起によって前後方向若しくは横方向の滑りを抑止することができるが、足の圧力が強く作用する部分に小突起を設けないので、滑りを抑制しつつ足裏の痛みを軽減できることが開示されている。   The insole described in Patent Document 1 describes that the movement and force of the foot in the front part of the sole can be transmitted to the shoe in synergy with the sock having the anti-slip means provided in the front part of the sole. ing. Moreover, since the insole of patent document 2 can prevent a foot | slid from slipping in the position etc. where a toe and other 4 toes step on, etc., the power of a human toe and other 4 toes, or It is described that the power of the hill between the big toe and the arch is sufficiently transmitted to the shoe, and various operations can be performed quickly. Further, the insole of Patent Document 3 can suppress the sliding in the front-rear direction or the lateral direction by a large number of anti-slip small protrusions, but since the small protrusions are not provided in the portion where the foot pressure acts strongly, slipping is prevented. It is disclosed that pain in the soles can be reduced while suppressing.

上記各特許文献に記載の中敷きは、何れも足裏の押圧力が比較的大きく加わる部分、すなわち、垂直荷重が比較的大きく加わる部分に滑り止め処理を施すことにより、垂直荷重が大きい足裏部分と中敷とを恰も一体化でき、これにより動作性能を向上させることができるという考えを根底としている。尚、特許文献3の中敷は、足裏の痛みを軽減するという異なる目的を達成するため、足の押圧力が大きく加わる部分に小突起を設けない構成が開示されているが、前後方向若しくは横方向の滑りを抑止するためには、足の押圧力が大きく加わる部分に多数の滑り止め突起を設けるのが良いという根本的な考えは同様である。
なるほど、垂直荷重が大きく加わる部分に於いて、中敷と足裏が滑らないようにすれば、一見、足の力が靴に十分に伝わり、動作性能を向上させることができるようにも思える。
しかしながら、本発明者らの研究によれば、垂直荷重が大きく加わる部分に滑り止め処理を施した中敷は、着用者の動作性能を十分に向上させるものとは言えないことが判明した。
The insole described in each of the above patent documents is a part where the foot load is relatively large by applying a non-slip treatment to the part where the pressing force of the sole is relatively large, that is, the part where the vertical load is relatively large. It is based on the idea that the insole can be integrated with the saddle, which can improve the operating performance. In addition, in order to achieve a different purpose of reducing the pain of the sole, the insole of Patent Document 3 discloses a configuration in which a small protrusion is not provided in a portion where a large pressing force of the foot is applied. In order to suppress the slip in the lateral direction, the basic idea that a large number of anti-slip protrusions should be provided in the portion where the foot pressing force is greatly applied is the same.
Indeed, it seems that if the insole and the sole are prevented from slipping in the part where the vertical load is greatly applied, the force of the foot is sufficiently transmitted to the shoe and the operation performance can be improved.
However, according to the studies by the present inventors, it has been found that an insole that has been subjected to a non-slip treatment on a portion to which a large vertical load is applied cannot sufficiently improve the wearer's operating performance.

実開昭61−160706号公報Japanese Utility Model Publication No. 61-160706 登録実用新案第3067231号公報Registered Utility Model No. 30672231 実開昭59−66409号公報Japanese Utility Model Publication No.59-66409

そこで、本発明は、着用者の動作性能をより向上させることができる中敷、及びこれを備える靴、並びに靴下を提供することを課題とする。   Then, this invention makes it a subject to provide the insole which can improve a wearer's operation | movement performance more, shoes provided with this, and socks.

本発明者らは、下記に示す通り、1)滑り止め処理が施されていない中敷、2)垂直荷重が大きく加わる領域に滑り止め処理を施した中敷、3)垂直荷重が大きく加わらない領域に滑り止め処理を施した中敷、4)全体に滑り止め処理を施した中敷、をそれぞれ準備し、それらの運動性能を確認する試験を行った。
1)滑り止め処理が施されていない中敷:足型に型取った厚み3mmの発泡ウレタン製の中敷本体の表面に、動摩擦係数(測定方法は別項に示す通り。以下同様)が0.13のカバーシート(乾義興製、商品名:BIG BK)を貼着したもの。
2)垂直荷重が大きく加わる領域に滑り止め処理を施した中敷:上記1)の中敷(発泡ウレタン製の中敷本体の表面にカバーシートを貼着したもの)のカバーシート表面のうち、図1に示す、母趾中足骨頭部に対応する領域4と第2〜5趾中足骨頭部に対応する領域5と踵部に対応する領域8のそれぞれ全域に、動摩擦係数が1.185の防滑シート(住友スリーエム(株)製、商品名:グレップタイル[登録商標])を貼着したもの。
3)垂直荷重が大きく加わらない領域に滑り止め処理を施した中敷:上記1)の中敷きのカバーシート表面のうち、図1に示す、基節骨部に対応する領域3とアーチ部内側に対応する領域6とアーチ部外側に対応する領域7のそれぞれ全域に、動摩擦係数が1.185の防滑シート(同上)を貼着したもの。
As shown below, the present inventors have 1) an insole that has not been subjected to anti-slip treatment, 2) an insole that has been subjected to anti-slip treatment in a region where a large vertical load is applied, and 3) a large amount of vertical load is not applied. An insole with anti-slip treatment applied to the region, and 4) an insole with anti-slip treatment applied to the entire region were prepared, and a test was performed to confirm their motion performance.
1) Insole that has not been subjected to anti-slip treatment: The coefficient of dynamic friction (measurement method is as described in another item; the same shall apply hereinafter) is 0 on the surface of an insole body made of urethane foam with a thickness of 3 mm that has been cast in a foot shape. Attached 13 cover sheets (product name: BIG BK, made by Inui).
2) Insole that has been subjected to anti-slip treatment in a region where a large vertical load is applied: Of the cover sheet surface of the above 1) insole (the cover sheet adhered to the surface of the foam insole body), The coefficient of dynamic friction is 1.185 over the entire region 4 shown in FIG. 1 corresponding to the head of the metatarsal head of the heel, region 5 corresponding to the head of the second to fifth heel metatarsal, and region 8 corresponding to the heel. Non-slip sheet (made by Sumitomo 3M Co., Ltd., trade name: Greptile [registered trademark] ).
3) Insole that has been subjected to anti-slip treatment in an area where a vertical load is not greatly applied: Of the cover sheet surface of the insole described in 1) above, the area 3 corresponding to the proximal phalanx and the inside of the arch shown in FIG. A non-slip sheet (same as above) having a dynamic friction coefficient of 1.185 is attached to the entire corresponding region 6 and region 7 corresponding to the outside of the arch portion.

上記1)〜3)の中敷を市販のスポーツシューズの中敷として嵌め込み、任意に抽出した6人の被験者に反復横飛びを10秒間行ってもらい、方向転換する際に於ける床接地時間を測定した。尚、測定は、反復横飛びの右足方向転換位置に床反力計を設置し、それによって取り込まれた床反力データから、反復横飛び運動で方向転換をする毎に、靴が床に何秒間接地しているかをそれぞれ測り、その時間を平均することにより、被験者それぞれの方向転換1回当たりの接地時間を求めた。
そして、6人の被験者の方向転換1回当たりの接地時間の平均を求めた結果、上記1)の中敷の接地時間は0.208秒、2)の中敷は0.207秒、3)の中敷は0.201秒であり、3)の中敷を使用した場合、接地時間が有意に短くなった。
The above 1)-3) insole is fitted as a commercially available insole for sports shoes, and the randomly selected 6 subjects perform repeated lateral jumps for 10 seconds, and the floor contact time when changing direction is determined. It was measured. For measurement, install a floor reaction force meter at the right foot direction change position of repeated lateral jump, and from the floor reaction force data captured by it, every time the direction is changed by repeated lateral jump movement, Each contact was measured for a second, and the time was averaged to determine the contact time per turn of each subject.
Then, as a result of obtaining the average of the contact time per turn of the six subjects, the contact time of the above insole is 0.208 seconds, 2) the insole is 0.207 seconds, and 3) The insole was 0.201 seconds, and when the insole of 3) was used, the ground contact time was significantly shortened.

上記結果から、2)垂直荷重が大きく加わる領域に滑り止め処理を施した中敷きは、1)全く滑り止め処理を施さない中敷よりは、動作性能が僅かに優れていると言えるが、3)垂直荷重が大きく加わらない領域に滑り止め処理を施した中敷に比して、接地時間が長く、着用者の動作性能は明らかに劣ることが判明した。
この結果に基づき、本発明者らは、前後方向や横方向などの運動をする際には、足裏の水平方向へ作用する力が重要であることを確認できた。そして、足裏の各部分に於いて水平方向への力をできるだけ均一化するようにすれば、足裏の各部分に於ける水平方向への力をバランス良く発揮させることができ、これが、動作性能の向上に貢献するものと考えられる。このことは、上記3)の中敷が動作性能に優れる一方、上記2)の中敷のように、垂直荷重が大きく加わる領域に滑り止め処理を施したものは、その部分に於ける水平方向への力が極度に大きくなり過ぎて、バランスを崩し、動作性能が余り向上しない結果と合致する。
尚、水平方向の力(摩擦力)は、垂直荷重×動摩擦係数で表され、中敷の垂直荷重が大きい部分に対応する領域の動摩擦係数を小さくし、垂直荷重が小さい部分に対応する領域の動摩擦係数を大きくすることにより、運動時、足裏の水平方向へ作用する力の均一化を図ることができる。
From the above results, 2) It can be said that the insole that has been subjected to the anti-slip treatment in the area where the vertical load is greatly applied is 1) the operation performance is slightly better than the insole that is not subjected to the anti-slip treatment at all. It was found that the ground contact time is longer and the wearer's performance is clearly inferior to the insole that has been slip-treated in areas where vertical loads are not significantly applied.
Based on this result, the present inventors have confirmed that the force acting in the horizontal direction of the sole is important when exercising in the front-rear direction and the lateral direction. If the horizontal force is made uniform in each part of the sole as much as possible, the horizontal force in each part of the sole can be exerted in a well-balanced manner. This is thought to contribute to the improvement of performance. This is because the insole of 3) is superior in operating performance, but the insole that has been subjected to anti-slip treatment in a region where a large vertical load is applied, such as the insole of 2), is the horizontal direction at that part. This is in agreement with the result that the force to the force becomes excessively large, the balance is lost, and the operation performance is not improved so much.
The horizontal force (frictional force) is expressed as vertical load x dynamic friction coefficient, and the dynamic friction coefficient of the region corresponding to the portion where the vertical load of the insole is large is reduced, and the region corresponding to the portion where the vertical load is small is determined. By increasing the dynamic friction coefficient, the force acting in the horizontal direction of the sole can be made uniform during exercise.

また、本発明は、足裏が接する靴の中敷に於いて、足裏のアーチ部内側に対応する領域、足裏のアーチ部外側に対応する領域、及び足裏の母趾中足骨頭部に対応する領域に於ける中敷表面の動摩擦係数が、それぞれ下記の関係に形成されている靴の中敷を提供する。各領域の動摩擦係数の関係:足裏のアーチ部内側に対応する領域>足裏のアーチ部外側に対応する領域>足裏の母趾中足骨頭部に対応する領域。   The present invention also relates to an insole of a shoe in contact with a sole, a region corresponding to the inside of the arch portion of the sole, a region corresponding to the outside of the arch portion of the sole, and a toe metatarsal head of the sole The dynamic friction coefficient of the insole surface in the region corresponding to is provided with the insole of the shoe formed in the following relationship, respectively. Relationship between dynamic friction coefficients of each region: a region corresponding to the inside of the arch portion of the sole> a region corresponding to the outside of the arch portion of the sole> a region corresponding to the metatarsal head of the sole of the sole of the sole.

足裏の各領域に於ける中敷表面に加わる押圧力は、競技や動作の内容に応じて変わることがあるが、中敷表面のうち、足裏のアーチ部内側に対応する領域、足裏のアーチ部外側に対応する領域、及び足裏の母趾中足骨頭部に対応する領域に加わる押圧力は、競技や動作の内容に拘わらず、足の構造上、足裏の母趾中足骨頭部に対応する領域領域が最も大きく、次に足裏のアーチ部外側に対応する領域、次に足裏のアーチ部内側に対応する領域の順であると考えられる。
従って、少なくともこの領域に於ける中敷表面の動摩擦係数を、足裏のアーチ部内側に対応する領域>足裏のアーチ部外側に対応する領域>足裏の母趾中足骨頭部に対応する領域、の大きさに形成することにより、これら領域に於ける水平方向の力(摩擦力)をより均一化させることができる。
The pressing force applied to the insole surface in each area of the sole may vary depending on the content of the competition or action, but the area corresponding to the inside of the arch part of the insole surface, the sole The pressing force applied to the area corresponding to the outside of the arch and the area corresponding to the metatarsal head of the sole of the sole of the foot is the structure of the foot, regardless of the content of the competition or movement, and the midfoot of the sole of the sole of the foot It is considered that the region corresponding to the bone head is the largest, followed by the region corresponding to the outside of the arch portion of the sole, and then the region corresponding to the inside of the arch portion of the sole.
Accordingly, the dynamic friction coefficient of the insole surface at least in this region corresponds to the region corresponding to the inside of the arch portion of the sole> the region corresponding to the outside of the arch portion of the sole> the metatarsal head of the sole of the sole of the sole. By forming in the size of the region, the horizontal force (frictional force) in these regions can be made more uniform.

さらに、本発明の好ましい態様では、上記アーチ部内側に対応する領域が、動摩擦係数0.5〜2に形成され、アーチ部外側に対応する領域が、動摩擦係数0.3〜1.25に形成され、母趾中足骨頭部に対応する領域が、動摩擦係数0.1〜0.5に形成されている上記靴の中敷を提供する。   Furthermore, in a preferred aspect of the present invention, the region corresponding to the inside of the arch portion is formed with a dynamic friction coefficient of 0.5 to 2, and the region corresponding to the outside of the arch portion is formed with a dynamic friction coefficient of 0.3 to 1.25. In addition, the insole of the shoe is provided in which the region corresponding to the head of the metatarsal metatarsal is formed with a dynamic friction coefficient of 0.1 to 0.5.

また、本発明の第2の手段は、上記中敷が足裏接触面に設けられている靴を提供する。
さらに、本発明の第3の手段は、足裏のアーチ部内側に対応する領域、足裏のアーチ部外側に対応する領域、及び足裏の母趾中足骨頭部に対応する領域に於ける靴下外面の動摩擦係数が、それぞれ下記の関係に形成されている靴下を提供する。各領域の動摩擦係数の関係:足裏のアーチ部内側に対応する領域>足裏のアーチ部外側に対応する領域>足裏の母趾中足骨頭部に対応する領域。
好ましい態様では、前記アーチ部内側に対応する領域が、動摩擦係数0.5〜2に形成され、前記アーチ部外側に対応する領域が、動摩擦係数0.3〜1.25に形成され、前記母趾中足骨頭部に対応する領域が、動摩擦係数0.1〜0.5に形成されている上記靴下を提供する。
The second means of the present invention provides a shoe in which the insole is provided on the sole contact surface.
Further, the third means of the present invention includes a region corresponding to the inside of the arch part of the sole, a region corresponding to the outside of the arch part of the sole, and a region corresponding to the metatarsal head of the sole of the sole of the sole. There is provided a sock in which the dynamic friction coefficient of the outer surface of the sock is formed in the following relationship . Relationship between dynamic friction coefficients of each region: a region corresponding to the inside of the arch portion of the sole> a region corresponding to the outside of the arch portion of the sole> a region corresponding to the metatarsal head of the sole of the sole of the sole.
In a preferred embodiment, a region corresponding to the inside of the arch portion is formed with a dynamic friction coefficient of 0.5 to 2, a region corresponding to the outside of the arch portion is formed with a dynamic friction coefficient of 0.3 to 1.25, and the mother The sock is provided in which a region corresponding to the heel metatarsal head is formed with a dynamic friction coefficient of 0.1 to 0.5.

本発明に係る靴の中敷、靴及び靴下によれば、運動時、着用者の足裏の各部分に於ける水平方向への力をバランス良く発揮させることができ、着用者の動作性能をより向上させることができる。   According to the insole, shoes and socks according to the present invention, during exercise, the force in the horizontal direction in each part of the sole of the wearer can be exerted in a well-balanced manner, and the operation performance of the wearer is improved. It can be improved further.

以下、本発明について、図面を参照しつつ具体的に説明する。
図1に於いて、10は、所定の足型を型取った中敷本体の表面(足裏が接する面)の所定領域に滑り止め処理が施された中敷を示す。
この中敷10は、中敷表面に、動摩擦係数の異なる領域が複数形成されており、足裏の押圧力が大きく加わる領域に於ける動摩擦係数を小さく、足裏の押圧力が小さく加わる領域に於ける動摩擦係数を大きく形成してなる中敷表面を有する。この中敷10は、足裏の押圧力が大きく加わる領域は動摩擦係数を小さく形成し、足裏の押圧力が小さく加わる領域は動摩擦係数を大きく形成してなるので、運動時の足裏の各領域に於ける水平方向の力(摩擦力)を、より均一化させることができる。かかる中敷10を使用することにより、着用者の動作性能をより向上させることができる。
Hereinafter, the present invention will be specifically described with reference to the drawings.
In FIG. 1, reference numeral 10 denotes an insole that has been subjected to a non-slip treatment on a predetermined region of the surface of the insole main body (a surface that contacts the sole) that has been molded with a predetermined foot shape.
The insole 10 has a plurality of regions with different dynamic friction coefficients formed on the insole surface. The dynamic friction coefficient in the region where the pressing force of the sole is large is small, and the region where the pressing force of the sole is small is formed. It has an insole surface formed with a large dynamic friction coefficient. The insole 10 is formed with a small dynamic friction coefficient in a region where a large pressing force is applied to the sole, and a large dynamic friction coefficient is formed in a region where the pressing force on the sole is small. The horizontal force (frictional force) in the region can be made more uniform. By using the insole 10, the wearer's operating performance can be further improved.

中敷本体は、従来公知のものが使用できる。中敷本体としては、例えば、ポリウレタン、EVAなどの柔軟性に優れた発泡樹脂成形体が好ましいが、非発泡のものでもよく、又、合成樹脂以外、例えば皮革などを使用することもできる。また、中敷本体は、多層積層体からなるものでもよい。このような積層構造の中敷本体としては、例えば、本件出願人が既に出願した特開平11−151102号公報記載のものなどが例示される。
また、中敷本体は、従来公知のものと同様に、その表面形状が平坦状に形成されていてもよく、又、足裏の凹凸に沿って中敷表面が足裏に略接するように、中敷本体の表面形状が凹凸状に形成されていてもよい。例えば、アーチ部内側(土踏まず部)に対応する中敷表面部分が、盛り上がった形状に形成されている中敷本体などが例示される。
さらに、中敷本体の表面は、布などで被覆されていてもよいし、中敷本体の材質がそのまま露出しているもの(例えば発泡樹脂のスキン層など)でもよい。
A conventionally well-known insole body can be used. As the insole body, for example, a foamed resin molded article excellent in flexibility such as polyurethane and EVA is preferable, but it may be non-foamed, and other than synthetic resin, for example, leather may be used. Further, the insole body may be composed of a multilayer laminate. Examples of the insole body having such a laminated structure include those described in Japanese Patent Application Laid-Open No. 11-151102 filed by the present applicant.
In addition, the insole body may be formed in a flat surface shape, similar to a conventionally known insole, and so that the insole surface is substantially in contact with the sole along the unevenness of the sole, The surface shape of the insole body may be formed in an uneven shape. For example, the insole main body etc. in which the insole surface part corresponding to the inside of an arch part (arch part) is formed in the raised shape are illustrated.
Further, the surface of the insole body may be covered with a cloth or the like, or the material of the insole body may be exposed as it is (for example, a skin layer of foamed resin).

次に、本発明の特徴部分である中敷の表面の構造について説明する。
本発明は、上述の通り、着用者の動作性能を向上させる効果を得るために、足裏の各部分に於いて水平方向への力をできるだけ均一化するという着想の下になされたものである。水平方向の力をできるだけ均一化することは、水平方向の力(摩擦力)=垂直荷重×動摩擦係数から、各領域のうち、足裏の押圧力(垂直荷重)が大きく加わる領域は動摩擦係数を小さくし、足裏の圧力が小さく加わる領域は動摩擦係数を大きくするという、中敷表面の各領域に於ける動摩擦係数を垂直荷重に応じて調整することにより達成することができる。従って、中敷表面に加わる足裏の押圧力分布に応じて、中敷表面を非常に細かい領域に分け、水平方向の力が各領域で略一定となるように、それぞれの領域に於ける動摩擦係数を段階的に異ならせることが理想的と言える。
しかしながら、一品製作的なものは別として、余りに細かく且つ多くの領域に分けることは工業製品として非現実的であり、又、競技や動作の内容(運動の種類)によって足裏の押圧力分布も変化する。
Next, the structure of the surface of the insole which is a characteristic part of the present invention will be described.
As described above, the present invention has been made based on the idea of making the force in the horizontal direction uniform in each part of the sole as much as possible in order to obtain the effect of improving the wearer's operation performance. . To equalize the horizontal force as much as possible, horizontal force (friction force) = vertical load x dynamic friction coefficient. This can be achieved by adjusting the dynamic friction coefficient in each region of the insole surface in accordance with the vertical load, in which the dynamic friction coefficient is increased in the region where the sole pressure is reduced and the dynamic friction coefficient is increased. Therefore, according to the pressure distribution of the sole applied to the insole surface, the insole surface is divided into very fine regions, and the dynamic friction in each region is such that the horizontal force is substantially constant in each region. It can be said that it is ideal to vary the coefficients in stages.
However, apart from the one-manufactured one, it is unrealistic as an industrial product to be divided into many areas too much, and the pressure distribution on the sole of the foot varies depending on the content of the competition and movement (type of movement). Change.

このような点を考慮して、本発明では、足裏の各部に対応する中敷表面を図1に示すような8つの領域に分け、そのうち競技内容に拘わらずに垂直荷重の大きさの関係が変わらない領域を選定した。
ここで、図1の二点鎖線は、中敷表面を8つの領域に区分けする仮想線であり、1は、足裏の母趾末節骨部に対応する領域(以下、「領域1」という場合がある)、2は、足裏の第2〜5趾末節骨部に対応する領域(同「領域2」)、3は、足裏の基節骨部に対応する領域(同「領域3」)、4は、足裏の母趾中足骨頭部に対応する領域(同「領域4」)、5は、足裏の第2〜5趾中足骨頭部に対応する領域(同「領域5」)、6は、足裏のアーチ部内側に対応する領域(同「領域6」)、7は、足裏のアーチ部外側に対応する領域(同「領域7」)、8は、足裏の踵部に対応する領域(同「領域8」)、をそれぞれ示す。
Considering these points, in the present invention, the insole surface corresponding to each part of the sole is divided into eight regions as shown in FIG. 1, and the relationship of the magnitude of the vertical load regardless of the competition content. The area where the change is not selected.
Here, the two-dot chain line in FIG. 1 is an imaginary line that divides the insole surface into eight regions, and 1 is a region corresponding to the metacarpal segment of the sole of the sole (hereinafter referred to as “region 1”). 2 is a region corresponding to the second to fifth distal phalanxes of the sole (“region 2”), and 3 is a region corresponding to the proximal phalanx of the sole (“region 3”). ) 4 is a region corresponding to the metatarsal head of the heel of the sole of the foot (same “region 4”), and 5 is a region corresponding to the head of the second to fifth heel metatarsal of the sole (“region 5”). )), 6 is a region corresponding to the inside of the arch part of the sole (same “region 6”), 7 is a region corresponding to the outside of the arch part of the sole (same “region 7”), and 8 is the sole Regions corresponding to the buttocks ("region 8") are shown.

上記のように、8つの領域に中敷表面を区分けした場合であっても、競技や動作内容によって、各領域1〜8に加わる足裏の押圧力(垂直荷重)は異なる場合がある。例えば、100m走のスタートダッシュのような動作の場合、領域4に加わる垂直荷重は、領域8よりも大きく、一方、バドミントン等のバックステップのような動作の場合、反対に、領域8は、領域4よりも大きい。
この点、様々な動作に於ける足裏の押圧力分布のデータ、および、足の構造上の特徴から検討したところ、上記領域6、領域7、及び領域4に加わる垂直荷重の関係は、動作内容に拘わらず、領域4が大きく、次に領域7、次に領域6の順となると考えられる。
従って、少なくとも、この3つの領域4,6,7に於ける中敷表面の動摩擦係数を、領域6が大きく、次に領域7、次に領域4の順とすることにより、動作時に於ける水平方向の力をできるだけ均一化することができる。
すなわち、中敷表面の領域4,6,7に於ける動摩擦係数を、「アーチ部内側に対応する領域6>アーチ部外側に対応する領域7>母趾中足骨頭部に対応する領域4」の大小関係となるように形成する。
As described above, even when the insole surface is divided into eight regions, the pressing force (vertical load) on the soles applied to the regions 1 to 8 may differ depending on the competition and the operation content. For example, in the case of an operation such as a start dash of 100 m, the vertical load applied to the region 4 is larger than that in the region 8, while in the case of an operation like a back step such as badminton, the region 8 is Greater than 4.
In this regard, when examined from the data of the pressure distribution of the sole in various motions and the structural features of the foot, the relationship between the vertical load applied to the region 6, the region 7 and the region 4 is the motion. Regardless of the contents, the area 4 is considered to be large, followed by the area 7 and then the area 6.
Therefore, the dynamic friction coefficient of the insole surface in at least these three regions 4, 6, and 7 is set so that the region 6 is large, then the region 7 and then the region 4 in that order. The direction force can be made as uniform as possible.
That is, the dynamic friction coefficient in the regions 4, 6 and 7 of the insole surface is defined as “region 6 corresponding to the inside of the arch portion> region 7 corresponding to the outside of the arch portion> region 4 corresponding to the head of the metatarsal metatarsal”. It is formed so as to have a magnitude relationship of

上記3つの領域4,6,7の関係は、競技内容に拘わらず汎用的なものであり、本発明では、中敷表面の領域4,6,7に於ける動摩擦係数が、領域6>領域7>領域4の関係に形成されていれば、その他の領域1,2,3,5,8に於ける動摩擦係数は適宜設計できる。
例えば、100M走のスタートダッシュのような動作の場合、各領域1〜8のうち、領域4,6,7,8に加わる足裏の押圧力(垂直荷重)は、領域4>領域8>領域7>領域6となることが判っている。従って、この場合には、中敷表面の領域4〜7に於ける動摩擦係数は、領域6>領域7>領域8>領域4に形成することが好ましい。
また、例えば、バドミントン等のバックステップに対応するような動作の場合、各領域1〜8のうち、領域4,6,7,8に加わる足裏の押圧力(垂直荷重)は、領域8>領域4>領域7>領域6となることが判っている。従って、この場合には、中敷表面の領域4〜7に於ける動摩擦係数は、領域6>領域7>領域4>領域8に形成することが好ましい。
また、上記全ての領域1〜8を含めた足裏の押圧力(垂直荷重)の関係は、例えば、反復横飛びの場合、領域4>領域8>領域1>領域5>領域2>領域7>領域3>領域6であるため、中敷表面の領域1〜8に於ける動摩擦係数は、領域6>領域3>領域7>領域2>領域5>領域1>領域8>領域4に形成すればよい。
The relationship between the three areas 4, 6, and 7 is general regardless of the content of the game. In the present invention, the dynamic friction coefficient in the areas 4, 6, and 7 of the insole surface is expressed as area 6> area. 7> If it is formed in the relationship of the region 4, the dynamic friction coefficients in the other regions 1, 2, 3, 5, and 8 can be designed as appropriate.
For example, in the case of an operation such as a start dash of 100M running, the pressing force (vertical load) of the sole applied to the regions 4, 6, 7 and 8 among the regions 1 to 8 is region 4> region 8> region. 7> It has been found that region 6 is obtained. Therefore, in this case, it is preferable that the dynamic friction coefficients in the regions 4 to 7 on the insole surface are formed in the region 6> region 7> region 8> region 4.
Further, for example, in the case of an operation corresponding to a back step such as badminton, the pressing force (vertical load) of the sole applied to the regions 4, 6, 7 and 8 among the regions 1 to 8 is region 8> It is known that region 4> region 7> region 6. Therefore, in this case, it is preferable that the dynamic friction coefficients in the regions 4 to 7 on the insole surface are formed as region 6> region 7> region 4> region 8.
Further, the relationship of the pressing force (vertical load) of the sole including all the regions 1 to 8 is, for example, in the case of repeated lateral jump, region 4> region 8> region 1> region 5> region 2> region 7 Since> region 3> region 6, the dynamic friction coefficient in regions 1 to 8 on the insole surface is formed in region 6> region 3> region 7> region 2> region 5> region 1> region 8> region 4. do it.

領域4,6,7に於ける動摩擦係数は、上記のように領域6>領域7>領域4であるが、各領域4,6,7に於ける動摩擦係数の具体的な数値としては、その領域に加わる足裏の圧力に応じて適宜設定される。領域4,6,7のうち、最も足裏の押圧力が大きく加わるのは領域4であって、例えば反復横飛び運動時、この領域4に於ける足裏の押圧力(垂直荷重)は、約246N程度で、領域7に於ける足裏の押圧力(垂直荷重)は、約18.6N程度で、領域6に於ける足裏の押圧力(垂直荷重)は、約9.8N程度であるため、領域4に於ける動摩擦係数は、0.1〜0.5程度、好ましくは、0.3程度、領域7に於ける動摩擦係数は0.3〜1.25程度、好ましくは0.8程度、領域6に於ける動摩擦係数は0.5〜2.0程度、好ましくは1.2程度に形成される。また、領域4,6,7間に於ける動摩擦係数は、それぞれ0.2以上の差を有するように形成されていることが好ましい。   As described above, the dynamic friction coefficients in the regions 4, 6, and 7 are the region 6> the region 7> the region 4, but as specific numerical values of the dynamic friction coefficients in the regions 4, 6, and 7, It is appropriately set according to the pressure of the sole applied to the region. Of the regions 4, 6, and 7, the region 4 is the region where the most pressing force of the sole is applied. For example, during repeated lateral movement, the pressing force (vertical load) of the sole in the region 4 is About 246N, the pressing force (vertical load) of the sole in the region 7 is about 18.6N, and the pressing force (vertical load) of the sole in the region 6 is about 9.8N. Therefore, the dynamic friction coefficient in the region 4 is about 0.1 to 0.5, preferably about 0.3, and the dynamic friction coefficient in the region 7 is about 0.3 to 1.25, preferably about 0.1. The dynamic friction coefficient in the region 6 is about 0.5 to about 2.0, preferably about 1.2. Moreover, it is preferable that the dynamic friction coefficients in the regions 4, 6 and 7 are formed so as to have a difference of 0.2 or more.

ここで、本発明の動摩擦係数は、下記のようにして測定された数値をいう。
動摩擦係数の測定には、測定対象となるサンプルを取り付ける固定台と、相手材料を取り付ける可動おもりとを準備する。測定対象である中敷表面の上記各領域について、十分な大きさ(「相手材料の幅×移動距離」を十分に越える大きさ)を有したサンプルを用意し、平滑な固定台の上面に固定する。相手材料として、平滑な底面(幅×長さ=30×30mm)を有するアルミニウム板を可動おもりに取り付ける。可動おもりに1.0kgの分銅を乗せ、固定台の上面と平行な方向へ300mm/minの速度で移動させる。動摩擦係数は、可動おもりを20mm移動させる間の摩擦力から求める。動摩擦係数=可動おもりを20mm移動させる間の摩擦力/サンプルと相手材料との接触面に垂直方向に作用する力(垂直荷重)。
Here, the dynamic friction coefficient of the present invention refers to a numerical value measured as follows.
For the measurement of the dynamic friction coefficient, a fixed base on which a sample to be measured is attached and a movable weight to which a mating material is attached are prepared. For each of the above areas on the insole surface to be measured, prepare a sample with a sufficient size (size that sufficiently exceeds `` the width of the mating material x moving distance ''), and fix it on the top of a smooth fixed base To do. As a counterpart material, an aluminum plate having a smooth bottom surface (width × length = 30 × 30 mm) is attached to the movable weight. A weight of 1.0 kg is placed on the movable weight and moved in a direction parallel to the upper surface of the fixed base at a speed of 300 mm / min. A dynamic friction coefficient is calculated | required from the frictional force during moving 20 mm of movable weights. Coefficient of dynamic friction = friction force while moving the movable weight by 20 mm / force acting vertically on the contact surface between the sample and the mating material (vertical load).

次に、中敷表面に於ける各領域を上記のような動摩擦係数とする手段としては、中敷表面に従来公知の防滑処理を施すことが挙げられる。
例えば、領域6全域(動摩擦係数を大きく設定する領域)に防滑シート(例えば、住友スリーエム社製のグレップタイル[登録商標]など)を貼り付け、領域7全域(動摩擦係数を小さく設定する領域)に、領域6よりも動摩擦係数の小さな防滑シートを貼り付け、次に領域4全域(動摩擦係数を更に小さく設定する領域)に、領域7よりも動摩擦係数の小さな防滑シートを貼る、或いは防滑シートを貼らずに中敷本体の表面を露出させる(この場合、中敷本体の表面は、上記動摩擦係数の範囲であることが条件となる)ことにより、動摩擦係数が、領域6>領域7>領域4の関係を満たす中敷を得ることができる。
また、上記防滑シートの貼着に代えて、例えば、領域6全域に防滑性材料(例えば、ウレタン樹脂や合成ゴムなどの防滑素材、乾燥後に微細な凹凸を生じる塗工液など)を塗工し、領域7全域にこれよりも動摩擦係数の小さな防滑性材料を塗工し、領域4全域は、領域7よりも動摩擦係数の小さな防滑性材料を塗工するなどでもよい。
上記のような防滑シートや防滑性材料は、その表面に実質的に凹凸を有しないか或いは微細な凹凸を有するものであって、これら防滑処理の施された表面は、着用者の足裏から凹凸の存在を認識できない実質的に平坦状であるため、着用者が足裏に痛みを感じないので好ましい。
さらに、例えば、領域6全域に滑り止め用小突起を密に形成し、領域7全域に滑り止め小突起を領域6よりも粗に形成するなどのように、凹凸形成による防滑処理を施すこともできる。尚、防滑処理として滑り止め用小突起を用いる場合には、着用者が足裏に痛みを感じない程度の滑り止め用小突起を形成することが好ましい。このような滑り止め用小突起としては、小突起の上端と、小突起の外縁から約5mm離れた部位との接触圧力差が5kg/cm以下となるように形成することが好ましい。
但し、この接触圧力差とは、ニッタ社製、足圧分布測定システム、F−スキャンで測定された数値を言う。
Next, as a means for making each region on the insole surface have a dynamic friction coefficient as described above, a conventionally known anti-slip treatment is applied to the insole surface.
For example, a non-slip sheet (for example, Grep tile [registered trademark] manufactured by Sumitomo 3M Co., Ltd.) is pasted on the entire area 6 (area where the dynamic friction coefficient is set to be large), and is applied to the entire area 7 (area where the dynamic friction coefficient is set small). Then, an anti-slip sheet having a smaller dynamic friction coefficient than that of the region 6 is pasted, and then an anti-slip sheet having a smaller dynamic friction coefficient than that of the region 7 or an anti-slip sheet is pasted over the entire region 4 (region where the dynamic friction coefficient is set to be smaller). Without exposing the surface of the insole body (in this case, the surface of the insole body is within the range of the above-mentioned dynamic friction coefficient), the dynamic friction coefficient is as follows: region 6> region 7> region 4 You can get an insole that satisfies the relationship.
In addition, instead of sticking the anti-slip sheet, for example, an anti-slip material (for example, an anti-slip material such as urethane resin or synthetic rubber, a coating liquid that generates fine irregularities after drying) is applied to the entire region 6. Alternatively, an anti-slip material having a smaller dynamic friction coefficient than that of the region 7 may be applied to the entire region 7, and an anti-slip material having a smaller dynamic friction coefficient than that of the region 7 may be applied to the entire region 4.
The anti-slip sheet or anti-slip material as described above has substantially no unevenness on its surface or has fine unevenness, and the anti-slip surface is applied from the sole of the wearer. This is preferable because the wearer does not feel pain in the sole because it is substantially flat and cannot recognize the presence or absence of irregularities.
Further, for example, the anti-slip treatment by forming the unevenness may be performed such that the non-slip small protrusions are densely formed in the entire area 6 and the anti-slip small protrusions are formed in the entire area 7 more coarsely than the area 6. it can. In addition, when using the anti-slip | skid small processus | protrusion as an anti-slip | slipping process, it is preferable to form the anti-slip | skid processus | protrusion so that a wearer does not feel pain on a sole. Such an anti-slip small protrusion is preferably formed so that the difference in contact pressure between the upper end of the small protrusion and a portion about 5 mm away from the outer edge of the small protrusion is 5 kg / cm 2 or less.
However, the contact pressure difference is a numerical value measured by a foot pressure distribution measurement system, F-scan, manufactured by Nitta.

また、防滑処理としては、上記のように各領域の全域に異なる防滑処理を施す以外に、各領域に於いて防滑処理を部分的に施すこともできる。
防滑処理(上記のような、防滑シートの貼付、防滑性材料の塗工、小突起の形成など)を部分的に施すとは、例えば、図2(a)に示すように、中敷表面に防滑処理を線状に施したり、同図(b)に示すように、網状に施したり、同図(c)に示すように、点状に施すことなどが例示される。そして、防滑処理を部分的に施す際、動摩擦係数を大きく設定する領域は、その領域全面積に対して防滑処理が施された面積の割合が高くなるように、防滑処理を過密に施し、摩擦係数を小さく設定する領域は、その領域全面積に対して防滑処理が施された面積の割合が小さくなるように、防滑処理を粗に施せばよい。
例えば、図3に示すように、領域6に、防滑処理を過密に施し(例えば防滑処理の幅を太く形成するなど)、領域7に、領域6よりも防滑処理を粗く施し、領域4に、領域7よりも防滑処理を粗く施す、或いは非防滑処理とすることにより、動摩擦係数が、領域6>領域7>領域4の関係を満たす中敷を得ることができる。
このように防滑処理を部分的に施し、且つその割合を各領域に応じて調整することで、例えば同じ防滑性材料を用いて動摩擦係数の異なる各領域を形成することができる。よって、例えば、防滑性材料を所定の平面形状にプリント(印刷、塗工を含む)をすることにより、動摩擦係数の異なる各領域を一時に形成することもできるので、本発明の中敷を簡単に製造できる。また、防滑性材料(必要に応じて、顔料などの着色剤を混合し)を部分的に施す防滑処理であれば、中敷表面のデザインを兼用することも可能となる。
Further, as the anti-slip treatment, in addition to performing different anti-slip treatments on the entire areas as described above, the anti-slip treatment can be partially applied in each region.
For example, as shown in FIG. 2 (a), an anti-slip treatment (such as the above-described application of an anti-slip sheet, application of an anti-slip material, formation of small protrusions, etc.) Examples of the application of the anti-slip treatment are a linear shape, a net shape as shown in FIG. 5B, and a dot shape as shown in FIG. When the anti-slip treatment is partially performed, the region where the dynamic friction coefficient is set large is subjected to the anti-slip treatment so that the ratio of the area subjected to the anti-slip treatment is high with respect to the entire area, and the friction is applied. The region where the coefficient is set small may be roughly subjected to the anti-slip process so that the ratio of the area where the anti-slip process is performed to the entire area of the region is small.
For example, as shown in FIG. 3, the region 6 is subjected to an anti-slip treatment overly densely (for example, the width of the anti-slip treatment is increased), the region 7 is subjected to the anti-slip treatment more coarsely than the region 6, and the region 4 is subjected to By applying the anti-slip treatment rougher than the region 7 or using the non-slip treatment, it is possible to obtain an insole whose dynamic friction coefficient satisfies the relationship of region 6> region 7> region 4.
Thus, each area | region from which a dynamic friction coefficient differs can be formed, for example using the same anti-slip material by giving a slip prevention process partially and adjusting the ratio according to each area | region. Therefore, for example, by printing (including printing and coating) an anti-slip material in a predetermined plane shape, it is possible to form each region having a different dynamic friction coefficient at a time. Can be manufactured. Further, if the anti-slip treatment is performed by partially applying an anti-slip material (mixing a colorant such as a pigment if necessary), the design of the insole surface can also be used.

本発明の中敷は、靴の足裏接触面に具備させることによって靴として使用できる。中敷は、靴に嵌め入れるだけでもよいし、接着剤にて固着してもよい。また、靴の足裏接着面に直接に上記中敷の表面と同様な防滑処理を行い、本発明の靴の足裏接触面に上記中敷を一体的に形成してもよい。
また、本発明の中敷表面に施された防滑処理を、靴下の外面(下面、即ち、靴の中敷接触面)に同様に施しても、中敷に施した場合と同様に、着用者の動作性能の向上が期待される。
該靴下は、靴下外面に、動摩擦係数の異なる領域が複数形成され、足裏の押圧力が大きく加わる領域に於ける動摩擦係数を小さく、足裏の押圧力が小さく加わる領域に於ける動摩擦係数を大きく形成してなる領域を有するものである。好ましくは、足裏のアーチ部内側に対応する領域6、足裏のアーチ部外側に対応する領域7、及び足裏の母趾中足骨頭部に対応する領域4に於ける靴下外面の動摩擦係数が、足裏のアーチ部内側に対応する領域6>足裏のアーチ部外側に対応する領域7>足裏の母趾中足骨頭部に対応する領域4に形成されている靴下である。
かかる靴下を着用して靴を履く場合、上記中敷の如く動摩擦係数の異なる領域が形成されたものではなく、動摩擦係数が略均一な中敷を有する靴を履けば水平方向の力をできるだけ均一に発揮することができる。
また、防滑処理を部分的に施した中敷と防滑処理を部分的に施した靴下とを組み合わせて、両者の複合的機能によって、中敷靴下間の動摩擦係数が領域6>領域7>領域4になるように設計することでも、水平方向の力をできるだけ均一に発揮することができる。
The insole of the present invention can be used as a shoe by being provided on the sole contact surface of the shoe. The insole may be simply fitted into the shoe, or may be fixed with an adhesive. Further, the same insole treatment as the surface of the insole may be performed directly on the sole bonding surface of the shoe, and the insole may be integrally formed on the sole contact surface of the shoe of the present invention.
In addition, even if the anti-slip treatment applied to the insole surface of the present invention is similarly applied to the outer surface of the sock (the lower surface, ie, the insole contact surface), the wearer Is expected to improve the operating performance.
In the sock, a plurality of regions having different dynamic friction coefficients are formed on the outer surface of the sock, and the dynamic friction coefficient in the region where the pressing force of the sole is large is reduced, and the dynamic friction coefficient in the region where the pressing force of the sole is small is set. It has a region formed large. Preferably, the dynamic friction coefficient of the outer surface of the socks in the region 6 corresponding to the inside of the arch portion of the sole, the region 7 corresponding to the outside of the arch portion of the sole, and the region 4 corresponding to the metatarsal head of the sole of the sole of the foot Are socks formed in the region 6 corresponding to the inside of the arch portion of the sole, the region 7 corresponding to the outside of the arch portion of the sole, and the region 4 corresponding to the metatarsal head of the heel of the sole.
When wearing such socks, shoes with different dynamic friction coefficients are not formed as in the above insole, and if a shoe having an insole with a substantially uniform dynamic friction coefficient is worn, the horizontal force is as uniform as possible. Can be demonstrated.
Further, by combining the insole partially subjected to the anti-slip treatment and the socks partially subjected to the anti-slip treatment, the dynamic friction coefficient between the insole socks becomes region 6> region 7> region 4 by the combined function of both. Even in the design, the horizontal force can be as uniform as possible.

以下、実施例及び比較例を示して、本発明を更に詳述する。但し、本発明は、下記実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.

(試験用中敷)
足型に型取りした厚み4mmの発泡ウレタン製の中敷本体(但し、足裏の土踏まずに接するようにアーチ部内側部分が上側へ湾曲されている)表面に、動摩擦係数(測定方法は下記の通り)が0.13のカバーシート(乾義興製、商品名:BIG BK)が貼着されたもの。
(Insole for testing)
Coefficient of dynamic friction (measurement method is as follows) on the surface of the insole body made of foamed urethane with a thickness of 4 mm cast into a foot shape (however, the inner part of the arch part is curved upward so as to contact the arch of the sole) Street) 0.13 cover sheet (product name: BIG BK, made by Inui).

(動摩擦係数の測定)
動摩擦係数の測定には、測定対象となるサンプルを取り付ける固定台と、相手材料を取り付ける可動おもりとを準備する。測定対象である中敷表面の各領域について、20mm×30mmに切り取ったサンプルを用意し、平滑な固定台の上面に固定する。相手材料として、平滑な底面(幅×長さ=30×30mm)を有するアルミニウム板を可動おもりに取り付ける。可動おもりに1.0kgの分銅を乗せ、固定台の上面と平行な方向へ300mm/minの速度で移動させる。動摩擦係数は、可動おもりを20mm移動させる間の摩擦力から求める。動摩擦係数=可動おもりを20mm移動させる間の摩擦力/サンプルと相手材料との接触面に垂直方向に作用する力(垂直荷重)。
尚、図4に示すように、実施例の中敷きは、領域7に於いて防滑処理が密に施された部分と防滑処理が施されていない部分があり、サンプルの切り取り箇所によって動摩擦係数が大きく異なる虞があるため、便宜上、下記の方法にて算出した。領域7に於いて、防滑処理が密な部分と防滑処理のない部分を含むようにサンプル(20mm×30mm)を切り取り、このサンプルのうち防滑処理が密な部分に対して上記可動おもりを移動させて、防滑処理の密な部分のサンプルの動摩擦係数(μ1)を測定する。次に、同サンプルのうち防滑処理のない部分に対して上記と同様にして動摩擦係数(μ2)を測定する。このサンプルの防滑処理が施された面積(a1)と防滑処理のない面積(a2)の比率(A=a1+a2)から、下記式に従って平均動摩擦係数を求めた。
式:領域7の動摩擦係数=(a1/A)×μ1+(a2/A)×μ2
(Measurement of dynamic friction coefficient)
For the measurement of the dynamic friction coefficient, a fixed base on which a sample to be measured is attached and a movable weight to which a mating material is attached are prepared. For each region of the insole surface that is the measurement target, a sample cut to 20 mm × 30 mm is prepared and fixed to the upper surface of a smooth fixing base. As a counterpart material, an aluminum plate having a smooth bottom surface (width × length = 30 × 30 mm) is attached to the movable weight. A weight of 1.0 kg is placed on the movable weight and moved in a direction parallel to the upper surface of the fixed base at a speed of 300 mm / min. A dynamic friction coefficient is calculated | required from the frictional force during moving 20 mm of movable weights. Coefficient of dynamic friction = friction force while moving the movable weight by 20 mm / force acting vertically on the contact surface between the sample and the mating material (vertical load).
As shown in FIG. 4, the insole of the embodiment has a portion where the anti-slip treatment is densely applied and a portion where the anti-slip treatment is not applied in the region 7, and the dynamic friction coefficient is large depending on the cut portion of the sample. For the sake of convenience, the following method was used for calculation. In area 7, cut out a sample (20 mm x 30 mm) so that it includes a portion where the anti-slip treatment is dense and a portion where the anti-slip treatment is not present, and move the movable weight to the portion where the anti-slip treatment is dense. Then, the dynamic friction coefficient (μ1) of the sample in the dense part of the anti-slip treatment is measured. Next, the dynamic friction coefficient (μ2) is measured in the same manner as described above for the portion of the sample that does not have the anti-slip treatment. From the ratio (A = a1 + a2) of the area (a1) where the sample was subjected to the anti-slip treatment and the area (a2) where the anti-slip treatment was not performed, the average dynamic friction coefficient was determined according to the following formula.
Formula: Dynamic friction coefficient of region 7 = (a1 / A) × μ1 + (a2 / A) × μ2

(実施例)
上記試験用中敷のカバーシートの表面に、防滑性材料としてポリウレタンを、図4に示すデザイン形状と同じに、線状に塗工した。尚、図4於いて、ポリウレタンを塗工した箇所を、薄墨塗りで示す。
得られた中敷きの足裏のアーチ部内側に対応する領域6、足裏のアーチ部外側に対応する領域7、足裏の母趾中足骨頭部に対応する領域4の動摩擦係数を上記試験方法にて測定した。
その結果、足裏のアーチ部内側に対応する領域6の動摩擦係数は、約0.65、足裏のアーチ部外側に対応する領域7の動摩擦係数は、約0.3、足裏の母趾中足骨頭部に対応する領域4の動摩擦係数は、約0.13であった。
(Example)
On the surface of the cover sheet for the test insole, polyurethane as a non-slip material was applied in the same linear shape as the design shape shown in FIG. In FIG. 4, the portion where polyurethane is applied is indicated by light ink painting.
The above test method is used to determine the dynamic friction coefficient of the region 6 corresponding to the inside of the arch portion of the sole of the insole, the region 7 corresponding to the outside of the arch of the sole, and the region 4 corresponding to the metatarsal head of the sole of the sole. Measured with
As a result, the dynamic friction coefficient of the region 6 corresponding to the inside of the arch portion of the sole is about 0.65, the dynamic friction coefficient of the region 7 corresponding to the outside of the arch portion of the sole is about 0.3, and the toe of the sole The coefficient of dynamic friction in region 4 corresponding to the metatarsal head was about 0.13.

(比較例)
上記試験用中敷を(防滑処理を施さず)そのまま使用した。
(Comparative example)
The above test insole was used as it was (without anti-slip treatment).

(動作性能試験)
上記実施例及び比較例の中敷を市販のスポーツシューズ(サイズ27cm)の中敷として嵌め込み、任意に抽出した3人の試験者に反復横飛びを10秒間行ってもらい、方向転換する際に於ける床接地時間を測定した。尚、測定は、反復横飛びの右足方向転換位置に床反力計を設置し、それによって取り込まれた床反力データから、反復横飛び運動で方向転換をする毎に、靴が床に何秒間接地しているかをそれぞれ測り、その時間を平均することにより、被験者それぞれの方向転換1回当たりの接地時間を求めた。
そして、3人の被験者の方向転換1回当たりの接地時間の平均を求めた結果、実施例の中敷を具備した靴では、0.205秒で、比較例の中敷を具備した靴では、0.220秒となり、実施例の中敷を使用した場合の方が、接地時間が短くなる傾向があった。
(Operating performance test)
When the insole of the above examples and comparative examples is fitted as an insole of a commercially available sports shoe (size 27 cm), the three testers arbitrarily extracted perform repeated lateral jumps for 10 seconds to change the direction. The floor contact time was measured. For measurement, install a floor reaction force meter at the right foot direction change position of repeated lateral jump, and from the floor reaction force data captured by it, every time the direction is changed by repeated lateral jump movement, Each contact was measured for a second, and the time was averaged to determine the contact time per turn of each subject.
And as a result of calculating the average of the contact time per direction change of three subjects, in the shoes having the insole of the example, in 0.205 seconds, in the shoes having the insole of the comparative example, It was 0.220 seconds, and the ground contact time tended to be shorter when the insole of the example was used.

本発明の中敷を表面側から見た平面図。尚、二点鎖線は、各領域を区画するための仮想線を示す。以下同様。The top view which looked at the insole of this invention from the surface side. The two-dot chain line indicates a virtual line for partitioning each region. The same applies hereinafter. 中敷表面に部分的に防滑処理を施す際の各例示態様を示す参考平面図。但し、防滑処理の施された部分を、薄墨塗りで示す。以下同様。The reference top view which shows each example aspect at the time of performing an anti-slip process partially on the insole surface. However, the portion subjected to the anti-slip treatment is indicated by light ink painting. The same applies hereinafter. 中敷表面の領域4,6,7に部分的に防滑処理を施した態様を示す平面図。The top view which shows the aspect which performed the anti-slip process partially to the area | regions 4, 6, and 7 of the insole surface. 実施例で作製した中敷を表面側から見た平面図。The top view which looked at the insole produced in the Example from the surface side.

符号の説明Explanation of symbols

1…足裏の母趾末節骨部に対応する領域、2…足裏の第2〜5趾末節骨部に対応する領域、3…足裏の基節骨部に対応する領域、4…足裏の母趾中足骨頭部に対応する領域、5…足裏の第2〜5趾中足骨頭部に対応する領域、6…足裏のアーチ部内側に対応する領域、7…足裏のアーチ部外側に対応する領域、8…足裏の踵部に対応する領域、10…中敷
DESCRIPTION OF SYMBOLS 1 ... Area | region corresponding to the phalanx phalange part of the sole of a foot 2 ... Area | region corresponding to the 2nd-5th phalanx phalange part of a sole 3 ... Area | region corresponding to the proximal phalanx part of a sole 4 ... Foot Area corresponding to the head of the metatarsal bone at the back of the sole, 5... Area corresponding to the head of the 2nd to 5 th metatarsal bone at the sole, 6. Area corresponding to the inside of the arch part of the sole, 7. Area corresponding to the outside of the arch, 8 ... Area corresponding to the heel part of the sole, 10 ... Insole

Claims (5)

足裏のアーチ部内側に対応する領域、足裏のアーチ部外側に対応する領域、及び足裏の母趾中足骨頭部に対応する領域に於ける中敷表面の動摩擦係数が、それぞれ下記の関係に形成されていることを特徴とする靴の中敷。
各領域の動摩擦係数の関係:足裏のアーチ部内側に対応する領域>足裏のアーチ部外側に対応する領域>足裏の母趾中足骨頭部に対応する領域。
The dynamic friction coefficient of the insole surface in the area corresponding to the inside of the arch part of the sole, the area corresponding to the outside of the arch part of the sole, and the area corresponding to the metatarsal head of the sole of the sole is respectively shown below. Insole for shoes characterized by being formed in a relationship.
Relationship between dynamic friction coefficients of each region: a region corresponding to the inside of the arch portion of the sole> a region corresponding to the outside of the arch portion of the sole> a region corresponding to the metatarsal head of the sole of the sole of the sole.
前記アーチ部内側に対応する領域が、動摩擦係数0.5〜2に形成され、前記アーチ部外側に対応する領域が、動摩擦係数0.3〜1.25に形成され、前記母趾中足骨頭部に対応する領域が、動摩擦係数0.1〜0.5に形成されている請求項1記載の靴の中敷。   A region corresponding to the inner side of the arch is formed with a dynamic friction coefficient of 0.5 to 2, and a region corresponding to the outer side of the arch is formed with a dynamic friction coefficient of 0.3 to 1.25. The insole of the shoe according to claim 1, wherein the region corresponding to the portion is formed with a dynamic friction coefficient of 0.1 to 0.5. 請求項1又は2に記載の中敷が、足裏接触面に設けられていることを特徴とする靴。   The insole according to claim 1 or 2 is provided on a sole contact surface. 足裏のアーチ部内側に対応する領域、足裏のアーチ部外側に対応する領域、及び足裏の母趾中足骨頭部に対応する領域に於ける靴下外面の動摩擦係数が、それぞれ下記の関係に形成されていることを特徴とする靴下。The dynamic friction coefficient of the outer surface of the sock in the area corresponding to the inside of the arch part of the sole, the area corresponding to the outside of the arch part of the sole, and the area corresponding to the metatarsal head of the sole of the sole is as follows. Socks characterized by being formed into.
各領域の動摩擦係数の関係:足裏のアーチ部内側に対応する領域>足裏のアーチ部外側に対応する領域>足裏の母趾中足骨頭部に対応する領域。Relationship between dynamic friction coefficients of each region: a region corresponding to the inside of the arch portion of the sole> a region corresponding to the outside of the arch portion of the sole> a region corresponding to the metatarsal head of the sole of the sole of the sole.
前記アーチ部内側に対応する領域が、動摩擦係数0.5〜2に形成され、前記アーチ部外側に対応する領域が、動摩擦係数0.3〜1.25に形成され、前記母趾中足骨頭部に対応する領域が、動摩擦係数0.1〜0.5に形成されている請求項4記載の靴下。A region corresponding to the inner side of the arch is formed with a dynamic friction coefficient of 0.5 to 2, and a region corresponding to the outer side of the arch is formed with a dynamic friction coefficient of 0.3 to 1.25. The sock according to claim 4, wherein a region corresponding to the portion is formed with a dynamic friction coefficient of 0.1 to 0.5.
JP2005193004A 2005-06-30 2005-06-30 Insoles, shoes, and socks Active JP4875860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193004A JP4875860B2 (en) 2005-06-30 2005-06-30 Insoles, shoes, and socks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193004A JP4875860B2 (en) 2005-06-30 2005-06-30 Insoles, shoes, and socks

Publications (2)

Publication Number Publication Date
JP2007007204A JP2007007204A (en) 2007-01-18
JP4875860B2 true JP4875860B2 (en) 2012-02-15

Family

ID=37746431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193004A Active JP4875860B2 (en) 2005-06-30 2005-06-30 Insoles, shoes, and socks

Country Status (1)

Country Link
JP (1) JP4875860B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3233776A1 (en) * 1982-09-11 1984-03-15 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING COPOLYMERISATES FROM MONOETHYLENICALLY UNSATURATED MONO- AND DICARBONIC ACIDS
JPS61160706A (en) * 1985-01-09 1986-07-21 Sumitomo Electric Ind Ltd Connecting device for optical composite overhead earth wire
JPH0367231U (en) * 1989-10-26 1991-07-01
JP2521530Y2 (en) * 1989-12-15 1996-12-25 富士通株式会社 Semiconductor module
JPH11151102A (en) * 1997-11-19 1999-06-08 Asics Corp Layered insole
JP2001098401A (en) * 1999-09-24 2001-04-10 Midori Anzen Co Ltd Work socks
JP2002209605A (en) * 2001-01-16 2002-07-30 Nishiki Tabi Kk Insole

Also Published As

Publication number Publication date
JP2007007204A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US10136698B2 (en) Shoe insole
US10485299B2 (en) Contoured support shoe insole
AU2010352681B2 (en) High foot mobility shoe
KR20180004178A (en) Outlined Shoe Insole
US20160219970A1 (en) Triathlon Insole
JP5601593B2 (en) Insole of footwear with impact dispersion function and rolling walking function
KR101220397B1 (en) An item of footwear
AU2010352681A1 (en) High foot mobility shoe
EP2303051A2 (en) Skateboard shoes
US20180070670A1 (en) Shoe Insole
WO2008008960A1 (en) Orthotic device for open shoes
WO2010022532A3 (en) Sole for an item of footwear
EP0947145B1 (en) Shoe sole with improved dual energy management system
EP2906065B1 (en) Sole structure for biomechanical control
JP4875860B2 (en) Insoles, shoes, and socks
JP2009533132A (en) Functional footwear
KR20190112512A (en) Muti-Purpose shoes sticker
JP3151489U (en) Insole for footwear
JP2860414B2 (en) Non-slip structure and sheet for shoes
JP3151489U7 (en)
JP4486069B2 (en) shoes
CN112040911A (en) Sole of artificial foot for sports
JP2008023290A (en) Insole and footwear with insole
JP2004187841A (en) Shoes and designing method for shoes
JP2001186904A (en) Footwear for rehabilitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4875860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150